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Summary. This Paper presents a large-deflexion analysis of a thin circular lenticular plate whose 
temperature varies parabolically in its plane and linearly through its thickness. The analysis embraces the 
buckled, as well as unbuckled, regimes. 

1. Introduction. When a wing is subjected to transient heating its temperature will vary from 
point to point and this will result in the  formation of stresses. These 'thermal' stresses may cause 
a signiflcan.t loss of torsional and flexural stiffness in a thin solid wing 1, 2, 3 or they may cause buckling 
of the leading edge ~. In a built-up wing the thermal stresses will contribute to the buckling of 
individual panels s, 6. In the case of the thin solid wing attention so far has been devoted to t h e  

effects of temperature variations in the plane of the' wing, but temperature variations through the 
thickness can also occur due, for example, to solar radiation or to differences in aerodynamic heating ' 

of the upper and lower surfaces. 
This Report relates to the stresses in and the deflexion of an idealised thin solidwing (hereafter 

referred to as a plate) which is subjected to certain temperature variations both in its plane and 

through its thickness. The analysis is based on large-deflexion plate theory 7, but by confining 

attention to the circular plate of lenticular section it has been possible to obtain exact solutions. 
Moreover, because of the comparative simplicity of the analysis the investigation has been extended 

beyond the normal practical range and includes the analysis of the following phenomena: buckling 
.and post-buckling behaviour of the plate subjected to temperature variation in its plane, pre-buckling 
and post-buckling behaviour with temperature variation through its thickness, and snap-through 
buckling under combined temperature variations. Finally, consideration is given to the effects of 

initial curvature in the plat,e. 

e Previously issued as R.A.E. Report No. Structures 268--A.R.C. 22,865. 



2. Some Features of the Circular Lenticular Plate. Th e  thickness of the plate varies parabolically 

with r according to the equation 

t = to(1-p~) ' 
where , (1) 

p = r/a~o, 

t o is the thickness at the centre and r o is the radius of the plate. T h e  rigidity D is therefore giver~ by 

Et°a (1 - p2)a 
D - 12(1 - v2). (2) 

where E is Young's  modulus and v is Poisson's ratio. 

T w o  types of temperature distribution are considered. Initially these are considered separately 

but  in Section 5 they are considered in combination. In the first the temperature  T is constant across 

the thickness but  varies parabolically in the plane of the plate according to the equation 

T = :r ,o  + { . 4 .  + B y  + c } .  (3 )  

The  linear terms in braces do not produce thermal stresses and are henceforth ignored. 

T h e  second temperature  distribution considered is such that the temperature gradient OT/3z 

through the thickness is constant, as is the temperature of the mid-plane of the.  plate. This  

temperature  distribution would cause each unrestrained element of the plate to assume a uniform 

'spherical '  curvature K T such that 

~2w 92w 3 T c~ T~ 
- - ~ - ( 4 )  

K~, - ~x ~ Oy 2 Oz t o 

where ~ is the coefficient of thermal expansion and T 2 is the temperature difference across the 

thickness of the plate at the centre. Any one of the terms K~., c~(3T/Oz), ~(T~/to) may be used to 

define the magnitude of this temperature  distribution, but  henceforth only the term K T will be used. 

Now there are two peculiar features of this lenticular plate which occur when it is subjected to 

any combination of the two temperature  distributions just considered. T h e  first feature is that if 

the plate deflects it assumes the form 

w = arZ{1 + b cos 2 ( 0 -  0o) } (5) 

where a, b are constants depending on the magnitudes of T 1 and ,;~,. Th e  angle 0 0 is arbitrary and 

there is no loss of generality in assuming it to be 0 or ½~r. Equation (5) may then be writ ten in the 

form 

= - + (6)  

where  Kx and x v are independent  of x, y and are the curvatures in the x- andy-direct ions respectively. 

I t  is also convenient to adopt the convention that ,%/> Kv, for this can always be achieved by suitable 

choice of 0 0. For  certain ranges of values of T 1 and K~, the plate deforms with rotational symmetry  

so that K~ = Ky; when this is so we will write 

w = - ½Kr . (7 )  

T h e  deflexion of the plate is thus completely determined by the curvatures ,%, icy or K. 
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The second feature is that while the magnitude of the middle surface stresses depends on T 1 
and KT, their distribution depends only on the radius r. The middle surface stresses may be derived 
from a force function (I) according to the relations 

la% 
t % =  N,, = r Or[ 

l 
~ I (8) 

t~  o = N o = Or~ | 

) 7"~, 0 ~ 0 

where 
oc (1-02)  ~ . 

It will be noticed that q5 varies with r in the same manner as does the rigidity D. Furthermore, 

the rigidity D has the same dimensions (force × length) as the force function q); because of this it 

is convenient to write 
• =/3D (9) 

where/3 is non-dimensional. It follows from Equations (8) and (9) that the entire distribution of 

middle surface stresses is determined once the value of/3 is known. 
It will be noted that the middle surface stresses are referred to polar co-ordinates. This has been 

done for reasons of convenience, and because the stresses %, % are principal stresses. By the same 

token the stresses due to bending, which will be  distinguished by the suffix b, are more conveniently 

referred to Cartesian co-ordinates. The bending stresses vary linearly through the thickness of the 

plate and their values on the surface z = + ½t are given by 

%, ~ = 6 M . / t  2 ] 
} (10) 

%,~ = 6 M , y J  

where the moments per unit length, M.,  M v are given by 

t8~w . 82w ( l + v ) ~ .  I } 
M ~  = - D {a .2  + ~ a 7  + 

M U D {ay 2 + v ~ . + ( l + v ) K  T . 

(11) 

(84218) A 2 

Equations (6), (10) and (11) may be combined to give 

¢. ,b - 2(1 - ~2) {~x + ~ - (1 + ~)~,} 
E t  (12) 

~',,b - 2 ( 1 -  ~2) {~', + , ~x  - (1 + ~ ) ~ } .  

The maximum value of the bending stresses occurs at the centre where t = t 0. 

2.1. B o u n d a r y  Condit ions.  We have already anticipated the forms that (I) and w take, and here 
it will be shown that these forms satisfy the boundary conditions. In the analyses of Sections 3 to 6, 
no further mention will be made of the fact that the boundary conditions are satisfied. 

There are no forces or moments applied to the edge of the plate so that where p = 1 : 

N,, = N,.  o = O] 
and  } (13) 

M,. V,. = 0 .J  



These conditions are automatically satisfied because the variation of D (and hence qb) is such that 
at the edge 

3D 
D - ar - 0 (14) 

2.2. Use of Non-Dimensional Symbols. The non-dimensional symbols p and fi have already been 
introduced. The analysis and presentation of results is also simplified by the introduction of further 
non-dimensional symbols, which are identified by a circumflex: 

\ td ] T: 

~,  = \ - /0x  ! T2 

= (r°e~ ,cT (15) 
\ to/ 

\ to / K~, 

, ,  

{%, %, %., 0o} = \e to  2] {%' %, %, % } . ]  

3. Parabolic Temperature Distribution in Plane of Plate. For small values of the temperature 
difference T 1 the plate remains fiat but there will be middle surface thermal stresses. For large 
positive or negative values of T 1 the plate will  be buckled and there will be bending stresses in 
addition to the middle surface stresses. Consider first the thermal stresses prior to buckling. 

3.1. Thermal Stresses Prior to Buckling. Prior to b~ick]ing the force function ~ satisfies the 
following partial differential equation 7 

where 

and 

V2(/,V2(I)) - (1 + v)O4(/,, q)) + EoN2T = 0 

= 1 / t  

(16) 

~4(/, ,  4)) = 32/, 32(I) 2 ~2/~ 32~  32/, 02(I) 

= ½{(v2,)(w~) + w ( , v 2 ~  + ~ w , ) )  - l { V . ( , ~ ) +  , v ~ )  + ~v , ,} .  

It may be verified that the solution of Equation (t6) is given by 

fl _ 2 ( 1 -  v 2) 2t' (17) 
7 + v  

where/3 is defined by Equation (9). 
The middle surface stresses associated with this value of/3 are given (in non-dimensional form) by 

% -  7 +  v ) ~(1 - 5p~) (18) 

~o - 7 +  v " 



It can be Shown that this solution is valid in the range 

where 

20-= 7 + v  
2(1 - 

- 5.21 if 
and 

v = 0 . 3  

(19) 

The middle surface stresses are again independent of the temperature and are given by 

% = 2(f~--~) 

1 - 5p 2 

a° 2(1+ v)" • 

(26) 

,5 

The bending stresses are given by Equations (12) and (22), whence 

%,̂  ~ ="% b = +- (11~Pv2)(~-_ ~)1,2. (24) 

3.2.2. Solution for T > T+ (hotter at the edges). It may be verified that the solution of 

Equations (21) is given by 

and (25) " 

2~+= 7 + v  (20) 
2(1 + v) 

--~2.81. 

When 2~ < 5 ~- the temperature at the centre of the plate is so much higher than that at the edge that 
the plate buckles into a saucer shape. When "~ > 5 ~+ the temperature at the edge is so much higher 
than that at the centre that the plate buckles into a saddle shape. 

3.2. Post-Buckling Behaviour. In the post-buckling phase the force function • and the deflexion w 

satisfy the following simultaneous non-linear partial differential equationsT: 

V2(t~V~cb) - (I +v)~(pb ~) + EoW2T + ½E~4(w, w) = I ) 
(21)  

and V~(DV2w) - ( 1 -  v){}4(D, w) - ~}4(O, w) . 

3.2.1. Solution for T < 27- (hotter at the centre). It may 'be verified tha t  the solution of 

Equations (21) is given by 

and + 2( T - -  iV) 1/2 . 

The middle surface stresses are thus independent of the temperature and are given by 

% = 2(1 - v) [ 
(23) / 

5p 2 -  1 / 



The bending stresses are given by Equations (12) and (25), whence 

A A {1 -- p2]  (2?--  27-t-)112 (27) 
- % o =  \ l + v /  

The variation with temperature of the principal curvatures, middle-surface stresses and bending 

stresses has been plotted in Figs. 1 and 2. It is seen there that when 2P < 1.8 2?- or 2? > 2.5 2?+ the 

maximum bending stress exceeds the maximum middle-surface stress. 

4. Linear Temperature Gradient through Thickness of Plate. When the temperature gradient 

through the thickness is small the plate deforms into a shallow saucer with constant spherical 

curvature K. Initially, when small-deflexion theory is valid, this spherical curvature is equal to K T 

and the plate is free from stress. But this mode of deformation is not a developable surface and 

accordingly middle-surface stresses are developed as K increases. These middle-surface stresses 

'stiffen' the plate so that the curvature ~ becomes less than K~ and this results in the formation of 

bending stresses. At a certain critical value of Kr, denoted here by KT*, the middle-surface stresses 

assume a dominating r61e and, for K~, > KT* , force the plate into a shape that is no longer rotationally 

symmetrical. Finally, for K~, >> K~,* the plate approximates to a developable surface in which the 

generators are parallel; in other words the plate curls up about a diameter. 

The  following analysis is based throughout on the large-deflexion plate equationsT: 

V~(t~V2(I)) - (1 + v)O4(t,, q)) + ½E()4(w, w) = 0 ] 
and ~ ) (28) 

V~(DV~w) - (1 - v)(}4(D, w) + (1 + v)V2(DKT) -- ~4(O, w ) =  0. 

4.1. Pre-Buckling Behaviour. 

where ~ is the root of the cubic 

It may be verified that the solution of Equations (28) is given by 

(1 - v ~) "~ 
/3 - 2(7 + v) ~2 

(29) 

I /l ,l 1 + ; )  = 

I t  can also be shown that this solution is valid in the range 

where ) 

--~ 5.15.  

When ~.  = ~T e the plate is about to buclde and it can be shown that 

= ~:*, say 

= (31) 

3.35.  

This last result can be written in a dimensional form to express the deflexion at the edge in terms 
of the thickness to, namely 

(32) / 
1.67t o .J 
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The stresses in the plate during the pre-buckling phase are more conveniently expressed in terms 
of the curvature symbol ~ rather than ks.. The middle surface stresses are then given by 

and the bending stresses are given by 

%" = 2 ( i -+~)  \ x j ]  ~ (33) 
] - - s ~ ( ~  / 

~o 2(].+ ~) \ ~ /  ) 

,, ., ( 1 - p ~ \ ~c.~" (34) 
- 4(w~)) fix, b ~ O'y,b ~ \ 

A point to notice from these equations is that the middle surface stresses vary as the square of the 
plate curvature, and the bending stresses v~fry as the cube of the plate curvature. The variation of 
these stresses with the magnitude of the temperature gradient is more complex because of the non- 

linear variation of K with Kr. 

4.2. Post-Buckling Behaviour. 
Equations (28) is given by 

When I ~ T I >  ~T e it may be verified that the solution of 

~ - -  { ~ -  (~T ~ 

(3s) 

The middle surface stresses are thus independent of K T and are identical with those discussed in 
Section 3.2.2 in which T > T+ (see Equation (26)). The bending stresses are given by 

G,~ = - 2 ( ] - - P ~ ) { ~  - ( ~ 2 _  ~T~)I~} / 

G,~ 1(  1 - P~){~r + ( ~ - ~ T ~ ) I ~ } "  J (36) 

When I ~  [ >> ~,* Equations (35) and (36) yield the following asymptotic results: 

~x-~ ( l+v)~T + O ( 1 ) t  (37) 

, o(1) ) 
and 

0x,~ --> 0 + O 

(38) 

- + 1 
These asymptotic results are in accord with inextensfonal theory 8. 

The variation with temperature gradient of the principal curvatures, middle surface stresses and 

bending stresses has been plotted in Figs. 3 and 4. 
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5. Temperature Vari'ations in Plane and through Thickness of Plate. Consider now the behaviour 
of the plate subjected to an arbitrary combination of the parabolic temperature distribution in the 
plane of the plate and the linear variation through the thickness. The governing equations are7: 

' V2 ( [~V2O) -  (1 q- v)~4(/~, (I)) q- EaV~T + ½E~4(w, go) = O! 

and 0) (39) 
W(DWw) - ( 1 -  ~)~(D, w) + (1 + ~)W(D~)  - ~ ( e ,  ~) 

and, as in Sections 3 and 4, it is convenient to consider first the rotationally symmetrical saucer- 
shaped deflexion. 

5.1. Rotationally Symmetrical Deflexion. It  may be verified that a solution of Equations (39) 
is given by 

(1 - v 2) 
/3 = - ff((~ 7+T) (4 20 + ~z) (40) 

7_+ v_ ] 2(7+v) ,, 
KT = 0 ( 4 1 )  ~ + 4~ ? + 2(1 - v)] 1 - v • 

Equation (41) will have either one or three real roots depending upon the relative magnitudes of 
20 and ~,. It may be shown 9 that there are three real roots if 

7 + v 3 {7 + v]2ta~T2l 3 (42) 
20 < 2 ( 1 -  ~) 4 \g=-;-~! 

and, from physical arguments, the greatest and least roots (algebraically) correspond to stable 
configurations while the third root corresponds to an unstable configuration; the plate behaves in 
much the same manner as a bi-metallic strip in a thermostat. Snap-through buckling of the plate 
will occur if ~ and ~T are of opposite sign and 

7 + v 3 {7 + v]2Ia~T213. (43) 
20 = 2(1 - v) 4 \]-ZG- v/ 

During snap-through buckling the curvature ~ jumps from the (unstable) value 

4 (20__ ?)1j2. 2 (2?__ 20)1/2 to the (stable) value + ~-~ 
~/3 

It may likewise be shown that there is only one real root of Equation (41) if 

7 + u 3 [7 + u~213 ~:Z2! 3 (44) 
> - 2 ( 1 -  v---~ - 4 \]-ZG- ~] 

and the corresponding configuration is stable if, in addition, 

5.2. Asymmetrical Deflexion. It may be verified that if 

the symmetrical deflexion is unstable and the plate assumes an asymmetrical deflexion in which 

/? = - ( 1  - v )  ( 4 7 )  
and 

"~x = ½(1 + v)~T + {I(1 + v)~T z + 4( 2?- 2P+)}1t2 t 

~v ½(1 + v),) T - {~-(1 + v)2~:v z + 4( 20- 20+)}~/2. ) (48) 

where f~ is a root of the cubic: 



Equations (40/, (41), (47) and (48) comprise the complete solution from which the stress distribution 
and the deflexion may be readily determined for any combination of the two temperature distributions 
here considered. When the combination of temperature distributions is such that the inequality (42) 
is satisfied, further information is required as to the 'temperature loading path' in order to distinguish 
between the two possible stable states. 

5.3. Some Special Cases. At this point it is convenient to consider some special cases, which are 
chosen solely because of their interesting features. 

5.3.1. A stress-free plate. The plate will be free from stress if fl = 0 and ~ = ~T, and this 
occurs if 

4 ~ +  ~T 2 = 0. (49) 

Equation (49) expresses the fact that the straining of the middle surface, which occurs because it is 
not a developable surface, is exactly accommodated by the temperature straing in the plane of the 
plate. 

i 

5.3.2. Plate in which 2P = 2P-. It is seen from Equation (41) that for such a plate the curvature 
increases initially as the one third power of ~T: 

12(7+ v) 11/'~ = ; (50) 

Such a rapid variation of curvature is to be expected because the plate is on the point of buckling 
due to middle surface forces~ Equation (50) will be valid only so long as the inequality (45) holds, 
i.e., until 

^ 4 (7  + v~ 112 

beyond which the deflexion will be given by Equation (48). 

5.3.3. Plate in which T = T+. Such a plate deflects into a developable surface given by 

~x = (1 + v)~T] 
(51) 

J ~v O. 

This type of behaviour has been noted previously in an investigation of the flexure and torsion of 
a heated strip of lenticular section 1°. 

Asymptotic behaviour of plate as ~T and i' increase in proportion. Suppose that 2P = )t~, 5.3.4. 
where ;t is a constant. For large values of T and ~;0 the deflexion is given by Equation (48): 

A 1 (52) 
Ku 1 + v \KT]" 

If this expression is compared with Equation (37) it will be seen that the effect of the in-plane 
temperature distribution is of secondary consideration in determining the deflexion. 

9 
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6. Plate with Initial Curvature. Consider n o w  a circular lenticular plate which has a uniform 
spherical curvature K o when T and K z are zero, and which is initially free from stress. The  governing 
differential equations for a plate with an initial deflexion w o are 

and V2(~V2(~)-(l+v)¢4(l~'CP)+EcW~T+½E{¢4(w'w)-¢4(w°'w°)}=O0} (53) 

Vz{DV2(w - Wo) } - ( 1 -  v)¢a(D, W-Wo) + (1 + v)V2(DKT) - ¢4(q3, w) 

where, in the present instance, 
1 2 

w 0 = - -  . ~ K 0 r  . 

The solution of Equations (53) may be deduced from the results of the previous S e c t i o n - - a n d  
Section 5.3.1 in par t icular--by noting that, from a purely structural point of view, the stress-flee 
plate with initial curvature x 0 may be regarded as an initially flat plate in which 

~T = ~o ] 
and ^ l (54) 

T 1 A 2  
- -  ~ftc 0 . )  

It follows that the solution of Equations (53) is given by equations (40), (41), (47) and (48), 
in which 

~T is replaced by (~T + '%) 
and } (55) 

2? is replaced by ( 5 ~ - ~ 0 2 ) .  ) 

This solution may be confirmed by substitution. The  resulting value of/? determines the middle 
surface stresses, and the curvatures K, K~., % are the actual curvatures of the plate. 

6.1. Rotationally Symmetrical Deflexion. The equation for determining ~ is: 

~a + 4~(2?-  27--}G~)  _ 2(7 + v) (~T + ~o) = 0 
1 - ~ v  

and snap-through buckling occurs when 

7 + v] 2 64 (2? -  ~--~-~o~) 3 = O. + + 

It  is interesting to note that if ~ ,  and T are zero there are two stable states if 

where 

These states are given by 

, , ,  {2 (7 + v)~ 1/2 
,c o = 2 \ 1 - ~ ] 

9 .13 .  

(56) 

(57) 

(58) 

and (59) 
- ½ + 

6.2. Asymmetrical Deflexion. The criterion for determining the occurrence of buckling into an 
asymmetrical mode is given by Equations (46) and (55), which yield 

16(2P- 2P +) = {(3+ v)~ o + (1 + v ) ~ } { ( 1 -  v)~ o - (1 + v)~T}. (60) 
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7. Example. The following numerical example is given to indicate the order of magnitude of 

the buckling phenomena considered in this Paper. 
A Duralumin plate, which is initially flat and free from stress, has the following characteristics 

r o = 25 in. 

t o = 0.5 in. 

E = 107 lb/sq in. 

v = 0 . 3  

= 2.5 × 10-5/deg C.  

The plate is now heated in such a manner that the temperature in the plane of the plate varies 

parabolically with r, and is such that the temperature at the centre is 147 deg C higher than that at 

the edge. Expressed in non-dimensional form this implies that 

\ t0 2 ] T1 

= - 9-21 

= ~ - - 4 .  

The plate has therefore buckled into a saucer-like shape whose edge deflexion is given by 

1 / - 
~Oedg e -~ ++ -2-Kto 

= + 1 i n .  

From Fig. 3 it will be seen that the middle surface tensile stress cr 0 at the edge is equal to the bending 

stress at the centre: 

= 2 8 6 E  
\ro/ 

= 11,500 lb/sq in. 

I t  will now be assumed that this parabolic temperature distribution in the plane of the plate is 

maintained, at T 1 = - 147 deg C, while the plate is subjected to a linear temperature variation 

through its thickness. I t  will also be assumed that ~c is initially negative, so that snap-through buckling 

will occur when, according to Equation (43) 

~T, snap = 1" 19, 
which corresponds to 

T ~ =  1 9 d e g C ,  

at which point woc~g o jumps from - 0.58 in. to + 1.15 in. 
Further  increase in T 2 causes the plate to deflect according to Equation (41) until buckling into an 

asymmetrical mode occurs when 
~T = 10"7, 

which corresponds to 
T.~ = 171 deg C.  

The variation of the principal curvatures of the plate over the range 0 < ~T < 15 (corresponding 

to 0 < T 2 < 240 deg C) has been plotted in Fig. 5. 

11 



8. Conchtsions. An exact large-deflexion analysis has been presented for a thin circular plate of 
lenticular section in which the temperature varies parabolically in the plane of the plate and linearly 
through the thickness. Simple expressions are given for the middle-surface and bending stresses, 
and for the deflexion. The analysis embraces the buckled, as well as unbuckled states and includes 
the following novel phenomena: buckling of the plate due to temperature variation through the 
thickness, and snap-through buckling of a buckled plate due to temperature variations in the plane 
and through the thickness. 

The analysis is extended to include effects of initial curvature. 

12 
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LIST OF SYMBOLS 

Cartesian co-ordinates, (x, y) in plane of plate 

Cylindrical co-ordinates 

Radius of plate 

~'/~'0 

Thickness of plate 

1/t 

Flexural rigidity of plate 

Values of t, D at centre of plate 

Young's modulus 

Poisson's ratio (assumed equal to 0.3 in numerical calculation) 

Coefficient of thermal expansion 

Temperature 

Temperature difference in plane of plate, defined by Equation (3) 

Temperature difference through thickness of plate, defined by Equation (4) 

Curvature defined by Equation (4) 

Deflexion of plate in z-direction 

Initial deflexion of plate 

Uniform spherical curvature of plate 

Initial curvature of plate 

Curvatures of plate in x- and y-directions 

Force function for plate defined in Equation (8) 

Forces per unit length in plane of plate 

Stresses in plane of plate 

Moments per unit length 

Shear resultant at plate boundary 

Constant defined in Section 5.3.4 
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V ~ 

~4 

LIST  OF S Y M B O L S - - c o n t i n u e d  

Defined in Equation (9) 

Laplacian operator 

'Die' operator defined by 

Oaf 8~g 2 oaf a2g 
O4(f, g) = 8x 9' OY ~ 8xay 8xay 

oy a.g 
ay~ ax~ 

- ~-{(V2f)(Wg) + V=(fV2g+gV2f)} - 

- ~ {W(fg)  +.frOg + gV4f} 

Suffix b refers to bending 

Circumflex ~" denotes non-dimensional symbol defined by Equation (15) 

Indices -, +, e refer to critical buckling conditions 
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