· · · ·	NATIONAL AEROMAUTI	ARY	R. & M. No. 2540 (11,269) A.R.C. Technical Repo
A 1 & 1 = 1 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 =		NATICE E PAR. (
MINIS	TRY OF SUPPLY	7	
AERONAUTI REPOR	CAL RESEARCH COU IS AND MEMORANDA	UNCIL A	
Tests on	a Glas II	Wing	
without	: Suction in	the	
Compressed	Air Wind '	Tunnel	
C. SALTER, M.A., C of the Aero	<i>By</i> . J. W. MILES and MISS odynamics Division, N.P	6 R. Owen, .L.	
Cr	own Copyright Reserved		
	10 0		
LONDON: HIS MA	JESTY'S STATIONER	Y OFFICE	
PF	RICE 5s 6d NET		

.

NATIONAL AERONAUTICAL COTABLISHMENT

Tests on a Glas II Wing without Suction in the Compressed Air Wind Tunnel

By

C. SALTER, M.A., C. J. W. MILES and MISS R. OWEN, of the Aerodynamics Division, N.P.L

Reports and Memoranda No. 2,40 LIE 149 MAN 1952 16th February, 1948

Summary.—In this report the results are given of an investigation, without the application of suction, into the lift, drag and pitching moment of an aerofoil of 31.5 per cent thickness/chord ratio designed specifically for use with a single suction slot at 0.69c from the leading edge.

The object of the tests was primarily the estimation of the behaviour of the wing at high Reynolds numbers in the event of the failure of the suction, but it was also hoped to obtain information concerning some reasonable method of countering any serious effects that might arise.

Consequently, the tail of the aerofoil was hinged to form an unslotted main flap and fitted with a detachable split flap. Tests were also made with a slotted main flap. The Reynolds number range extended from 0.3×10^6 to 7.3×10^6 . Critical regions were observed and the scale effects were found to be large.

The influence of the flaps was generally more or less normal, although the increase in $C_{L \text{ max}}$ was less than half that for a conventional aerofoil of similar thickness/chord ratio, the NACA 0030. At $R = 7.25 \times 10^6$ without flaps, $C_{L \text{ max}}$ for the Glas II was 1.21 compared with 0.7 for the NACA 0030. A 15 per cent split flap at 90 deg on the latter increased $C_{L \text{ max}}$ to 2.2 whereas the values for the Glas II only reached 1.71 with a similar split flap and 1.64 with a main flap angle of 40 deg.

The effect of the slot between the main flap and the forward portion of the wing was found to be comparatively small.

Introduction.—The tests described in this report were carried out in order to estimate the behaviour, at high Reynolds numbers, of a wing specifically designed for use with a single suction slot in the event of the failure of suction. Some previous observations in respect of this particular wing shape without suction had been made in the 13×9 ft wind tunnel at the National Physical Laboratory at a Reynolds number of one million, but no information as to scale effect was available.

The investigation in the Compressed Air Tunnel was extended to the examination of the effect of main, split and slotted flaps in the hope of obtaining information relating to some reasonable method of countering any serious effects that might arise.

Glas II Wing.—The particular shape of wing section chosen for these experiments is known as the Glas II and has been described in R. & M. 2111². The main theoretical characteristics are as follows :—

Thickness 31.5 per cent,

 C_L range 0 to 2.0,

Position of suction slot 0.691c from leading edge,

Aerodynamic centre $0{\cdot}3077c$ from leading edge.

An outline of the section is given in Fig. 1, in which is indicated the arrangement of the main flap in its two positions (0 deg and 40 deg) and of the split flap at 90 deg to the main flap. In the

Α

first three series of tests there was no air gap at all between the main flap and the rest of the wing.

The slot connecting the upper and lower surfaces and thereby converting the unslotted main flap into a slotted flap was formed by, cutting away some of the main bulk of the wing, and is shown by the appropriate dotted lines in the same figure. The flap was suitably built up in each of its two positions by the packing piece A which, of course, maintained the same position in each case with respect to the forward portion of the aerofoil.

The span of the wing was 4 ft and the chord 8 in (aspect ratio 6). It was made of mahogany (except for the metal flaps) and Phenoglazed, and was the first of the wooden models tested in the Compressed Air Tunnel to be completely free from blistering of the surface after repeated subjection to a pressure of 350 lb/in.

Range of Tests.—The Reynolds number range extended from 0.3×10^6 to 7.3×10^6 with pressures up to 25.5 atmospheres and wind speeds up to 78.3 ft/sec.

Observations of lift, drag and pitching moment over this range and from low angles of incidence to angles well above the stall covered the five cases as follows :—

- (a) Unslotted Main Flap at 0 deg (Wing shape as designed)
- (b) ,, ,, ,, 40 deg. No split flap
- (c) ,, ,, ,, 0 deg. Split flap at 90 deg
- (d) Slotted Main Flap at 0 deg. No split flap
- (e) ,, ,, ,, 40 deg. No split flap.

Results.—*Tables.*—Tables are given of values of the usual parameters and coefficients α , α_0 , C_L , C_D , C_{D0} and of the moment coefficient C_M about the quarter-chord line.

In the calculations the following standard relations were used :---

 $\alpha_0 = \alpha - 3.54 C_L$ Induced drag coefficient = 0.0555 C_L^2 .

The observed values of the drag and profile drag coefficients were corrected for the horizontal force resulting from the variation of static pressure along the axis of the tunnel. This force may become appreciable with thick wings and in these tests acted in opposition to the drag force, the correction amounting to 0.001.

Figures.—The results for the normal wing shape as originally designed (case a) are plotted in Figs. 2, 4, 5 and 6. The inserts in Fig. 2 illustrate the movement of the lift curves at low lift coefficients and the variation of the angle of maximum lift with Reynolds number, while in Fig. 4 the change in the value of $C_{D \min}$ over the range is indicated. Fig. 3 is a comparison of the lift with the results of experiments in the 13 \times 9 ft tunnel.

Figs. 7 and 9 give the curves of C_L against α_0 and C_M against C_L for the highest Reynolds number of all the five series of tests.

Fig. 8 demonstrates the variation of $C_{L \max}$ with Reynolds number and also show for comparison the $C_{L \max}$ curves for the NACA 0030 aerofoil with and without a split flap.²

Discussion of Results.—Lift Curves—General.—The scale effect on the C_L curves is considerable and Fig. 2 is fairly typical of all the variations examined. The changes affect not only $C_{L \max}$ but also the incidence at maximum lift and the incidence at any specified value of C_L below the stall.

Lift Curves.— $C_{L \max}$ —Except for the fifth series of tests (case e) there is a tendency for a minimum value of $C_{L \max}$ to occur between the two extremities of the range of Reynolds number (Fig. 8). With the slotted main flap set at 40 deg however (case e) $C_{L \max}$ appears to settle down to a fairly constant value at the higher end of the range. In the case of the unslotted

main flap at 40 deg there was evidence of a double regime between values of R of roughly 0.4×10^6 and 3×10^6 (Fig. 8).

The increase in $C_{L \text{ max.}}$ produced by setting either the unslotted or the slotted main flap to 40 deg or by fitting the split flap was roughly 0.5. The curves for an NACA 0030 wing with and without a split flap have been plotted in Fig. 8 for comparison² and it will be noticed that although the unflapped Glas II gives and appreciably greater lift than the NACA 0030, which is approximately of the same thickness/chord ratio, the gain of lift resulting from the incorporation of flaps is less than half that for the more conventional section.

The split flap appears to be slightly better than the others and at the highest Reynolds numbers the slotted main flap with a flap angle of 40 deg is the least effective (Figs. 7 and 8). It is interesting to note that, at zero flap angle, the effect on $C_{L \max}$ of slotting the main flap is negligible except for a slight indication of some loss of maximum lift at the top end of the range.

Lift Curves.—Incidence at $C_{L \max}$ —The movement of the angle of incidence at maximum lift is rather interesting and the value of α_0 at $C_{L \max}$ for the normal wing shape has been plotted in Fig. 2. Here we have two fairly stable ranges with respect to Reynolds number with a critical region at $R = 0.9 \times 10^6$ between them. The curve for the slotted main flap at zero flap angle is somewhat similar.

The corresponding values of α_0 with the unslotted main flap at 40 deg do not change much except for a region of uncertainty at about $R = 1.5 \times 10^6$. The slotted main flap at 40 deg however, gives a sharp critical change at $R = 2.5 \times 10^6$ while the curve for the split flap rises continuously except for a pronounced dip in the region of $R = 0.8 \times 10^6$.

Generally speaking there appear to be two fairly stable ranges of α_0 at $C_{L \max}$ with a more or less critical region between them, the greatest incidence of the peaks of the lift curves occurring at the highest Reynolds humber.

Just above the critical regions referred to the curves of C_L against α_0 tend to be very flat-topped.

Lift Curves.—Below the Stall.—With increasing Reynolds number there is generally speaking a shift of the lower part of the lift curve, firstly in the direction of the lower values of α_0 and then reversing. The variation of α_0 at $C_L = 0$ for the normal wing shape has been plotted on Fig. 2.

The corresponding curves for the other series of tests show a minimum value of α_0 (at a selected value of C_L) somewhere in the range of $R = 1.0 \times 10^6$ to 1.5×10^6 .

The curve for the unslotted main flap at 0 deg is much like that in Fig. 2, but when this flap is set at 40 deg the first part of the curve continues below 0 deg and does not recover appreciably from a minimum of 3 deg (selected value of $C_L = 1.0$). That for the slotted main flap at 0 deg falls to a minimum of 7 deg ($C_L = 1.0$) and then rises progressively. With the split flap ($C_L =$ 1.25) there is a sharp increase at $R = 1.5 \times 10^6$ to 2×10^6 after which the curve flattens out.

In all cases the lower part of the lift curve settles down or tends to settle down at the higher Reynolds numbers, but at the low end of the range the movement of all the curves is very rapid, as in Fig. 2.

Comparison with Tests in 13×9 ft Tunnel.—The curve of C_L previously obtained by pressure plotting in the 13×9 ft wind tunnel is shown in Fig. 3 and points obtained at adjacent Reynolds numbers (0.75 \times 10⁶ and 1.21 \times 10⁶) in the C.A.T. are superimposed.

Agreement is excellent except in the region of maximum lift where the latter results are seen to be appreciably lower.

The turbulence of the 13×9 ft tunnel is much lower than that in the C.A.T., so that from some points of view the maximum lift in the latter might be expected to be the greater.

There is not sufficient evidence available to justify any comments on the differences between the two curves at high angles of incidence.

Drag Curves.—The curves of profile-drag coefficient against C_L for the normal wing shape are plotted in Fig. 4 and the approximate values of $C_{D \min}$ at various Reynolds numbers are also indicated.

The latter shows the usual rapid decrease of $C_{D \min}$ for values of R increasing to about $1.5 \times 10^{\circ}$ followed by a very slight increase. The values for case d (slotted main flap at 0 deg) vary in a similar manner but are slightly greater in magnitude.

At higher angles of incidence the variation of C_D with Reynolds number was slight in each case, and this also applies to the three sets of flapped wing tests.

The conversion of the main flap at 0 deg into a slotted main flap at the same setting results in a slight general increase in C_{D0} although the curves are otherwise much the same as in Fig. 4. The variations of C_{D0} with Reynolds number are considerable:

Pitching-moment Curves.—The variation of C_M (about the quarter-chord line) over the range of tests was found to be very large, and Figs. 5 and 6 for the normal wing are also typical of the case of the slotted main flap at 0 deg. Because of the large variations of C_M with R below the stall and because of the disappearance of the loop in the region of maximum lift at an intermediate point in the range, it has been convenient to plot the curves on two separate figures.

The pitching moment appears to become nearly independent of Reynolds number above values of the latter of 3.6×10^6 for the normal wing, 2.1×10^6 for the wing with the unslotted main flap at 40 deg and also when fitted with a split flap and 5.0×10^6 for the slotted main flap at zero flap angle. There is, however, no sign of the curve for the case of the slotted main flap at 40 deg having reached a stable condition even at $R = 7.3 \times 10^6$.

The C_M curves at the highest values of Reynolds number have been plotted in Fig. 9.

Conclusions.—The scale effects observed in the course of the above investigations were found to be very large and in many cases the changes in the various functions showed critical regions of Reynolds number. Generally speaking, however, the curves tended to show that fairly stable conditions had been reached at the highest Reynolds numbers of the tests, although $C_{L \text{ max}}$ for the unmodified wing was still rising at $R = 7.2 \times 10^6$.

At this Reynolds number the minimum drag coefficient C_D was found to be about 0.06.

The gain of maximum lift resulting from the use of main and split flaps was roughly 0.5 on C_L , and has been shown to be less than half of the gain achieved on an NACA 0030 wing by the use of a similar split flap.

The effect of slotting the main flap as described was found to be comparatively small and rather detrimental than otherwise.

APPENDIX

Note on the Effect of the New Honeycomb Straightener on the Flow in the C.A.T.

These experiments were carried out after the new honeycomb had been installed. This is made up of alternate flat and corrugated strips 2-in wide, the cells being approximately triangular with a height of $\frac{1}{4}$ -in on a $\frac{1}{2}$ -in base. The previous honeycomb had $2\frac{5}{8}$ -in square cells 21-in long.

APPENDIX—continued.

Repeat observations have been made on NACA 0012, NACA 23021, NACA 66—2—215, Piercey 12 per cent and EQH 1250/1050. Except for the first two of these the Reynolds number for minimum drag increased from roughly $1\frac{1}{4}$ millions to about $2\frac{1}{4}$ millions. For the conventional aerofoils NACA 0012 and 23021 there was no appreciable change and in all cases the effect on $C_{L \max}$ was insignificant.

The critical Reynolds numbers of 6-in, 1.5-in and 0.75-in spheres were also investigated for comparison with the values given in R. & M. 1832. The 6-in sphere at pressures up to 2.5 atmospheres gave a critical value of 3.05×10^5 against the previous value of 2.25×10^5 . For the 1.5-in spheres at 9 atmospheres the increase was from 2.85×10^5 to 2.95×10^5 , but the 0.75-in sphere at 11 and 16 atmospheres pressure indicated no change.

It was found, however, that under the new conditions the shapes of the curves relating the pressure at the back of the sphere to the Reynolds number were similar in the axial and in the 12-in offset positions, whereas they had previously been noticeably different.

The general conclusion is that the new honeycomb has resulted in a slight reduction of turbulence and improved the uniformity of the turbulence across the jet, but the evidence at the highest Reynolds numbers obtainable (25 atmospheres pressure) is inconclusive.

A report giving more detailed information will be issued in due course.

REFERENCES

Title

The Design of Suction Aerofoils with a very large C_L range. R. & M. 2111. (November, 1945).

Test on a 20 per cent Piercey Aerofoil and on NACA 0030 with and without Flaps in the C.A.T. A.R.C. 4511. (To be published).

Critical Reynolds Numbers of Spheres in the Compressed Air Tunnel. R. & M. 1832. (1938).

- No. Author
- 1 M. B. Glauert ..
- 2 D. H. Williams, A. H. Bell and W. G. Raymer

3 A. Fage and D. H. Williams ...

	P = 1.005 $V = 72.5 f$	atmos. t/sec	${ ho}_R^{V^2}$	$= 12.09 \text{ lb/so}$ $= 0.291 \times 1$	q ft. 0 ⁶		P = 1.68 atm $V = 58.7 ft/s$	nos. sec	${\displaystyle {\rho V^2 \over R}}$	= 13.55 lb/sq = 0.406 × 10	ft 16
α	C _L	C _D	<i>C</i> _{D0}	C _M	α₀	α	C _L	C _D	C _{D0}	C _M	αο
$\begin{array}{r} -4\cdot 4 \\ -0\cdot 55 \\ +3\cdot 15 \\ 7\cdot 0 \\ 10\cdot 65 \\ 14\cdot 25 \\ 16\cdot 55 \\ 19\cdot 0 \\ 21\cdot 5 \\ 24\cdot 15 \\ 26\cdot 9 \\ 29\cdot 5 \\ 32\cdot 25 \end{array}$	$\begin{array}{c} -0.683 \\ -0.478 \\ -0.259 \\ -0.050 \\ +0.185 \\ 0.596 \\ 0.917 \\ 1.135 \\ 1.23 \\ 1.205 \\ 1.095 \\ 1.08 \\ 1.03 \end{array}$	$\begin{array}{c} 0.117\\ 0.105\\ 0.104\\ 0.110\\ 0.122\\ 0.133\\ 0.127\\ 0.149\\ 0.176\\ 0.216\\ 0.253\\ 0.303\\ 0.340\\ \end{array}$	$\begin{array}{c} 0.091\\ 0.092\\ 0.100\\ 0.110\\ 0.120\\ 0.113\\ 0.081\\ 0.077\\ 0.092\\ 0.135\\ 0.186\\ 0.238\\ 0.280\\ \end{array}$	$ \begin{array}{c} 0.0247\\ 0.0234\\ 0.0200\\ 0.0147\\ 0.0052\\ -0.0246\\ -0.0246\\ -0.0402\\ -0.0530\\ -0.0538\\ -0.0487\\ -0.0487\\ -0.0420\\ -0.0533\\ -0.0569\\ \end{array} $	$\begin{array}{c} -2.0 \\ +1.15 \\ 4.15 \\ 7.2 \\ 9.0 \\ 12.15 \\ 13.3 \\ 15.0 \\ 17.15 \\ 19.9 \\ 23.0 \\ 25.7 \\ 28.6 \end{array}$	$\begin{array}{c} -4\cdot 4\\ -3\cdot 1\\ -1\cdot 85\\ -0\cdot 6\\ +0\cdot 6\\ 3\cdot 05\\ 6\cdot 8\\ 10\cdot 45\\ 14\cdot 05\\ 16\cdot 45\\ 18\cdot 95\\ 20\cdot 25\\ 21\cdot 5\\ 22\cdot 85\\ 24\cdot 15\\ 25\cdot 55\\ 28\cdot 2\end{array}$	$\begin{array}{c} -0.679\\ -0.599\\ -0.510\\ -0.410\\ -0.302\\ -0.060\\ +0.250\\ 0.522\\ 0.867\\ 1.045\\ 1.175\\ 1.22\\ 1.235\\ 1.215\\ 1.215\\ 1.215\\ 1.15\\ 1.10\\ \end{array}$	$\begin{array}{c} 0.113\\ 0.105\\ 0.0965\\ 0.0925\\ 0.090\\ 0.0905\\ 0.0925\\ 0.091\\ 0.108\\ 0.130\\ 0.154\\ 0.171\\ 0.188\\ 0.207\\ 0.227\\ 0.227\\ 0.244\\ 0.298 \end{array}$	$\begin{array}{c} 0.087\\ 0.085\\ 0.085\\ 0.083\\ 0.0835\\ 0.085\\ 0.0905\\ 0.089\\ 0.074\\ 0.066\\ 0.069\\ 0.0775\\ 0.0885\\ 0.104\\ 0.125\\ 0.145\\ 0.170\\ 0.231\\ \end{array}$	$\begin{array}{c} 0.0235\\ 0.0207\\ 0.0167\\ 0.0119\\ 0.0043\\ -0.0142\\ -0.0300\\ -0.0369\\ -0.0503\\ -0.0593\\ -0.0599\\ 0.0611\\ -0.0591\\ -0.0591\\ -0.0544\\ -0.0550\\ -0.0475\\ -0.0547\\ \end{array}$	$\begin{array}{c} -2 \cdot 0 \\ -1 \cdot 0 \\ -0 \cdot 05 \\ +0 \cdot 85 \\ 1 \cdot 65 \\ 3 \cdot 25 \\ 5 \cdot 9 \\ 8 \cdot 5 \\ 11 \cdot 5 \\ 12 \cdot 75 \\ 14 \cdot 8 \\ 15 \cdot 95 \\ 17 \cdot 1 \\ 18 \cdot 55 \\ 19 \cdot 85 \\ 21 \cdot 5 \\ 24 \cdot 3 \end{array}$

TABLE 1Unslotted Main Flap at 0 deg C_M is the pitching-moment coefficient about the quarter-chord line.

	P = 2.28 a $V = 60.1 f$	tmos t/sec	$ ho_R^{V^2}$	$= 19.15 \text{ lb/s}$ $= 0.559 \times 1$	q ft 0 ⁶		P = 2.97 atmosf = 63.7 ft/sec	os c	$\begin{array}{c} ho V^2 = \ R = \ \end{array}$	=27.65 lb/sq f =0.754 $ imes$ 10 ⁶	ït
α	C _L	C _D	<i>C</i> _{D0}	C _M	αθ	α	C _L	C _D	C _{D0}	C _M	α
$\begin{array}{r} -4 \cdot 45 \\ -0 \cdot 8 \\ +2 \cdot 9 \\ 6 \cdot 7 \\ 10 \cdot 35 \\ 14 \cdot 0 \\ 16 \cdot 45 \\ 18 \cdot 95 \\ 20 \cdot 25 \\ 21 \cdot 55 \\ 22 \cdot 85 \\ 24 \cdot 15 \\ 25 \cdot 6 \\ 28 \cdot 2 \end{array}$	$\begin{array}{c} -0.577\\ -0.169\\ +0.153\\ 0.401\\ 0.654\\ 0.933\\ 1.045\\ 1.171\\ 1.175\\ 1.175\\ 1.175\\ 1.175\\ 1.165\\ 1.105\\ 1.10\end{array}$	$\begin{array}{c} 0.103\\ 0.099\\ 0.102\\ 0.0915\\ 0.0905\\ 0.118\\ 0.138\\ 0.17\\ 0.187\\ 0.187\\ 0.199\\ 0.212\\ 0.227\\ 0.246\\ 0.290\\ \end{array}$	$\begin{array}{c} 0.0845\\ 0.083\\ 0.089\\ 0.0825\\ 0.0665\\ 0.0705\\ 0.0775\\ 0.095\\ 0.110\\ 0.123\\ 0.136\\ 0.152\\ 0.178\\ 0.223\\ \end{array}$	$\begin{array}{c} +0.0020\\ -0.0396\\ -0.0583\\ -0.0545\\ -0.0539\\ -0.0655\\ -0.0655\\ -0.0655\\ -0.0646\\ -0.0635\\ -0.0553\\ -0.0553\\ -0.0505\\ -0.0480\\ -0.0458\\ -0.0553\end{array}$	$\begin{array}{c} -2\cdot 4 \\ -0\cdot 2 \\ +2\cdot 35 \\ 5\cdot 3 \\ 8\cdot 15 \\ 10\cdot 7 \\ 12\cdot 75 \\ 14\cdot 8 \\ 16\cdot 1 \\ 17\cdot 4 \\ 18\cdot 7 \\ 20\cdot 05 \\ 21\cdot 7 \\ 24\cdot 3 \end{array}$	$\begin{array}{c} 0.4 \\ 1.7 \\ 2.9 \\ 4.15 \\ 6.65 \\ 9.15 \\ 11.6 \\ 14.0 \\ 16.45 \\ 19.0 \\ 20.25 \\ 21.55 \\ 22.85 \\ 24.2 \\ 26.9 \\ 29.55 \end{array}$	$\begin{array}{c} -0.018 \\ +0.072 \\ 0.159 \\ 0.252 \\ 0.428 \\ 0.600 \\ 0.775 \\ 0.94 \\ 1.05 \\ 1.145 \\ 1.16 \\ 1.155 \\ 1.15 \\ 1.15 \\ 1.15 \\ 1.08 \\ 1.06 \end{array}$	$\begin{array}{c} 0.0805\\ 0.0795\\ 0.0795\\ 0.0785\\ 0.0795\\ 0.0815\\ 0.088\\ 0.104\\ 0.124\\ 0.146\\ 0.172\\ 0.187\\ 0.196\\ 0.213\\ 0.227\\ 0.276\\ 0.310\\ \end{array}$	$\begin{array}{c} 0.0805\\ 0.0795\\ 0.0795\\ 0.078\\ 0.076\\ 0.0715\\ 0.0675\\ 0.0705\\ 0.0705\\ 0.075\\ 0.0845\\ 0.100\\ 0.112\\ 0.122\\ 0.140\\ 0.159\\ 0.211\\ 0.248\\ \end{array}$	$\begin{array}{c} -0.0487\\ -0.0511\\ -0.0518\\ -0.0540\\ -0.0558\\ -0.0579\\ -0.0649\\ -0.0702\\ -0.0682\\ -0.0682\\ -0.0678\\ -0.0629\\ -0.0542\\ -0.0521\\ -0.0519\\ -0.0547\\ \end{array}$	$\begin{array}{c} 0.45\\ 1.45\\ 2.35\\ 3.25\\ 5.15\\ 7.05\\ 8.85\\ 10.7\\ 12.75\\ 15.0\\ 16.15\\ 17.45\\ 18.8\\ 20.3\\ 23.1\\ 26.3\\ \end{array}$

Conversion factor, British to Metric system. 1 Lb/sq ft = 4.882 4 Kg/m. Multiply the British quantity by the conversion factor.

	$P = 4.28 \text{ atmos.} \qquad \rho$ $V = 70.75 \text{ ft/sec}$				lb/sq ft < 10 ⁶		P = 7.85 a V = 67.9 f	tmos. t/sec	${}^{ ho V^2}_R$	$a^2 = 82.0 \text{ lb/sc}$ = 2.09×10^{-10}	1 ft 0 ⁶
x	C _L	<i>C</i> _D	C _{D0}	C _M	α ₀	x	C_L	C _D	<i>CD</i> 0	C _M	α₀
$\begin{array}{c} -0.85 \\ +0.35 \\ 1.65 \\ 2.85 \\ 4.1 \\ 6.6 \\ 9.1 \\ 9.1 \\ 11.55 \\ 11.55 \\ 14.0 \\ 14.0 \\ 16.45 \\ 19.0 \\ 20.3 \\ 21.6 \\ 22.85 \\ 24.2 \\ 25.45 \\ 26.85 \\ 28.1 \\ 29.45 \\ 32.2 \end{array}$	$\begin{array}{c} -0.117\\ -0.025\\ +0.075\\ 0.167\\ 0.262\\ 0.437\\ 0.584\\ 0.625\\ 0.725\\ 0.741\\ 0.864\\ 0.883\\ 0.974\\ 1.065\\ 1.065\\ 1.065\\ 1.065\\ 1.065\\ 1.065\\ 1.095\\ 1.105\\ 1.105\\ 1.105\\ 1.10\\ 1.09\\ 1.01\\ \end{array}$	$\begin{array}{c} 0.049\\ 0.050\\ 0.053\\ 0.0555\\ 0.060\\ 0.074\\ 0.092\\ 0.095\\ 0.111\\ 0.111\\ 0.141\\ 0.141\\ 0.141\\ 0.162\\ 0.181\\ 0.184\\ 0.193\\ 0.221\\ 0.229\\ 0.254\\ 0.274\\ 0.289\\ 0.308\\ 0.344\\ \end{array}$	$\begin{array}{c} 0.048\\ 0.050\\ 0.0495\\ 0.054\\ 0.056\\ 0.0635\\ 0.073\\ 0.0735\\ 0.0735\\ 0.082\\ 0.0805\\ 0.099\\ 0.098\\ 0.109\\ 0.118\\ 0.121\\ 0.130\\ 0.167\\ 0.166\\ 0.187\\ 0.207\\ 0.222\\ 0.243\\ 0.287\end{array}$	$\begin{array}{c} -0.0478\\ -0.0493\\ -0.0520\\ -0.0535\\ -0.0551\\ -0.0622\\ -0.0684\\ -0.0721\\ -0.0777\\ -0.0708\\ -0.0708\\ -0.0708\\ -0.0436\\ -0.0436\\ -0.0436\\ -0.0436\\ -0.0436\\ -0.0436\\ -0.0436\\ -0.0436\\ -0.0436\\ -0.0436\\ -0.0553\\ -0.0553\\ -0.0607\\ \end{array}$	$\begin{array}{c} -0.45 \\ +0.45 \\ 1.4 \\ 2.25 \\ 3.15 \\ 5.05 \\ 7.05 \\ 6.9 \\ 9.0 \\ 8.95 \\ 10.95 \\ 10.95 \\ 10.9 \\ 13.0 \\ 15.25 \\ 16.55 \\ 17.85 \\ 19.05 \\ 20.45 \\ 22.05 \\ 23.45 \\ 24.7 \\ 26.1 \\ 28.6 \end{array}$	$\begin{array}{c} -0.85 \\ +0.4 \\ 1.7 \\ 2.9 \\ 4.1 \\ 6.65 \\ 9.2 \\ 11.65 \\ 14.1 \\ 16.55 \\ 19.1 \\ 20.35 \\ 21.65 \\ 22.9 \\ 24.2 \\ 25.5 \\ 26.95 \\ 28.15 \\ 29.45 \\ 32.2 \end{array}$	$\begin{array}{c} -0.162\\ -0.070\\ -0.003\\ +0.101\\ 0.218\\ 0.357\\ 0.450\\ 0.622\\ 0.754\\ 0.833\\ 0.914\\ 0.947\\ 0.978\\ 1.015\\ 1.07\\ 1.095\\ 1.105\\ 1.115\\ 1.09\\ 1.03\\ \end{array}$	$\begin{array}{c} 0.0495\\ 0.054\\ 0.0585\\ 0.062\\ 0.067\\ 0.0785\\ 0.095\\ 0.108\\ 0.131\\ 0.145\\ 0.159\\ 0.169\\ 0.185\\ 0.211\\ 0.235\\ 0.251\\ 0.269\\ 0.288\\ 0.305\\ 0.350\\ \end{array}$	0.498 0.0535 0.0585 0.0615 0.0645 0.0715 0.0835 0.0865 0.100 0.107 0.113 0.119 0.132 0.144 0.172 0.185 0.201 0.219 0.239 0.291	$\begin{array}{c} -0.0624\\ -0.0595\\ -0.0606\\ -0.0601\\ -0.0603\\ -0.0569\\ -0.0569\\ -0.0561\\ -0.0532\\ -0.0521\\ -0.0410\\ -0.0322\\ -0.0299\\ -0.0326\\ -0.0375\\ -0.0450\\ -0.0450\\ -0.0485\\ -0.0521\\ -0.0530\\ -0.0555\\ -0.0633\\ \end{array}$	$\begin{array}{c} -0.3 \\ +0.65 \\ 1.7 \\ 2.55 \\ 3.35 \\ 5.4 \\ 7.6 \\ 9.45 \\ 11.4 \\ 13.6 \\ 15.85 \\ 17.0 \\ 18.2 \\ 19.3 \\ 20.4 \\ 21.65 \\ 23.05 \\ 24.25 \\ 25.6 \\ 28.55 \end{array}$

TABLE 1—continued.

N

	P = 9.46 $V = 59.9$	atmos.) ft/sec	ρ[]	$R^{/2} = 76.75 \text{ lb/}{R} = 2.22 \times 10^{-10} \text{ s}^{-10}$	sq ft 0 ⁶		P = 10.3 at $V = 61.9 it$	mos. 'sec	${}^{ ho V^2}_R$	$= 98.4 \text{ lb/sq}$ $= 2.75 \times 10^{6}$	ft 3
α	C _L	C _D	<i>C</i> _{D0}	C _M	α₀	α	C _L	C _D	<i>C</i> _{D0}	<i>C_M</i>	α₀
$\begin{array}{c} 0.35\\ 0.35\\ 1.65\\ 1.65\\ 2.85\\ 2.85\\ 2.85\\ 4.1\\ 4.1\\ 6.65\\ 6.65\\ 9.15\\ 11.6\\ 14.1\\ 16.55\\ 19.1\\ 21.65\\ 24.2\\ 25.5\\ 26.85\\ 28.15\\ 29.45\\ 30.8 \end{array}$	$\begin{array}{c} -0.022\\ -0.036\\ +0.045\\ 0.061\\ 0.128\\ 0.133\\ 0.222\\ 0.228\\ 0.403\\ 0.407\\ 0.553\\ 0.675\\ 0.748\\ 0.848\\ 0.925\\ 0.994\\ 1.07\\ 1.09\\ 1.105\\ 1.115\\ 1.11\\ 1.08 \end{array}$	$\begin{array}{c} 0.0505\\ 0.0565\\ 0.0565\\ 0.058\\ 0.067\\ 0.0545\\ 0.057\\ 0.0715\\ 0.0715\\ 0.0845\\ 0.083\\ 0.100\\ 0.118\\ 0.126\\ 0.144\\ 0.157\\ 0.181\\ 0.234\\ 0.251\\ 0.269\\ 0.286\\ 0.303\\ 0.327\\ \end{array}$	$\begin{array}{c} 0.0505\\ 0.0565\\ 0.0565\\ 0.058\\ 0.067\\ 0.0535\\ 0.056\\ 0.069\\ 0.072\\ 0.0755\\ 0.074\\ 0.083\\ 0.098\\ 0.098\\ 0.095\\ 0.104\\ 0.109\\ 0.126\\ 0.170\\ 0.185\\ 0.201\\ 0.217\\ 0.234\\ 0.262\\ \end{array}$	$\begin{array}{c} -0.0417\\ -0.0504\\ -0.0396\\ -0.0514\\ -0.0388\\ -0.0421\\ -0.0531\\ -0.0572\\ -0.0637\\ -0.0663\\ -0.0663\\ -0.0663\\ -0.0588\\ -0.0454\\ -0.0452\\ -0.0320\\ -0.0337\\ -0.0457\\ -0.0457\\ -0.0486\\ -0.0504\\ -0.0527\\ -0.0561\\ -0.0585\end{array}$	$\begin{array}{c} 0.45\\ 0.45\\ 1.5\\ 1.45\\ 2.4\\ 2.4\\ 3.3\\ 3.3\\ 5.25\\ 5.25\\ 7.2\\ 9.2\\ 11.45\\ 13.55\\ 15.85\\ 18.15\\ 20.4\\ 21.65\\ 22.95\\ 24.2\\ 25.5\\ 27.0\\ \end{array}$	$\begin{array}{c} 0.45\\ 0.45\\ 0.45\\ 1.75\\ 1.75\\ 2.95\\ 2.95\\ 4.2\\ 4.2\\ 6.75\\ 6.75\\ 9.25\\ 9.25\\ 11.7\\ 125\\ 9.25\\ 11.7\\ 14.15\\ 14.15\\ 14.15\\ 14.15\\ 16.55\\ 19.1\\ 21.7\\ 24.2\\ 25.5\\ 26.85\\ 28.15\\ 29.45\\ 30.8\\ 32.2\end{array}$	$\begin{array}{c} -0.149\\ -0.158\\ -0.061\\ -0.076\\ +0.008\\ 0.016\\ 0.096\\ 0.109\\ 0.239\\ 0.261\\ 0.399\\ 0.261\\ 0.399\\ 0.261\\ 0.399\\ 0.400\\ 0.539\\ 0.548\\ 0.672\\ 0.691\\ 0.792\\ 0.886\\ 0.972\\ 1.055\\ 1.085\\ 1.11\\ 1.115\\ 1.11\\ 1.09\\ 1.04\end{array}$	$\begin{array}{c} 0.0485\\ 0.045\\ 0.053\\ 0.0505\\ 0.0505\\ 0.0545\\ 0.065\\ 0.065\\ 0.069\\ 0.080\\ 0.085\\ 0.090\\ 0.105\\ 0.110\\ 0.115\\ 0.119\\ 0.140\\ 0.154\\ 0.189\\ 0.231\\ 0.248\\ 0.266\\ 0.286\\ 0.286\\ 0.303\\ 0.327\\ 0.348\end{array}$	$\begin{array}{c} 0.047\\ 0.045\\ 0.0525\\ 0.0525\\ 0.0545\\ 0.0545\\ 0.0645\\ 0.0655\\ 0.0765\\ 0.0765\\ 0.0765\\ 0.0766\\ 0.081\\ 0.089\\ 0.093\\ 0.093\\ 0.093\\ 0.093\\ 0.093\\ 0.105\\ 0.110\\ 0.137\\ 0.169\\ 0.183\\ 0.198\\ 0.217\\ 0.235\\ 0.261\\ 0.287\end{array}$	$\begin{array}{c} -0.0252\\ -0.0307\\ -0.0264\\ -0.0361\\ -0.0361\\ -0.0355\\ -0.0355\\ -0.0438\\ -0.0360\\ -0.0497\\ -0.0322\\ -0.0385\\ -0.0358\\ -0.0416\\ -0.0274\\ -0.0330\\ -0.0267\\ -0.0336\\ -0.0267\\ -0.0333\\ -0.0442\\ -0.0467\\ -0.0487\\ -0.0523\\ -0.0551\\ -0.0606\\ -0.0644\end{array}$	$\begin{array}{c} 1.0\\ 1.0\\ 2.0\\ 2.0\\ 2.9\\ 2.9\\ 3.85\\ 3.8\\ 5.9\\ 5.85\\ 7.85\\ 7.85\\ 7.85\\ 7.85\\ 9.8\\ 9.75\\ 11.8\\ 11.7\\ 13.75\\ 15.95\\ 18.25\\ 20.45\\ 21.65\\ 22.95\\ 24.2\\ 25.55\\ 24.2\\ 25.55\\ 26.95\\ 28.5\end{array}$

TABLE 1-continued.

ø

P = V	= 12.85 a = 71.9 ft	tmos. t/sec	$ \begin{array}{c} \rho V^2 = 1\\ R = 3 \end{array} $	50.6 lb/sq 62×10^6	ft	P = V = V	= 17·55 A = 69·2 ft/s	tmos. sec	$\rho V^2 = 18$ $R = 4.6$	$8.6 ext{ lb/sq} 10^6 ext{ X}$	ft	$\begin{array}{c} P = 1 \\ V = 1 \end{array}$	24·7 Atmo 76·7 ft/seo	$c = \frac{\rho V}{F}$	$R^{72} = 323$ R = 7.21	$^{ m lb}$ /sq ft $ imes$ 10 ⁶	
æ	C _L	C _D	C _{D0}	C _M	α0	α	C _L	C _D	C _{D0}	C _M	α0	æ	C_L	C _D	<i>CD</i> 0	C _M	α0
$\begin{array}{c} 0.5\\ 1.8\\ 3.0\\ 4.25\\ 6.8\\ 9.3\\ 11.75\\ 14.2\\ 16.6\\ 19.1\\ 21.6\\ 24.2\\ 25.5\\ 26.85\\ 28.15\\ 29.45\\ 30.8\\ 32.15\\ \end{array}$	$\begin{array}{c} -0.220\\ -0.139\\ -0.060\\ +0.019\\ 0.167\\ 0.316\\ 0.456\\ 0.601\\ 0.728\\ 0.852\\ 0.961\\ 1.05\\ 1.095\\ 1.13\\ 1.145\\ 1.145\\ 1.145\\ 1.12\\ 1.08\end{array}$	$\begin{array}{c} 0.0545\\ 0.056\\ 0.056\\ 0.057\\ 0.059\\ 0.0655\\ 0.078\\ 0.089\\ 0.105\\ 0.125\\ 0.125\\ 0.125\\ 0.157\\ 0.191\\ 0.226\\ 0.245\\ 0.245\\ 0.264\\ 0.284\\ 0.305\\ 0.324\\ 0.348 \end{array}$	$\begin{array}{c} 0.0515\\ 0.0555\\ 0.055\\ 0.0565\\ 0.059\\ 0.064\\ 0.0725\\ 0.0775\\ 0.0855\\ 0.0955\\ 0.117\\ 0.140\\ 0.165\\ 0.178\\ 0.193\\ 0.211\\ 0.232\\ 0.254\\ 0.283\\ \end{array}$	$\begin{array}{c} -0.0002\\ -0.0013\\ -0.0038\\ -0.0038\\ -0.0058\\ -0.0089\\ -0.0107\\ -0.0132\\ -0.0169\\ -0.0272\\ -0.0331\\ -0.0419\\ -0.0453\\ -0.0496\\ -0.0533\\ -0.0578\\ -0.0618\\ -0.0675\end{array}$	$\begin{array}{c} 1.3\\ 2\cdot 3\\ 3\cdot 2\\ 4\cdot 2\\ 6\cdot 2\\ 8\cdot 2\\ 10\cdot 15\\ 12\cdot 1\\ 14\cdot 0\\ 16\cdot 1\\ 18\cdot 2\\ 20\cdot 5\\ 21\cdot 6\\ 22\cdot 85\\ 24\cdot 1\\ 25\cdot 4\\ 26\cdot 85\\ 28\cdot 35\end{array}$	$\begin{array}{c} -0.75 \\ +0.5 \\ 1.8 \\ 3.0 \\ 4.25 \\ 6.8 \\ 9.3 \\ 11.75 \\ 14.25 \\ 16.65 \\ 19.15 \\ 21.7 \\ 24.25 \\ 25.55 \\ 26.9 \\ 28.1 \\ 29.4 \\ 30.75 \\ 32.15 \\ 33.55 \end{array}$	$\begin{array}{c} -0.288\\ -0.215\\ -0.138\\ -0.058\\ +0.018\\ 0.171\\ 0.318\\ 0.456\\ 0.608\\ 0.736\\ 0.868\\ 0.978\\ 1.06\\ 1.11\\ 1.14\\ 1.155\\ 1.16\\ 1.15\\ 1.16\\ 1.15\\ 1.11\\ 1.06\end{array}$	$\begin{array}{c} 0.0565\\ 0.055\\ 0.055\\ 0.056\\ 0.058\\ 0.063\\ 0.0705\\ 0.079\\ 0.094\\ 0.110\\ 0.130\\ 0.156\\ 0.189\\ 0.220\\ 0.241\\ 0.258\\ 0.278\\ 0.298\\ 0.319\\ 0.344\\ 0.369\\ \end{array}$	$\begin{array}{c} 0.052\\ 0.0525\\ 0.0525\\ 0.0555\\ 0.058\\ 0.063\\ 0.069\\ 0.0735\\ 0.0825\\ 0.089\\ 0.100\\ 0.114\\ 0.136\\ 0.158\\ 0.173\\ 0.186\\ 0.204\\ 0.223\\ 0.245\\ 0.276\\ 0.307\\ \end{array}$	$\begin{array}{c} -0.0001\\ -0.0004\\ -0.0016\\ -0.0024\\ -0.0032\\ -0.0059\\ -0.0079\\ -0.0118\\ -0.0155\\ -0.0190\\ -0.0257\\ -0.0331\\ -0.0400\\ -0.0456\\ -0.0491\\ -0.0542\\ -0.0567\\ -0.0631\\ -0.0678\\ -0.0730\\ \end{array}$	$\begin{array}{c} 0.25\\1\cdot 25\\2\cdot 3\\3\cdot 2\\4\cdot 2\\6\cdot 2\\8\cdot 2\\10\cdot 15\\12\cdot 1\\14\cdot 05\\16\cdot 05\\18\cdot 25\\20\cdot 5\\21\cdot 6\\22\cdot 85\\24\cdot 0\\25\cdot 3\\26\cdot 65\\28\cdot 25\\29\cdot 8\end{array}$	$\begin{array}{c} 1.8\\ 3\cdot 0\\ 4\cdot 25\\ 5\cdot 5\\ 6\cdot 8\\ 9\cdot 3\\ 11\cdot 75\\ 14\cdot 2\\ 16\cdot 6\\ 19\cdot 1\\ 21\cdot 6\\ 24\cdot 2\\ 26\cdot 8\\ 28\cdot 1\\ 29\cdot 4\\ 30\cdot 75\\ 32\cdot 1\\ 33\cdot 55\end{array}$	$\begin{array}{c} -0.137\\ -0.071\\ +0.022\\ 0.099\\ 0.176\\ 0.331\\ 0.482\\ 0.624\\ 0.770\\ 0.891\\ 1.005\\ 1.10\\ 1.175\\ 1.20\\ 1.21\\ 1.18\\ 1.15\\ 1.09\\ \end{array}$	$\begin{array}{c} 0.058\\ 0.061\\ 0.063\\ 0.067\\ 0.073\\ 0.083\\ 0.096\\ 0.113\\ 0.135\\ 0.135\\ 0.158\\ 0.182\\ 0.221\\ 0.258\\ 0.278\\ 0.301\\ 0.327\\ 0.358\\ 0.379\\ \end{array}$	$\begin{array}{c} 0.057\\ 0.061\\ 0.063\\ 0.062\\ 0.071\\ 0.077\\ 0.083\\ 0.091\\ 0.102\\ 0.114\\ 0.126\\ 0.154\\ 0.181\\ 0.198\\ 0.220\\ 0.250\\ 0.284\\ 0.312\\ \end{array}$	$\begin{array}{c} -0.0012\\ -0.0021\\ -0.0035\\ -0.0045\\ -0.0058\\ -0.0058\\ -0.0099\\ -0.0135\\ -0.0168\\ -0.0231\\ -0.0278\\ -0.0278\\ -0.0343\\ -0.0420\\ -0.0572\\ -0.0623\\ -0.0679\\ -0.0740\\ -0.0791\\ \end{array}$	$\begin{array}{c} 2.3\\ 3\cdot 25\\ 4\cdot 15\\ 5\cdot 15\\ 6\cdot 2\\ 8\cdot 15\\ 10\cdot 05\\ 12\cdot 0\\ 13\cdot 9\\ 15\cdot 95\\ 18\cdot 05\\ 20\cdot 3\\ 22\cdot 65\\ 23\cdot 85\\ 25\cdot 1\\ 26\cdot 6\\ 28\cdot 0\\ 29\cdot 65\\ \end{array}$

TABLE 1—continued.

c

P = V =	= 1·0 atr = 72·3 ft	nos. /sec	$\begin{array}{c} \rho V^2 = \\ R = \end{array}$	$\begin{array}{c} 12.09 \text{ lb/s} \\ 0.292 \times 1 \end{array}$	q ft 10 ⁶	P = V = V	= 1·70 atı = 58·4 ft/	nos. sec	${\displaystyle $	$\begin{array}{c} 13.56 \text{ lb/s} \\ 0.406 \times \end{array}$	q ft 10 ⁶	P = V = V =	= 2·26 at: = 60·4 ft/	mos. /sec	$\begin{array}{c} \rho V^2 = \\ R = \end{array}$	19·18 lb/s 0·558 ×	sq ft 10 ⁶
x	C _L	C _D	<i>C</i> _{<i>D</i>0}	C _M	α ₀	α	C_L	C _D	C _{D0}	C _M	α0	α	C _L	C _D	<i>CD</i> 0	<i>C_M</i>	α ₀
$\begin{array}{c} -1\cdot 25\\ +1\cdot 35\\ 3\cdot 85\\ 6\cdot 4\\ 8\cdot 9\\ 11\cdot 3\\ 13\cdot 65\\ 14\cdot 85\\ 16\cdot 0\\ 17\cdot 2\\ 18\cdot 6\\ 19\cdot 9\\ 21\cdot 3\\ 22\cdot 65\\ 25\cdot 35\end{array}$	$\begin{array}{c} 0.483\\ 0.588\\ 0.698\\ 0.812\\ 0.981\\ 1.215\\ 1.47\\ 1.59\\ 1.68\\ 1.75\\ 1.735\\ 1.68\\ 1.585\\ 1.50\\ 1.42 \end{array}$	$\begin{array}{c} 0.263\\ 0.273\\ 0.288\\ 0.297\\ 0.322\\ 0.347\\ 0.360\\ 0.366\\ 0.384\\ 0.401\\ 0.418\\ 0.445\\ 0.459\\ 0.483\\ 0.520\\ \end{array}$	$\begin{array}{c} 0.250\\ 0.254\\ 0.261\\ 0.260\\ 0.269\\ 0.265\\ 0.240\\ 0.228\\ 0.227\\ 0.231\\ 0.251\\ 0.288\\ 0.320\\ 0.358\\ 0.407\\ \end{array}$	$\begin{array}{c} -0.206\\ -0.198\\ -0.198\\ -0.195\\ -0.193\\ -0.216\\ -0.233\\ -0.237\\ -0.241\\ -0.243\\ -0.236\\ -0.232\\ -0.236\\ -0.232\\ -0.216\\ -0.208\\ -0.199\\ \end{array}$	$\begin{array}{c} -2.95\\ -0.75\\ +1.35\\ 3.55\\ 5.45\\ 7.0\\ 8.45\\ 9.25\\ 10.1\\ 11.0\\ 12.5\\ 14.0\\ 15.7\\ 17.35\\ 20.3 \end{array}$	$\begin{array}{c} -1\cdot 3 \\ +1\cdot 2 \\ 3\cdot 65 \\ 5\cdot 95 \\ 8\cdot 65 \\ 11\cdot 1 \\ 13\cdot 55 \\ 14\cdot 75 \\ 16\cdot 05 \\ 17\cdot 2 \\ 18\cdot 6 \\ 19\cdot 9 \\ 21\cdot 3 \\ 22\cdot 65 \end{array}$	$\begin{array}{c} 0.569\\ 0.786\\ 0.991\\ 1.17\\ 1.305\\ 1.445\\ 1.605\\ 1.675\\ 1.72\\ 1.755\\ 1.735\\ 1.735\\ 1.68\\ 1.575\\ 1.50\\ \end{array}$	$\begin{array}{c} 0.242\\ 0.272\\ 0.297\\ 0.330\\ 0.344\\ 0.345\\ 0.369\\ 0.383\\ 0.397\\ 0.409\\ 0.432\\ 0.455\\ 0.466\\ 0.488\\ \end{array}$	$\begin{array}{c} 0.224\\ 0.238\\ 0.254\\ 0.249\\ 0.230\\ 0.227\\ 0.233\\ 0.238\\ 0.265\\ 0.298\\ 0.329\\ 0.363\\ \end{array}$	$\begin{array}{c} -0.213\\ -0.228\\ -0.241\\ -0.251\\ -0.251\\ -0.250\\ -0.250\\ -0.250\\ -0.250\\ -0.250\\ -0.233\\ -0.239\\ -0.233\\ -0.219\\ -0.210\\ \end{array}$	$\begin{array}{c} -3.3 \\ -1.6 \\ +0.15 \\ 1.8 \\ 4.05 \\ 6.0 \\ 7.85 \\ 8.85 \\ 9.95 \\ 11.0 \\ 12.45 \\ 13.95 \\ 15.7 \\ 17.35 \end{array}$	$\begin{array}{c} -1\cdot 4 \\ +1\cdot 1 \\ 3\cdot 55 \\ 6\cdot 1 \\ 8\cdot 65 \\ 11\cdot 1 \\ 13\cdot 6 \\ 14\cdot 85 \\ 16\cdot 05 \\ 17\cdot 3 \\ 18\cdot 7 \\ 20\cdot 0 \\ 20\cdot 75 \\ 22\cdot 15 \end{array}$	0.737 0.945 1.11 1.235 1.345 1.455 1.54 1.585 1.60 1.60 1.585 1.555 1.555 1.52 1.49	$\begin{array}{c} 0.257\\ 0.290\\ 0.311\\ 0.325\\ 0.336\\ 0.350\\ 0.365\\ 0.373\\ 0.387\\ 0.406\\ 0.425\\ 0.453\\ 0.481\\ 0.499\\ \end{array}$	$\begin{array}{c} 0.227\\ 0.240\\ 0.242\\ 0.240\\ 0.235\\ 0.233\\ 0.233\\ 0.235\\ 0.245\\ 0.264\\ 0.286\\ 0.319\\ 0.354\\ 0.376\\ \end{array}$	$\begin{array}{c} -0.244\\ -0.261\\ -0.265\\ -0.265\\ -0.255\\ -0.251\\ -0.246\\ -0.239\\ -0.234\\ -0.239\\ -0.234\\ -0.223\\ -0.218\\ -0.217\\ -0.212\\ \end{array}$	$\begin{array}{c} -4.0 \\ -2.25 \\ -0.35 \\ +1.7 \\ 3.9 \\ 5.95 \\ 8.2 \\ 9.25 \\ 10.4 \\ 11.65 \\ 13.1 \\ 14.5 \\ 15.4 \\ 16.9 \end{array}$

TABLE 2
Unslotted Main Flap at 40 deg
C_M is the pitching-moment coefficient about the quarter-chord line.

P = V = V	= 3·04 at = 62·8 ft/	mos. sec	$ \begin{array}{l} \rho V^2 = 22 \\ R = 0 \end{array} $	7.6 lb/sq f 77×10^6	t	P = V	= 4.42 a = 69.55	.tmos. ft/sec	$ \begin{array}{c} \rho V^2 = 4\\ R = 1 \end{array} $	$19.15 ext{ lb/sc}$ $1.23 imes 10^{\circ}$	ı ft	P V	= 5·73 a = 68·5 ft	tmos. :/sec	$\begin{array}{c} \rho V^2 = \\ R = \end{array}$	$\begin{array}{r} 62 \cdot 2 \mathrm{lb/sq} \\ 1 \cdot 59 \times 10 \end{array}$	ft) ⁶	
α	C _L	C _D	<i>CD</i> 0	C _M	α0	α	C_L	C _D	<i>CD</i> 0	C _M	α ₀	α	C_L	C _D	<i>CD</i> 0	C _M	αο	````
$\begin{array}{c} -1.5\\ +1.0\\ 3.45\\ 6.05\\ 8.55\\ 11.0\\ 13.45\\ 14.7\\ 15.95\\ 17.25\\ 18.6\\ 20.0\\ 21.3\\ 22.65\end{array}$	$\begin{array}{c} 0.842\\ 1.01\\ 1.16\\ 1.295\\ 1.44\\ 1.565\\ 1.67\\ 1.69\\ 1.70\\ 1.69\\ 1.67\\ 1.59\\ 1.545\\ 1.51\\ \end{array}$	$\begin{array}{c} 0.259\\ 0.277\\ 0.301\\ 0.319\\ 0.332\\ 0.351\\ 0.386\\ 0.400\\ 0.409\\ 0.426\\ 0.454\\ 0.479\\ 0.499\\ 0.504 \end{array}$	$\begin{array}{c} 0.220\\ 0.221\\ 0.226\\ 0.226\\ 0.217\\ 0.215\\ 0.231\\ 0.241\\ 0.249\\ 0.267\\ 0.300\\ 0.339\\ 0.366\\ 0.377\\ \end{array}$	$\begin{array}{c} -0.267\\ -0.271\\ -0.272\\ -0.274\\ -0.270\\ -0.267\\ -0.267\\ -0.263\\ -0.243\\ -0.243\\ -0.243\\ -0.224\\ -0.232\\ -0.226\\ -0.214\\ \end{array}$	$\begin{array}{c} -4\cdot 45 \\ -2\cdot 55 \\ -0\cdot 65 \\ +1\cdot 45 \\ 3\cdot 45 \\ 5\cdot 5 \\ 7\cdot 55 \\ 8\cdot 7 \\ 9\cdot 95 \\ 11\cdot 25 \\ 12\cdot 7 \\ 14\cdot 4 \\ 15\cdot 85 \\ 17\cdot 3 \end{array}$	$\begin{array}{c} -1.6\\ +1.05\\ 3.5\\ 6.15\\ 8.6\\ 11.0\\ 13.6\\ 14.85\\ 16.05\\ 17.3\\ 18.65\\ 19.95\\ 21.25\\ 22.55\\ 25.25\end{array}$	$\begin{array}{c} 0.778\\ 0.916\\ 1.035\\ 1.155\\ 1.265\\ 1.385\\ 1.455\\ 1.50\\ 1.525\\ 1.535\\ 1.535\\ 1.53\\ 1.51\\ 1.51\\ 1.49\\ 1.47\end{array}$	$\begin{array}{c} 0.206\\ 0.224\\ 0.249\\ 0.274\\ 0.308\\ 0.344\\ 0.372\\ 0.388\\ 0.406\\ 0.429\\ 0.447\\ 0.462\\ 0.474\\ 0.485\\ 0.526\\ \end{array}$	$\begin{array}{c} 0.174\\ 0.177\\ 0.189\\ 0.200\\ 0.220\\ 0.238\\ 0.255\\ 0.264\\ 0.277\\ 0.299\\ 0.317\\ 0.336\\ 0.347\\ 0.362\\ 0.407\\ \end{array}$	$\begin{array}{c} -0.246\\ -0.246\\ -0.242\\ -0.237\\ -0.242\\ -0.247\\ -0.244\\ -0.246\\ -0.238\\ -0.240\\ -0.229\\ -0.223\\ -0.217\\ -0.214\\ -0.213\\ \end{array}$	$\begin{array}{c} -4 \cdot 35 \\ -2 \cdot 2 \\ -0 \cdot 15 \\ +2 \cdot 05 \\ 4 \cdot 15 \\ 6 \cdot 15 \\ 8 \cdot 5 \\ 9 \cdot 5 \\ 10 \cdot 65 \\ 11 \cdot 75 \\ 13 \cdot 25 \\ 14 \cdot 6 \\ 15 \cdot 9 \\ 17 \cdot 3 \\ 20 \cdot 05 \end{array}$	$\begin{array}{c} -1.65 \\ +0.9 \\ 3.35 \\ 5.9 \\ 8.45 \\ 10.95 \\ 13.45 \\ 14.7 \\ 15.95 \\ 17.25 \\ 18.6 \\ 19.95 \\ 21.25 \\ 22.55 \end{array}$	$\begin{array}{c} 0.908\\ 1.055\\ 1.21\\ 1.325\\ 1.445\\ 1.565\\ 1.61\\ 1.62\\ 1.61\\ 1.585\\ 1.555\\ 1.555\\ 1.50\\ 1.50\\ 1.51\\ \end{array}$	$\begin{array}{c} 0.226\\ 0.235\\ 0.257\\ 0.286\\ 0.307\\ 0.349\\ 0.382\\ 0.398\\ 0.418\\ 0.438\\ 0.455\\ 0.456\\ 0.466\\ 0.487\\ \end{array}$	$\begin{array}{c} 0.180\\ 0.173\\ 0.176\\ 0.189\\ 0.191\\ 0.213\\ 0.238\\ 0.252\\ 0.274\\ 0.298\\ 0.321\\ 0.333\\ 0.341\\ 0.360\\ \end{array}$	$\begin{array}{c} -0.274\\ -0.273\\ -0.273\\ -0.276\\ -0.276\\ -0.276\\ -0.270\\ -0.257\\ -0.249\\ -0.241\\ -0.232\\ -0.224\\ -0.217\\ -0.216\end{array}$	$\begin{array}{c} -4\cdot85\\ -2\cdot35\\ -0\cdot95\\ +1\cdot2\\ 3\cdot35\\ 5\cdot4\\ 7\cdot75\\ 9\cdot0\\ 10\cdot25\\ 11\cdot65\\ 13\cdot1\\ 14\cdot65\\ 15\cdot95\\ 17\cdot2\\ \end{array}$	

TABLE 2—continued.

P = 7 $V = 6$	7·71 at: 68·0 ft/	mos. sec	$ \begin{array}{c} \rho V^2 = 8\\ R = 2 \end{array} $	$2.0~{ m lb/sq}$ f $\cdot 10~ imes~10^6$	ft	$\begin{vmatrix} P = \\ V = \\ V = \\ P $	= 12·8 atı = 72·0 ft/	mos. /sec	$\rho V^2 = 1$ $R = 3$	$50.5 ext{ lb/sq}$ $3.61 imes 10^6$	l ft	P = V = V = V	= 17·75 a = 68·5 ft/	tmos. sec	$ \begin{array}{c} \rho V^2 \\ R \\ \end{array} = $	188·5 lb/s 4·75 × 10	q ft) ⁶
α	C _L	C _D	C _{D0}	C _M	α0	x	C _L	C _D	<i>C</i> _{<i>D</i>0}	C _M	α0	α	C_L	C _D	<i>C</i> _{<i>D</i>0}	C _M	α₀
$\begin{array}{c cccc} -1\cdot55 & 0 \\ +1\cdot0 & 0 \\ 3\cdot45 & 1 \\ 6\cdot0 & 1 \\ 8\cdot55 & 1 \\ 11\cdot05 & 1 \\ 13\cdot5 & 1 \\ 13\cdot5 & 1 \\ 13\cdot5 & 1 \\ 14\cdot8 & 1 \\ 16\cdot05 & 1 \\ 17\cdot3 & 1 \\ 18\cdot65 & 1 \\ 19\cdot95 & 1 \\ 21\cdot25 & 1 \\ 22\cdot55 & 1 \\ \end{array}$	•760 •904 •035 •16 •26 •35 •45 •455 •485 •505 •50 •485 •50	$\begin{array}{c} 0.214\\ 0.250\\ 0.281\\ 0.306\\ 0.330\\ 0.360\\ 0.367\\ 0.374\\ 0.394\\ 0.417\\ 0.435\\ 0.447\\ 0.458\\ 0.482\\ \end{array}$	$\begin{array}{c} 0.182\\ 0.205\\ 0.221\\ 0.231\\ 0.242\\ 0.259\\ 0.250\\ 0.256\\ 0.271\\ 0.291\\ 0.311\\ 0.325\\ 0.335\\ 0.358\\ \end{array}$	$\begin{array}{c} -0.240\\ -0.248\\ -0.250\\ -0.250\\ -0.249\\ -0.245\\ -0.245\\ -0.224\\ -0.227\\ -0.226\\ -0.226\\ -0.222\\ -0.219\\ -0.215\\ -0.215\\ \end{array}$	$\begin{array}{r} -4\cdot 25 \\ -2\cdot 2 \\ -0\cdot 2 \\ +1\cdot 9 \\ 4\cdot 1 \\ 6\cdot 25 \\ 8\cdot 35 \\ 9\cdot 65 \\ 10\cdot 8 \\ 12\cdot 0 \\ 13\cdot 35 \\ 14\cdot 7 \\ 16\cdot 0 \\ 17\cdot 25 \end{array}$	$\begin{array}{r} -1.65 \\ +0.9 \\ 3.35 \\ 5.95 \\ 8.5 \\ 10.95 \\ 13.45 \\ 14.7 \\ 15.9 \\ 17.15 \\ 18.5 \\ 19.85 \\ 21.15 \\ 22.45 \\ 25.15 \end{array}$	0.762 0.909 1.035 1.155 1.27 1.375 1.465 1.51 1.54 1.565 1.59 1.57 1.545 1.545 1.54 1.54 1.57 1.545 1.57 1.545 1.54 1.54 1.57 1.545 1.57 1.545 1.57 1.545 1.57 1.545 1.57 1.545 1.57 1.545 1.57 1.545 1.57 1.545 1.57 1.545 1.57 1.545 1.57 1.545 1.57 1.545 1.57 1.545 1.545 1.545 1.57 1.545 1.545 1.545 1.57 1.545 1.551	$\begin{array}{c} 0.220\\ 0.250\\ 0.277\\ 0.303\\ 0.332\\ 0.353\\ 0.381\\ 0.394\\ 0.416\\ 0.439\\ 0.447\\ 0.454\\ 0.464\\ 0.483\\ 0.506\end{array}$	$\begin{array}{c} 0.188\\ 0.204\\ 0.217\\ 0.229\\ 0.222\\ 0.248\\ 0.262\\ 0.268\\ 0.268\\ 0.284\\ 0.303\\ 0.307\\ 0.317\\ 0.331\\ 0.351\\ 0.379\\ \end{array}$	$\begin{array}{c} -0.247\\ -0.250\\ -0.251\\ -0.251\\ -0.252\\ -0.252\\ -0.252\\ -0.246\\ -0.243\\ -0.246\\ -0.236\\ -0.236\\ -0.226\\ -0.223\\ -0.219\\ -0.211\\ \end{array}$	$\begin{array}{c} -4\cdot 35\\ -2\cdot 3\\ -0\cdot 35\\ +1\cdot 85\\ 4\cdot 0\\ 6\cdot 1\\ 8\cdot 25\\ 9\cdot 35\\ 10\cdot 45\\ 11\cdot 6\\ 12\cdot 9\\ 14\cdot 3\\ 15\cdot 65\\ 17\cdot 0\\ 19\cdot 8\end{array}$	$\begin{array}{c} -1\cdot 25 \\ +0\cdot 85 \\ 3\cdot 3 \\ 5\cdot 8 \\ 8\cdot 45 \\ 10\cdot 9 \\ 13\cdot 4 \\ 15\cdot 85 \\ 17\cdot 1 \\ 18\cdot 45 \\ 19\cdot 75 \\ 22\cdot 05 \\ 25\cdot 05 \\ 27\cdot 75 \end{array}$	$\begin{array}{c} 0.774\\ 0.918\\ 1.035\\ 1.165\\ 1.28\\ 1.38\\ 1.465\\ 1.56\\ 1.60\\ 1.61\\ 1.595\\ 1.575\\ 1.575\\ 1.57\\ 1.49\end{array}$	$\begin{array}{c} 0.222\\ 0.252\\ 0.274\\ 0.304\\ 0.335\\ 0.358\\ 0.391\\ 0.428\\ 0.443\\ 0.443\\ 0.447\\ 0.454\\ 0.475\\ 0.511\\ 0.548\\ \end{array}$	$\begin{array}{c} 0.189\\ 0.205\\ 0.214\\ 0.229\\ 0.244\\ 0.252\\ 0.272\\ 0.293\\ 0.301\\ 0.303\\ 0.313\\ 0.337\\ 0.375\\ 0.425\\ \end{array}$	$\begin{array}{c} -0.248\\ -0.249\\ -0.251\\ -0.252\\ -0.253\\ -0.250\\ -0.249\\ -0.247\\ -0.244\\ -0.242\\ -0.231\\ -0.220\\ -0.220\\ -0.215\\ \end{array}$	$\begin{array}{c} -4 \cdot 0 \\ -2 \cdot 4 \\ -0 \cdot 35 \\ +1 \cdot 7 \\ 3 \cdot 95 \\ 6 \cdot 0 \\ 8 \cdot 2 \\ 10 \cdot 35 \\ 11 \cdot 45 \\ 12 \cdot 75 \\ 14 \cdot 1 \\ 16 \cdot 45 \\ 19 \cdot 5 \\ 22 \cdot 45 \end{array}$

þ	-	
1	-	

$\begin{array}{l} P = 24 \\ V = 78 \end{array}$	1 Atmos. 3 ft/sec	•	$egin{array}{c} ho V^2 &= 328 \ R &= 7.1 \end{array}$	8 lb/sq ft $6 imes 10^6$	
α	C _L	C _D	<i>C</i> _{D0}	C _M	αo
$\begin{array}{c} -1.9 \\ +0.65 \\ 3.15 \\ 5.7 \\ 8.25 \\ 10.75 \\ 13.25 \\ 15.75 \\ 16.95 \\ 18.3 \\ 19.6 \\ 20.9 \\ 9.9 \\ c \end{array}$	$\begin{array}{c} 0.764\\ 0.904\\ 1.045\\ 1.17\\ 1.29\\ 1.405\\ 1.49\\ 1.585\\ 1.62\\ 1.635\\ 1.625\\ 1.625\\ 1.605\\ 1.605\end{array}$	0.220 0.243 0.274 0.299 0.330 0.362 0.394 0.424 0.439 0.451 0.461 0.467	$\begin{array}{c} 0.188\\ 0.198\\ 0.214\\ 0.224\\ 0.237\\ 0.243\\ 0.271\\ 0.285\\ 0.294\\ 0.303\\ 0.314\\ 0.324\\ 0.324\\ 0.322\end{array}$	$\begin{array}{c} -0.249 \\ -0.250 \\ -0.253 \\ -0.253 \\ -0.253 \\ -0.257 \\ -0.257 \\ -0.251 \\ -0.250 \\ -0.246 \\ -0.246 \\ -0.246 \\ -0.247 \\ -0.234 \\ -0.234 \\ \end{array}$	$\begin{array}{c} -4.6 \\ -2.55 \\ -0.55 \\ +1.55 \\ 3.65 \\ 5.8 \\ 7.95 \\ 10.15 \\ 11.25 \\ 12.5 \\ 13.85 \\ 15.2 \\ 15.2 \\ \end{array}$
23.6 26.3	1.58	0.501 0.511	0.362	-0.222 -0.215	$ \begin{array}{c} 18.0 \\ 20.8 \end{array} $

P = V =	$\begin{array}{ll} P = 1.0 \text{ atmos.} \\ V = 72.1 \text{ ft/sec} \end{array} \qquad \begin{array}{l} \rho V^2 = 12.08 \text{ lb/sq ft} \\ R = 0.293 \times 10^6 \end{array}$			P = 1.97 atmos. $V = 61.4 ft/sec$			$\rho V^2 = 19.12 \text{ lb/sq ft}$ $R = 0.565 \times 10^6$			P = 3.12 atmos. V = 61.9 ft/sec			$ ho V^2 = 27.65 ext{ lb/sq ft} ightarrow ho V^2 = 0.782 imes 10^6$				
α	C _L	C _D	<i>C</i> _{D0}	C _M	α₀	α	C _L	C _D	<i>C</i> _{D0}	C _M	α0	α	C _L	C _D	<i>C</i> _{<i>D</i>0}	C _M	α₀
$\begin{array}{c} 1.25\\ 3.7\\ 6.3\\ 8.7\\ 11.15\\ 13.55\\ 15.9\\ 18.5\\ 19.9\\ 21.25\\ 22.6\\ 25.3\\ 28.05\end{array}$	$\begin{array}{c} 0.770\\ 0.889\\ 0.998\\ 1.19\\ 1.40\\ 1.62\\ 1.87\\ 1.82\\ 1.70\\ 1.61\\ 1.52\\ 1.47\\ 1.37\end{array}$	$\begin{array}{c} 0.311\\ 0.333\\ 0.350\\ 0.367\\ 0.383\\ 0.395\\ 0.431\\ 0.453\\ 0.465\\ 0.482\\ 0.503\\ 0.543\\ 0.580\\ \end{array}$	$\begin{array}{c} 0.273\\ 0.289\\ 0.295\\ 0.289\\ 0.275\\ 0.250\\ 0.236\\ 0.270\\ 0.305\\ 0.338\\ 0.375\\ 0.424\\ 0.476\\ \end{array}$	$\begin{array}{c} -0.251 \\ -0.248 \\ -0.244 \\ -0.250 \\ -0.258 \\ -0.267 \\ -0.284 \\ -0.233 \\ -0.218 \\ -0.211 \\ -0.209 \\ -0.207 \end{array}$	$\begin{array}{c} -1\cdot 45 \\ +0\cdot 55 \\ 2\cdot 8 \\ 4\cdot 5 \\ 6\cdot 2 \\ 7\cdot 85 \\ 9\cdot 3 \\ 12\cdot 1 \\ 13\cdot 9 \\ 15\cdot 55 \\ 17\cdot 2 \\ 20\cdot 1 \\ 23\cdot 7 \end{array}$	$\begin{array}{c} -1.6 \\ +0.95 \\ 3.35 \\ 5.95 \\ 8.45 \\ 11.0 \\ 12.2 \\ 13.5 \\ 14.7 \\ 15.95 \\ 17.2 \\ 18.6 \\ 19.95 \\ 22.6 \end{array}$	$\begin{array}{c} 1\cdot 03 \\ 1\cdot 22 \\ 1\cdot 38 \\ 1\cdot 52 \\ 1\cdot 60 \\ 1\cdot 65 \\ 1\cdot 71 \\ 1\cdot 74 \\ 1\cdot 77 \\ 1\cdot 77 \\ 1\cdot 77 \\ 1\cdot 74 \\ 1\cdot 71 \\ 1\cdot 61 \\ 1\cdot 56 \end{array}$	$\begin{array}{c} 0.305\\ 0.331\\ 0.357\\ 0.376\\ 0.400\\ 0.415\\ 0.418\\ 0.421\\ 0.429\\ 0.435\\ 0.443\\ 0.472\\ 0.483\\ 0.513\\ \end{array}$	$\begin{array}{c} 0.246\\ 0.249\\ 0.251\\ 0.248\\ 0.258\\ 0.263\\ 0.256\\ 0.253\\ 0.255\\ 0.261\\ 0.275\\ 0.310\\ 0.339\\ 0.378\\ \end{array}$	$\begin{array}{c} -0.336\\ -0.345\\ -0.348\\ -0.348\\ -0.342\\ -0.333\\ -0.303\\ -0.294\\ -0.284\\ -0.272\\ -0.257\\ -0.248\\ -0.228\\ -0.228\\ -0.226\end{array}$	$\begin{array}{r} -5\cdot25\\ -3\cdot35\\ -1\cdot55\\ +0\cdot55\\ 2\cdot8\\ 5\cdot15\\ 6\cdot15\\ 7\cdot35\\ 8\cdot45\\ 9\cdot7\\ 11\cdot0\\ 12\cdot55\\ 14\cdot25\\ 17\cdot1\end{array}$	$\begin{array}{c} 0.8\\ 3.25\\ 5.8\\ 8.35\\ 10.85\\ 13.4\\ 14.65\\ 15.9\\ 17.15\\ 18.6\\ 19.95\\ 22.55\\ 25.25\end{array}$	$\begin{array}{c} 1\cdot 30\\ 1\cdot 46\\ 1\cdot 62\\ 1\cdot 73\\ 1\cdot 80\\ 1\cdot 78\\ 1\cdot 77\\ 1\cdot 77\\ 1\cdot 77\\ 1\cdot 75\\ 1\cdot 65\\ 1\cdot 59\\ 1\cdot 55\\ 1\cdot 59\\ 1\cdot 55\\ 1\cdot 49\end{array}$	$\begin{array}{c} 0.308\\ 0.338\\ 0.367\\ 0.394\\ 0.410\\ 0.429\\ 0.436\\ 0.445\\ 0.465\\ 0.465\\ 0.477\\ 0.498\\ 0.544\\ 0.568\\ \end{array}$	$\begin{array}{c} 0.214\\ 0.219\\ 0.222\\ 0.228\\ 0.231\\ 0.254\\ 0.260\\ 0.272\\ 0.295\\ 0.325\\ 0.357\\ 0.410\\ 0.444\\ \end{array}$	$\begin{array}{c} -0.347\\ -0.352\\ -0.352\\ -0.352\\ -0.333\\ -0.306\\ -0.294\\ -0.279\\ -0.270\\ -0.252\\ -0.241\\ -0.238\\ -0.232\\ \end{array}$	$\begin{array}{c} -3\cdot 8 \\ -1\cdot 95 \\ +0\cdot 1 \\ 2\cdot 25 \\ 4\cdot 45 \\ 7\cdot 1 \\ 8\cdot 4 \\ 9\cdot 65 \\ 10\cdot 95 \\ 12\cdot 75 \\ 14\cdot 35 \\ 17\cdot 05 \\ 19\cdot 95 \end{array}$

TABLE 3Unslotted Main Flap at 0 deg, Split Flap at 90 deg C_M is the pitching-moment coefficient about the quarter-chord line.

_
1.1
1~

P V	$\begin{array}{ccc} P = 4.76 \text{ atmos.} & \rho V^2 = 49.15 \text{ lb/sq ft} \\ V = 66.7 \text{ ft/sec} & R = 1.29 \times 10^6 \end{array}$			ft	$\begin{array}{c c} P = 7.82 \text{ atmos.} & \rho V^2 = 82.0 \text{ lb/sq ft} \\ V = 67.35 \text{ ft/sec} & R = 2.13 \times 10^6 \end{array}$				P = 12.8 atmos. $V = 71.8 ft/sec$			$\rho V^2 = 150.5 \text{ lb/sq ft}$ $R = 3.65 \times 10^6$					
x	C _L	C _D	<i>C</i> _{<i>D</i>0}	C _M	αο	α	C_L	C _D	C _{D0}	C _M	αo	x	C _L	CD	<i>C</i> _{<i>D</i>0}	C _M	α₀
$\begin{array}{c} -1.85\\ +0.7\\ 3.15\\ 5.75\\ 8.35\\ 10.85\\ 12.1\\ 13.4\\ 14.6\\ 15.9\\ 17.2\\ 18.6\\ 19.9\\ 22.5\end{array}$	$1 \cdot 21$ $1 \cdot 35$ $1 \cdot 48$ $1 \cdot 58$ $1 \cdot 64$ $1 \cdot 67$ $1 \cdot 70$ $1 \cdot 71$ $1 \cdot 74$ $1 \cdot 69$ $1 \cdot 64$ $1 \cdot 58$ $1 \cdot 56$ $1 \cdot 55$	$\begin{array}{c} 0.243\\ 0.268\\ 0.303\\ 0.334\\ 0.369\\ 0.403\\ 0.417\\ 0.432\\ 0.445\\ 0.456\\ 0.465\\ 0.465\\ 0.481\\ 0.501\\ 0.534\end{array}$	$\begin{array}{c} 0.161\\ 0.166\\ 0.182\\ 0.196\\ 0.220\\ 0.248\\ 0.257\\ 0.270\\ 0.278\\ 0.297\\ 0.316\\ 0.342\\ 0.365\\ 0.400\\ \end{array}$	$\begin{array}{c} -0.338\\ -0.336\\ -0.336\\ -0.338\\ -0.333\\ -0.330\\ -0.312\\ -0.304\\ -0.295\\ -0.295\\ -0.291\\ -0.275\\ -0.260\\ -0.249\\ -0.244\\ -0.241\\ \end{array}$	$\begin{array}{c} -6\cdot15\\ -4\cdot1\\ -2\cdot05\\ +0\cdot15\\ 2\cdot55\\ 4\cdot95\\ 6\cdot1\\ 7\cdot35\\ 8\cdot45\\ 9\cdot9\\ 11\cdot4\\ 13\cdot0\\ 14\cdot4\\ 17\cdot0\\ \end{array}$	$\begin{array}{c} -1.75 \\ +0.8 \\ 3.35 \\ 5.9 \\ 8.45 \\ 10.95 \\ 12.2 \\ 13.45 \\ 14.7 \\ 15.95 \\ 17.2 \\ 18.55 \\ 19.85 \\ 22.45 \end{array}$	0.945 1.075 1.16 1.29 1.38 1.46 1.50 1.54 1.55 1.57 1.57 1.57 1.57 1.57 1.57	$\begin{array}{c} 0.229\\ 0.257\\ 0.257\\ 0.320\\ 0.362\\ 0.383\\ 0.400\\ 0.417\\ 0.431\\ 0.445\\ 0.466\\ 0.489\\ 0.506\\ 0.529\\ \end{array}$	$\begin{array}{c} 0.179\\ 0.193\\ 0.212\\ 0.228\\ 0.256\\ 0.267\\ 0.267\\ 0.275\\ 0.285\\ 0.298\\ 0.311\\ 0.328\\ 0.352\\ 0.370\\ 0.393\\ \end{array}$	$\begin{array}{c} -0.301 \\ -0.299 \\ -0.289 \\ -0.287 \\ -0.292 \\ -0.276 \\ -0.276 \\ -0.276 \\ -0.265 \\ -0.259 \\ -0.259 \\ -0.251 \\ -0.248 \\ -0.246 \\ -0.246 \end{array}$	$\begin{array}{c} -5\cdot 1 \\ -3\cdot 0 \\ -0\cdot 75 \\ +1\cdot 3 \\ 3\cdot 55 \\ 5\cdot 75 \\ 6\cdot 9 \\ 8\cdot 0 \\ 9\cdot 25 \\ 10\cdot 45 \\ 11\cdot 6 \\ 13\cdot 0 \\ 14\cdot 3 \\ 16\cdot 9 \end{array}$	$\begin{array}{c} -1\cdot 8\\ +0\cdot 8\\ 3\cdot 3\\ 5\cdot 85\\ 8\cdot 4\\ 10\cdot 95\\ 13\cdot 4\\ 14\cdot 65\\ 15\cdot 9\\ 17\cdot 15\\ 18\cdot 45\\ 19\cdot 7\\ 21\cdot 0\\ 22\cdot 3\\ 23\cdot 65\\ 25\cdot 05\end{array}$	$\begin{array}{c} 0.90\\ 1.03\\ 1.14\\ 1.25\\ 1.34\\ 1.43\\ 1.54\\ 1.57\\ 1.59\\ 1.62\\ 1.62\\ 1.62\\ 1.62\\ 1.62\\ 1.62\\ 1.61\\ 1.59\end{array}$	$\begin{array}{c} 0.233\\ 0.262\\ 0.301\\ 0.321\\ 0.343\\ 0.368\\ 0.424\\ 0.440\\ 0.462\\ 0.478\\ 0.492\\ 0.501\\ 0.514\\ 0.531\\ 0.539\\ 0.559\end{array}$	$\begin{array}{c} 0.188\\ 0.203\\ 0.228\\ 0.234\\ 0.244\\ 0.254\\ 0.293\\ 0.302\\ 0.321\\ 0.333\\ 0.347\\ 0.356\\ 0.369\\ 0.386\\ 0.394\\ 0.419\\ \end{array}$	$\begin{array}{c} -0.278\\ -0.277\\ -0.275\\ -0.273\\ -0.264\\ -0.260\\ -0.261\\ -0.266\\ -0.261\\ -0.266\\ -0.256\\ -0.256\\ -0.255\\ -0.249\\ -0.247\\ -0.245\\ -0.242\\ \end{array}$	$\begin{array}{c} -5\cdot 1 \\ -2\cdot 8 \\ -0\cdot 75 \\ +1\cdot 45 \\ 3\cdot 7 \\ 5\cdot 85 \\ 7\cdot 95 \\ 9\cdot 05 \\ 10\cdot 3 \\ 11\cdot 45 \\ 12\cdot 7 \\ 14\cdot 0 \\ 15\cdot 3 \\ 16\cdot 55 \\ 17\cdot 95 \\ 19\cdot 45 \end{array}$

TABLE 3—continued.

	P = 18.0 atmos. $V = 68.0 ft/sec$			$ \begin{array}{l} \rho V^2 = 188.5 \\ R = 4.75 \end{array} $	$lb/sq ft \times 10^{6}$		$\begin{array}{c} P = 24.7 \\ V = 77.0 \end{array}$		$ ho V^2 = 328 ext{ lb/sq ft} ho R = 7.28 imes 10^6$		
α	C _L	C _D	<i>CD</i> 0	C _M	α ₀	α	C _L	C _D	<i>C</i> _{<i>D</i> 9}	C _M	αο
$\begin{array}{c} -1.85 \\ +0.75 \\ 3.2 \\ 5.85 \\ 8.35 \\ 10.35 \\ 13.4 \\ 14.6 \\ 15.8 \\ 17.1 \\ 18.45 \\ 19.7 \\ 22.3 \\ 25.0 \end{array}$	$\begin{array}{c} 0.916\\ 1.035\\ 1.15\\ 1.25\\ 1.35\\ 1.47\\ 1.56\\ 1.58\\ 1.61\\ 1.64\\ 1.66\\ 1.66\\ 1.65\\ 1.64\\ \end{array}$	$\begin{array}{c} 0.236\\ 0.256\\ 0.283\\ 0.309\\ 0.339\\ 0.385\\ 0.430\\ 0.444\\ 0.455\\ 0.474\\ 0.489\\ 0.498\\ 0.526\\ 0.551\end{array}$	$\begin{array}{c} 0.190\\ 0.196\\ 0.209\\ 0.222\\ 0.237\\ 0.266\\ 0.295\\ 0.305\\ 0.312\\ 0.325\\ 0.336\\ 0.342\\ 0.375\\ 0.402\\ \end{array}$	$\begin{array}{c} -0.280\\ -0.275\\ -0.275\\ -0.267\\ -0.267\\ -0.269\\ -0.273\\ -0.268\\ -0.268\\ -0.266\\ -0.264\\ -0.261\\ -0.255\\ -0.251\\ -0.251\\ -0.246\end{array}$	$\begin{array}{c} -5\cdot2\\ -2\cdot9\\ -0\cdot9\\ +1\cdot45\\ 3\cdot55\\ 5\cdot65\\ 7\cdot9\\ 9\cdot0\\ 10\cdot1\\ 11\cdot3\\ 12\cdot55\\ 13\cdot8\\ 16\cdot45\\ 19\cdot2 \end{array}$	$\begin{array}{c} -2 \cdot 05 \\ +0 \cdot 5 \\ 3 \cdot 0 \\ 5 \cdot 6 \\ 8 \cdot 15 \\ 10 \cdot 65 \\ 13 \cdot 2 \\ 15 \cdot 65 \\ 16 \cdot 9 \\ 18 \cdot 25 \\ 19 \cdot 55 \\ 20 \cdot 85 \\ 22 \cdot 15 \\ 23 \cdot 45 \\ 26 \cdot 2 \end{array}$	$\begin{array}{c} 0.918\\ 1.045\\ 1.16\\ 1.27\\ 1.38\\ 1.48\\ 1.58\\ 1.65\\ 1.65\\ 1.67\\ 1.69\\ 1.70\\ 1.70\\ 1.69\\ 1.69\\ 1.69\\ 1.69\\ 1.60\\ \end{array}$	$\begin{array}{c} 0.243\\ 0.273\\ 0.306\\ 0.336\\ 0.369\\ 0.398\\ 0.434\\ 0.465\\ 0.471\\ 0.487\\ 0.501\\ 0.516\\ 0.519\\ 0.536\\ 0.554\end{array}$	$\begin{array}{c} 0.197\\ 0.212\\ 0.231\\ 0.246\\ 0.264\\ 0.264\\ 0.277\\ 0.296\\ 0.315\\ 0.316\\ 0.328\\ 0.339\\ 0.355\\ 0.360\\ 0.378\\ 0.412\\ \end{array}$	$\begin{array}{c}0.283\\ -0.283\\ -0.283\\ -0.284\\ -0.280\\ -0.281\\ -0.281\\ -0.281\\ -0.281\\ -0.281\\ -0.277\\ -0.266\\ -0.256\\ -0.256\\ -0.256\\ -0.256\\ -0.256\\ -0.244\\ \end{array}$	$\begin{array}{c} -5\cdot3\\ -3\cdot2\\ -1\cdot1\\ +1\cdot1\\ 3\cdot25\\ 4\cdot95\\ 7\cdot6\\ 9\cdot85\\ 11\cdot0\\ 12\cdot25\\ 13\cdot55\\ 14\cdot85\\ 16\cdot15\\ 17\cdot5\\ 20\cdot55\\ \end{array}$

TABLE 4 Slotted Main Flap at 0 deg C_{M} is the pitching-moment coefficient about the quarter-chord line.

P = V =	$\begin{array}{c} P = 1.01 \text{ atmos.} \\ V = 71.2 \text{ ft/sec} \end{array} \qquad \begin{array}{c} \rho V^2 = 11.97 \text{ lb/sq ft} \\ R = 0.297 \times 10^6 \end{array}$				ft	P = V =	= 1·55 atr = 60·5 ft/s	nos. sec	$ \begin{array}{l} \rho V^2 = 13 \\ R = 0.3 \end{array} $	$\cdot 43 \text{ lb/sq}$: 393 $\times 10^{6}$	ft s	P = V = V	= 2·27 at = 60·0 ft/	mos. sec	$ \begin{array}{l} \rho V^2 = 19 \\ R = 0 \end{array} $	$12 \text{ lb/sq} = 565 \times 10^{6}$	ft
α	C _L	CD	<i>CD</i> 0	C_M	α ₀	α	C _L	C_D	<i>CD</i> 0	C _M	α	x	C _L	C _D	C _{D0}	C _M	α0
$\begin{array}{c} -1.95 \\ +0.6 \\ 3.05 \\ 5.55 \\ 8.05 \\ 10.45 \\ 12.9 \\ 15.3 \\ 17.65 \\ 20.2 \\ 21.45 \\ 22.7 \\ 24.05 \\ 25.35 \\ 26.75 \\ 28.1 \\ 30.8 \end{array}$	$\begin{array}{c} -0.524\\ -0.376\\ -0.213\\ -0.055\\ +0.095\\ 0.289\\ 0.549\\ 0.853\\ 1.09\\ 1.215\\ 1.245\\ 1.25\\ 1.245\\ 1.25\\ 1.24\\ 1.19\\ 1.125\\ 1.08\\ 1.06\end{array}$	$\begin{array}{c} 0.110\\ 0.110\\ 0.110\\ 0.115\\ 0.119\\ 0.127\\ 0.$	$\begin{array}{c} 0.0955\\ 0.102\\ 0.108\\ 0.114\\ 0.118\\ 0.123\\ 0.111\\ 0.0865\\ 0.0745\\ 0.085\\ 0.097\\ 0.109\\ 0.128\\ 0.156\\ 0.187\\ 0.216\\ 0.249\\ \end{array}$	0.0275 0.0292 0.0210 0.0125 0.0057 -0.0076 -0.0224 -0.0523 -0.0563 -0.0523 -0.0523 -0.0523 -0.0523 -0.0523 -0.0523 -0.0488 -0.0472 -0.0489 -0.0567	$\begin{array}{c} -0.1 \\ +1.95 \\ 3.8 \\ 5.75 \\ 7.7 \\ 9.45 \\ 10.95 \\ 12.3 \\ 13.8 \\ 15.9 \\ 17.05 \\ 18.3 \\ 19.65 \\ 21.15 \\ 22.75 \\ 24.3 \\ 27.05 \end{array}$	$\begin{array}{c} -2 \cdot 0 \\ +0 \cdot 5 \\ 1 \cdot 7 \\ 2 \cdot 95 \\ 4 \cdot 3 \\ 6 \cdot 65 \\ 9 \cdot 05 \\ 11 \cdot 55 \\ 13 \cdot 95 \\ 13 \cdot 95 \\ 16 \cdot 4 \\ 17 \cdot 65 \\ 18 \cdot 85 \\ 20 \cdot 15 \\ 21 \cdot 45 \\ 22 \cdot 75 \\ 22 \cdot 75 \\ 24 \cdot 05 \\ 25 \cdot 4 \\ 26 \cdot 75 \\ 29 \cdot 45 \end{array}$	$\begin{array}{c} -0.456\\ -0.198\\ -0.087\\ +0.011\\ 0.112\\ 0.324\\ 0.489\\ 0.676\\ 0.872\\ 1.035\\ 1.095\\ 1.15\\ 1.205\\ 1.22\\ 1.21\\ 1.205\\ 1.135\\ 1.09\\ 1.06\end{array}$	$\begin{array}{c} 0.105\\ 0.106\\ 0.104\\ 0.103\\ 0.102\\ 0.101\\ 0.101\\ 0.103\\ 0.118\\ 0.101\\ 0.103\\ 0.118\\ 0.141\\ 0.154\\ 0.165\\ 1.178\\ 0.191\\ 0.204\\ 0.224\\ 0.224\\ 0.245\\ 0.264\\ 0.306\end{array}$	$\begin{array}{c} 0.0935\\ 0.104\\ 0.103\\ 0.103\\ 0.101\\ 0.0955\\ 0.0875\\ 0.0875\\ 0.0775\\ 0.0775\\ 0.0775\\ 0.0775\\ 0.082\\ 0.0875\\ 0.0915\\ 0.097\\ 0.108\\ 0.123\\ 0.144\\ 0.173\\ 0.198\\ 0.244 \end{array}$	$\begin{array}{c} 0.0146\\ -0.0101\\ -0.0179\\ -0.0240\\ -0.0305\\ -0.0372\\ -0.0398\\ -0.0444\\ -0.0497\\ -0.0618\\ -0.0616\\ -0.0616\\ -0.0627\\ -0.0598\\ -0.0533\\ -0.0535\\ -0.0485\\ -0.0535\end{array}$	$\begin{array}{c} -0.35 \\ +1.2 \\ 1.9 \\ 2.95 \\ 4.25 \\ 5.5 \\ 7.35 \\ 9.15 \\ 10.85 \\ 12.75 \\ 13.75 \\ 14.8 \\ 15.9 \\ 17.15 \\ 18.45 \\ 19.8 \\ 21.4 \\ 23.9 \\ 25.7 \end{array}$	$\begin{array}{c} -2\cdot15\\ +0\cdot35\\ 1\cdot6\\ 2\cdot8\\ 4\cdot1\\ 6\cdot55\\ 9\cdot0\\ 11\cdot5\\ 13\cdot9\\ 16\cdot4\\ 18\cdot9\\ 20\cdot15\\ 21\cdot45\\ 22\cdot75\\ 22\cdot75\\ 24\cdot05\\ 25\cdot4\\ 26\cdot8\\ 29\cdot45\end{array}$	$\begin{array}{c} -0.205 \\ +0.015 \\ 0.107 \\ 0.188 \\ 0.273 \\ 0.438 \\ 0.591 \\ 0.753 \\ 0.909 \\ 1.035 \\ 1.135 \\ 1.18 \\ 1.18 \\ 1.18 \\ 1.18 \\ 1.18 \\ 1.165 \\ 1.10 \\ 1.075 \\ 1.06 \end{array}$	$\begin{array}{c} 0.103\\ 0.102\\ 0.103\\ 0.103\\ 0.103\\ 0.101\\ 0.103\\ 0.103\\ 0.103\\ 0.103\\ 0.107\\ 0.123\\ 0.143\\ 0.168\\ 0.181\\ 0.191\\ 0.208\\ 0.228\\ 0.248\\ 0.228\\ 0.248\\ 0.269\\ 0.308\\ \end{array}$	$\begin{array}{c} 0.102\\ 0.102\\ 0.102\\ 0.102\\ 0.101\\ 0.0975\\ 0.0925\\ 0.0835\\ 0.076\\ 0.077\\ 0.083\\ 0.097\\ 0.103\\ 0.113\\ 0.131\\ 0.153\\ 0.181\\ 0.205\\ 0.246\\ \end{array}$	$\begin{array}{c} -0.0392\\ -0.0513\\ -0.0595\\ -0.0595\\ -0.0595\\ -0.0616\\ -0.0608\\ -0.0688\\ -0.0637\\ -0.0632\\ -0.0632\\ -0.0637\\ -0.0622\\ -0.0564\\ -0.0530\\ -0.0501\\ -0.0469\\ -0.0474\\ -0.0528\end{array}$	$\begin{array}{c} -1.45 \\ +0.3 \\ 1.2 \\ 2.15 \\ 3.15 \\ 5.0 \\ 6.9 \\ 8.85 \\ 10.7 \\ 12.7 \\ 14.95 \\ 16.0 \\ 17.3 \\ 18.6 \\ 19.95 \\ 21.5 \\ 23.0 \\ 25.7 \end{array}$
							- 00	0.000		00000	-07						

TABLE 4—continued.

P = V	$P = 2.85 \text{ atmos.} \qquad \rho V^2 = 27$ $V = 64.35 \text{ ft/sec} \qquad R = 0.2$		27.6 lb/sq 0.76 × 10	ft ,6	$\begin{array}{c} P \\ V \end{array}$	= 4.35 at = 68.7 ft	tmos. :/sec	$ \begin{array}{l} \rho V^2 = 4\\ R = 1 \end{array} $	9.0 lb/sq 27×10^6	ft 6	P = V =	= 8·05 atr = 66·5 ft/	mos. sec	$ \begin{array}{c} \rho V^2 = 8\\ R = 2 \end{array} $	1.2 lb/sq 1 1.1×10^6	ft	
α	C _L	C _D	<i>CD</i> 0	C _M	α0	α	C_L	C _D	<i>CD</i> 0	C_M	α₀	X	C _L	C _D	<i>CD</i> 0	C _M	α0
$\begin{array}{c} -2\cdot 25 \\ +0\cdot 25 \\ 2\cdot 75 \\ 5\cdot 2 \\ 7\cdot 7 \\ 10\cdot 15 \\ 12\cdot 65 \\ 15\cdot 1 \\ 17\cdot 6 \\ 20\cdot 1 \\ 21\cdot 4 \\ 22\cdot 7 \\ 24\cdot 05 \\ 25\cdot 35 \\ 28\cdot 05 \\ 30\cdot 75 \end{array}$	$\begin{array}{c} -0.142 \\ +0.076 \\ 0.247 \\ 0.415 \\ 0.566 \\ 0.726 \\ 0.878 \\ 0.990 \\ 1.095 \\ 1.17 \\ 1.165 \\ 1.16 \\ 1.115 \\ 1.095 \\ 1.06 \\ 1.00 \end{array}$	$\begin{array}{c} 0.0925\\ 0.0925\\ 0.0935\\ 0.0935\\ 0.0995\\ 0.114\\ 0.132\\ 0.156\\ 0.183\\ 0.194\\ 0.212\\ 0.228\\ 0.246\\ 0.284\\ 0.323\\ \end{array}$	$\begin{array}{c} 0.0915\\ 0.0925\\ 0.090\\ 0.085\\ 0.075\\ 0.070\\ 0.0715\\ 0.0775\\ 0.089\\ 0.107\\ 0.119\\ 0.137\\ 0.159\\ 0.180\\ 0.221\\ 0.267\\ \end{array}$	$\begin{array}{c} -0.0539\\ -0.0647\\ -0.0695\\ -0.0695\\ -0.0649\\ -0.0649\\ -0.0673\\ -0.0673\\ -0.0673\\ -0.0659\\ -0.0645\\ -0.0529\\ -0.0529\\ -0.0483\\ -0.0483\\ -0.0456\\ -0.0510\\ -0.0602\\ \end{array}$	$\begin{array}{c} -1 \cdot 75 \\ 0 \\ +1 \cdot 9 \\ 3 \cdot 75 \\ 5 \cdot 7 \\ 7 \cdot 6 \\ 9 \cdot 55 \\ 11 \cdot 6 \\ 13 \cdot 7 \\ 15 \cdot 95 \\ 17 \cdot 3 \\ 18 \cdot 6 \\ 20 \cdot 1 \\ 21 \cdot 5 \\ 24 \cdot 3 \\ 27 \cdot 2 \end{array}$	$\begin{array}{c} -2.3 \\ +0.25 \\ 2.65 \\ 5.25 \\ 7.75 \\ 10.25 \\ 12.75 \\ 15.15 \\ 17.7 \\ 20.2 \\ 22.8 \\ 24.1 \\ 25.4 \\ 26.75 \\ 28.05 \\ 29.4 \\ 30.75 \\ 32.1 \\ 34.95 \end{array}$	$\begin{array}{c} -0.063 \\ +0.084 \\ 0.226 \\ 0.362 \\ 0.498 \\ 0.626 \\ 0.738 \\ 0.858 \\ 0.976 \\ 1.04 \\ 1.06 \\ 1.04 \\ 1.065 \\ 1.07 \\ 1.07 \\ 1.07 \\ 1.07 \\ 1.05 \\ 1.015 \\ 0.095 \end{array}$	$\begin{array}{c} 0.054\\ 0.0595\\ 0.071\\ 0.079\\ 0.0915\\ 0.108\\ 0.124\\ 0.144\\ 0.170\\ 0.187\\ 0.209\\ 0.231\\ 0.250\\ 0.264\\ 0.286\\ 0.305\\ 0.328\\ 0.352\\ 0.402\\ \end{array}$	$\begin{array}{c} 0.054\\ 0.059\\ 0.0685\\ 0.072\\ 0.0775\\ 0.086\\ 0.0945\\ 0.103\\ 0.117\\ 0.127\\ 0.147\\ 0.171\\ 0.127\\ 0.147\\ 0.171\\ 0.201\\ 0.222\\ 0.241\\ 0.267\\ 0.295\\ 0.352\\ \end{array}$	$\begin{array}{c} -0.0643\\ -0.0683\\ -0.0728\\ -0.0711\\ -0.0705\\ -0.0719\\ -0.0699\\ -0.0671\\ -0.0683\\ -0.0570\\ -0.0455\\ -0.0443\\ -0.0455\\ -0.0443\\ -0.0465\\ -0.0443\\ -0.0575\\ -0.0486\\ -0.0531\\ -0.0575\\ -0.0629\\ -0.0702\\ -0.0834\\ \end{array}$	$\begin{array}{c} -2 \cdot 1 \\ -0 \cdot 05 \\ +1 \cdot 85 \\ 3 \cdot 95 \\ 6 \cdot 0 \\ 8 \cdot 05 \\ 10 \cdot 15 \\ 12 \cdot 1 \\ 14 \cdot 25 \\ 16 \cdot 55 \\ 18 \cdot 05 \\ 20 \cdot 4 \\ 21 \cdot 75 \\ 23 \cdot 0 \\ 24 \cdot 25 \\ 25 \cdot 6 \\ 27 \cdot 05 \\ 28 \cdot 5 \\ 31 \cdot 6 \end{array}$	$\begin{array}{c} -0.95 \\ +1.5 \\ 2.75 \\ 4.05 \\ 6.5 \\ 8.95 \\ 11.45 \\ 13.9 \\ 16.4 \\ 18.9 \\ 21.5 \\ 24.1 \\ 25.35 \\ 26.7 \\ 28.0 \\ 29.35 \\ 30.7 \\ 33.5 \end{array}$	$\begin{array}{c} -0.047\\ +0.139\\ 0.213\\ 0.311\\ 0.466\\ 0.598\\ 0.757\\ 0.876\\ 0.974\\ 1.005\\ 1.025\\ 1.025\\ 1.045\\ 1.075\\ 1.09\\ 1.10\\ 1.095\\ 1.02\\ 1.02\\ \end{array}$	$\begin{array}{c} 0.0585\\ 0.0605\\ 0.0675\\ 0.071\\ 0.0835\\ 0.097\\ 0.118\\ 0.138\\ 0.157\\ 0.170\\ 0.191\\ 0.234\\ 0.252\\ 0.268\\ 0.287\\ 0.307\\ 0.329\\ 0.386\\ \end{array}$	$\begin{array}{c} 0.0585\\ 0.0595\\ 0.065\\ 0.065\\ 0.072\\ 0.0775\\ 0.086\\ 0.0955\\ 0.105\\ 0.105\\ 0.114\\ 0.133\\ 0.173\\ 0.187\\ 0.202\\ 0.220\\ 0.220\\ 0.241\\ 0.264\\ 0.328\\ \end{array}$	$\begin{array}{c} -0.0535\\ -0.0530\\ -0.0589\\ -0.0593\\ -0.0670\\ -0.0640\\ -0.0694\\ -0.0694\\ -0.0697\\ -0.0557\\ -0.0501\\ -0.0405\\ -0.0405\\ -0.0500\\ -0.0526\\ -0.0563\\ -0.0563\\ -0.0609\\ -0.0681\\ -0.0796\end{array}$	$\begin{array}{c} -0.8 \\ +1.0 \\ 2.95 \\ 4.9 \\ 6.85 \\ 8.85 \\ 10.8 \\ 12.95 \\ 15.35 \\ 17.9 \\ 20.4 \\ 21.55 \\ 22.85 \\ 24.1 \\ 25.5 \\ 26.85 \\ 29.9 \end{array}$
 P V	= 11.5 at = 61.05 f	tmos. ft/sec	$ \begin{array}{c} \rho V^2 = 2\\ R = 2 \end{array} $	9 7·7 lb/sq 2 ·76 × 10	ft 6	P = V =	= 13·6 atr = 69·6 ft/s	nos. μ sec	$pV^2 = 149$ R = 3.7	0.6 lb/sq f 1×10^6	īt.	P = V	= 19·35 a × 65·1 ft/	tmos. (sec	$ \begin{array}{c} \rho V^2 = 18\\ R = 5 \end{array} $	$\begin{array}{r} 87{\cdot}4 \mathrm{lb/sq} \ 00 imes 10^6 \end{array}$	ft
α	C _L	C _D	<i>CD</i> 0	C _M	α ₀	×	C _L	C _D	<i>C</i> _{D0}	C _M	αο	α	C _L	C _D	C _{D0}	C _M	α
$\begin{array}{c} 0.4 \\ 1.6 \\ 2.85 \\ 4.1 \\ 6.55 \\ 9.0 \\ 11.5 \\ 14.0 \\ 16.45 \\ 18.95 \\ 21.55 \\ 22.8 \\ 24.1 \\ 25.35 \\ 26.7 \\ 28.0 \\ 29.35 \\ 7.5 \end{array}$	$\begin{array}{c} -0.057\\ +0.034\\ 0.097\\ 0.199\\ 0.346\\ 0.516\\ 0.638\\ 0.770\\ 0.887\\ 0.931\\ 0.984\\ 1.015\\ 1.05\\ 1.05\\ 1.05\\ 1.15\\ 1.125\\ 1.125\\ 1.125\end{array}$	$\begin{array}{c} 0.065\\ 0.068\\ 0.0695\\ 0.0745\\ 0.085\\ 0.101\\ 0.113\\ 0.135\\ 0.153\\ 0.165\\ 0.192\\ 0.215\\ 0.231\\ 0.248\\ 0.264\\ 0.287\\ 0.308\\ \end{array}$	$\begin{array}{c} 0.065\\ 0.068\\ 0.069\\ 0.0725\\ 0.0785\\ 0.0865\\ 0.091\\ 0.102\\ 0.110\\ 0.117\\ 0.138\\ 0.158\\ 0.170\\ 0.183\\ 0.195\\ 0.217\\ 0.238\\ \end{array}$	$\begin{array}{c} -0.0329\\ -0.0364\\ -0.0392\\ -0.0425\\ -0.0468\\ -0.0565\\ -0.0561\\ -0.0557\\ -0.0537\\ -0.0537\\ -0.0401\\ -0.0396\\ -0.0447\\ -0.0479\\ -0.0479\\ -0.0513\\ -0.0549\\ -0.0589\\ -0.0632\end{array}$	$\begin{array}{c} 0.6\\ 1.48\\ 2.5\\ 3.4\\ 5.35\\ 7.2\\ 9.25\\ 11.3\\ 13.3\\ 13.3\\ 15.65\\ 19.2\\ 20.4\\ 21.5\\ 22.75\\ 24.0\\ 25.35\\ \end{array}$	$\begin{array}{c} 1.65\\ 4.2\\ 6.6\\ 9.1\\ 11.6\\ 14.05\\ 16.5\\ 19.0\\ 21.55\\ 24.1\\ 25.35\\ 26.7\\ 28.0\\ 29.35\\ 30.7\\ 32.05\\ 34.9\end{array}$	$\begin{array}{c} -0.071 \\ +0.108 \\ 0.262 \\ 0.384 \\ 0.531 \\ 0.692 \\ 0.789 \\ 0.878 \\ 0.966 \\ 1.045 \\ 1.085 \\ 1.085 \\ 1.125 \\ 1.125 \\ 1.14 \\ 1.15 \\ 1.13 \\ 1.095 \\ 1.02 \end{array}$	$\begin{array}{c} 0.065\\ 0.072\\ 0.0835\\ 0.0905\\ 0.103\\ 0.124\\ 0.143\\ 0.160\\ 0.194\\ 0.229\\ 0.247\\ 0.268\\ 0.282\\ 0.301\\ 0.323\\ 0.351\\ 0.406 \end{array}$	$\begin{array}{c} 0.065\\ 0.071\\ 0.0795\\ 0.0825\\ 0.0875\\ 0.097\\ 0.109\\ 0.117\\ 0.142\\ 0.168\\ 0.181\\ 0.197\\ 0.210\\ 0.227\\ 0.252\\ 0.285\\ 0.348\\ \end{array}$	$\begin{array}{c} -0.0137\\ -0.0208\\ -0.0295\\ -0.0299\\ -0.0312\\ -0.0379\\ -0.0377\\ -0.0337\\ -0.0404\\ -0.0472\\ -0.0519\\ -0.0560\\ -0.0598\\ -0.0650\\ -0.0695\\ -0.0760\\ -0.0918\end{array}$	$\begin{array}{c} 1.9\\ 3.8\\ 5.65\\ 7.75\\ 9.7\\ 11.6\\ 13.7\\ 15.9\\ 18.15\\ 20.4\\ 21.5\\ 22.7\\ 23.95\\ 25.3\\ 26.7\\ 28.2\\ 31.3\\ \end{array}$	$\begin{array}{c} 1.65\\ 2.9\\ 4.2\\ 5.4\\ 6.65\\ 9.1\\ 11.65\\ 14.1\\ 16.55\\ 19.0\\ 21.05\\ 24.1\\ 25.35\\ 26.7\\ 27.95\\ 29.3\\ 30.65\end{array}$	$\begin{array}{c} -0.109\\ -0.022\\ +0.060\\ 0.136\\ 0.211\\ 0.337\\ 0.460\\ 0.599\\ 0.728\\ 0.854\\ 0.965\\ 1.065\\ 1.105\\ 1.135\\ 1.17\\ 1.135\\ 1.17\\ 1.165\end{array}$	$\begin{array}{c} 0.065\\ 0.0625\\ 0.068\\ 0.0695\\ 0.0765\\ 0.0835\\ 0.093\\ 0.111\\ 0.131\\ 0.156\\ 0.189\\ 0.223\\ 0.242\\ 0.262\\ 0.283\\ 0.300\\ 0.327\\ 0.255\end{array}$	$\begin{array}{c} 0.0645\\ 0.0625\\ 0.0675\\ 0.0685\\ 0.074\\ 0.077\\ 0.081\\ 0.091\\ 0.102\\ 0.116\\ 0.137\\ 0.160\\ 0.174\\ 0.190\\ 0.207\\ 0.224\\ 0.252\\ 0.224\\ 0.252\\ 0.224\\ 0.252\\ 0.224\\ 0.252\\ 0.224\\ 0.252\\ 0.224\\ 0.252\\ 0.224\\ 0.252\\ 0.224\\ 0.252\\ 0.224\\ 0.252\\ 0.224\\ 0.252\\ 0.224\\ 0.252\\ 0.224\\ 0.252\\ 0.224\\ 0.252\\ 0.224\\ 0.252\\ 0.224\\ 0.252\\ 0.224\\ 0.252\\ 0.224\\ 0.252$	$\begin{array}{c} +0.0008\\ -0.0025\\ -0.0076\\ -0.0088\\ -0.0116\\ -0.0110\\ -0.0108\\ -0.0169\\ -0.0240\\ -0.0287\\ -0.0287\\ -0.0370\\ -0.0464\\ -0.0507\\ -0.0561\\ -0.0618\\ -0.0634\\ -0.0729\end{array}$	$\begin{array}{c} 2.05\\ 3.0\\ 4.9\\ 5.9\\ 7.9\\ 10.05\\ 12.0\\ 14.0\\ 16.0\\ 17.65\\ 20.35\\ 21.45\\ 22.65\\ 23.8\\ 25.15\\ 26.5\\ 23.8\\ 25.5\\ \end{array}$

1	P = 24.6 atr $V = 76.9 ft/$	mos. sec	$ \begin{array}{c} \rho \ V^2 = 327 \ \mathrm{lb/sq} \ \mathrm{ft} \\ R = 7.29 \ \times \ 10^6 \end{array} $						
α	C _L	C _D	<i>C</i> _{D0}	C _M	α0				
$\begin{array}{c} 0.45\\ 1.7\\ 2.9\\ 4.2\\ 5.4\\ 6.65\\ 9.15\\ 11.65\\ 14.1\\ 16.55\\ 19.05\\ 21.55\\ 21.55\\ 24.1\\ 25.35\\ 26.7\\ 27.95\end{array}$	$\begin{array}{c} -0.199 \\ -0.115 \\ -0.026 \\ +0.058 \\ 0.140 \\ 0.212 \\ 0.326 \\ 0.483 \\ 0.584 \\ 0.717 \\ 0.843 \\ 0.962 \\ 1.055 \\ 1.105 \\ 1.14 \\ 1.16 \end{array}$	$\begin{array}{c} 0.0695\\ 0.0705\\ 0.0715\\ 0.0745\\ 0.0745\\ 0.0775\\ 0.0805\\ 0.0855\\ 0.092\\ 0.109\\ 0.127\\ 0.153\\ 0.184\\ 0.223\\ 0.242\\ 0.262\\ 0.284\\ \end{array}$	$\begin{array}{c} 0.067\\ 0.070\\ 0.0715\\ 0.074\\ 0.0765\\ 0.078\\ 0.0795\\ 0.0795\\ 0.079\\ 0.090\\ 0.099\\ 0.113\\ 0.133\\ 0.161\\ 0.174\\ 0.190\\ 0.209\end{array}$	$\begin{array}{c} 0.0121\\ 0.0054\\ 0.0010\\ -0.0035\\ -0.0073\\ -0.0097\\ -0.0093\\ -0.0097\\ -0.0093\\ -0.0132\\ -0.0132\\ -0.0186\\ -0.0268\\ -0.0268\\ -0.0268\\ -0.0480\\ -0.0535\\ -0.0586\\ -0.0586\\ -0.0636\end{array}$	$\begin{array}{c} 1.15\\ 2.1\\ 3.0\\ 4.0\\ 4.9\\ 5.9\\ 8.0\\ 9.95\\ 12.05\\ 14.0\\ 16.05\\ 18.15\\ 20.35\\ 21.5\\ 22.65\\ 23.85\end{array}$				
29·3 30·7 32·05	$ \begin{array}{c c} 1 \cdot 155 \\ 1 \cdot 125 \\ 1 \cdot 09 \\ \end{array} $	0·304 0·330 0·361	$0.230 \\ 0.260 \\ 0.295$	$ \begin{array}{r} -0.0681 \\ -0.0732 \\ -0.0791 \end{array} $	$25 \cdot 2$ 26 \cdot 7 28 \cdot 2				

TABLE 4—continued.

TABLE 5Slotted Main Flap at 40 deg C_M is the pitching-moment coefficient about the quarter-chord line.

P = 1.0 at $V = 71.4 f$	$\begin{array}{c} P = 1.0 \text{ atmos.} \\ V = 71.4 \text{ ft/sec} \end{array} \qquad \begin{array}{c} \rho V^2 = 11.98 \text{ lb/sq ft} \\ R = 0.296 \times 10^6 \end{array}$			1 ft 06	$P = 2.28 \text{ atmos.} \qquad \rho V^2 = V^2 = 0$ $V = 59.6 \text{ ft/sec} \qquad R = 0$				0.12 lb/sq $568 \times 10^{\circ}$	ft 6	P = 4.41 atmos. $V = 70.1 ft/sec$			$\rho V^2 = 49.0 \text{ lb/sq ft}$ $R = 1.20 \times 10^6$		
α C _L	C _D	<i>C</i> _{<i>D</i>0}	C _M	α₀	α	C _L	C _D	<i>C</i> _{<i>D</i>0}	C	α0	α	C _L	C _D	<i>C</i> _{<i>D</i>0}	C _M	α₀
$\begin{array}{c ccccc} -1\cdot25 & 0\cdot476 \\ +1\cdot25 & 0\cdot618 \\ 3\cdot8 & 0\cdot765 \\ 6\cdot2 & 0\cdot93 \\ 8\cdot65 & 1\cdot14 \\ 11\cdot1 & 1\cdot36 \\ 13\cdot5 & 1\cdot59 \\ 14\cdot65 & 1\cdot67 \\ 15\cdot9 & 1\cdot78 \\ 17\cdot2 & 1\cdot79 \\ 18\cdot45 & 1\cdot79 \\ 19\cdot8 & 1\cdot74 \\ 21\cdot15 & 1\cdot64 \\ 22\cdot5 & 1\cdot56 \end{array}$	$\begin{array}{c} 0.240\\ 0.251\\ 0.277\\ 0.302\\ 0.331\\ 0.353\\ 0.370\\ 0.381\\ 0.395\\ 0.412\\ 0.433\\ 0.461\\ 0.476\\ 0.496\\ \end{array}$	$\begin{array}{c} 0.228\\ 0.230\\ 0.245\\ 0.254\\ 0.259\\ 0.251\\ 0.225\\ 0.225\\ 0.220\\ 0.233\\ 0.256\\ 0.293\\ 0.326\\ 0.361\\ \end{array}$	$\begin{array}{c} -0.206\\ -0.206\\ -0.212\\ -0.212\\ -0.236\\ -0.246\\ -0.259\\ -0.261\\ -0.264\\ -0.261\\ -0.264\\ -0.254\\ -0.233\\ -0.224\\ \end{array}$	$\begin{array}{c} -3 \cdot 1 \\ -0 \cdot 95 \\ +1 \cdot 1 \\ 2 \cdot 9 \\ 4 \cdot 6 \\ 6 \cdot 3 \\ 7 \cdot 9 \\ 8 \cdot 7 \\ 9 \cdot 6 \\ 10 \cdot 85 \\ 12 \cdot 15 \\ 13 \cdot 65 \\ 15 \cdot 35 \\ 17 \cdot 0 \end{array}$	$\begin{array}{r} -1\cdot45\\ +1\cdot0\\ 3\cdot55\\ 6\cdot0\\ 8\cdot45\\ 9\cdot7\\ 10\cdot95\\ 12\cdot25\\ 13\cdot45\\ 14\cdot65\\ 15\cdot95\\ 17\cdot25\\ 18\cdot5\\ 19\cdot85\\ 22\cdot55\end{array}$	0.755 0.985 1.14 1.28 1.41 1.47 1.55 1.59 1.666 1.71 1.74 1.74 1.74 1.74 1.71 1.64 1.51	$\begin{array}{c} 0.225\\ 0.248\\ 0.275\\ 0.299\\ 0.328\\ 0.339\\ 0.351\\ 0.359\\ 0.369\\ 0.382\\ 0.394\\ 0.402\\ 0.436\\ 0.459\\ 0.484\\ \end{array}$	$\begin{array}{c} 0.193\\ 0.194\\ 0.203\\ 0.209\\ 0.218\\ 0.219\\ 0.217\\ 0.218\\ 0.217\\ 0.220\\ 0.226\\ 0.234\\ 0.275\\ 0.310\\ 0.357\end{array}$	$\begin{array}{c} -0.252\\ -0.261\\ -0.272\\ -0.274\\ -0.278\\ -0.278\\ -0.278\\ -0.278\\ -0.278\\ -0.276\\ -0.274\\ -0.273\\ -0.268\\ -0.268\\ -0.256\\ -0.254\\ -0.246\\ -0.230\end{array}$	$\begin{array}{c} -4\cdot 15\\ -2\cdot 45\\ -0\cdot 5\\ +1\cdot 5\\ 3\cdot 45\\ 4\cdot 5\\ 5\cdot 45\\ 6\cdot 6\\ 7\cdot 6\\ 8\cdot 6\\ 9\cdot 8\\ 11\cdot 1\\ 12\cdot 45\\ 14\cdot 05\\ 17\cdot 2\end{array}$	$\begin{array}{c} -1.7\\ +0.85\\ 3.4\\ 5.85\\ 8.3\\ 9.55\\ 10.85\\ 12.1\\ 13.35\\ 14.55\\ 15.9\\ 17.2\\ 18.85\\ 21.15\end{array}$	$\begin{array}{c} 1\cdot 01 \\ 1\cdot 15 \\ 1\cdot 28 \\ 1\cdot 42 \\ 1\cdot 55 \\ 1\cdot 60 \\ 1\cdot 66 \\ 1\cdot 72 \\ 1\cdot 73 \\ 1\cdot 74 \\ 1\cdot 73 \\ 1\cdot 70 \\ 1\cdot 62 \\ 1\cdot 53 \end{array}$	$\begin{array}{c} 0.207\\ 0.231\\ 0.260\\ 0.294\\ 0.328\\ 0.347\\ 0.367\\ 0.389\\ 0.405\\ 0.425\\ 0.443\\ 0.465\\ 0.473\\ 0.480\\ \end{array}$	$\begin{array}{c} 0.150\\ 0.158\\ 0.169\\ 0.181\\ 0.195\\ 0.205\\ 0.214\\ 0.225\\ 0.239\\ 0.257\\ 0.278\\ 0.305\\ 0.327\\ 0.351\\ \end{array}$	$\begin{array}{c} -0.292\\ -0.290\\ -0.291\\ -0.294\\ -0.295\\ -0.295\\ -0.295\\ -0.295\\ -0.295\\ -0.292\\ -0.285\\ -0.277\\ -0.269\\ -0.252\\ -0.252\\ -0.229\end{array}$	$\begin{array}{c} -5.3 \\ -3.2 \\ -1.15 \\ +0.8 \\ 2.8 \\ 3.9 \\ 4.95 \\ 6.0 \\ 7.25 \\ 8.4 \\ 9.8 \\ 11.2 \\ 12.75 \\ 15.75 \end{array}$

TABLE 5—continued.

P V	$P = 5.8 \text{ atmos.} \qquad \rho V^2 = 61.8 \text{ lb/sq ft} \\ V = 68.7 \text{ ft/sec} \qquad R = 1.55 \times 10^6$			ft	$P = 8.27 \text{ atmos.} \qquad \rho V^2 = 81.3 \text{ lb/sq ft} \\ V = 65.8 \text{ ft/sec} \qquad R = 2.14 \times 10^6$				$\begin{array}{c} P = 12.95 \text{ atmos.} \\ V = 71.95 \text{ ft/sec} \end{array} \begin{array}{c} \rho V^2 = 149.4 \text{ lb/sq ft} \\ R = 3.55 \times 10^6 \end{array}$								
α	CL	C _D	C _{D0}	C _M	αο	2	C _L	C _D	C _{D0}	C _M	αο	æ	C _L	C _D	C _{D0}	C _M	αo
-1.7 +0.8 3.355 5.855 13.35 14.65 15.95 17.25 18.55 19.75 21.15 23.8	1.06 1.19 1.32 1.44 1.56 1.66 1.71 1.66 1.64 1.58 1.54 1.53 1.52	0-217 0-242 0-274 0-305 0-338 0-378 0-417 0-436 0-450 0-470 0-465 0-466 0-482 0-511	0-154 0-164 0-177 0-190 0-203 0-225 0-254 0-275 0-275 0-297 0-321 0-326 0-334 0-352 0-383	$\begin{array}{c} -0.305\\ -0.302\\ -0.301\\ -0.303\\ -0.301\\ -0.292\\ -0.287\\ -0.275\\ -0.266\\ -0.249\\ -0.236\\ -0.232\\ -0.230\\ \end{array}$	$\begin{array}{r} -5.8 \\ -3.4 \\ -1.35 \\ +0.75 \\ 2.8 \\ 4.95 \\ 7.25 \\ 8.6 \\ 10.05 \\ 11.45 \\ 12.95 \\ 14.3 \\ 15.75 \\ 18.45 \end{array}$	1.7 +0.8 3.35 5.85 8.35 10.85 13.4 15.95 18.55 19.9 21.15 22.45 23.8 24.6 27.8	1.04 1.18 1.30 1.40 1.51 1.61 1.63 1.63 1.54 1.54 1.52 1.51 1.52 1.51 1.50 1.41	$\begin{array}{c} 0.231\\ 0.250\\ 0.281\\ 0.317\\ 0.353\\ 0.392\\ 0.424\\ 0.461\\ 0.474\\ 0.473\\ 0.493\\ 0.521\\ 0.537\\ 0.557\\ 0.598\\ \end{array}$	0-171 0-172 0-187 0-208 0-226 0-247 0-276 0-314 0-343 0-349 0-363 0-393 0-393 0-410 0-431 0-488	$\begin{array}{c} -0.305 \\ -0.306 \\ -0.304 \\ -0.299 \\ -0.301 \\ -0.299 \\ -0.283 \\ -0.270 \\ -0.243 \\ -0.222 \\ -0.228 \\ -0.232 \\ -0.228 \\ -0.223 \\ -0.223 \end{array}$	$\begin{array}{r} -5\cdot4\\ -3\cdot4\\ -1\cdot25\\ +0\cdot9\\ 3\cdot0\\ 5\cdot15\\ 7\cdot6\\ 10\cdot2\\ 13\cdot1\\ 14\cdot6\\ 15\cdot75\\ 17\cdot05\\ 18\cdot45\\ 19\cdot3\\ 22\cdot8\end{array}$	$\begin{array}{r} -1.6\\ +0.9\\ 3.45\\ 5.95\\ 8.4\\ 11.0\\ 13.5\\ 16.05\\ 18.6\\ 19.9\\ 21.15\\ 22.45\\ 23.75\\ 25.05\\ 26.4\\ 27.75\\ 29.15\\ \end{array}$	0.868 1.02 1.18 1.29 1.39 1.44 1.52 1.50 1.50 1.51 1.53 1.55 1.55 1.55 1.54 1.53 1.49 1.40	0.216 0.238 0.273 0.297 0.339 0.358 0.390 0.407 0.426 0.447 0.4465 0.4483 0.505 0.521 0.538 0.557 0.586	0.174 0.180 0.195 0.205 0.232 0.243 0.263 0.282 0.301 0.317 0.336 0.351 0.372 0.389 0.407 0.435 0.477	$\begin{array}{c} -0.280\\ -0.275\\ -0.273\\ -0.270\\ -0.283\\ -0.269\\ -0.264\\ -0.244\\ -0.232\\ -0.232\\ -0.232\\ -0.232\\ -0.232\\ -0.232\\ -0.230\\ -0.229\\ -0.231\\ -0.229\\ -0.228\\ \end{array}$	$\begin{array}{r} -4.7 \\ -2.7 \\ -0.75 \\ +1.4 \\ 3.5 \\ 5.9 \\ 8.15 \\ 10.75 \\ 13.3 \\ 14.55 \\ 15.75 \\ 16.95 \\ 18.25 \\ 19.6 \\ 20.95 \\ 22.5 \\ 24.2 \end{array}$

. 16

·	P = 18.7 atmos. $V = 67.05 ft/sec$			$V^{2} = 186.9$ R = 4.76	lb/sq ft < 10 ⁶		P = 25.5 $V = 76.8$	atmos. ft/sec		$ \rho V^2 = 326 R = 7.30 $	lb/sq ft × 10 ⁶
α	CL	C _D	С _{Д0}	С_м	αο	a	C _L	C _D	С _{Д0}	C _M	αο
$\begin{array}{r} -1.5 \\ +1.0 \\ 3.55 \\ 6.0 \\ 8.5 \\ 11.05 \\ 13.5 \\ 16.05 \\ 17.35 \\ 18.55 \\ 19.85 \\ 21.15 \\ 22.45 \\ 23.75 \\ 25.25 \\ 26.4 \\ 27.7 \\ 30.5 \end{array}$	$\begin{array}{c} 0.759\\ 0.900\\ 1.04\\ 1.16\\ 1.26\\ 1.36\\ 1.45\\ 1.45\\ 1.45\\ 1.47\\ 1.49\\ 1.52\\ 1.54\\ 1.56\\ 1.57\\ 1.56\\ 1.57\\ 1.56\\ 1.54\\ 1.42\\ \end{array}$	0-208 0-236 0-269 0-315 0-344 0-367 0-390 0-403 0-418 0-438 0-438 0-453 0-474 0-491 0-513 0-555 0-617	0.176 0.192 0.209 0.221 0.227 0.227 0.241 0.252 0.270 0.279 0.289 0.306 0.318 0.336 0.354 0.354 0.354 0.377 0.396 0.423 0.505	$\begin{array}{c} -0.259\\ -0.263\\ -0.268\\ -0.268\\ -0.256\\ -0.254\\ -0.254\\ -0.238\\ -0.233\\ -0.233\\ -0.233\\ -0.232\\ -0.230\\ -0.229\\ -0.229\\ -0.229\\ -0.229\\ -0.228\\ -0.230\\ -0.232\\ -0.235\end{array}$	$\begin{array}{c} -4\cdot 2\\ -2\cdot 2\\ -0\cdot 15\\ +1\cdot 9\\ 4\cdot 05\\ 6\cdot 25\\ 8\cdot 4\\ 10\cdot 85\\ 12\cdot 05\\ 13\cdot 15\\ 14\cdot 4\\ 15\cdot 65\\ 16\cdot 9\\ 18\cdot 2\\ 19\cdot 7\\ 20\cdot 9\\ 22\cdot 25\\ 25\cdot 5\end{array}$	$\begin{array}{c} -1\cdot 5\\ +1\cdot 0\\ 3\cdot 6\\ 6\cdot 05\\ 8\cdot 55\\ 11\cdot 05\\ 13\cdot 55\\ 14\cdot 8\\ 16\cdot 05\\ 17\cdot 35\\ 18\cdot 6\\ 19\cdot 85\\ 21\cdot 15\\ 22\cdot 45\\ 23\cdot 75\\ 25\cdot 05\\ 26\cdot 4\\ 29\cdot 15\end{array}$	$\begin{array}{c} 0.725\\ 0.86\\ 0.98\\ 1.10\\ 1.21\\ 1.31\\ 1.40\\ 1.43\\ 1.45\\ 1.48\\ 1.50\\ 1.52\\ 1.54\\ 1.56\\ 1.55\\ 1.55\\ 1.54\\ 1.54\\ 1.54\\ 1.39\end{array}$	$\begin{array}{c} 0.197\\ 0.221\\ 0.247\\ 0.275\\ 0.301\\ 0.329\\ 0.360\\ 0.371\\ 0.385\\ 0.399\\ 0.417\\ 0.430\\ 0.452\\ 0.471\\ 0.488\\ 0.511\\ 0.535\\ 0.589\\ \end{array}$	0.168 0.180 0.193 0.207 0.219 0.234 0.256 0.257 0.267 0.267 0.276 0.276 0.291 0.302 0.320 0.336 0.354 0.379 0.403 0.481	$\begin{array}{c} -0.249\\ -0.248\\ -0.248\\ -0.248\\ -0.248\\ -0.245\\ -0.245\\ -0.242\\ -0.238\\ -0.236\\ -0.236\\ -0.236\\ -0.233\\ -0.233\\ -0.233\\ -0.233\\ -0.234\\ -0.234\\ -0.234\\ -0.239\\ \end{array}$	$\begin{array}{r} -4.05 \\ -2.05 \\ +0.1 \\ 2.15 \\ 4.25 \\ 6.4 \\ 8.6 \\ 9.75 \\ 10.9 \\ 12.1 \\ 13.3 \\ 14.45 \\ 15.7 \\ 16.95 \\ 18.25 \\ 19.6 \\ 20.95 \\ 24.2 \end{array}$

FIG. 1. Glas II, showing main flap, split flap and slot.

FIG. 7. Lift curves at maximum Reynolds numbers.

ITAIN

Publications of the Aeronautical Research Council

ANNUAL TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL (BOUND VOLUMES)---

- 1934-35 Vol. I. Aerodynamics. Out of print.
 - Vol. II. Seaplanes, Structures, Engines, Materials, etc. 40s. (40s. 8d.)
- 1935-36 Vol. I. Aerodynamics. 30s. (30s. 7d.)
 - Vol. II. Structures, Flutter, Engines, Seaplanes, etc. 30s. (30s. 7d.)
 - 1936 Vol. I. Aerodynamics General, Performance, Airscrews, Flutter and Spinning. 40s. (40s. 9d.)
 - Vol. II. Stability and Control, Structures, Seaplanes, Engines, etc. 50s. (50s. 10d.)
 - 1937 Vol. I. Aerodynamics General, Performance, Airscrews, Flutter and Spinning. 40s. (40s. 10d.)
 - Vol. II. Stability and Control, Structures, Seaplanes, Engines, etc. 60s. (61s.)
 - 1938 Vol. I. Aerodynamics General, Performance, Airscrews. 505. (515.)
 - Vol. II. Stability and Control, Flutter, Structures, Scaplanes, Wind Tunnels, Materials. 30s. (30s. 9d.)
 - 1939 Vol. I. Aerodynamics General, Performance, Airscrews, Engines. 50s. (50s. 11d.)
 - Vol. II. Stability and Control, Flutter and Vibration, Instruments, Structures, Seaplanes, etc. 63s. (64s. 2d.)
 - 1940 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Icing, Stability and Control, Structures, and a miscellancous section. 50s. (51s.)

Certain other reports proper to the 1940 volume will subsequently be included in a separate volume.

ANNUAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL-

	1933-34 is. 6d. (is. 8d.)
	April 1 1025 to December 21 1026 (45, 44)
	$1027 \qquad 25 (25.2d)$
	1957 15. (15. 8d.)
	1030-48 35. (25. 2d.)
	INDEX TO ALL DEDODES AND MEMORANDA DIRI ISHED IN THE ANNUAL
	TECHNICAL DEDORTS AND MEMORANDA FUDLISHED IN THE ANNUAL
	TECHNICAL REFORTS, AND SEFARTELI-
	April, 1950 K. & M. No. 2600. 28. 6 a . (28. $7\frac{1}{2}a$.)
	INDEXES TO THE TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH
	COUNCIL—
]	December 1, 1026 — June 20, 1020, R. & M. No. 1850, 15, 2d. (15, 4 ¹ / ₂ d.)
	10.0 1, 1030 - 1000 30, 1045, R. & N. No. 1050, 15, (15, 14d)
	$1 \text{ In } 1, 1935 \longrightarrow$ lune 30, 1946. R. & M. No. 2050. IS. (18, 14d.)
	$J_{11} = J_{12} = J$
	January 1, 1047 — June 30, 1047. R. & M. No. 2250. 15, 3d. (15, $4\frac{1}{2}d.$)
	D_{max} $D_{$
	1 rices in orackets include postage.
	Obtainable from
	HIS MAJESTY'S STATIONERY OFFICE
	York House, Kingsway, London, w.c.2 429 Oxford Street, London, w.1
	P.O. Box 569, LONDON, S.E.I
	30 Castle Street, EDINBURGH, 2 1 St. Andrew S Crescent, CARDIFF
	2 Edmund Street, BIRNINGHAM, 3 80 Chichester Street, BELTAST
	or through any bookseller
	or through any booksener.
i	

S.O. Code No. 23-2540