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Summary. Minimum values of the zero-lift wave drag of slender wings with certain fixed properties have 
been calculated by slender-body theory. The cross-sectional area distributions of the wings are taken to be 
polynomials and the fixed properties of the wings correspond to fixed firs} and second derivatives of the area 
distributions at the apex and rear end. 

The drag for delta wings of rhombic cross sections has also been calculated by thin-wing theory without 
the slenderness assumption. Comparisons between the drag coefficients calculated by both theories have been 
made for a series of wings to investigate the applicability of slender theory. 

The calculations by both theories suggest that it should be possible to design thickness distributions which 
have drags as low as that of the so-called Lord V area distribution on plan-forms for which the.Lord V distribu- 
tion is unsuitable. Further, this can be achieved when the thickness near the apex and the slope at the trailing 
edge are restricted. 

i. Introduction. We consider in this Report the wave drag due to volume of wings with unswept 
trailing edges. We use the term wing in a general sense namely for configurations which are winglike 

towards the trailing edge. 
The question arises: how low can the wave drag of a slender wing of given length, span and 

volume be for a given free-stream Mach number? In the design of aircraft, certain restrictions are 

imposed on the geometry of the wings, for instance by requiring a minimum thickness at certain 

stations. For this Report, we have chosen the first and second streamwise derivatives of the cross- 

sectional area distribution at the apex and at the trailing edge as the properties to be prescribed. 

Applying slender-body theory, we determine in Section 2 for certain families of area distributions 

the minimum drag for fixed values of some of these parameters. 
Since slender-body theory predicts in certain cases even negative drag values, it seems necessary 

to investigate the validity of the theory. The slenderness assumption can be tested by comparing 
the drag values determined from supersonic thin-wing theory and from slender-thin-wing theory. 

(Slender-thin-wing theory gives the same drag value as slender-body theory.) We refrain from 

applying the full small perturbation theory (in which the boundary condition is satisfied on the 

surface instead of in the wing median plane) since the work involved would be too great. To apply 
even thin-wing theory to wings of general plan-form and cross section shapes is a rather lengthy 

process. We consider, therefore, in this Report wings of simple geometry, namely delta wings with 
rhombic cross sections. This is a large enough class of wings for the effect of various properties on 
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the validity of the sienderness assumption to be studied. For wings where the centre section is 
given as a polynomial of 5th degree, with 4 independent parameters, we have calculated the zero-lift 
wave drag numerically for the slenderness parameter fis varying between 0.2 and 0- 8. For a number 

of wings of this class, the drag values are compared with those from slender theory to determine the 
error in the drag estimate due to the slenderness assumption. Finally, we determine the minimum 

drag values from thin-wing theory, when some of the derivatives of the area distribution at the apex 
and trailing edge are fixed. 

In this Report, no pressure distributions are calculated, which implies that we have not checked 
whether the flow assumed in the calculation can be realized in a viscous flow. We determine only 

the theoretical minimum of the wave drag under certain conditions to investigate what ranges of 
the parameters should be considered in designing for low drag in a real fluid. 

2. Wings with Minimum Wave Drag for Certain Fixed Properties of the Cross-Sectional Area 
Distribution According to Slender-Body Theory. 2.1. The General Drag Formula. For wings with 

sharp straight trailing edges, the drag due to thickness is according to slender-body theory givenby 
the relation (see for example Ref. 1): 

with 

where 

and 
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x, y, z is a rectangular co-ordinate system with x in the streamwise direction and z normal to the 
wing plane (i.e., the plane through apex and trailing edge). The maximum chord c o is taken as unity. 

s is the semi-span of the wing at the trailing edge and e(y) the spanwise distribution of the streamwise 
slope of the wing at  the trailing, edge. S(x) is-the area of the wing in cross sections x = constant, 
S'(x) and S"(x) are the first and second derivatives of S(x) with respect to x. 

We refer in the following the wave drag of a given configuration to the value of the mininaum 

drag of a body of revolution of the same length Co and volume v, i.e., to the drag of the corresponding 
Sears-Haack body 

77 (5) 
and write: 
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2.2. Special  Drag Formulae.  In this Report, we consider wings with pointed plan-forms and sharp 
leading and trailing edges. The cross-sectional area distributions of such )rings can be written in 
the form: 

S(x)  = x2(1 - x) f (x)  

where f ( x )  is a continuous function. To consider only polynomials for f ( x )  is sufficiently general for 
the purpose of this Report. 

I f  S(x)  is known as a polynomial in x, K o can be expressed in explicit form by using the values of 

I.,,,~ = - x~x '~  log Ix - x'  [ dx  dx'  (7) 
0 0 

which have been tabulated for n, m ~< 9 by G. G. Brebner in an unpublished Royal Aircraft Establish- 

ment paper. (Values of In,, ~ for n , m  ~< 4 have been published in Ref. 2.) The values of Z~,~ are 
reproduced in Table 1. 

Since the drag factor K o depends only on the area distribution and not on the volume, it is 

sufficient to consider area distributions of unit volume. We therefore consider the area distributions: 

N 

= x (8) 
n = O  

N a ~  

Z ( n + 3 ) ( n + 4 ) -  1.  (9) 
n = 0  

where 

For N = 5, the following relation exists between K 0 and the coefficients a~*: 

K0=  - 
5 23 55 

307 83 617 7 13 
120 aa2 - - ~  a42 -- 2 ~  a52 - 2 a°al - 3  -a°a~ 

133 719 13 
.5 aoa a - - 2 T a o a 4 -  ~ a o a  5 - ~ - a l a  ~ 

29 127 3421 59 
6 a l a 3 - 2 4 - a l a 4 - ~ a l a s - ] 2  a~aa 

79 841 161 169 
15 a 2 a 4 - ] ~ a 2 a a - 3 0 - a a a 4 - ~  a3a5 

1 S a g a s +  52 an [ k - l o g S , ]  • (10) 
~t=0 

We introduce into Equation (10)" the first and second derivatives of the area distribution at the 
apex and at the trailing edge. The first derivative at the apex is zero and at the trailing edge it is: 

N 

- S ' ( 1 )  = E a ,~ .  ( 1 1 )  

'* The constants are given as vulgar fractions instead of decimal numbers so tl~at K o can be calculated correctly 
even in the cases where some l a~ I are large numbers. 
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The second derivative has at the apex and at the trailing edge the values: 

S"(O) = 2a0, 

£¢ 

- 8 " ( 1 )  = 2 >_.] (n+2)G ~ . 
~ = 0  

For N = 3 from Equations (9) to (13): 

Ko = 2-56 
7 7 

490 - ~ S'(O) - 63 [ -  S'(1)] + ~ [ -  S"(1)] 

+ ~ [S"(0)]~ + 60 [S"(1)]2 - S"(O) [ -  S'(1)] 

1 17 S'(1)S"(1) + ]20 S"(0) [ -  S"(1)] - 

F2_ s3_ 
+ [S'(1)]2 1120 + k - log 13s t 

and f o r N - -  5: 

(12) 

(13) 
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25 
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1 1 
105 az [ -  S'(1)] + ~ 0  a~[ -  S"(1)] 

25 1 
84 [ -  S'(1)] [ -  S"(1)] + G 8  [S"(1)p 

L4s! ]t (is) 
+ [S'(1)p L840 + h - log & t " 

We refrain here from replacing the coefficients a 1 and a 2 by geometric terms such as the value 
and the position of the maximum cross-sectional area since this leads to even lengthier formulae for 
the drag. 

2.3. Minimum Drag Vahws. For 'a  given value of the free-stream Mach number, i.e., given/3, 

given ratio of semi-span to root chord, s, given h, we can determine the minimum drag factor by 
differentiating Equations (14) or (15) with respect to the terms that we do not intend to restrict. 



For the numerical examples we choose wings with linear spanwise distributions of the streamwise 
slope at the trailing edge: 

e(~) = e ( O ) ( 1 - I '  l) (16) 
for which 

25 1 
h -  12 ~ 1 o g 2 z l . 8 5 .  (17) 

This special family of wings has been chosen since it provides for wings of deka plan-form the 

simple geometry desirable for the calculation of the drag factor by non-slender thin-wing theory. 

Prescribing the behaviour of the area distribution at the trailing edge by prescribing S'(1) and 

S'(1), we obtain for fis = 0.4 the minimum drag factors plotted in Fig. 1. The envelope of the 
curves gives the lowest drag value for/3s = 0.4, given S"(1) and given degree of the polynomial 

expression for S(x), Equation (8). The main feature of Fig. 1 is the fact that slender-body theory 

predicts a marked decrease of the smallest possible wave drag with increasing value of the second 
derivative of the area distribution at the trailing edge. 

The curves of minimum drag for given S'(1) are nearly the same for area distributions which 
are polynomials of 6th degree as for area distributions which are polynomials of 8th degree. We can 

therefore expect that an increase of the degree of the polynomial in the expression of the area 

distribution, Equation (8), to larger values would not reduce the minimum K 0 a great deal for the 

range of S"(I) which is of practical interest, say - S"(1) < 100. 

The minimum K o values for given S'(1) and S"(1) calculated for N = 3 and N = 5 differ more 

than the minimum K 0 for N = 3 and N = 5 when only S'(1) is fixed. This suggests that for a 

higher degree of the polynomiai for S(x), Equation (8) (or any wider class of S(x) than Equation (8) 

with N = 3 or 5), the choice of S'(1) does not determine the minimum value of K 0 to the degree that 
a choice of S'(1) does. 

If one stays within the narrow class of area distributions given by Equation (8) with N = 3 or 5, 

and determines an area distribution which has given values of S'(1) and S"(1) say, one finds that in 

some cases the coefficients a~ are rather large and of varying sign, which usually entails rather 

bumpy S(x) distributions. The pressure distributions on bodies with such area distributions would 

also be rather wavy. To investigate the pressure distributions for configurations which have for 

given S"(1) a' K 0 near the minimum, it would, th.erefore, not be advisable to do this for the area 
distributions which have been used for calculating the K 0 values plotted in Fig. 1. It would be 

desirable to choose (from a wider family) area distributions which vary slowly and have the required 

values of S'(1), S"(0), S"(1). The K 0 values for such area distributions can be calculated by the 

numerical method of Ref. 3, which is an extension of Eminton's method 4 and includes area 
distributions with S'(1) 4= 0. 

The minimum drag values for given values of the second derivative at the apex and at the trailing 

edge are plotted in Fig. 2. We notice that the minimum drag for givenS"(1) does not vary rapidly 
with a change of S'(O). 

The drag factors plotted in Figs. 1 and 2 are calculated for fis = 0.4. To illustrate the effect of the 
slenderness parameter, we have plotted in Fig. 3 the minimum K 0 for given S"(1) and N = 3 for 
various values of/3s. 

The drag factors plotted in Figs. 1 to 3 are calculated for h = 1.85. Equation (1) shows that a 

decrease of h has the same effect as a decrease of log lifts. For wings with sharp trailing edge, h 

depends only on the spanwise distribution of the streamwise slope at the trailing edge. A change from 



a linearly varying e(y) to a constant e(y) reduces k from 1.85 to 1.5, which produces the same 

reduction of K 0 as an increase of fis from 0.4 to 0.57. 

Let us finally compare the present results with the drag values of two particular area distributions 

which have been investigated in detail, experimentally and theoretically, on slender wings of various 

plan-forms. They are those of the so-called Newby-delta wing (wing I in Refs. 5 and 6) and the 

so-called Lord V area distribution (wing V in Refs. 5 and 6): 

with 

and 

with 

S(x) = 12xZ(1 - x) (18) 

- S ' ( 1 )  = 1 2 ,  . s"(o) = 2 4 ,  

S(x) = x2(1 - x) [28 - 42x + 28x 2 - 7x 3] 

- S ' ( 1 )  = 4 8  

(19) 

- S ' ( 1 )  = 7 ,  S"(O) = 5 6 ,  - S " ( 1 )  = 14. 

The drag factors of these area distributions for k = 1.85 and/3s = 0 .4  are: 

Wing I : Ifr0 = 0.85 

W i n g V : K  0 = 0.74 

A comparison of these K 0 values with the minimum values for the same S"(1) plotted in Fig. 1 

shows that the K o of wing I is considerably larger whilst the K 0 for wing 'V is close to the minimum 
value. If  only S"(1) were to be kept constant, the/fro of wing I could be reduced either by decreasing 
- S'(1) or by increasing S"(0). The drag of wing V can be reduced noticeably only by allowing 
a larger value of - S"(1). (As a consequence of the small difference between the minimum K 0 as a 

function of S"(1) for area distributions given by polynomials of 6th degree and 8th degree, this 

statement is likely to be approximately true even if a larger family of area distributions is considered 

than the one taken in Fig. 1.) 

When the area distribution ¥ is applied to a plan-form which is narrow near the apex, the ratio 

between the local thickness and the local span becomes rather large there. This property may be 

undesirable (the ratio between the usable and the total volume may be too small "and the cross 

section shapes might be detrimental to the development of the leading edge vortices at incidence). 

The  minimum K 0 values for fixed S"(1) and various values of S"(0) plotted in Fig. 2 suggest that it 

should be possible to modify the area distribution V (for which S"(0) = 56) and reduce the area 

near the apex of the wing without  increasing K 0 a great deal. 

3. The Wave Drag of Delta Wings with Rhombic Cross Sections by Non-Slender Thin-Wing Theory. 
3.1. The Oblique Cross-Sectional Area Distributions. Slender-body theory predicts in certain cases 

implausibly low values of the wave drag. It is therefore essential to investigate the validity of the 
slenderness assumption for such cases. The  application of the full linearised theory which makes 

neither the slenderness assumption nor the thin-wing assumption is too laborious, therefore we 
investigate the problem by determining the difference in the wave drags calculated by slender 
theory and by non-slender thin-wing theory. 

We consider a class of wings which is reasonably wide but on the other hand of a sufficiently 
simple geometry for the calculation of the wave drag by thin-wing theory to be not too lengthy. 



We choose wings of delta plan-form with rhombic cross sections and a polynomial expression for 
the shape of the centre section: 

1 lY ( l - x )  G d n x  '~ (20) z(x, y )  = ~ x -  
S n = 0  

(As in the previous section: x, y, z is a rectangular co-ordinate system with the x-axis in the free- 
stream direction, s is the semi-span at the trailing edge and the root chord c o is taken as unity.) 

The zero-lift wave drag according to thin-wing theory is given by the relation (see for example 
Ref. 7): 

- fofo  7) " 
D 2 f :  12 12(/3, O) 1 1 0)) d2 (S~_ ,  0)) 
q zr 2zr x 

x l o g  7 -  d d ~- . (21) 

For given [3 and 0, S*(x,/3, O) is the projection into the plane x = constant of the cross-sectional 
area intercepted by the plane through the point (x, 0, 0) which is normal to the median plane of 

the wing and which makes with the free stream direction the angle cot -1/3 cos 0 (see Fig. 4). 1(/3, O) 
is the interval of x over which the cross-sectional area is non-zero: 

l = I(/3, O) = 1 + b (22) 
with 

b,=/3s cos 0. (23) 

Instead of x we use the co-ordinate 

and 

X X 

C - l(/3, 0) - 1 + b (24) 

s(~, 5, 0) = s*[x = ~ :0+b) ,  5, 0] 
l~(5, 0) (25) 

To determine S(~,/3, 0) for given/3 and 0 we integrate the local wing thickness along the straight 
line 

X - -  X t X - -  X t 

j t _ _  _ _  

p c o s  0 - s b 

The projection of this area into a plane normal to the x-axis is then given by: 

s~(x, 5, 0) = 2 ~(x', y') dy, 
y 2  . 

x l  

2s 
( x ~  z(x' ,  y ' )  dx ' .  (26) 

b d x l  
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For the co-ordinate ~: the limits of the integral are 

1 - b  
0 < ~ < - -  : 

l + b  

l + b  
x = -  1 - b  

1 - b  
l~+-b < ~ < 1 : X 1 = ~, 

- - - - ~ ,  

N 2  = 1 .  

Inserting Equation (20) into Equation (26) and relating the area to 12(fi, 0), we  obtain the relations: 

- ( x ' - ~ ) ( 1 - x ' )  Z n , / ~  dx', S(~, 5, O) b~(1 + b) j ~  ,~=0 

l+b 4 

1 
- - -  6 . . . .  x' ( 1 - x ' )  E A,~ x''~ dx' 

+ b~(l+b) (1-~&)~ 1 + b ?t, = 0 

1 N l 
- b ~ ( l + b )  Z A,~ 

U~+Z(1 - b )  '~+1 + (1 +b)  "~+~ - 2(1 -bZ) '~+* 
(1 - b),~+1 (n+ 1) (n + 2) 

1 - b  
0 <  6:< l ~ b :  

_ ~:,~+a (1 - b) '~+2 + (1 + b) '~+2 - 2(1 - b2)'~+2 t 

1 
l + b :  

1 N / 1 - b  1 
S(~,/3, O) - b2( l+b  ) 5 o  n,,~ } 

1 + ~  
( n + l ) ( n + 2 )  

1 + b ( n + 2 ) ( n + 3 )  

~+~ 2(1 + b)  n + l  - 1 

(n+~)(n+2)  

1 - b  - - < ~ < - -  
l + b  

- - - <  ~:< 1: 

~:~+a 2(1 + b) '~+z - 1 + } ' 

S($, 0) 
b'~(1 + b) £o'~ & (n + 2) (n + 3) 

1 1 - 6 + 6 '~+2 
( n + l ) ( n + 2 )  ( n + l ) ( n + 2 )  

1 ) 

_ ~:~+a ( n +  1) ( n + 3 )  I) 0 (27) 

1 

l + b  

3.2. The Numerical  Calculation of  the Drag. The next step in the calculation of the drag is the 
evaluation of the double integral 

S"(~, fi, O)S"(( ,  ,% O) log I~ - '~' l d~d~ ' (28) F(b) = 2rr o o 



Equation (27) shows that in the relations for the area distribution S(~,/3, 0) the span s, the parameter 
/3 and the angle 0 do not occur separately but only as the product b =/3s cos 0. The  same is 
therefore true for the double integral. 

The  analytical expression for the second derivative of S(~,/3, O) with respect to ~ is given by three 
different polynomials for the three different intervals of ~., as in Equation (27). To use these functions 
for S"(~,/3, O) aniJ determine F(b) analytically would lead to extremely lengthy expressions. We 
have~ therefore, refrained from deriving an explicit formula for F(b) and have instead applied the 
numerical method of Eminton ~ (see Ref. 3) to obtain approximate values of F(b) for numerically 
given values of S(~:,/3, 0). 

Eminton's method can be applied to determine F(b) for b 4= 0 (i.e., 0 :# 90 deg), since for 
0 + 90 deg the area distributions S(~,/3, O) satisfy the condition S'(~ = 1,/3, O) ~- 0 for which the 
method has been developed. 

The  values of F(b) are finite for 0 4 :90 deg but if S'(~ = 1, /3, 0 = 90 deg) :~ 0, then F(b) 
tends to infinitY when 0 tends to 90 deg. i t  is shown in the Appendix that F tends to infinity as 
- 1/2rr[S'(1)] ~ log COS 0, where S'(1) is the streamwise derivative at the trailing edge of the 
cross-sectional area distribution in planes normal to the stream. 

We therefore write Equation (21) for the drag in the form: 

using the relation 

- O)F(/3, 
q 7/" d O  

[S"(i)]2 2 

2,n" 7g d o  

~r 3 o  ( 

[S'(1)] ~ 
+ 2 ~  log 2, 

Cog 0) + [--S-'(-1)]-~ 2 log cos 0 I~ dO 
21r ) 

log cos 0 dO 

Es'(1)12 
cos O) + log I 2~r cos 0 ) 

dO 

(29) 

f 
'Tr/2 "/7 

0 log  coSOdO = = ~ l O g 2 .  

The  integrand in Relation (29) is finite over the whole 0 range ([(fi~ 0) -+ i for 0 -+ 90 deg). Therefore 
the integration With respect to 0 can be performed numerically or graphically. 

For the nt/merieal calculations, we have considered wings with N ~ 3 in Equation (20) for the 
thickness distribution, N -  3 has been chosen to allow an independent choice of the three 
parameters S"(O)/v, S'(1)[v arid S"(1)/% Which have been Considered in the previ0us section. 
The drag of any arbitrary thickness distribution with N ~- 3 for given value of the parameter/3s 
can b'e" written ir~ the form: 

- - - =  z Z (30) 
q v=O .a=O 

Sifice the drag is aftmction of the product t3) only and not of/3 and s separately, the Coefficients. F ~  
depend on/3s only. To  determine the 10 coefficients F,.,~ one has to calculate the drag by E quati0n (29) 
for at least 10 properly chose-n thickness distributions, 

(s2481) 
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The following cases were taken: 

A~ = 1, A n = 0 f o r n  ~ v; v = 0, 1 , 2 , 3  

A~+t,= -A~ ,  A ~ =  0 f o r n  + v, n + v + / z ,  v =  0, 1,2, /~ = 1 ,2 ,3 ,  tz > 0. 

The area distributions S(~,/3, 0) have been calculated for b fis cos 0 = 0 .1 ,  0.2, . . . 0:8 and 
by using Eminton's programme for the automatic computer DEUCE at the Royal Aircraft 
Establishment the corresponding functions F(ps cos 0) were determined numerically and the 
D(ps)/q for ~s = 0.2, 0.3 . . . .  0.8 were determined graphically using Equation (29). The results 

are given in Table 2. The accuracy of  the last figure of the quoted results is in doubt since 
Eminton's programme gives only approximate values of F(fis cos 0) and since the D(~s)/q were 

determined graphically from the knowledge of the integrand at a relatively small number of 0-values. 

From the results of Table 2, the coefficients F ~  in Equation (30) can be calculated. For those 
cases where S'(1) @ 0, the drag tends to infinity when/3s tends to zero. Since it is knowr/that D/q 
tends to infinity as - 1/2~r[S'(1)] 2 log/3s, it is convenient to express D/q in the form: 

The coefficients f ~  

since 

D( s) 3 
- E E LI,(ps)A~A~ 

q ~=0 /2=0 

1 
2~ [S'(1)]~ log/?s (31) 

are finite for all ]3s and can be calculated from: 

log ps 
f'l~(~s) = F"l~'(t~s) + 2--~- 

3 

- s ' ( : ) =  E &.  
~ = 0  

The f,l* are tabulated in Table 3. 

3.3. Comparison of the Drag Coefficients Calculated by Thin-Wing Theory and by Slender-Body 
Theory. As a first application of the coefficients given in Table 3, Figs. 5 to 7 show the drag factors 
K 0 for wings I, II and V of Refs. 5 and 6, for which the drag and pressure distributions are being 
determined experimentally in the 8 ft tunnel at R.A.E. Bedford. In Figs. 5 to 7 the drag factors 
from thin-wing theory are plotted together with those from slender-body theory. We notice that the 
differences between the results from the two theories are of different character for the three wings. 
For wing V the differences are small up to large values of the slenderness parameter ps. The 
differences for wing II are of different sign from those for wings I and V. 

As a further example for the differences in the drag factors calculated by the two methods, Fig. 8 
shows the ratio between the drag values from the two theories for the ten wings, for which the thin- 
wing theory drag values have been calculated originally. To simplify the discussion of the results, 
we have quoted in Fig. 8 the values of the first and second derivatives of the area distribution at 
the apex and at the trailing edge for unit volume of the wing. We notice that for the wings with 
S'(1) = 0, slender-body theory gives larger values for the drag than thin-wing theory. The 
differences between the results of the two theories are the larger, the larger the value of S"(1). 
For wings with finite S'(1), slender-body theory produces lower drag values than thin-wing theory, 

10 



the differences increase again with increasing values of IS"(1) I" Such a dependence of the differences 
of the results between slender and non-slender theory was to be expected. A large value of ] S"(1) ] 
corresponds to a large value of the streamwise curvature of the wing at the trailing edge 

(S"(1) z"(x= 1 , y =  0)) 
= 2s ' 

i.e., the wing is not slender near the rear end. The larger the value of IS"(1) I the smaller is the value 
of lgs at which the slenderness assumption becomes first in error by a given amount. 

Fig. 8 shows thus that it is not possible to quote a numerical value of the slenderness parameter fis, 
up to which slender theory is valid (as is sometimes done) without making a statement about the 

geometry of the configuration considered. 
Since the application of slender-body theory is for most of the practical configurations so much 

simpler than the application of thin-wing theory, it would be desirable to know some estimates for 
the limits within which slender theory can be used. For slender aircraft the area distribution varies 
in most cases rather,slowly in the streamwise direction, so that it seems sufficient, for a first crude 
investigation, tO consider the first and second derivatives of the area distribution at apex and trailing 

edge as characteristic parameters. 
In an attempt to isolate the effect of one parameter, we have plotted in Figs. 9 to 11 the drag factors 

calculated by the two theories for various area distributions with only one l~arameter varying in 

each figure. 
Fig. 9 suggests that the validity of the slenderness assumption does not depend much on the value 

of S"(O), the second derivative of the area distribution at the apex. 
Figs. 10 and 11 show that the value Of the second derivative at the trailing edge, - S"(1), is more 

important than the value of the first derivative -.S'(1),  in determining whether the slenderness 

assumption is valid for a given configuration. 
A quantitative statement about the dependence of the validity of the slenderness assumption on 

the value of S"(1) and on .Bs is given in Fig. 12, where results for various values of S"(0) and S'(1) 
are plotted together. The figure shows that for fixed values of S"(1) and fis the ratio between the 
drag values from slender and from non-slender theory decreases with decreasing K 0 calculated by 
slender theory. Until calculations of the drag factor by thin-wing theory have been made for more 
general thickness distributions, i.e., for wings of other than delta plan-form, of other than rhombic 
cross-sections, and for a larger family of centre section shapes than considered here, Fig. 12 may be 
used as a guide when assessing the applicability of slender theory for a given case. 

3.4. A~rinimum Drag Vahtes. A further interesting question arises, namely: what is the minimum 

drag value of a deltawing according to thin-wing theory for given fis and for certain fixed properties 
of the wing? The minimum K 0 plotted in.Fig. 13 were obtained by substituting in Equation (31) the 
constants A 1, A 2 and Aa by the volume v, S'(1) and S"(1) and differentiating the resulting equation 
with respect to A 0 for fixed 3s, v, S'(1) and S"(1). The main result of Fig. 13 is that the minimum K 0 
for given S"(1)/v varies only slightly with varying S"(1)/v in contrast to the result from slender-body 
theory, see Fig. 1. In a non-slender theory, the drag values calculated by thin-wing theory differ 
from those calculated without the thin-wing assumption. It is known from experimental and 
theoretical evidence that, at least in certain cases, thin-wing theory overestimates the perturbation 
velocities and thus may overestimate the normal-pressure drag..The results of Fig. 13 may thus be 
pessimistic for configurations where the thin-wing assumption is not justified. 

11 



The  minimum K o for given values of S"(O) are plotted in Fig. 14, which shows that a variation 

of S"(O) has the same type of effect as with the results f rom slender theory in Fig. 2. 

Finally, Fig. 15 shows how the minimum K 0 varies with the slenderness parameter fis. 
Figs. 13 and 14 suggest that the drag of the area distribution V (S"(O)/v = 56, - S'(1)/v = 7, 

- S"(1)/v = 14, Ko(fis = 0.4) = 0.78) cannot be reduced much by increasing - S"(1)/v as was 

suggested by the results from slender theory. There  exist on the other hand area distributions which 

have about the same drag as the area distribution V, but  have lower values of S"(O)/v and larger 

values of - S'(1)/v (together with a properly chosen S"(1)) which are required in certain practical 

cases. 

4. Conchlsions. 4.1. Calculations according to s lender-body theory have shown that, for area 

distributions given by polynomials and for given value of the slenderness parameter fis, 

(a) a min imum value of the zero-lift wave drag factor K 0 exists if the second derivative of the 

area distribution at the trailing edge, S"(1), is fixed; 

(b) the min imum value of K 0 decreases with increasing - S"(1). 

4.2. Calculations according to non-slender thin-wing theory have shown that, for given fis, 

(a) a min imum of K 0 exists (at least for delta wings with rhombic cross sections and centre 

sections which are polynomials of 5th degree); 

(b) the minimum value of K 0 does' not vary much .with the value of S"(1). 

4.3. Comparison of the K 0 values from slender theory with those from thin-wing theory have 

shown that the error in the K 0 estimate due to the slenderness assumption depends mainly on the 

values of S"(1) and K 0 SL~JgER but  not on S"(0) and S'(1). 

4.4. Both theories suggest the existence of area distributions with less area near the apex and 

more area near the trailing edge compared to the Lord V area distribution (as required in practical 

cases) which have no larger K 0 than the area distribution V. 
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z(5, 0) 

M0 

q 

"S 

s(x) 

s'(x), s"(x) 

s~(~, 5, 0) 

s(~, 5, o) 

"o 

X, y ,  2; 

N O T A T I O N  

b = 5s cos 0 

c o = 1, wing chord at centre section 

D Normal pressure drag 

F(b) See Equation (28) 

k See Equations (1) and (2) 

K o = (D/qv 2) (rr/128) zero-lift wave drag factor, ratio between the drag of the given 
configuration and the drag of the Sears-Haack body of the same length and 

volume 

= 1 + b, streamwise distance over which the area Se(x,  ~, O) is not zero, see Fig. 4 

Free-stream Mach number 

Dynamic pressure of free-stream 

Semi-span at the trailing edge 

Cross-sectional area in plane normal to the free-stream 

First and second derivative of N(x) with respect to x 

Projection into the plane x = constant of the cross-sectional area intercepted 
by the plane through the point (x, 0, 0) which is normal to the median plane 
of the wing and makes with the free-stream direction the angle cot -1 5 cos 0 

S*(x = ~(1 + b), 5, O) 
z~(5, o) 

Volume of the wing 

Cartesian co-ordinates with the origin at the apex of the wing; the x-axis 
measured in the direction of the undisturbed stream; the 2;-axis normal to 

the chordal plane of the wing 

5 = v'(Mo ~-1 )  

= x/(1 +b )  

= y / s  
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A P P E N D I X  

The Behaviour of F(b) = 2zr o o 

of b = /~s cos 0. To investigate the behaviour of F(b) for small values of b, we split the double 

integral into three terms: 

2rr 

1 --b 1- -b  

27/" d o  
S"(~,/3, 0)S"(~', fi, 0) log ]~: - ~'[d~d~' 

1--b . 1 

d0  -b  
l+b 

lflf  S"(~, ~, O)S"(~', fl, O) log 1~ - ~'t d~d~' (32) 
21r l--b l--b 

l+b l+b 

We shall see later that it is sufficient to consider thickness distributions which near the trailing edge 

are of the form 

'+') 
z(~, ~) = 2~ 

" 1 - b  
This thickness distribution produces in the interval ~ < ~ < 1 the area distribution: 

(33) 

- C 1 - ~ ( l + b ) + b  s(~ ,~ ,  o) (l+b)~ ~(~.,~)_~ 
b 

+ D 1 - # ( l+b )  + b x 

X l ~ ( l + b ) - b Y ' -  ]Y~'s [l s s (34) 

The  second derivative of this reads: 

l f ( 2 + b ) - I  I f ( l + b ) - l ] 1  
s"(~, ~, 0) = c ~ 7  f) b~ 

D t ~ 2 ( 3 + 3 b + b  ~ ) - ~ 2 ( 2 + b ) +  1 
b0 + b) 

[~:(1 +b) - 1] [$(1+b) - 11t 
b ~ 

(35) 
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With 
y ~ ( l + b ) -  1 

7 - -  s b 

the third integral in Equation (32) becomes: 

f~ f~ s"(~,p,o)s'((,~,O)log ]~-~'[d~d£'= 
1--b  1- -b  
1-t-b l-t-b 

1 f+ f+ E l l+b(2+b)z /  l (1 + b)~ -1 -~ C (~ + b)~ I ~ I 

and 

+Dbll-2~7-(3+3b+b~)b@ I] 
- ( i - + ~  + 7 7 × 

I 1 + b(2+b)v' I × cl  (~+b)= 17'1 

+Dbll-2~'-(3+3b+b~)bT'~i~g)~ +7'17'1}] 

x l o g b [ 7 - 7 ' [ d T & 7 '  
l ~ b  

f+l f+ l  = C a {1 - 17 I}{ 1 - [7' [} log 17 - , '  I d n a , '  
--1 --1 

+ C~logb {1 I~l}d7 
--1 

+ term of order b and term of order b log b. 

It follows from Equation (34) that 

S'(~,/3,  0) - 1 + b ~<1+~)-1 

b 

) l ~b,~ ,0 

C 1 - 2~:(l+b) + 2bY + 

+ D I1 - 3~:(1 +b) + 3b s + 2- × 

= - cf~i [1- J~'l] @ 

= - C +  term of orderb. 
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The streamwise derivative at the trailing edge of the area distribution in sections normal to the 
free stream S'(1) is equal to - C. Thus  

/ /  S"(f, 8, O)S"(f', 8, O) log If  - f '  [ dr '  d f  = 
I - b  1 --b 
l + b  1+0  

[S'(1)]2{ l°gb+f~if]i(1-]~l])(1-'~y'[)lOg]-2rl-:q''d~ld~l')'~-f~/-.-1 . . . . . . .  ( 1 -  ,~/,) d~Tj 

+ term of order b and term of order b log b 

= [S'(1)]~{log b + log 2 - k} (36) 

+ term of order b and term of order b log b with k from Equation (2). 

If  we insert the values of S"(f',/3, 0) from Equation (35) into the second integral of Equation 
(32) and perform the integration over f '  explicitly, we find: 

_1=4 

S"(f ' ,  fi, 0) log ( f ' -  f) dr '  d~ = 
d O  

/ - S'(1) S"(x) log (1 - x) dx + term of order b (37) 
0 

where S(x) is the distribution of the cross-sectional area in planes normal to the free stream. 
The  value of the first integral in Equation (32) is: 

1--b 1--b 
1 ( l + b ~  l + b  

2w v0 o0 S"(f, fi, 0)S"(ff', 8, 0) log If - f '  ].d~df' = 

l f i l l  s"(~)s"(~,) log [~ - ~'ldx&, 
2~ o o 

+ term of order b. (38) 

It  follows from the derivation of Equations (36) to (38) that the resulting formulae are not restricted 
to the thickness distributions of Equation (33) but are applicable to the thickness distributions of 
Equation (20). 

The final result reads.: 

F(b) - 1 1 1 

2 ;o;o 
1 1 1 

  fo;o 
1 fl  + - S'(1) S"(x) log (1 -x)dx 

vr 0 

1 

2~r [S'(1)]~ [log b + log 2 - k ]  

s"(~, 8, o)s"(f', 8, o) log If - f' ] d fd f '  

S"(x)S"<) log Ix - x' l &dx' 

+ term of order b and term of order b log b. 
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From the relations: 

D 2 ~ z~(3, 0) f (~, cos 0) dO 
q "B',d 0 

l(~, o) = 1 + b 

b = ps cos 0 

2 f~12 
- log cos0d0 = - l o g 2  
7T d O  

we obtain for small values of ~s, i.e:, small b for all 0: 

D 1 fl0 f l  x' - S " ( x ) S " ( x ' )  log I x - I dx  dx '  
q 2~ o 

+ - S'(1) S ' ( x )  log (1 - x) dx 

1 
+ G [s'(1)p [k log ~s] 

+ term of order/~s and term of order f~s log f?s (40) 

Equation (40) agrees for ]3s -> 0 with the drag from slender-body theory, Equation (1). 
Pressure coefficients calculated by thin-wing theory and by slender-thin-wing theory differ only 

by terms of order ]32s z and of order f~2s2 log ~s (see for example Ref. 6). Therefore, the integrated 
normal-pressure drags calculated by the two theories can also differ only by terms of order f~2s~ and 
f~2s~ log ]3s. Thus no terms of order f~s or ]~s log/3s occur in Equation (40). 
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TABLE 1 

Values of the Integral  - x n x  'ra log x - d x  d x '  
o 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

0 1 2 3 4 5 

3 3 35 17 497 9 1483 
4 72 48 1800 40 7840 

3 7 11 67 14 149 292 
16 36 288 75 960 2205 

35 11 2 25 1021 43 9077 
72 36 9 ]44 7200 360 88200 

17 67 25 53 137 233 991 
48 288 144 384 1200 2400 11760 

497 14 1021 137 ,143 49 6289 
1800 75 7200 1200 ]500 600 88200 

9 149 43 233 49 19 121 
4--6 960 360 2400 600 270 1960 

1483 292 9077 991 6289 121 373 
7840 2205 88200 11760 88200 1960 6860 

3281 2581 1819 5993 2123 5167 761 
20160 22400 20160 80640 33600 94080 ]5680 

32329 2309 21829 3011 89951 1681 111229 
226800 22680 272160 45360 1587600 34020 2540160 

3191 27541 1817 1321 18091 
302400 25200 22050 25200 

19393 7031 
378000 403200 176400 

6 7 8 9 

3281 
,20160 

2581 
22400 

1819 
20160 

5993 
80640 

2123 
33600 

5167 
94080 

761 
15680 

1557 

15840 

7129 
181440 

65029 

1814400 

32329 
226800 

2309 
22680 

21829 
272160 

3011 
45360 

89951 
1587600 

1681 
34020 

111229 
2540160 

7129 

181440 

2423 
68040 

7381 
226800 

3191 
25200 

27541 
302400 

1817 
25200 

1321 
22050 

19393 
378000 

18091 
403200 

7031 
176400 

65029 

1814400 

7381 
226800 

7507 
252000 

f: Values of the Integral  - x m log (1 - x )  d x  

m 0 1 2 3 4 .5 6 

3 11 25 137 49 363 
1 4 18 48 300 i20 980 

761 
2240 

7129 
22680 

7381 
25200 

19 

(8248D B 



T A B L E  2 

D(fls) or Delta Wing~ with z(x, y) = ~ x - 
q s ,~=o 

Ao A1 

0 
1 

0 
0 

- 1  
0 
0 
1 

1 

0 

As 

0 
0 
1 

0 
0 

- 1  
0 

- 1  
0 
1 

A3 

0 
0 
0 
1 
0 
0 

- 1  
0 

- 1  
- 1  

~s = 0.2 

0.3601 
0.2587 
0.2053 
0.1703 
0.0506 
0.1168 
0.1705 
0.01764 
0.0488 
0.00869 

0.3 

0"3032 
0.2050 
0-1560 
0-1251 
0.0491 
0.1t10 
0.1594 
0.01627 
0.0441 
0.00764 

0.4 

0.2658 
0.1701 
0.1250 
0.0978 
0.0478 
0.1057 
0"1495 
0"01498 
0.0399 
0"00672 

0-5 

0-2391 
0-1452 
0-1037 
0.0797 
0.0467 
0.1013 
0.1410 
0.01382 
0'0362 
0"00592 

0.6 

0.2190 
0.1266 
0.0882 
0"0669 
0-0459 
0-0977 
0-1339 
0-01281 
0-0329 
0.00525 

0-7 

0.2039 
0"1122 
0.0765 
0"0575 
0.0455 
0.0948 
0.1282 
0"01191 
0.0301 
0"00470 

0.8 

0.1928 
0.1007 
0-0673 
0.0503 
0"0456 
0.0930 
0.1242 
0.01110 
0.0277 
0.00424 

T A B L E  3 

Coefficients for  Calculating the Wave Drag of Delta Wings with 

z(x, y) = N x -  ( l - x )  E A , S  
~,=0 

3 3 

D(fls) _ Z Z f,,,(fls) A,A/,  [S'(1)]~ log fis 
q ,=o t~=o 21r 

fls = 0 0.4 0-5 0.6 0.7 0.8 

f00 
A1 
A~ 
f33 
2fol 
2fo~ 
2fo3 
2A.. 
2L3 
2A~ 

0.0959 
-0 .0102  
-0 .0699  
-0 .1124  

0.0326 
-0 .1001 
-0 .2062  
-0 .1001 
-0 .1796  
-0 .1929  

0"2 0.3 

0.1039 0.1116 
0. 0025 0. 0134 

- 0" 0509 - 0. 0356 
- 0. 0859 -- 0. 0665 

0. 0559 0. 0759 
- 0. 0637 -- 0" 0350 
-0 .1524  -~:1143 
-0 .0659  0385 
- 0 " 1 3 2 1 - ~ : 0 9 7 2  
- O" 1454 1097 

0-1200 
0-0243 

-0-0208 
-0-0480 

0.0964 
-0-0066 
-0 .0776 
-0-0116 
-0 .0637 
-0 .0756 

0.1288 
0.0349 

-0 .0066 
-0 .0306  

0.1170 
0.0209 

-0 .0428  
0.0145 

-0 .0319  
-0 .0431 

0.1377 
0.0453 
0.0069 

-0 .0144  
0,1371 
0.0469 

-0 .0106  
0.0394 

-0 .0020  
-0 .0128  

0-1471 
0-0554 
0-0197 
0-0007 
0-1571 
0-072i 
0-0197 
0.0633 
0.0261 
0.0158 

0.1573 
0.0652 
0.0318 
0.0148 
0.1769 
0.0961 
0.0479 
0.0859 
0.0523 
0.0424 
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