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Summary. Numerical methods are given for calculating the double integral 

L a 

for the three cases: 
(i) F(x) is given numerically, 

(ii) F(x) is the first derivative of a numerically given function, 
(iii) F(x) is the second derivative S"(x) of a numerically given function S(x). 

For the third case the method of Eminton a is extended to functions S(x) for which the first derivative at  
x = b is not zero. For the other cases the functions are approximated by finite Fourier series which have given 
values at certain fixed points. 

1. Introduction. The  calculation of the wave drag due to volume as well as that due to lift requires  

the evaluation of double integrals of the form 

f° fo F(x)F(x') log [x - x' [ dxdx'. 
a 

Since in many practical cases the function F(x) is not given in analytical form the integration cannot 

be performed explicitly but  numerical methods must be applied. 

There  occur three different cases: 

(i) T h e  function F(x) is given numerically. 

(ii) F(x) is the first derivative L'(x) of a numerically given function L(x). 
(iii) F(x) is the second derivative S"(x) of a numerically given function S(x). 

There  exist several numerical methods to deal with case (i) (see for example Refs. 1 and 2). 

The  application of these methods t o  the third case requires the determination of the second 

derivative of the given function. Due to the inevitable inaccuracy of the second derivative when 

determined by numerical or graphical methods, this procedure is often not appropriate. 

* Previously issued as R.A.E. Report No. Aero. 2629--A.R.C. 21,890. 



In the third case, it seems more advisable to apply the technique of Eminton a. The given function 

S(x) is approximated by one which has the given values S(xi) at certain fixed positions x i and which 

is chosen so as to make the double integral a minimum. To apply this method S(x,) need be known 

less accurately and at. a considerably smaller number of positions x~ than for the direct application 

o f  the numerical techniques developed for case (i). Eminton has treated only cases for which the 

first derivatives of S(x) at the ends of the range of integration x = a and x = b are zero. In this 

report, we extend the method to cases for which S'(b) q= 0; an extension to S'(a) ~= 0 is not needed 
for slender configurations. 

In cases (i) and (ii) a procedure similar to that in case (iii) is not possible. In case (ii) we approximate 

L(x) by a finite Fourier series which has the given values L(xt, ) at fixed points xe and express the 

double integral as a double stun of the products L(x~) L(G ) multiplied by fixed coefficients f y  

Though in case (i) the method of Ref. 1 is directly applicable, we derive another formula by means 

o f  a Fourier analysis of F(x) since this seems to be more appropriate in certain cases. 

2. The Numerical Calculation of the Zero-Lift Wave Drag According to Slender-Body Theory. 
2.1. The Drag Formula. For slender bodies with a pointed apex, the wave drag due to volume is 
given by the relation (see for example Ref. 4): 

° , ; ;  
- S"(x)S"(x') log Ix - x'ldxdx' 

q 27r o o 

+ ~ s " ( x )  log (1 - x) dx  

[s ' ( i ) ]~ 
+ 2 ~  [k - log fis]. (1) 

The x-axis is taken in the direction of the free stream and the body length is taken as unity. 

.S(x) is the cross sectional area in the plane x = const; S'(x) and S"(x) are the first and second 
derivatives of S(x) with respect to x. 

k depends only on the geometry near. the trailing edge (see for example Ref. 4). For wings with 
.sharp unswept trailing edge: 

-{+1 -jt.+l e(~7)eOl')log ]~/-  ~/' [ d~/d~/' 
--1 --1 

where 

[-a~(~, Y)l. 
e(y) = L a~ J~=, '  (3) 

Y (4) 
S 

x, y, z is a rectangular co-ordinate system, with z normal to the wing plane, s is the semi-span of the 
wing  at the trailing edge. 

2.2. A Numerical Method.for Determining the Double Integral 

S"(x)S"(x') log Ix - x' [ dxdx'. 
2"17 o o 
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As mentioned in the introduction Eminton s has derived a method for calculating the double 

integral in Equation (1)for  area distributions for which the first streamwise derivative is zero at 

the tWO ends: S'(o)  = S'(1) = 0. For wings with Unswept trailing edge S'(1) ~= 0, except for wings 

with cusPed trailing edge. I t  is therefore desirable to extend Eminton 's  method to area distributions 

with S'(1) ~= 0. I t  is not necessary to consider the case S'(o)  4= 0, s ince the  assumption S'(o)  = 0 

is a requirement of slender-body theory which permits only bodies with pointed apex to be treated. 

We introduce the co-ordinate ~ by 

cos tg~ = 1 - 2x. '(5) 

The first derivative of S(x)  can be written in the form: 

co 

S ' (x )  - S'(1) v~ + Z a~ sin nt~. 
qT" ~ = j _  

Integrating this relation, we find that the area distribution is given b y : - -  

al (t9 - sin t5 cos ,9) S'(1) (sin v a - t5 cos ,.9) + ~- s ( x )  = S(o) + 

1 ~  [sin (n- 1)~ sin (n+ 1)a~ 
+g Zoa~k  -~--i -n7-1-- _1" 

S(x)  has for x = 1, i.e., t9 = w, the value S(1), if 

Therefore: 

a I - - - -  - -  S(1) - S(o) - 
77". 

s ( x )  = S(o) + s o )  - S(o) ( ~ _  sin e cos e) 
3T 

S'(1) (1 +cos  ,_9)(tg- sin tg) 
2~r 

1 oo Fsin (~- i)~ sin (~+ 1)~-] 
+ g , Z  a= L -n- - i  } ;g-f  J " 

For the double integral the following relation is obtained: 

S"(x)S"(x') log IX - x ' l d x d x '  I I = - U ~  0 0 

1 
= 2---~ [S'(1)]~ log 2 

1 '~ 1) + ~ na,~ cos n,.5 S 1) + ~ na,~ cos n,3' log I cos,.5 - cos,.5' 
• 2~- o ~=1 ~ = i  

(6) 

(7) 

(8) 

(82480) A* 

4 ~ ~ Z na~ 2. (9) 1 [S,(1)]2 log 2 + S(1) - S(o) + 4 ~=2 
7T 7 r  

1_[ rr ~ 
/1 =~r 8'(1)] ~ l o g 2 + g  E na~ ~ 

Using the Relations (3) to (5) of the Appendix and the value of a 1 from Equation (7), we obtain: 



We determine the coefficients a~ such that the function S(x), defined by Equation (8), has the 
prescribed values at x = 0, x = 1 and at N positions xi, has the prescribed derivative 3'(1) and 
is such that the integral I 1 has a min imum value for the specified conditions. We determine, therefore, 

co 

the coefficients as, aa, . . .  such that y~ na,~ ~ has a min imum value and that the equations: 
q ~ = ' 2  

1 co [sin (n-_1)8, sin (n+  1)8~] _ 

4 ~ 2 3 ~ L  n - 1  n + i  J 

S(x~) - S(o) S(1) - S(o) ( 8 e - s i n  8 i cos 8~) + 

+-~-~3'(1) (1 + c o s  8~) ( 8 ~ -  sin 8~) , (10) 

where 8~ = cos -1 (1 -~ 2x~), are satisfied for i = 1, 2 , . . .  N. A necessary condition for this is the 
existence of N constant Lagrange multipliers h a such that 

I v~v pin (n- I)8,. sin (n + 1)8;'] 
(11) 

The  constants aj are determined by inserting the au f rom Equation (11) into the system of 
Equations (10): 

1 co v v l  N [sin (_n-_l)t% _ sin (n+  1)83] [sin ( n -  1)8/ sin (n+  1)8i~ - 

s(~,)  - S(o) 3(1) - 3(o) ( S i - s i n  8i cos 83  
7/" 

3'(1) (1 + cos 8,) (8¢-  sin 8,) + -ZJ-~ 

Applying Relation (6) of the Appendix (derived in Ref. 3) we obtain the following N linear equations 

for the constants 31, A2, . . . aN: 

N [ 1 
~Z ;~j - (cos 8 i -  cos 8j) ~ 10g 1 - cos (8 i + 83. ) 

j=l g 1 cos ( 8 i - 8 , )  + 

' 1 + ~ sin 8 i sin 8~ (1 - cos 8p%) = 

S(x~) - S(o) S(1) - S(o) (8 i -  sin 8~ cos 8~) + 
~T 

+ S'(1).2~r (1, + cos 8~) (8 i -  sin 8~) 

or: 
2v [ 1 x~ + xj - 2xix j + 2 V ' { x i x ~ ( 1 - x i ) ( 1 - x i )  } 
2g;~j L -  ( x i - x y l o g  ,=,. ~ ,~ + . j  - 2x,xj - 2 v ' {~0~j (1 -~3(1  - ~ j ) }  

+ 2 (x~ + x~-  2x~xj) v ' { . ~ ( 1  - ~ )  (1 - x;)}~ = 

- ~ os-~ ( 1 - 2 ~ )  - 2(1 - * 3  v'{x,(1 -x~)  

3'(1) Ic ] + (1-x~)  o s - l ( 1 - 2 x ~ ) - 2 v ' f x , ( 1 7 x , ) } .  
"B" 

(12) 



Insert ing the a~ from Equat ion (11) into Equation (9) and applying again Relation (6) of the 
Appendix,  we obtain for the approximate value of 11 the equation: 

4[ 
/1 = 7rl [S,(1)]~ log 2 + 7r S(1)  S(o) 

N x [ 1 1 - c o s ( ~ i + # ~ )  
+ zr i=lj=lE E A~Aj - ~ (cos ~i - cos v~j) ~ log 1 - cos ( ~ -  ~ )  

i t + ~ sin vq~ sin v~(1 - cos v~ cos ~. 

= . . . .  1 [S,(1)]~ log 2 + S(1)  S(o) 
qT 7/. 

2"¢ 2V 

+ ~ ~ ~ ?,i?t~ - -~tx~- x~21og  
;=1~=~ ~, + x~ - 2x~x; - 2 ~ / { ~ ; ( 1 -  ~3 ( 1 -  ~ ) }  

+ 2@,+ x , - 2 x , x , )  V'{x, xj(1-xO(l-x~)}]. (13) 

T h e  calculation of the double integral 11 is thus  reduced to solving a system of N linear Equations, 
(12), and comput ing  a double sum of N ~ terms, Equation (13). 

With the notation: 

u, = u(x,) = _1 [eos_~(1 _ 2 x 0  - 2(1 - 2x 0 ~ /{x , (1-  x,)}] (14) 

~, = ~(x,) = _I (I -~,)[cos-~(1-2~,) - 2 V{~,(I - ~)}] 
"77" 

(15) 

&j = p(x~, xj) = 

- l ( x i - x j ) 2  log x¢ + x¢ - 2x~xj + 2 ~/{x~x~(1-x0(1-xj)} 

+ 2(x i + x~ - 2xix~) ~/{x~xj(1 - x 0 (1 - xj)} (16) 

c i = c(xi) = S(x~) - S (o)  - [S(1) - S(o)]u i + S'(1)v i (17) 

the integral 11 is given by the relation: 

/1 = ~1 [S,(1)]2 log 2 + ~r S(1) S(o)  

N N 

i = l j = l  

where the ~j are determined by the linear system of equations: 
N 

E ljpi~ = ci.  
j = l  

If  {f~j} is the inverted matrix of {p~j} the solution of Equat ion (18) is: 
N 

~ = E f~f~. 
j = l  
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(18) 

(19) 
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The final result reads: 

I 1 -  27rl flo f l  S"(x)X'(x')1°g - x' dxdx' 

= . . . .  1 [S,(1)]~ log 2 + S(1) S(o) 
7r 3T 

N 2V 

+ X Z f jcicj. (20) 
i = 1 ~ = 1  

The coefficients fij for x~ = i/20 (i = 1, 2 . . . 19) are tabulated in Ref. 3. The values o f f i  ~ are 
reproduced from Ref. 3 in Table 1. Table 2 gives the values of u~ and vi, which are required for 

calculating Q from Equation (17). The computation of the double sum is easily done on an automatic 

computer such as the DEUCE at the Royal Aircraft Establishment, for which a standard programme 
has been written. 

fl ° 2.3. Numerical Calculation of the Integral S"(x) log (1 - x ) d x .  Equation (i) for the zero-lift 

wave drag contains in addition to the double integral I 1 a single integral: 

h s'(1) f l  = -- S"(x) log (1 -x)dx .  ( 2 1 )  
7r 0 

One might think of determining 12 by means of the Fourier series for S'(x), Equation (6), and 
applying the above minimisation procedure to the sum 11 + 12 of the double integral I 1 and the 
single integral 12 (i.e., approximate the given area distribution by one which has the given values 
S(xi), the given S'(1), and which gives the minimum value of the sum/1  +/2) .  Such a procedure 
is however not possible since it leads to non-convergent infinite series in the relations between 
~ and S(x~). 

One may further think of using the Fourier series for S'(x), Equation (6), with the coefficients a n 
from Equation (11), and determine I 2 from: 

/2 = 2 [ S , ( 1 ) ] 2 1 o g 2  + S' (1)  S (1 )  S(o)  
7r qr 

03 

- s ' 0 )  X 

_ 2 [S,(1)]~ log 2 + - S ' (1)  S (1 )  - S(o)  - 
q-g q-g 

N N 

- 27rS'(1) Z X f~jv~c~. (22) 
i = 1  j = l  

However, the area distribution which approximates to the given area distribution and gives the 
minimum value of I 1 has infinitely large values of the second derivative at the points x i where the 
values of S(xi) are specified. This property of the approximating area distribution does not affect 

the accuracy of the approximate value for I 1 (being the minimum under the given conditions) but 
it may impair the accuracy of the approximate value for 12 derived from Equation (22). It is 
important that 12 should be found with sufficient accuracy since in many cases the value of I S is of 
the same order as that of I 1 but of opposite sign, so that the percentage total error of the drag 

D is much larger than the percentage error of 11 or I s. 
q 
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It  seems therefore advisable to determine Ie by a different method. I t  is sufficient to deal with 
area distributions for which the first and second derivative at the trailing edge are finite (slender 
theory is not applicable to configurations for which the second derivative at the trailing edge is 
infinite). Such area distributions can be writ ten in the form: 

S(x) = S(o) + [3S(1) - 3S(o) - S'(1)]x 2 

- [2S(1) - 2 S ( o )  - S'(1)]x 3 + AS(x) (23) 

where the f u n c t ~ - A S ( x )  and its first derivative A'S(x) are zero at x = 0 and x = 1. As a 
consequence of these properties: 

A"s(~) log (1'--~) d~ = 0 ~ 

f ~ AS(x) 
0 ( 1 - x )  ~ dx,  ( 2 4 )  

and 

12 _ S'(1)~r 3 S ( 1 )  - 3 S ( o )  - S ' ( 1 )  - 0 (1  - x )  ~ dx . ( 2 5 )  

The  integrand is finite in the whole range of integration. At x = 1: 

AS(x) 
- 3S(1) - 3S(o) - 2S'(1) + 21- ( l - x )  2 

The  integral can, therefore, be evaluated by the usual numerical methods. 

It  may be pointed out that for numerically given values of S(x) reliable values of the wave drag 
can be obtained by determining the first derivative S'(x) by graphical or numerical means and 
applying Equations (39) and (45) of the following Section with L(x)replaced  by S'(x). 

where ,, 

', 3. The Numerical Calculation of the Lift-D@endent Wave Drag According to the Not-So-Slender- 
Wing Theory of Adams and Sears 5. 3.1. The Drag Formula. Applying the so-called 'not-so-slender '  
wing theory, Adams and Sears 5 derived the following formula for the l if t-dependent wave drag: 

q = 8 - ~ o 0  

/ +L(1) flL'(x) log(1-x)dx 
o 

107)l(~' ) log [~ - ~'[  d-q d~' 
2~ -1 -1 

+[L(1)]2[~+l°g2-1°g f l s l l  ,.:___ (26) 

L(x) = e 1~(*) l(x,y)dy 
d-s(x)  

is the cross load, 
l(x, y) = - AC~(x, y) 

is the local load coefficient, 

l(7) = l(x = 1, y) 

(27) 

(28) 

~ ~ (29) 
is the load coefficient at the trailing edge, s(x) the local semi-span and s t he spa n  at the trailing edge. 

7 



In those cases where the distribution of the local total chord load 

f f~(x) = L(x) dx (30) 
0 

is known, Equations (20) and (25) can be applied, if S(x) is replaced by f,(x). (Such a case arises 
when slender-thin-wing theory is applied to design cambered wings with the attachment line along 
the leading edge. In Ref. 6 it was suggested that an estimate for the l if t-dependent wave drag of 
the wings designed by slender-thin-wing theory might be obtained by inserting the load distribution 
resulting from slender-thin-wing theory into Equation (26). Within slender theory L(x) depends 
only on the downwash distribution at the station x = const and can thus be determined by a 

simpler relation than the one for L(x).) 

3.2. A Numerical Method for Determining the Double lntegral 

l flflL'(x)L'(x')log[x-x'ldxdx'. 
2~rg 0 0 

In some cases L(x) is a numerically given function and the task is to determine numerically the 

value of 

1 f l  f l  L'(x)L'(x')log Ix -x ' ]dxdx ' .  (31) 
I a =  2~r o 

We consider L(x) distributions with L(o) = 0 and L(1) 4= 0. L(x) can be expressed in the same 

form as S'(x) in Equation (6): 

oo 

L(x) = L(1) ~ + 2~ a~ sin n~ (32) 
"/'7" ~ = 1  

where t$ is again defined by Equation (5) and 

 f:E a~ = - x) - L(1) sin n~d~. (33) 

By Equation (32) and Relations (3) to (5) of the Appendix we obtain the relation 

- 5 na~2 : "-~ ~ (34) i3 = 1 [L(1)] 2 1 o g 2 + 7 5  =1 , ; 
77" , / ' E 

which corresponds to Equation (9). 
I t  is not possible to apply a similar procedure as in Section 2.2 and determine an L(x) distribution 

which has specified values L(xi) at given points x i and which gives a minimum value of the integral 
I 3 since a non-convergent infinite series does occur if one tries such a procedure. 

We refrain therefore from using the infinite Fourier series, Equation (32), for determining the 
value of I 3. Instead we approximate L(x) by a finite Fourier series of degree N - 1 ( N  being an even 

integer) which has the specified values 

at the positions 
G = L(xA (35) 

/ZTT I -- cos t~  with t~/, (36) 
x~ - 2 = N " 



This series is given by the relation (see for example Ref. 7 ) : ~  

L(1) a 
L(@ = 

qT 

a / - 1 2 N - l (  L~)  /z) nu% sinn~. L/z. - -  ~ s i n  ,~ . 
+ ~Z--1N =1 

(37) 

By Equations (34) and (37) we obtain as an approximate value of l a : ~  

4 = _1 [L(1)F log 2 
"/T 

L / z -  - -  

1 [ L ( 1 ) ]  ~ log 2 
7g 

L(1) va)s in  nva~12 

Now 

and 

( 
N-z ( N -  1) cos Nv q - N cos ( N -  1)v ~ + 1 

I3 n cos n~ = 
~=1 2(cos v q -  1) 

cos N ( e ~ + e . )  = cos N ( e ~ - e 3  = ( - 1 ) ~ - ~  

n sin n3/z sin nu~. (38) 

so that for/z 4= v 

and for/~ = v 

sin N(tg~ + 3v) = sin N(ua/z- tg,) = 0, 

N 

n sin nua~ sin n3. 
~=I 

4 Cos ( ~ -  e~) - 1 - cos ( ~  + ~,)  - 1 

1 - ( -  1)~ -" sin vaz sin v~. 
2 (cos ~/z- cos e~) 2 

N - - 1  

Z 
~ = 1  

n sin nt~ sin nua~ 

= E g 1 - c o s n ( 2  

N ~ 
4 



Thus  

1 ; f: I 13 = - 2 ~  o 

1 
= - [ L ( 1 ) ]  ~ l o g  2 

qT 

with 

and 

Lp 

It=l v=l 

1 - ( - 1)/~-~ sin t~/, sin t~ for /~ + v 
2 N  2 (cos ~ -  cos #~)2 

1 
• 

(39) 

(40) 

(41) 

The  coefficients f ~  are tabulated in Table 3 for N = 36. 

3.3. Numerical Calculation of the Integral ~i L'(x) log ( 1 -  x) dx. Equation 
I]  U 

dependent  wave drag contains in addition to the integral/3 the term 

(26) for the lift- 

Ia = f L'(x) log(1-x)dx. 
0 

(42) 

Since we are only concerned with load distributions for which 

f l L'(x) log (1 - x )  dx can be writ ten in the form 
0 

f ( 1 L ( x ) -  L(1) dx. 1 L'(x) log (1 - x) dx = 3o 1 x 
0 

L'(1) is finite, the integral 

(43) 

The  integrand {L(x) -- L(1)}/ (1-  x) is finite in the interval 0 ~ x ~ 1 ; a t  x = 1 the integrand is 
equal to - L'(1). Therefore, the usual numerical methods for evaluating the integral can be applied. 
These require however  the knowledge of the function L(x) at positions x i = i /N at equal distances. 
For  the  evaluation of the double integral/3, we are however  using the values of L(x) at the positions 
x~ (which are not at equal intervals). It  is possible to use the same L(x~) for determining I 4. 

By means of Equation (32) and Equations (1) and (2) of the Appendix, we obtain for I 4 the 

relation: 
2 oo~ 

I 4 = - - [L(1)] 2 log 2 - L(1) Y~ ( -  1)~a~. (44) 
7/" ~=1 

With the approximate series, Equation (37), for L(x): 

2 
/4 = - - [L(1)] u log 2 

qT 

22V--I ) N - 1  
) t ~  ~ ( - 1 )  ' ~ s i n n ~ .  

~=i 

10 



Since 

and N is even 

2 V - - i  

Z 
q $ ~ i  

Therefore: 

where 

iv-1 sin ( N -  1)v ~ - sin Nt9 + sin v q 
sin m9 = 2(1 - cos v ~) 

( -  1) ~ sin nv~t, = E sin n (zr + v~t, ) 

1 - ( - 1 ) e  s in3e  
2 ) + cos ~ "  

2 
i 4 =  - - [ L ( 1 ) ]  2 1 o g z + L ( 1 )  Y~ g~ L~, 

"/7" / z = l  

[1  - ( - 1)~] sin #~ 
gz = N(1 + cos vq~,) 

The  coefficients gt, and the positions x~ are tabulated in Table 4 for N = 36. 

(45) 

(46) 

4. A Numerical Method for Determining the Double Integral f(~)f(~7') log [~/ -  ~/' [ d~ d~/'. 
- - 1  - -  

When calculating the zero-lift wave drag by Equations (1) and (2) and the l if t-dependent wave 

drag by Equation (26), we require the value of the double integral 

f+i ~+i n' (47) I 5 =  f(~/)f(~7') log [ ~ -  ld~Td~'. 

wheref(~/) is a given function. Though  in this case, the numerical methods of Refs. 1 and 2 can be 
applied, we consider here also the calculation of 15 by means of a Fourier series. We consider here 

only cases for which 

f(~7) = f ( -  ~), (48) 

and for whichf(~)  is finite (only finite values of e(~/) in Equation (2) are permissible since Equation (1) 
is derived from a small-perturbation theory; on lifting wings with attached flow the load at the leading 

edge must  be zero). 
We introduce the angular co-ordinate 9 by 

= cos ~o. (49) 
The  function 

g(~) = f(~) sin 9 (50) 

can be writ ten as a cosine series: 
oo 

g(~) = ~ by cos v~0. (51) 
v = O  

Due to the symmetry  ofg(~/), Equation (48), only terms with even values of v occur. I t  follows from 

g(~/=l)  = 0 

t h a t  
oo 

b 0 = - ~ by. (52) 
v = f l  

11 



With Equations (49) to (51) and Equations (3) to (5) of the Appendix, the integral reads: 

15 = b. cos v 9 X b~ cos/~o' log I cos ~v - cos ~' [ d9 dcp' 
0 0 0 t~=0 

f f: = bo ~ log ]cos ~ - cos q~' [ dq) dq~' 
0 

+ 2bo X b. cos v9 log [ cos ~o - cos 9' I d~0 dg' 
v = 2  0 

+ 32 b~ ~ b~, cos v~o cos/~o' log [cos 9 "  Cos ~o' ] d9 d~o' 
v = 2  /*=2 0 

q-j.2 09 ~ -  * 

= - bo%r ~ l o g  2 - ~ -  ~=2 b"~ (53) 

A comparison of this equation with the corresponding relations for I 1 and I3, Equations (9) anal (34), 
shows that for I 5 one can expect a more rapid convergence of tl~e infinite sum than for I 1 and I 3. 

Instead of using the infinite Fourier series of Equation (51), it is again appropriate to use an 
approximate finite Fourier series. (The spanwise load distribution at the trailing edge, 101 ) in 
Equation (26), behaves near ~7 = + 1 as %/(1-  ~?~) multiplied by a polynomial in ~7- I t  seems 
appropriate to approximate such a function by a finite Fourier series.) 

A finite Fourier series which has given values of an even function 

at the N + 1 positions 

g~ = g(~/~) (54) 

/LI,TF 
r//* = cos 9/,, % = - ~ ,  0 < /z ~< N (55) 

(N being an even integer) is given by the relation (see for example Ref. 8): 

2 (-~-)- r ".N-~- 
g(~) = N t  Z g~ L Z  cos v%cos  v~o + 

~=1 v=)- 2 

go ( - ) -  1 + c o s N g ]  
+ ~ ~ cos v 9 + 

,., =)- 2 

+ cos vTr cos v 9 + . 
l - v = 1  

In  the present case 

go = gN = 0 
and by Equation (48) 

ga = gn-/*- 

Thus  an approximation to g(~/) is given by: 

2V 

g(~o) = ~ b~ cos vg,  
v = 0  

1 + cos N g .  cos 

u even 

(56) 

(57) 

(58) 

(59) 

12 



where 

1 N-1 2 (N/2)-1 1 
b° = N  ~3 g ~ - N  • g~ + N g ( ~ = 0 ) '  (60) 

/z=l ~=i 

2 2V--I 

b ~ = ~  E g~c°sv% 
/ t = l  

2 2 E ' g~,cos v%'+ (-1).mg(-q 0) 
N ~,=1 

v even, 4 0, 4 N (61) 
1 N-1 

blv = - N  E ( -  1)~g# 
• t t = l  

1 2 Y~ (-1)zg~ + ( 1)N/2g(v 0) . (62) 
N /~=1 

An approximate value of 15 is thus: 
77.2 -N b 2 

_ y~ vv (63)  I 5 = - b o % r  2log2 
P 

with by from Equations (60)-(62). 

N - 2 b 2  
The sum ~ v~ could be written as a double sum: 

v = 2  72 

N - - 2  b2 4 -At--1 2V--1 N - - 2  COS P ~ / t  C0S  V~9 m 

v = 2  Y /z=l m=l v = 2  /2 

N--I .57--1 

= E E g~g,,~q,m, 
/~=i m=l 

but since there is no short formula for the sum 

N - - 2  COS n ~  

~ = 2  n 

the coefficients c ~  cannot be expressed by explicit formulae. We have therefore not determined 

numerical values of the coefficients c/,~. 
We can draw an interesting consequence of Equations (49) to (51). It follows from Equations 

(49) to (51) that 

? f: f(~)a~l = f(~) sin q~a v = ~rb0. (64) 
--1 

For the value of 

log lv - v' I dv dw' 
k = l o g 2 -  -1 -1 

[e 
+l -1 ~, (65) 

J_ / ( v )dvJ  
we obtain by Equations (53) and (64):-- 

F ~ bv~q I 
k = 2 log 2 + ] E - - 1 / 2 b o  ~ (66) 

L,,=~ v J I  

2 log 2 is therefore a lower bound for k. 

13 
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A P P E N D I X  

List of Formulae Used 

f " log  [cos # - cos  ~9' [ d 3 '  = - 7r log  2 
o 

f : n c o s n ~ g t l o g l c o s e - c o s e ' l d e ' =  - ~- cos  n~  

f2;21o  . I c o s ~  c o s ~ ' I d ~ d ~ '  = - I t  2 l o g 2  

f ~  f ~  n cos mg' log lcos a - cos v~' l dtgdtg' = O 
o o 

( 0  f o r  m + n 

f ;  nm cos nu ~ cos  mu ~' log  [cos ~ - cos  8' [ d~ du a' = 7r~n _ 
o o --  - ~ - ~ o r  m = n 

~o 1 r s i n ( n - - 1 ) v ~ ,  s i n ( n + l ) ~ 9 , 7  r s i n ( n - 1 ) t g j  s i n ( n + l ) t g j - 7  

~F,L -~-f ~ ¥ f  JL- f f - i  - ~-¥i :1 

1 (cos , ~ -  cos e~)~ log 1 - ~os (e~ +,~j)  
= - ~ 1 - c o s  ( ~ i - ~ j )  

+ s in  ~ i  s in  ~9i (1 - cos  a ,  cos  v~) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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TABLE 1 

Coefficients f i  j in Equation (20 ) fo r  x i = i/20 ( f rom Ref. 3) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

373.95407 

--232.67229 

59.11797 

- 6.21210 

1.71557 

- 0.05310 

0.13417 

0.08192 

0.04876 

- 0.09495 

0.10798 

- 0.01183 

0.03950 

-- 0.06627 

0.03265 

0.01205 

0.04012 

- -  0.09825 

0.09212 

349.20580 

-228 .71539  

58.56236 

- 6.12524 

1.64837 

0.04282 

0.06019 

0.05356 

0.11674 

- 0.07223 

0.06499 

~- 0.07615 

0.11247 

! -  0.04182 

0.00956 

- 0.04716 

0.10347 

348.59266 

-228.68881 

58.54661 

- 6.01561 

1.52228 

0.10337 

0.06568 

0.06586 

0.03153 

- 0.01238 

0.10275 

- 0.11227 

0.09922 

- 0.06664 

0.06888 

4 

348.65889 

-228 .65259  

58.41615 

- 5.93491 

1.52384 

0.10359 

0.02471 

0.11296 

0.01928 

- 0.01667 

0.08243 

- 0.08761 

0.11193 

348.53644 

-228 .51462  

58.37679 

- 5-96591 

1.52772 

0.10920 

0.07566 

0.05718 

- 0.00419 

0.05096 

0.04439 

348.44872 

- 2 2 8 . 5 3 1 1 4  

58.45101 

-- 6.01177 

1 .55578 

0.04202 

0.10362 

0.13977 

- -  0.08652 

6 7 

348.54097 

- 2 2 8 . 6 3 8 1 8  

58.49852 

- 6.01087 

1.57587 

0.04774 

0-03849 

348.59256 

-228 .62191  

58.47954 

- 6.03869 

1.59750 

348.58151 

-228 .66922  

58.53355 

10 
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T A B L E  2 

Coefficients u, and v~ in Eqvation (17)for x i = i/20 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

0.018693 

0.052044 

O.094060 

0-142378 

0.195501 

0-252316 

0.311919 

0.373530 

O.436444 

0.500000 

0-563556 

0-626470 

0-688081 

0.747684 

0.804499 

0.857622 

0.905940 

0.947956 

0.981307 

0.004577 

0.012462 

0.021985 

0.032415 

0.043251 

0.054092 

0.064587 

0.074416 

0.083271 

0.090845 

0-096826 

0-100886 

0-102668 

0.101776 

0-097751 

0.090037 

0.077925 

0.060918 

0.035884 
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TABLE 3 

Coefficients N2 f~  in Equation ( 3 9 ) f o r  N = 3 6  fm= fvl, = fN-iz, N-~ 

1 

2 - - 1 1 6 : ~ 2 1 7 4 8  

3 0 

4 - -  9 " 3 3 7 2 4 7  

5 0 

6 - -  2 . 5 7 1 8 6 9  

7 0 

8 - -  1 . 0 5 7 6 4 7  

9 0 

10 - -  0 . 5 3 4 5 6 5  

I I  0 

12 - -  0 . 3 0 6 5 6 5  

13 0 

14 - -  0 " 1 9 1 3 7 9  

1 5  0 

16 - -  0 " 1 2 6 8 6 0  

17 0 

18 - -  0"087823  

19 0 

20 - -  0 "062718  

21 0 

22 - -  0 -045733  

23 0 

24 - -  0 . 0 3 3 7 1 7  

25 0 

26 - -  0 . 0 2 4 8 5 4  

27 0 

28 - -  0 . 0 1 8 0 4 0  

29 0 

30 - -  0 . 0 1 2 5 6 6  

31 0 

32 - -  0 . 0 0 7 9 5 4  

33 0 

34 - -  0 . 0 0 3 8 5 7  

3 5  0 

1 

3 2 4 . 0 0 0 0 0 0  

2 

3 2 4 . 0 0 0 0 0 0  

- - 1 2 6 . 0 5 8 9 9 7  

0 

- -  1 1 . 9 0 9 1 1 7  

0 

- -  3 . 6 2 9 5 1 7  

0 

- -  1 . 5 9 2 2 1 0  

0 

- -  0 . 8 4 1 1 2 9  

0 

- -  0 . 4 9 7 9 4 4  

0 

- -  0 . 3 1 8 2 3 9  

0 

- -  0 . 2 1 4 6 8 3  

0 

- -  0 " 1 5 0 5 4 1  

0 

- -  0 . 1 0 8 4 5 1  

0 

- -  0 . 0 7 9 4 5 0  

0 

- -  0 - 0 5 8 5 7 1  

0 

- -  0 . 0 4 2 8 9 4  

0 

- -  0 - 0 3 0 6 0 6  

0 

- -  0 . 0 2 0 5 2 0  

0 

- -  0 . 0 1 1 8 1 1  

0 

3 2 4 . 0 0 0 0 0 0  

- - 1 2 8 . 6 3 0 8 6 6  

0 

- -  1 2 . 9 6 6 7 6 3  

0 

- -  4 . 1 6 4 0 8 0  

0 

- -  1 . 8 9 8 7 7 5  

0 

- -  1 - 0 3 2 5 0 8  

0 

- -  0 . 6 2 4 8 0 4  

0 

- -  0 - 4 0 6 0 6 3  

0 

- -  0 . 2 7 7 4 0 1  

0 

0 . 1 9 6 2 7 4  

0 

- -  0 . 1 4 2 1 6 8  

0 

- -  0 - 1 0 4 3 0 4  

0 

- -  0 . 0 7 6 6 1 1  

0 

- -  0 . 0 5 5 4 6 1  

0 

- -  0 - 0 3 8 5 6 0  

0 

- -  0 . 0 2 4 3 7 7  

0 

3 2 4 - 0 0 0 0 0 0  

- - 1 2 9 . 6 8 8 5 1 2  

0 

- -  1 3 , 5 0 1 3 2 7  

0 

- -  4 . 4 7 0 6 4 5  

0 

- -  2 . 0 9 0 i 4 6  

0 

- 1 . 1 5 9 3 6 8  

0 

- 0 . 7 1 2 6 2 7  

0 

- 0 . 4 6 8 7 8 1  

0 

- 0 . 3 2 3 1 3 5 .  

0 

- 0 . 2 2 9 9 9 1  

0 

0 . 1 6 7 0 2 3  

0 

- -  0 . 1 2 2 3 4 4  

0 

- -  0 . 0 8 9 1 7 7  

0 

- -  0 . 0 6 3 4 1 4  

0 

- -  0 . 0 4 2 4 1 7  

0 

324,.909000 
- - 1 3 0 " 2 2 3 0 7 6  

0 

- -  1 3 " 8 0 7 8 9 2  

0 

- -  4 " 6 6 2 0 2 4  

O .  

- -  2 " 2 1 7 0 1 5  

0 

- -  1 . 2 4 7 1 9 1  

0 

- -  0 . 7 7 5 3 4 5  

0 

- -  0 . 5 1 4 5 1 4  

0 

- -  0 . 3 5 6 8 5 2  

3 2 4 " 0 0 0 0 0 0  

- - 1 3 0 " 5 2 9 6 4 1  

0 

- -  1 3 " 9 9 9 2 7 1  

0 

- -  4 " 7 8 8 8 8 4  

0 

- -  2 " 3 0 4 8 3 8  

0 

- -  1 " 3 0 9 9 0 9  

0 

- -  0 - 8 2 1 0 7 8  

0 

- -  0 - 5 4 8 2 3 1  

0 

3 2 4 " 0 0 0 0 0 0  

- - 1 3 0 . 7 2 1 0 2 0  

0 

- -  1 4 " 1 2 6 1 3 2  

0 

- -  4 " 8 7 6 7 0 7  

0 

- -  2 " 3 6 7 5 5 6  

0 

- -  1 " 3 5 5 6 4 2  

0 

- -  0 " 8 5 4 7 9 6  

0 

- -  0 " 5 7 3 0 8 5  

3 2 4 " 0 0 0 0 0 0  

- - 1 3 0 " 8 4 7 8 8 1  

0 

- -  1 4 ' 2 1 3 9 5 4  

0 

- -  4 " 9 3 9 4 2 5  

0 

- -  2 " 4 1 3 2 8 9  

0 

- -  1 " 3 8 9 3 6 6  

0 

- -  0 . 8 7 9 6 5 0  

0 

3 2 4 - 0 0 0 0 0 0  

- - 1 3 0 " 9 3 5 7 0 3  

0 

~- 1 4 " 2 7 6 6 7 2  

0 

- -  4 - 9 8 5 1 5 8  

0 

- -  2 " 4 4 7 0 0 6  

0 

- -  1 " 4 1 4 2 1 4  

0 

- -  0 - 8 9 7 6 9 1  

10 

3 2 4 " 0 0 0 0 0 0  

- - 1 3 0 " 9 9 8 4 2 2  

0 

- -  1 4 ' 3 2 2 4 0 5  

0 

- -  5 " 0 1 8 8 7 5  

0 

- -  2 ' 4 7 1 8 5 1  

0 

- -  1 " 4 3 2 2 5 8  

0 

11 

0 

- -  0 " 2 5 4 8 4 6  

0 

- -  0 " 1 8 5 0 6 3  

0 

- -  0 " 1 3 4 9 1 1  

0 

- -  0 - 0 9 7 1 3 2  

0 

- -  0 " 0 6 7 2 7 1  

0 

- -  0 " 3 8 1 7 0 6  

0 

- -  0 " 2 7 2 8 8 6  

0 

- -  0 " 1 9 7 6 2 9  

0 

- -  0 - 1 4 2 8 6 5  

0 

- -  0 " 1 0 0 9 8 8  

0 

0 

- -  0 " 3 9 9 7 4 6  

0 

- -  0 " 2 8 5 4 5 1  

0 

- -  0 " 2 0 5 5 8 3  

0 

- -  0 " 1 4 6 7 2 1  

0 

- -  0 - 5 9 1 1 2 5  

0 

- -  0 - 4 1 2 3 1 3  

0 

- -  0 - 2 9 3 4 0 6  

0 

- -  O" 2 0 9 4 4 0  

0 

0 

- -  0 - 6 0 3 6 9 1  

0 

- -  0 - 4 2 0 2 6 7  

0 

- -  0 " 2 9 7 2 6 3  

0 

- -  0 " 9 1 0 2 5 6  

0 

-7 0 " 6 1 1 6 4 5  

0 

- -  0 " 4 2 4 1 2 3  

0 

3 2 4 " 0 0 0 0 0 0  

- - 1 3 1 " 0 4 4 1 5 4  

0 

- -  1 4 - 3 5 6 1 2 3  

0 

- -  5 - 0 4 3 7 3 0  

0 

- -  2 " 4 8 9 9 0 0  

0 

- -  1 " 4 4 4 8 2 0  

0 

- -  0 " 9 1 8 2 1 0  

0 

- -  0 " 6 1 5 5 0 2  

0 

12 

3 2 4 " 0 0 0 0 0 0  

- - 1 3 1 - 0 7 7 8 7 1  

0 

- -  1 4 " 3 8 0 9 7 7  

0 

- -  5 " 0 6 1 7 6 9  

0 

- -  2 - 5 0 2 4 6 6  

0 

- -  1 " 4 5 2 7 7 4  

0 

- -  0 " 9 2 2 0 6 7  

0 

1 3  

3 2 4 " 0 0 0 0 0 0  

- - 1 3 1 " 1 0 2 7 2 6  

0 

- -  1 4 - 3 9 9 0 1 7  

0 

- -  5 - 0 7 4 3 3 6  

0 

- -  2 " 5 1 0 4 2 0  

0 

- -  1 " 4 5 6 6 3 0  

0 

14 

3 2 4 " 0 0 0 0 0 0  

- - 1 3 1 - 1 2 0 7 6 6  

0 

- -  1 4 " 4 1 1 5 8 3  

0 

- -  5 " 0 8 2 2 9 0  

0 

- -  2 " 5 1 4 2 7 7  

0 

15 

3 2 4 " 0 0 0 0 0 0  

- - 1 3 1 " 1 3 3 3 2 4  

0 

- -  1 4 " 4 1 9 5 3 7  

0 

- -  5 " 0 8 6 1 4 6  

0 

16 17 

3 2 4 . 0 0 0 0 0 0  

- 1 3 1 . 1 4 1 2 8 6  3 2 4 . 0 0 0 0 0 0  

0 - - 1 3 1 " 1 4 5 1 4 3  

- -  1 4 " 4 2 3 3 9 4  0 

0 

18 

3 2 4 . 0 0 0 0 0 0  
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T A B L E  4 

<82480) Wt. 661991 K.5 

Coefficients g~ in Equation (45) and Positions x~for N = 36 

/z 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

"21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

X# 

0.00190 

0.00760 

0-01704 ' 

0-03015 

0-04685 

0-06699 

0.09042 

0.11698 

0.14645 

0.17861 

0.21560 

0.25000 

0.28869 

0.32899 

0.37059 

0-41318 

0-45642 

0-50000 

0-54358 

0-58682 

0.62941 

0.67101 

0.71131 

0.75000 

0.78440 

0.82139 

0.85355 

0-88302 

0.96958 

0.93301 

0.95315 

0-96985 

0.98296 

0.99240 

0-99810 

g~ 

0.002426 

0 

0-007314 

0 

0.012316 

0 

• 0.017517 

0 

0.023012 

0 

0.028920 

0 

0-035393 

0 

0-042629 

0 

O- 050907 

0 

0.060628 

0 

0.072401 

0 

0.087205 

0 

0.106721 

0 

0-134123 

0 

0-176200 

0 

0.250595 

0 

0-421986 

0 

1.272431 
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