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Summary. Three related methods are presented for calculating the skin friction and other characteristics 

in the laminar boundary layer on a non-adiabatic wall of constant temperature in the presence of pressure 
gradients. The first of these methods is a direct extension of the method given by Young s for zero heat transfer. 
The assumptions made in the analysis restrict this 'first simple' method to flows with relatively small changes 

in free stream pressure and Mach number so that this method is applicable to the boundary layer on a thin 

sharp nosed wing at small angles of incidence. However, there is a need for a method of similar simplicity 
which can be applied to round nosed wings, that is to flows starting from a stagnation point and accelerating 
to supersonic velocities downstream and hence involving large changes in free stream pressure and Mach 
number. To meet this need the restrictive assumptions of the 'first simple' method have been relaxed and 

correction factors incorporated to allow for the effects of the pressure gradient on certain parameters previously 
assumed to be unaffected by the pressure gradient. The resulting 'complete' method involves the solution 

of a single quadrature in a step-by-step manner and is applicable with a high degree of accuracy to a very wide 
range of flow.s with Mach numbers from zero to five, with heat transfer to or from the surface, and with both 
favourable and adverse pressure gradients. For flows with favourable pressure gradients, the application of the 

correction factors may in part be relaxed and the 'complete' method then reduces to that which has 
been termed the 'second simple' method All three methods are applicable to values of the Prandtl 
number (~) and the temperature-viscosity relationship index (o J) near, but not necessarily equal to, unity. 

Several cases have been considered for which it is possible to compare the results given by the three 
methods with exact solutions and with the results given by other approximate methods. The 'complete' 
method is demonstrated to have advantages over other approximate methods on the grounds of accuracy, 
relative simplicity and breadth of application. It  is also, in principle, applicable to cases with non-uniform 
wall temperatures although its accuracy in this application is not here examined. 

1. Introduction. T h e  majori ty of the methods of solution for laminar  boundary  layers involving 

both heat  t ransfer  and pressure gradients are limited by the assumption that  co = cr = 1 

e Previously issued as A.R.C. 20,336 and 21,563. 



[for example, Morduchow and Grape l, Cohen and Reshotko 2, Curle a and Monaghan~]~: However, 
the method developed by Young a for the case of zero heat transfer is generally applicable for 

values of co and e near, but not necessarily equal to, unity. This method has been extended to 

include heat transfer. Three methods are, in fact, presented here. The 'first simple' method is a 

direct extension of Young's zero heat transfer method. This method is based on a solution of the 

momentum equation by a single quadrature involving the assumption that H, the form factor 

(8~/0), is independent of the local velocity, the pressure gradient, co and ~. That is, H is assumed 

to be dependent only on the reference Mach number and the ratio of the wall temperature to the 

free stream reference temperature. It is further assumed that f, which is equal to 31/0 where ~1 
is the value of a transformed co-ordinate normal to the wall]- corresponding to the outer edge of 

the boundary layer, is independent of local velocity and pressure gradient, but is dependent on 

the reference Mach number, the ratio of the wall temperature to the free stream reference 
temperature, co and ~. A modified Pohlhausen approach is employed to obtain a second 

relationship between the skin friction and the momentum thickness. 
The assumptions involved in the 'first simple' method restrict its application with acceptable 

accuracy to cases involving the types of pressure distribution likely to be found on thin wings 
with sharp leading edges at small incidences and Mach numbers up to about 5.0, that is, to 
pressure distributions with generally favourable (negative) gradients and relatively small overall 

variations of local free stream Mach number. 
There is clearly a need for a method of similar simplicity to deal with the boundary layer on a 

round nosed aerofoil at supersonic speeds where the Mach number increases from zero at the forward 
stagnation point tO supersonic values downstream. In this case the variation of the local free 
stream Mach number is large and hence modification of the assumptions of the 'first simple' 

method is required. In the 'complete' method, the parameters H = 8"/0 a n d f  = 81/0 are assumed 
to be functions of the local free stream Mach number and pressure gradient. The dependence of 
these parameters on the pressure gradient is achieved by reference to the set of 'similar' solutions 
published by Cohen and Reshotko G for the compressible laminar boundary layer with heat transfer 

and free stream velocity distributions equivalent to the power law distributions studied in 
incompressible flow by Falkner and Skan 7. Simple linear correction factors have been evolved from 

these 'similar' solutions to correct the flat plate values of H and f for the effects of pressure gradient. 
The resulting 'complete' method is of a high order of accuracy and can be applied to a very 
wide range of cases from strong adverse to strong favourable pressure gradients including the case 
of flow from a forward stagnation point. Not only is the skin-friction distribution predicted accurately 
by the 'complete' method, b u t t h e  distributions of the momentum and displacement thicknesses 
are similarly predicted. This is of importance for the calculation of the second order contribution 
to the drag on aerofoils due to the interaction between the boundary layer and the free stream 8. 

The 'complete' method requires the calculation of a single quadrature in a step-by-step 
manner. However, for relatively small favourable pressure gradients it may be usefully shortened 
to yield a 'second simple' method. This method is preferred to the 'first simple' method for this 
class of problems, as it is rather more general in its formulation and may easily be extended to the 

'complete' method if this should prove necessary. 
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* Since this paper was prepared Curle l° has generalised his method to deal with values of co and ~ other 
than unity. 

~ Defined in Section 2. 
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It is relevant here to examine briefly other methods that have been developed and with which 
the methods of this paper are later compared. These alternative methods apply only to the case 
wheno~ = ~ = 1. 

Cohen and Reshotko ~, from their set of 'similar' solutions, have evaluated a shear parameter, 
a correlation number, and a heat transfer parameter, in a manner analogous to that used by 

Thwaites 9 for zero heat transfer in incompressible flow, and have reduced the solution of the 

momentum equation for the evaluation of the skin friction to a single quadrature by the formulation 
of a unique correlation between these parameters. The method is simple'to apply and yields reason- 

able results. It is, however, limited by the range and accuracy of the set of 'similar' solutions on 

which it is based and  these solutions are only for relatively small favourable to strong adverse 

pressure gradients. Further, as the flow approaches separation in an adverse pressure gradient the 

correlation number reaches a maximum and then begins to decrease. As a consequence, it is not 
possible to predict the separation point accurately. 

A basic difference between the 'complete' method of this paper and the method of Cohen 

and Reshotko is that the former uses the 'similar' solutions only to provide small correction factors, 

whereas the latter is completely dependent on the 'similar' solutions and so its validity for cases 
very different from those solutions is open to some doubt. 

Curle 2 assumed that the temperature is a quadratic function of the velocity and transformed 
the momentum equation by a Howarth transformation. The solution is obtained by an adaptation 
of Thwaites' method. The computation involves a double quadrature. 

A representative range of cases have been considered for which it is possible to compare the 
results given by the methods of this paper, and by the other methods, with exact solutions. 
The comparisons indicate that the 'complete' method yields the most reliable results. 

The general effects of heat transfer and pressure gradient on the skin friction are discussed in 
the light of these detailed calculations and simple physical arguments are offered to explain them. 

2. 'First Simple' Method. The following analysis is an extension of the analysis for the' zero 
heat transfer case as presented by Young 5. Suffix a will be used to denote the reference conditions 
just aft of the leading-edge shock, if any, and suffix 1 will be used to denote the local values just 
outside the boundary layer. 

The momentum equation of the boundary layer !s 

[ 0' + ( H + 2 )  u i'_+ 0 - % 
ui Pi ~ piui ~ (1) 

where accents denote differentiation with respect to x, the distance along the surface, and 

H = ~ ,  where S* = 1 - dy, is the displacement thickness 
o plUl 

- o OiU'~l ~. dy, is the momentum thickness, all other symbols being 

defined in the Notation. 

Instead of expressing a Pohlhausen velocity distribution as a function of y ,  it will be expressed, 
. . ~ Y  

in accordance with Equation (24) of Ref. 5, as a function of Y = /za dy since this function is 
Jo.F.  
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likely to be much less dependent on Mach number. Suppose the velocity distribution across the 

boundary layer to be given by the quartic 

u = a Y + b Y  2 + c Y  a + d Y  4 (2) 

with the boundary conditions that for 

' ~u ~ht 
Y = 81, u = u l ,  O Y  8 Y  ~ O, 

and for 
Y =  O, u = O, T =  T w and  h e n c e  /x =/,,w. 

The quantity 81 is unknown but is taken to be the value of Y which corresponds to the value of y 

defining the outer edge of the boundary layer. 
The first boundary-layer equation yields 

" = 

But 

and hence 

au Ou O Y  ~ au 

ay @Y 03, I* @ Y '  

- p l U x U l ' .  

I a ul 
I*., LaY Jw" 

(3) 
Therefore 

With these boundary conditions we can solve for a, b, c, d in (2) in  terms of 81, and this yields 

Further, since 

then 

u1(12 +A) b = ulA u l (4 -A)  
a -  681 , - 2 8 , ~  , c = - -  2 8 1 ~ ,  ) (4) 

d = , f i (6-A) where A = u,'81~p, I~", 
6814 ' tz~ " 

r w = tXw = fx~ = Ixaa, 
W 

r", _ f*~(12+A) (5) 
p,u l  ~ 681plU, 

The method now depar{s from the classical Pohlhausen approach. It depends on the solution of 

the momentum equation, using the following assumptions: 

(i) Equation (5) is accepted. 
(ii) The variation of H with the local velocity, pressure gradient, co and ~ is neglected where ~o 

is the temperature-viscosity relationship index and ~ is the Prandtl number. H is then treated 
as a function of M~ and T w / T  a only. The jusiification for this lies in the fact that H enters 

the solution of the momentum equation in a form which suggests that the solution is 

relatively insensitive to small variations of H, and for thin wings at small incidences the 

possible variations of H are unlikely to b e  large. 
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(iii) The ratio 81/0 is also assumed to be independent of local velocities and. pressuregradient ,  
and for the present we write 

making no further assumptions at this 

that we expect it to be constant when oJ 

With regard t o  assumption (ii), for 

that u/u a is a unique function of Y. For 
Hence 

o 0 p - ~  1 

where suffix i, 0 denotes the value in 

co, a) " (6) 

stage about the form of the function other than noting 
is unity. 

a flat plate at zero incidence with ~o = 1, we know 

a flat plate at zero incidence, u 1 = u~, T 1 = Ta, etc. 

0 Ua 

incompressible flow and with zero heat transfer, also 

f (  ) 8 * =  1 -  pu dy = lx _ u d Y .  
o paUa o 

But t* _ T I i 
t*~ Ta = i for a perfect gas with constant specific heats where i = / 1  - I .  - ratio of 

enthalpies. Now using the notation of ~7 = u/ul ,  i = I l ia ,  and Crocco's transformation, from 
Equation (22) of Ref. 5, we have for ~ = 1.0 

where 

But 

i = i(0) + 1 - ii0) + 2I~_] 

i(0) - L~ _ i . , _  Tw 
I1 I~ Ta 

ui 2 ui 2 u12(y- 1)p i 
2/1 ' 2% 111 27p, 

up ~2 (8) ~ 1 - ~  

Hence in (8) 

Therefore 

thus 

and 

i,e., 

( r -  1) 
- 2 : M I ~ "  

f[I 8" = I x _  u d Y =  0) (1 -~ )  
0 

3" = i(OiS*il o + (7 2 1) M20i ,  O, 

o .  _ i(o)q,,o + M #  H -  O 

T W "  " " - -  " 

H= ~ n~,o + ~2)- M ? 

2 

d Y ,  

(9) 

0 o )  



where Hi, o denotes the value of H in incompressible f l o w  with zero heat transfer. The  Blasius 

solution gives 
Hi, o = 2 .59 .  

Hence 

for 

H = 2.59 ~ -  + 0 . 2 M r  2 (II) 

y =  1 .4 ,  

From Equation (5) and the expression for A in (4) 

r w /x~ [12 + ul'81epi/zw 
PlUl 2 -- 6plUi8 i ~ a  ~ 

12~a u l' 8i/* w 

- -6piUial  + 6Uilla 

2tLa ui' tz~° f O 
- ptuffO + ~ E " 

Hence the momentum equation (1) becomes 

o , +  + ' " ]  o - 
ui, Pi I 6ui lla piuiI v " 

Multiplying both sides by 2p120, we get 

[ _f/Zw 7 4/~pl 
d ui' (H+2) - 6/za] uif d-x [p1202] + 2p1202 u'~ (12) 

N o w  /x-E = /Tw~w and we write ( H + 2 ) -  6 E ]  
tz. \ Ta] 

where g is a function of M, ,  - ~ ,  ~o, ~, 

and is constant for a particular boundary layer.  

Equation (12) then integrates to 

(13) 

(14) 
j .  

The leading edge is taken as x = 0, where either u = 0 or u 1 is finite. If u 1 is finite at the leading 
edge then 0 = 0, since we  cannot have a finite momentum loss there. Hence 

Pi 20~ 4~ piUf -I 

xl [ul]xl g o f ,. 

Notice here that g occurs as an exponent of u 1 both inside the integral and in the denominator 
outs ide  the integral. This suggests that provided the Variati6n of u 1 with X is small, small errors in 

2--- 

y -  
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g will have little effect, and this provides some justification for the neglect of the variation of H 
with pressure gradient and local velocity. We must now determine the function f. For a flat plate 

at zero incidence (15) reduces to 

o r  

and 

But 

[p~02] 4~ 

Ov/R~ - w h e r e  R* - U~p~xlz~ 

oo 1 

2rw 2 30 _ 2 
ct - p~u~ ~ 3x ~ / R ~ f "  

Now Equation (36) of Ref. 5 gives 

Therefore 

o r  

c ! v ' R  . = O. 664 [0.45 + O. 55i(0) + O. 0 9 ( y -  1)M12~1~] (~-~)t2 . (16) 

2 
c s ~ R  ~ = ~-~ = 0. 664 [0.45 + 0.55i(0) + 0 . 0 9 ( y -  1 ) M ~ e ]  (~'-~)I2 

f = 9.072 [0.45 + 0.55i(0) + 0.09(y-1)M~az12] ~-°'. (17) 

The  function g is given by 

g = 2 ( H + 2 )  f/~w 
3 /x, 

= 5 . 1 8 ~ + 0 . 4 M a 2 + 4 - 3 . 0 2 4 [ 0 - 4 5 + 0 " 5 5 ~ - ~  O" 036Ma2alt2"] 1-~' [ T w ~ w  + ~ ] ,  
3 

(18) 

as M1 = Ms for a flat plate. 
It  is convenient to express these relations in non-dimensional form. Then  (15) becomes 

where 

( 7 ]  4 (.rl 
C\pal L xl/L (udU~)xllL g Jo f P~ tU~l 

pauaL 
R L = - . 

The isentropic relationship between pl and u 1 is, non-dimensionally 

i P-~= 1 +  M 2  1 -  V~/ 1J " (20) 
Pa 

Having u 1 as a function of x, we can obtain 0 at any point from Equation s (17), (18), (19) and (20), 
the solution of (19) being obtained by graphical or numerical integration, 



To obtain the local skin-friction coefficient when 0 is known, we have 

where 

C 1 - -  

2r~ (12 + A) u__l 
Zl a 

P"uaZ 3 f O RL 

u , 8 ~  ~w 
i = 1 l t " l ~ a  2 

and 

Hence 

(21) 

- y p l  , ( 2 2 )  
P. IZa 

/za 

Ua 

c1~/R x = 3 f  O ,~/R s 

Ua 

(A /P l  u,'L l~w] 1t2 " 3 E/ 
(24) 

It will be seen from Equation (19) that this method involves only a single quadrature and, 

therefore, is easily computed. The method is applicable with acceptable accuracy to cases involving 
the types of pressure distribution likely to be found on thin wings with sharp leading edges at 

small incidences and Mach numbers up to about five; that is, pressure distributions with generally 
favourable (negative) gradients with respect to the streamwise direction, and relatively small 
overall variations of local free stream Mach number. 

However, as remarked in the introduction, there is a need for a method of similar simplicity 
to deal with the boundary layer on a round nosed wing section at supersonic speeds where the 
Mach number increases from zero at the forward stagnation point to supersonic values downstream. 
To deal with this class of problem modification is required of the assumptions that the parameters 
f and H are constant in each case, and are functions only of the initial flow conditions just aft of 
the leading-edge shock wave and are independent of the pressure gradient. In the light of the series 
of exact 'similar' solutions evaluated by Cohen and Reshotko ", it has been found readily possible 
to make the required modifications, and in particular, the boundary-layer parameters f and H 
can be presented as functions of the local free stream conditions and of the pressure gradient. 
With these modifications the 'first simple' method has been generalized to deal with any type 
of pressure distribution, with no restriction on the range of variation of local free stream Mach 

number, and is now presented as the -'complete' method following a discussion of the effect of 
pressure gradient on the parameters f and H. 



3. The Influence of  Pressure Gradient on the Parameters  f and H.  3.1. The Parameter  f = 3110. 

In the previous section the velocity in the boundary layer was expressed as a quartic in Y 

where 

Y = ~--"dy, 
o t Z  

y being the distance normal to the surface, and suffix a referring to a reference point in the free 
stream just aft of the leading-edge shock. Since the main concern here is with problems involving 
a much wider range of local free stream conditions, including possible stagnation conditions at 
the leading edge, this definition of Y becomes unsuitable and it is modified to 

f u ~1 dy (25) Y =  
0/z 

where suffix 1 refers to local free stream values just outside the boundary layer. The quantity 81 
is then defined as the value of Y corresponding to the value of y defining the outer edge of the 

boundary layer. 
It was. shown in the previous section that on a flat plate at zero incidence, the parameter 

f = 81/0 (where 0 is the momentum thickness) is given by~ 

f = fI.~. = 9. 072 0.45 + 0.55 + 0 . 0 9 ( y -  1) Ml~a 1/2 (26) 

It was then assumed in the 'first simple' method t h a t f  was independent of the free stream pressure 

gradient. However, in the presence of strong pressure gradients, particularly if they are adverse, 

the change in the shape of the velocity profile due to the pressure gradient makes f a slowly varying 
function of the pressure gradient. To allow for this variation, the functional relationship between 
f and a non-dimensional pressure gradient parameter is sought. A convenient parameter is A 
which, when allowance is made in Equation (22) for the different transformation of the y cordinate, 

becomes 

a - dp ~1 ~ _ dul  ~ 2~ ~ ,  (27) 
dx u 1 txl z dx "1 el  ~12 • 

Cohen and Reshotko ~ have presented curves of l as a function of n, where l and n are the 
compressible flow counterparts of Thwaites' parameters 1 and m. For these calculations the 

parameters oJ and ~ were unity, l is defined as 

0 (du] (28) 

Now 

and with the assumption of a quartic velocity distribution this becomes 

t*~(12 + A) ul 
"/'q.O - -  6 f 0  

Hence, with ~o = 1.0, we f i n d  

Z= (12+A) 
6f (29) 



Also n is defined as 

But 

hence 

o r  

1 

Therefore  

Hence 

where S w is defined by 

n - -  

dx ,,,o \ T , l  T1 

0 ~ p l T °  foro)  = 1"0 
= - -  Ult ~GI TII ' 

u , f 20~  l% A =  ~ ~ t - 1 ~ , b y E q u a t i o n ( 2 7 ) ,  

n = - f ~  

r~  
A = - np T0.  

, :  

( 3 0 )  " 

(31) 

(32) 

f = - 61 + C{36 /2  + 48n(1 + S~)}  
2n(1 + S~) ' (33) 

S w= T~ I. 
r,, 

T~ is the recovery temperature,  assumed to be given by 

T1 
and T~. = T O for ~ = 1.0. 

(34) 

Thus ,  f rom the Cohen and Reshotko plots of l as a function of n for various values of S,w, f may 

be determined as a function of A for various values of S~. These  functions are presented in Figure 2. 

A simple correction to f to allow for the effect of pressure gradient is sought, and these curves 

suggest a linear approximation to the relation between f and A in the form 

f = . G d l  + k,A), (35) 
where 

81 

and the factor h 1 is shown as a function of S~, in Figure 3. I t  will be noticed that k, is negative. 

The  factor k I is small for positive and small negative values of Sw, i.e., for heat transfer from 

the surface to the fluid or for small heat transfer rates to the surface, but  for large negative values 

of S w (high heat transfer rates to the surface) the correction on f due to the pressure gradient can 

become important,  particularly with an adverse pressure gradient where IAI is large. Although 

the curves of Figures 2 and 3 are derived from calculations for co = e = 1, it is assumed that 

for the purposes of correcting f for pressure gradient effects they are applicable where co and 

are near unity. 
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3.2. 
zero incidence the parameter H was given by 

HI. ~. - ~ H ~ , o  + ~ @ M 1 2 .  

in terms of Sw and Mach number (36) becomes 

H!.~o. = E(l+ Sw)H,,ol ( 1 +  ~ - - ~  MflM '~) 

Cohen and Reshotko 6 write 

H = HI~. ( I + ~-~21M~2) + ~-~21M12, 

where Hu. is a transformed form factor. 

The Form Factor H = ~*10. It was shown earlier, Equation (10), that for a flat plate at 

(36) 

+ ~ 341 ~ (37) 

(38) 

The  form of (38) is similar to that of (37) for unit Prandtl number. If, therefore, on the basis of 
Cohen and Reshotko's solutions, the factors (I+Sw)Hi, o and H m can be related by some term 
involving the pressure gradient, Equation (37) may be corrected to allow for the effect of pressure 
gradient. 
Write, for e = 1.0 

[ 1( ) : d  H =  ( I + S ~ ) H , ,  o+~(A) I+ M12 + M1 ~, 

then 
~(A) = H m - (1 +Sw)H~, o. (39) 

This function has been evaluated from the similar solutions of Cohen and Reshotko ~ for various 
values of S~o and is plotted in Figure 4. 
For cooled walls the relationship is almost linear, and therefore it is approximately 

= k A. 

Hence, the expression for H becomes 

H =  [(1+ Sw)H,:,o + kaA] (1 + ~_~1 M12(~,~.) + ~ _  Me .  (40) 

The  relationship between k a and S w is plotted in Figure 5. It should be noted that as defined k a is 
independent of the Mach number and therefore the pressure gradient effect on H may be examined 
separately from the influence of Mach number. 

4. The 'Complete' Method. The development of the complete method now follows similar 
lines to those of the 'first simple' method. The  momentum equation of the boundary layer is 

O, + [(H + 2) ul ' Pl'] O %o - -  + - (41) 
ul Pl A Plul 2" 

The velocity profile is assumed to be of the form 

u = a Y + b Y  2 + c Y  a + d Y  a (42) 

where Y is given by Equation (25) and a, b, c; d are constants. 
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The boundary conditions are 
3u 32u 

Y = 6x, u = ux, O Y =  aY= O, 

Y =  O, u = O, T=, Tw, 

where 31 is the value of Y which corresponds to the value of y defining the outer edge of the 
boundary layer. 
The first boundary-layer equation yields 

But 

and hence 

au) @ 
L ~ w dx  P lUlu l ' "  ay 

3u Ou 3Y  ~x Ou 
ey ar ey ~ a r  

~ ay2~ = ~  ,~x ~ ~ Lar'LIw" 
Therefore 

tZx~ { 32u ~ 

From the boundary conditions and Equation (43) we obtain for a, b, c, d in Equation (42) 

However 

Therefore 

u1(12+A ) uiA u i ( 4 - A  ) 
a -  68~ ' b = -23i-~, c -  2 8 1 ~ ,  

u i (6-A)  ,~ z /Zw 
d -  68ia , w h e r e A =  u x o i p i ~ .  

o'.to = /z w = /i x = ~X a. 
. l~)  1 0  

(43) 

(44) 

~w /'1(12+ A) 
- ( 4 5 )  

piul 2 661PxUx 

Equation (41) is now considered over a suitable range of x from x,~ to x,~+l, say. The expression 
for H is given by Equation (40), and, substituting the Blasius incompressible value of H~, 0 = 2.59, 
this becomes 

H =  [2 .59(1+Sw)+ k~A] (1 + ~ - M x M ~ t ~ ) +  Y-@2 1 Mx ~ (46) 

We write, Equation (35), 

81/0 = f = fi4,.(1 + kxA) 

T~ 
and we assume f/.,,, is the function of M1, ~ ,  co and c~ defined in Equation (17). 

Rewriting Equation (45) with 61 = fO we have 

PlUl ~ 6pluzfO 

2 ~  z_q'~,~f0" 
- pxulfO + 6UllZxJ 

(47) 
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Therefore, Equation (41) becomes 

0' + 0  I ( H +  2)Ul~' + PI' 7 - 
ul Pl J 

Multiplying Equation (48) by 2p12@ we obtain 

oleo 2 + 2p1~0 2 u /  (H+2)-  -f'~"] - 4"101 
U 1 6 ['£1A U l f  " 

We now write 

ul'  tz~,fO 2ffl ~ + pi-lf-~" (4s) 

[(H~ f~"~7 g" + 2) 

(49) 

(50) 

where H~ andfg  are assumed constant over the range of x from xg to xg+l; .w/if1 is also taken as 
constant over this range and is given by 

fzw = Tw at xn, (51)- 
"1 

where co is the index of the temperature-viscosity relationship. 

Thus g~ is assumed constant over the range x n to xnH_ 1. Equation (49) may now be integrated 
over the range x n to xn+ 1 to give 

p 7Xr*+l ---- 4 r xn+l 12 0gglgn~ xn f l l" l  U l (g n--1) 
- ~  A & (52) 

We again note that g~ occurs in (52) in such a manner that provided the variation of u 1 with x 
is reasonably small over the range of the integration', the value of 0 obtained from (52) is relatively 
insensitive to the value of g~. Thus, for cases involving small variations of free stream Mach 

number, larger integration steps may be taken than for cases involving large variations of free 
stream Mach number; 

In non-dimensional form Equation (52) is 

L \P~/ [(ul/Ua)"'~],~+i 
_ 4 [-.+:u'L (Ull(qn--1 , V(.)ol .. (2) (2) 

t-.\Ua/ 2n+l daen/L f ~  lxtS d ~ ,  

(53) 

where suffix a signifies some reference condition to be defined, L is some representative length 
which may be related to the chord, and 

R z  pauaL - as before. 
. a  

The quadrature on the right hand side of Equation (53) may be evaluated numerically or 
0 

graphically and a value of ~ ~/R L obtained at the point x~+ I. 
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From Equation (44) the pressure gradient parameter A may now be .found. Expressed in 

non-dimensional terms, (44) becomes 

A = U l ' L p l l ~ ( l ~ a l ~ f ~ ( ; ) 2 R n "  (54) 
u~ Pa /~a \fXll , 

To evaluate this expression at the point x~+l the value of R z obtained from 
. " ~ + 1  

Equation (53) and the value offi~ at x~ is used to obtain an approximate value of A~_~ 1. The value 

offi~+l is then found from Equation (35) which becomes 

fn+l = fl.v.( 1 + ktA(n+~)app~.ox.) • (55) 

f~+l is then substituted back into (54) and a more accurate value of A~+t is obtained. The change 
in the value of f corresponding to a given change in the value of A is small, and therefore only one 

iteration is generally necessary to obtain A with sufficient accuracy for the purposes of hand 

calculation. 
if  computations are to be performed by a high speed electronic computer it may be justifiable 

to use the value of A~+~ found by the above procedure to correct the values of H.,~+~ and f~+l and 

perform successive integrations to find more accurate values of [(O/L)~/RL]~+t, Hn+I and fn~l. 
Using the iteration procedure in which mean values were substituted to find the new values, 
it was found that for both favourable and adverse pressure gradients the value of A converges 

to within 1 per cent after 2 cycles and to within ½ per cent after 4 to 8 cycles. 
The skin-friction parameter is given by Equation (45) which becomes, in non-dimensional 

form 

c~CR~ 2-,~, ~ /O~Ua__Ex = ~ (56) 
- 0 R P'~u~ '~ I~ 3f L C L 

o r  

u~ (57) c]~/R~ = 
3 t A / Pl ul' L I~w l lt~ 

( 1Pa Ua l~a 

If c]~/R= is defined in terms of the local condition s, the expression for skin friction becomes 

2~'w . /plUl x ( 12-t-A)(x/L)ll2 Fpa~talli] ll~ (58) 

[cjv'Rx]l°c~l PlUt ~ N tL1 3ff.  V' L 

The reference condition, suffix a, may be defined anywhere in the isentropic flow regime over the 
surface. Usually it will be found convenient to define the reference condition as that immediately 
aft of the leading-edge shock wave, if any, but for the case of flow starting from a stagnation point 
on a body with a detached bow shock wave, the reference conditions are conveniently taken as 

the stagnation conditions. The reference velocity is then also conveniently taken as u a = ao 
where a0 is the speed of sound evaluated at the stagnation temperature. 
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The calculation procedure for the 'complete' method may now be summarized as follows: 

(1) Find the values of H and f at x/L = 0 from Equations (40), (26) and (35). In most cases 
Ax= o = 0, but if this is not the case, then this parameter must be calculated from a known 
value of 0x= 0 by an iterative process through Equations (54) and (35). 

(2) From Equation (50) find gx=0. 

(3) Solve Equation (53) for (O/L).~/R L at the point xl/L. 

(4) By Equation (54), using the value of.fx=0, find an approximate value of Axl. 

(5) By Equations (26) and (35) find f~l using the appropriate value of kl from Figure 3 and 
the approximate value of Axl. 

(6) A more accurate value of Axl may now be found from Equation (54). 

(7) If a high speed computer is to be programmed for the problem, the new value of Axl may be 
fed in to the expressions for H, f and hence g and a new value of (O/L)~e/Rz found from Equation 
(53). This procedure, (3)--~(7), may be repeated until the value of A converges to a given 
tolerance. It may be found that the value of A will converge more rapidly if mean values are used 
in the iteration. In the examples considered, it has been found that A converges to within { per cent 
of its previous value after 4 to 8 iterations. 

For hand calculations, the refinement of the iterations through the momentum equation may be 
omitted with little additional error. 

(8) From Equation (56) or (58) find qx/R:~ or [clx/R~]looal. 

(9) If step (7) has been omitted, the value of H ~  may be found from Equation (40) using the value 
of A~I found in step (6) and the appropriate value of k 2 from Figure 5. 

(10) Find g~l from Equation (50) and repeat the procedure to'find the solution at x2. 

When evaluating the quadrature on the right hand side of Equation (53) a straight line function 
may be assumed if the range x~ to x~+~ is small. 

However, if larger steps are taken, greater accuracy may be obtained by calculating values of the 

function at X = xn_ ~ and x = x~+ 2 using the values f~ and g~. The actual shape of the function 
between x~ and x~+ 1 is then more accurately defined. 

The size of the integration steps does not appear to be critical and, for hand calculations, 
steps over which the Mach number changes by 0.3 to 0" 5 were found to be suitable. For automatic 
computation, smaller steps will give greater accuracy where the values of [A I are small, but 
slight overcorrection may Occur if separation is approached due to the errors involved at large 
values of [A ] in the assumption of linear correction factors for f and H. 

For flows with favourable pressure gradients, the pressure gradient correction factors in the 
expressions for f and H are relatively small and this suggests that a slight simplification may be 
made to the computation procedure with little loss of accuracy in these cases. The simplification 
consists of dividing the flow regime into large sections over which the Mach number changes 
by about 1.0, and employing the values of f1.~., H1.~., and g/w. found at the start of each section 
in the solution of the momentum equation over that section. Step-by-step correction of f and H 
is then omitted. For many cases of practical interest the calculation may be performed in one step 
and the method then is very similar to the 'first simple' method. This simplified procedure 
is now summarized and will be termed the 'Second simple' method. 
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5. The 'Second Simple' Method--Computation Procedure. (1) If the range of the Mach number 
of the flow over tile surface is large, divide the problem into sections over which the change in 

Mach number is of the order of 0.5 to 1.0. 

(2) Calculate Hl.~. and fl.'o., and hence gi.2)., for each section from Equations (37),' (26) and (50), 
taking values at the beginning of each section. These parameters are then assumed to be constant 

over the particular section. 

(3) Evaluate the integral on the right hand side of Equation (53), numerically or graphically, 

and hence obtain 

In most cases, such as the flow over a wing section with a sharp leading edge, the calculation 

may be performed in one step and then (O/L)• = 0 which considerably simplifies the above 

expression. 

(4) The value of (O/L)~/RL may now be found. 

(5) From Equation (54) calculate A. 

(6) By substitution in Equation (56) or (58) find c/VRx or [etCRx]~oo~l. 

(7) Calculate the values of H at each point from Equation (40) using the appropriate value of k~ 

from Figure 5. If the cooling rate is large and the value of A is large ( > 4), it may be necessary to 

use Figure 2 with a reasonable extrapolation to give the correction for H. 

(8) The displacement thickness may now be calculated from the values-of H and 0, and a second 
order correction for the effect of the displacement thickness on the pressure distribution made 

if required. 

6. Application of the Methods. In order to illustrate the methods in use and to assess their 
accuracy for various types of flows, they have been applied to a range of cases involving both 
favourable and adverse pressure gradients, and have been compared with exact and other approxi- 
mate solutions for some of these cases. In the following, the 'complete' method refers to the 
'complete' method with step 7 of the procedure for that method omitted, unless otherwise stated. 
Further, these examples illustrate in general terms the effects of heat transfer on skin friction. 

6.1. Flows with Favourable Pressure Gradients. In the following, capital letters are used to 
denote quantities in incompressible flow, and small letters to denote quantities in compressible 

flOW. 
Cohen and Reshotko 6 have presented the compressible flow solutions obtained by applying 

the Stewartson transformation 1~ to a number of the similar solutions for incompressible flow 
presented by Falkner and Skan 7, and Hartree 1~, corresponding to the free stream velocity 

distributions of the form 
U~ = C X  "~. (59) 

Here U 1 is the local incompressible flow free stream velocity, 

X is the distance from a datum point, 

and m is an exponent, constant for a particular flow, which can be of either sign. 

With m positive, the incompressible flow corresponds to the flow along the face of a wedge, 

X bein~ the distance from the stagnation point at the wedge apex. 
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In the example considered here, tt{e flow has been assumed to accelerate f rom M 1 -- 0 at the 

stagnation point  where x = X =  X 1 = 0, to M 1 =  5.0 corresponding to X =  X ~ - -  L, say. 

A high rate of heat transfer from the fluid to the surface of the body has been considered with 
S w = - 0.8,  that is, T~/T~ = 0.2, 

where T w is the wall temperature  

and T~ is the recovery temperature.  

T he  value of m has been taken as ½-. 

It  then follows readily f rom the Stewartson transformation that 

- = 1 + 0 - 2 M  1 d , for 7 = 1 .4 .  (60) 
L d x l t  L 

When X = X~ = L, Equation (60) yields the value of x/L at which M 1 = 5.0. 

Also 

341 : 5 .0  . (61) 

T h e  solution for this case was evaluated from the results presented by Cohen and Reshotko 6 and 

the values of (O/L)v 'Rz ,  H ,  and cl~¢/Rx were obtained, where 

2 %  poao L 
RL , Rx P°a°x (62) 

cf - P°a° ~ , IXo l~o 

T he  'complete '  and the 'second simple' methods were then applied to this problem. 

First, the 'complete '  method was applied. Th e  integration steps taken were those steps over 

which the free stream Mach number  changed by 0.5, i.e., M 1 = 0 - + M  1 = 0.5, M 1 = 0 . 5 - >  

M 1 = 1.0, . . . M 1 = 4.5 -+ M 1 = 5.0. The  results obtained are compared with the results of the 
exact solution in Figures 6 and  7 and are seen to be very accurate. 

Secondly, the 'second simple' method was applied. In  the 'second simple' method, the 

step-by-step corrections on f and H are omitted for the purposes of calculating 0 and c 1. Th e  flow 

was divided into large successive steps over which f and H, and hence g, were assumed constant 

and equal to the flat plate values appropriate to the beginning of the step. Th e  steps selected, 
governed by the Mach number,  were: 

M I = 0 - + M  1 = 1 .0 ,  M 1 = 1.0 ~ M  1 = 2 .0 ,  

M 1  = 2 - 0  - M1 = 3 . 0 ,  = 3 . 0  - M1 = 5 . 0 .  

The  simplification of ignoring the effects of pressure gradient on f and H for the purposes of 

calculating 0 and c / reduces  the complexity of the calculations and hence reduces the computat ion 

time. This  may be of importance for calculations performed on a hand machine but  is of little 

consequence if a high speed computer  is employed. Th e  values of c / an d  0 obtained by the 'second 

simple'  method, also shown in Figures 6 and 7, were hardly less accurate than those obtained 

by the 'complete '  method. To  determine H more accurately, however, the pressure gradient 

correction of Equation (40) was applied using the values of A already found from the shortened 

method which ignored this correction. Again, it may be seen from Figures 6 and 7, the results 

were almost as good as those obtained by the 'complete '  method. Th e  need to obtain H accurately 

stems f rom the need to obtain the displacement thickness 3 e for second order calculations 

allowing for the influence of the boundary layer on the external flow 8,13 

t ,  7 J . ,  

(82878) B 



The  second example to be considered involving a favourable pressure gradient is the case of a 

Mach number  distribution which increases linearly along the surface from an initial value of 

4 " 0 a t x / L  = 0 to a value of 8" 0 at x/L = 1.0. 
Tha t  is 

T h e  calculation was performed using 

(a) the 'complete '  method, with co = cr = 1 and also with co = 0.89 and (r = 0"725 

(b) the 'first simple' method in which the values of f ,  H, and hence g are assumed constant 

throughout  and equal to the flat plate value at x/L = 0 

and (c) the 'second simple' method with one step only, M 1 = 4 + M 1 = 8. 

In all cases results were evaluated for cooling such that the wall temperature  Tw equalled the 

reference temperature  To, in the free stream at x/L = 0. Th e  results of these calculations are 

presented in Figures 8 and 9. 
T o  illustrate the effect of heating the wall, the 'complete '  method was used to evaluate the 

above case for a heated wall with S w = + 0.4,  that is Tw = 1.4 T,., for co = 0.89 and ¢ = 0. 725. 

It  was found in the solution of the highly cooled wall case by the 'complete '  method that the 

assumption of constant linear correction factors for f and H caused severe overcorrection of these 

parameters as the value of A increased, with consequent discontinuities in the slopes of the 0 and c z 

distribution curves. However,  use of the direct relationship between f and A, Figure 2, resulted 

in more acceptable results being obtained. I t  should be noted that this case represents an extremely 

strong favourable pressure gradient unlikely to b e  approached in practice. 

The  magnitude of the error incurred by the omission of step 7 of the procedure for the 

'complete '  method may be gauged by reference to Figure 8. Here the 'complete '  method with 

iterations through the solution of the momentum equation repeated until A was within ½ per cent 

of its previous value, is compared with the 'complete '  method with step 7 omitted, for the linear 

Mach number  distribution case. Again it should be noted that this may be regarded as a severe test. 

6.2. Flows with Adverse Pressure Gradients. Curle a has referred to two 'exact '  solutions for 

retarded flows obtained by the Mathematics Division of the National Physical Laboratory by 

simultaneous integration of the momentum and energy equations. These  solutions have been 

assessed as being within + 5 per cent of the true solution, but  it is reasonable to suppose that they 

are more accurate over the first part of the solution than towards the separation point. The  

solutions were for a linearly retarded velocity distribution with an initial Mach number  of 4 .0 ,  

co = ~ = 1, and T w = Ta: and for a linearly increasing pressure distribution with initial Mach 

number  of 2.0,  co = ~ = 1, and T~ = T a. Tha t  is, 

U l = U a ( l - L ) ,  . M c ~ = 4 " 0 ,  T , v =  T~, ~o= ~ =  1 (63) 

and 

p l = p a ( l + ; ) ,  Ma = 2 .0  , T w = T a ,  ~ o = ~ = 1 .  (64) 

These  solutions have been used to assess the accuracy of the present methods, and of other 

approximate methods, for cases involving adverse pressure gradients. 
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I t  will be noted that the solutions obtained by the N.P.L.  have been termed 'exact' ,  the inverted 

commas indicating that doubts have been cast on the accuracy of these solutions. In order to check 

further  the accuracy of the present methods for adverse pressure gradients, a 'similar' solution 
f rom the set obtained by Cohen and Reshotko ~ has been used. 

To  make use of a 'similar' solution of the form U 1 = CX m for an adverse pressure gradient 

(m < 0), it is necessary to start with a non-zero value of X to avoid an infinite velocity at the origin. 

The  assumption made in the example considered here was that x/L = 0 when X/L = 0"001. 

The  power law distribution was prescribed to give a decrease in Mach number  from 4"001 to 

1.625 over the range X/L = 0.001 to X/L = 1.0, with fi = 2m/(m+l) = - 0 - 3  (that is, 

m = - 0.13043), and S~ = - 0.8. 

We then find that 

and 

341= 1.625 ( X )  -°'13°43 (65) 

- = 1 + 0.5281 d (66) 
L dO'O01 L 

f o r y  = 1 .4 .  

The  values of 0, H and q0  were obtained for this distribution f rom the values of the transformed 

momen tum thickness Ol,.., form factor Hm, and wall shear function f,o", tabulated by Cohen and 
Reshotko 6. 

The  momentum thickness has a finite value at x/L = 0, and the value of (O/L)~/RLo given 

by the exact 'similar' solution was used as a starting value at x/L = 0 for the 'complete '  method. 

An iterative process through Equations (54) and (35), leading to constant values of A and f, was 

Used at x/L = 0. Following this the method proceeded normally.' T h e  values of 0, H, and c I found 

from tile 'complete '  method with steps of integration governed by given changes in the free stream 

Mach number,  are compared with the results f rom the 'similar' solution in Figure 14. It  should be 

noted that this case also provides a severe test of the method since it concerns a boundary layer 

which, at the chosen origin, was of finite thickness and which had previously been subjected to 

an adverse pressure gradient increasing in intensity to infinity as X = 0 was approached. 

Consequently the magnitude~of A was already large ( -  3) at the origin and the corrections due to it 

were correspondingly important.  The  success of the method in this particular case lends support,  

therefore, to the inference that it can handle a wide range of cases involving rapidly varying 

externat pressure distributions. 

7. Comparison of the Methods. An exact solution involving a favourable pressure gradient 

with which to compare the approximate methods is the 'similar! solution for the flow accelerating 

from M 1 = 0 to M 1 = 5.0 derived from the set presented by Cohen and Reshotko 6. Th e  

'complete '  and the 'second simple' methods, Figures 6 and 7, both give results which are 

remarkably accurate. Figure 7 has been plotted on a logarithmic scale to allow the results near to 

the stagnation point to be presented in detail. On the basis of this comparison it may be concluded 

that the 'complete '  method and the 'second simple' method with suitably chosen calculation 

steps both yield results of acceptable accuracy for flows involving favourable pressure gradients. 

19 

(8287S} B 2 



On the basis of the comparison between the 'complete' method and the 'complete' method 
with step 7 for the case M 1 = M a ( l + x / L ) ,  it may be concluded that the iteration through the 
momentum equation has only a small effect on the final values of skin-friction coefficient obtained, 

and may therefore be omitted in most instances. 
The results given by the 'first simple' method for the linear Math number distribution, 

Figure 8, indicate that it somewhat overestimates the values of 0 and c/for  a strong favourable 

pressure gradient. 
From Figure 8 may be gauged the effect of taking a step over which the change in Mach 

number is large in the application of the 'second simple' method. It may be seen that the error, 
using the 'complete' method as the standard, is relatively small. This error would certainly have 
been reduced had the calculation been divided into two or four steps. As the computation effort 

involved in the 'second simple' method is less than that in the 'complete' method, and the results 
obtained in the two favourable pressure gradient examples considered are not materially different 
for the two methods, the 'second simple' method may be generally recommended for this class 

of problem. 
It will be recalled that the definition of A for the 'first simple' method, Equation (4), is different 

from that for the 'complete' and 'second simple' methods, Equation (44), due to the different 

transformations of the y co-ordinate employed. However, the form of the final expressions for 

skin friction for all the methods is the same, Equations (24) and (57). For a favourable pressure 
gradient (A>  0), the skin friction is relatively insensitive to the value of A, but for an adverse 
pressure gradient (A<  0), an increase in A reduces the factor ( 1 2 + A )  and increases the 
denominator of the expression. Hence the value of the skin-friction coefficient is very sensitive 
to the value of A with an adverse pressure gradient. As the expressions for A are dependent on f, 
it may be expected that the omission of the pressure gradient term in the calculation o f f  will yield 

unsatisfactory results for the skin-friction coefficient when the pressure gradient is strongly, adverse. 
This effect is illustrated by the results for the N.P.L. case involving adverse pressure 
gradients. From Figure 10, it may be seen that while the 'complete' method yields reliable results 

the 'second simple' method overestimates the skin friction and the 'first simple' method under- 
estimates the skin friction. The conclusion may be drawn, therefore, that for cases involving 
large adverse pressure gradients the 'complete' method must be used if reliable results are to be 

obtained. 
Figure 10 illustrates the effects of inclusion or exclusion of step 7 of the 'complete' method 

" and of varying the length of the integration steps when the pressure gradient is adverse. The 
iteration through the solution of the momentum equation improves the accuracy over the first 
part of the calculation, bu t the  errors involved in the assumption of linear correction factors become 
amplified as separation is approached. When step 7 is excluded, a slightly better agreement is 
obtained near separation but the accuracy in this region is still not very high. Direct use of 
Figures 2 and 4 instead of linear factors to correct f and H would lead to a better prediction of 
separation. The use of uneven increments during the calculation procedure does not introduce 

significant additional errors. 

8. Comparison with Other Approximate Methods. The approximate methods presented by 
Cohen and Reshotko G and Curle ~ were used to calculate the N.P.L. adverse gradient cases referred 
to previously. Both these methods follow similar lines to the Thwaites 9 method for incompressible 
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flow, but where Cohen and Reshotko used their set of transformed 'similar' solutions as the 

basis for universal parametric relationships, Curle used the Thwaites incompressible flow 

parameters, as modified by Curle and Skan 1~, and employed the assumption of a quadratic relation- 

ship between the temperature and the velocity boundary-layer profiles. Both these methods 
require that co = cr = 1. The Cohen and Reshotko method was applied to the 'similar' solution 

case for the flow starting from a stagnation point and accelerating to M 1 = 5. It is to  be expected 

that the Cohen and Reshotko method will give accurate results for this case as it represents one of 

the 'similar' solutions on which the method is based. It should be noted, however, that on the whole 

the results given by the Cohen and Reshotko method, Figures 6 and 7, are not quite as close to the 

'similar' solution as are the results given by the 'complete' method Of this paper, although the 

differences are small. A possible error can arise from the choice of the constant B in Equation (31) 

of Cohen and Reshotko's paper. This equation is 
J 

N = d + Bn where N is the momentum parameter 

and n is the correlation parameter. 

The constant A is well defined, being 0.44, but the value of B is dependent on the choice of the 

best straight line approximation to the N ,,~ n relationship. 

The 'complete' method of this paper is compared in Figure 11 with the Cohen and Reshotko 

method and with the Curle method for the linearly retarded velocity distribution calculated by 

the N.P.L. From the results in Figure 11 it may be seen that, on the whole, the 'complete' method 
gives the most accurate results. 

It may be argued that conditions approaching separation irf supersonic flow are not of major 

practical interest as, for most practical cases, pressure gradients are favourable. Small regions 

of adverse pressure gradient may possibly occur due to the interaction of a shock wave with the 
boundary layer, or unusual surface curvature, but these effects are likely to be accompanied by 

transition and will seldom produce a simple laminar boundary-layer separation. If we accept a 
realistic upper limit for the supersonic compression which may occur as being the compression 

equivalent to a change of about 10 deg in the flow direction, in a simple wave flow, we can 
estimate the range of practical interest for the linearly retarded velocity distribution case of Figure 11, 
and the linearly increasing pressure distribution of Figure 13. This indicates a practical range of 

x/L from x/L = 0 to x/L = 0.05 for the linearly retarded velocity distribution , and from 
x/L = 0 to x/L = 0.70 for the linearly increasing pressure distribution. On this basis there is 

little to choose between the 'complete' method and the Cohen and Reshotko method for the linearly 

retarded velocity distribution, and Curle's method yields results which are high. However, in 

the less •severe case of the linearly increasing pressure distribution, the 'complete' method yields 

materially closer results to the 'exact' solution than the other two methods. 

From this comparison it is fair to conclude that the present 'complete' method is applicable 

with a higher degree of accuracy to a wider range of cases than the other approximate methods 

examined. Its main advantages over the other methods are: 

1. It is not restricted to values of the Prandtl number and of the temperature-viscosity 

relationship index of unity, but is applicable to all cases where they are near unity. 

2. It predicts not only the skin-friction distribution accurately but similarly predicts the 
distributions of the momentum and displacement thicknesses. 
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3. In  principle the 'complete '  method may be used for cases involving non-uniform surface 

temperature,  although its accuracy in this application has not been tested. 

4. The  method may be programmed readily for solution of problems on a high speed 

computer.  

9. Physical Interpretaiion of some of the Results obtahzed. 9.1. Effects of Heat Transfer and 
Pressure Gradient on Skin Friction. Consideration of Figure 12 indicates that cooling of the surface, 

when  the pressure gradient is adverse, increases the skin friction. However,  in the case illustrated 

in Figure 9, where  the pressure gradient is favourable, cooling decreases the skin friction. The  

reverse is true in each case when the wall is heated. In the case of the adverse pressure gradient 

the increase in skin friction with cooling is associated with a marked increase in the distance to 

separation, a result previously noted by Gadd aS, Morduchow and Grape 1 and others. 

I t  appears that the most important  effect of wall temperature  on the skin friction in the presence 

of a pressure gradient is through its effect on the parameter A and hence on the factor (12+A)  

in the expression for c I in Equation (56). Thus  from Equation (54) we see that raising the wall 

temperature,  for example, increases /x,o and therefore increases [A [. Related changes are also 

produced infO but  these are smaller in their effects on A and c i. With an adverse pressure gradient 

A is negative and hence heating of the wall reduces the factor (12+A)  and so reduces the skin 

friction. With a favourable pressure gradient on the other hand A is positive and so the factor 

(12+A)  is increased and with it is increased the skin friction. Converse effects occur with walt 

cooling. 
In  so far as the effects of heat transfer and pressure gradient on the skin friction may be 

related to the associated effects on A they can be linked with their effects on the form of the 

velocity profile near the wall. I l l ingworth l° has suggested a more direct physical interpretation 

by considering the" change in the response of the fluid close to the wall with change of wall 

temperature  to the external pressure gradient. Thus ,  with wall heating the fluid density close to 

the wall is reduced and so the fluid is more readily decelerated by an adverse pressure gradient 

and more readily accelerated by a favourable pressure gradient. Thus ,  in the former case the skin 

friction is reduced and flow separation occurs earlier, whilst in the latter case the skin friction 

is increased. 

9.2. Effects of Changes of co and ~. In the case of a flat plate at zero incidence it has been 

shown 5 that the effect of heat transfer on the skin friction is determined by the value of ( 1 -  co). 

I f  co < 1, cooling increases the skin friction, and if co > 1, cooling decreases the skin friction at a 

given M a t h  number  but  the effects are small for small values of ( 1 -  co). To  illustrate the overall 

effect of co and ~ on the skin friction in the presence of pressure gradient and heat transfer, two 

cases were calculated with co = 0.89 and a = 0.725. T h e  favourable pressure gradient case is 

shown in Figure 9 and it may be seen that where there is cooling such that Tw = T,, the difference 

between the skin friction for the above values of co and a and that for co = ~ = 1 is very small. 

I-Iowever, when  there is zero heat transfer, a difference results of the order of 10 per cent in the 

skin friction. A similar result is shown for the adverse gradient case in Figure 12, but  then the 

change in skin friction with zero heat transfer is of opposite sign to that with the pressure gradient 

favourable. 
These  results are not by themselves enough to enable us to disentangle the separate effects of 

the changes in co and a on the skin friction, but  we can note that in general they are likely to be 
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small for values of these parameters of practical interest. However, it is hardly surprising that when 

the wall temperature (T;,) is kept the same as the reference temperature (T~) the resulting 
changes in skin friction are negligible, since the important flow conditions close to the wall are 

then hardly affected by the changes in co and a. For the case of zero heat transfer the dominant 

effect is probably that of the change of ~, since with S~ = 0 the wall temperature T w must be 

reduced with reduction of a. This would result as already explained in a reduction of the skin 

friction with the pressure gradient favourable and an increase of skin friction with the pressure 

gradient adverse in conformity with the results illustrated in Figures 9 and 12. The associated 

effects of the change in oJ for the case of zero heat transfer or constant S w are difficult 

to assess in general terms since they depend on the relative magnitudes of T1, T w and T a as 

well as on the pressure gradients but they are probably smaller than the effects due to the change 

i n  (7. 

10. Conclusions. Three methods have been presented for the calculation of the skin friction 

and other parameters in the laminar compressible boundary layer with heat transfer and 

non-uniform free-stream pressure distribution. 

The methods are applicable to flows with both adverse and favourable pressure gradients, 

and they have been compared with exact solutions in four diverse cases. It has been shown that 

for flows involving adverse pressure gradients the 'complete' method gives the most reliable results. 

The 'complete' and 'second simple' methods are applicable to the type of flow found on a wing 

having a rounded leading edge. The 'first simple' method yields reasonable results in many 

practical cases "involving small favourable pressure gradients, as do both the 'complete' and 

'second simple' methods. 
All three methods are general for values of co and ~ near, but not necessarily equal to, unity. 
In the 'complete' method the effect of pressure gradient on the various boundary-layer 

parameters has been taken into account by employing simple correction factors derived from the 
'similar' solutions of Cohen and Reshotko 6. This permits accurate values of the momentum 
thickness (0) and of the form factor (H), as well as of the skin-friction coefficient (cl) , to be 

obtained. 
The 'complete' method may be used to calculate cases involving non-uniform surface 

temperature, but the accuracy of the method under these conditions has not been investigated. 

The general effects of heat transfer on the skin friction in a laminar boundary layer have been 

illustrated by the examples considered. It has been shown that when the pressure gradient is 

'favourable, cooling of the surface decreases the skin friction, and when the pressure gradient is 

adverse, cooling increases the skin friction. These effects have been explained physically in terms 

of the influence of heat transfer on the fluid properties close to the wall and the effect of heat transfer 

and pressure gradient on the velocity distribution in the boundary layer. 

It has been shown that with values of co and ~ of 0.89 and 0.725; the skin friction is altered 

very little from the values found with co = ~ = 1 when the wall is cooled to approximately the 

free stream temperature. Under zero "heat transfer conditions the alteration is more marked, and its 

sign depends on the sign of the pressure gradient (Figures 9 and 12). 
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a 

a, b, c, d 

C 

Cp 

C I 

k 

hi 

ha 

P 

U 

V 

X 

Y 

A, B 

C 

CF 
H 

N O T A T I O N  

Velocity of sound 

Constants in the modified Pohlhausen velocity distribution 

Chord 

Specific heat at constant pressure 

Local skin-friction coefficient based on reference conditions 

= 2rw/p~u~  2 

c/0 Local skin-friction coefficient based on stagnation conditions 

= 2rw/poao 2 

fw" Wall shear function tabulated by Cohen and Reshotko 6 

• [ i . , , .  Function of 2141, T w / T 1 ,  oa and ~ defined in Equation (26) 

= Flat plate.value of 81/8 

f Corrected value of 8 1 / 0  , Equation (35) 

g Function defined in Equation (13), or Equation (50) 

i Ratio of enthalpies 

= I / I  1 

Coefficient of thermal conductivity 

Correction factor in Equation (35) 

Correction factor in Equation (40) 

Correlation parameters used by Cohen and Reshotko 2 

pressure. 

Recovery factor 

= ( r , . -  "111)/(To- T,) 
Velocity in the x direction 

Velocity in the y direction 

Distance measured along the surface 

Distance measured normal to the surface 

Constants in Equation (31) of Cohen and Reshotko 2 

Constant in power law velocity distribution 

Overall skin-friction coefficient based on leading-edge conditions 

Form factor 

= 8 " / 0  

H m Transformed form factor of Cohen and Reshotko 2 

I Enthalpy 

L Reference length 

M Mach number 
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N O T A T I O N - - c o n t i n u e d  

R Reynolds number: suffices indicate values on which R is based 

S Temperature ratio parameter 

= T/T -I 

T Absolute temperature 

U Velocity in the X direction in incompressible flow 

X Distance along surface in incompressible flow 

Y Transformed distance normal to surface 

y Ratio of specific heats 

8 Value of y defining outer edge of boundary layer 

31 Value of Y corresponding to y = 8 

3 '~ Displacement thickness 

,1 = z~/ul, Equation (8) 

0 Momentum thickness 

ix Coefficient of viscosity 

v Kinematic viscosity 

= /z/p 

p Density 

Prandtl number 

= Ix%/k 

~- Shear stress 

o~ Temperature-viscosity relationship index 

A Pressure gradient parameter, Equations (4) and (44) 

S u f f i c e s  

a Reference values in the free stream 

Reference values upstream of the leading-edge shockwave 

0 Stagnation conditions 

Recovery conditions 

1 Values at outer edge of boundary layer 

i, 0 Zero heat transfer in incompressible flow 

~r. Transformed values 

Wall values 

n, n+ l ,  etc. Values at x~, X~z.t.I~ etc. 

looal Parameters defined by local conditions 

Unless otherwise stated, an accent denotes differentiation With respect to x/L. 
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