BEDFORD.

MINISTRY OF AVIATION

AERONAUTICAL RESEARCH COUNCIL REPORTS AND MEMORANDA

Numerical Methods for Calculating the Zero-Lift Wave Drag and the Lift-Dependent Wave Drag of Slender Wings

By J. Weber

LONDON: HER MAJESTY'S STATIONERY OFFICE

Numerical Methods for Calculating the Zero-Lift Wave Drag and the Lift-Dependent Wave Drag of Slender Wings

By J. Weber
Communicated by the Deputy Controller Aircraft (Research and Development)... Ministry of Aviation
Reports and Memoranda No. 3221*
December, 1959

Sumnary. Numerical methods are given for calculating the double integral

$$
\int_{a}^{b} \int_{a}^{b} F(x) F\left(x^{\prime}\right) \log \left|x-x^{\prime}\right| d x d x^{\prime}
$$

for the three cases:
(i) $F(x)$ is given numerically,
(ii) $F(x)$ is the first derivative of a numerically given function,
(iii) $F(x)$ is the second derivative $S^{\prime \prime}(x)$ of a numerically given function $S(x)$.

For the third case the method of Eminton ${ }^{3}$ is extended to functions $S(x)$ for which the first derivative at $x=b$ is not zero. For the other cases the functions are approximated by finite Fourier series which have given. values at certain fixed points.

1. Introduction. The calculation of the wave drag due to volume as well as that due to lift requires the evaluation of double integrals of the form

$$
\int_{a}^{b} \int_{a}^{b} F(x) F\left(x^{\prime}\right) \log \left|x-x^{\prime}\right| d x d x^{\prime}
$$

Since in many practical cases the function $F(x)$ is not given in analytical form the integration cannot be performed explicitly but numerical methods must be applied.

There occur three different cases:
(i) The function $F(x)$ is given numerically.
(ii) $F(x)$ is the first derivative $L^{\prime}(x)$ of a numerically given function $L(x)$.
(iii) $F(x)$ is the second derivative $S^{\prime \prime}(x)$ of a numerically given function $S(x)$.

There exist several numerical methods to deal with case (i) (see for example Refs. 1 and 2). The application of these methods to the third case requires the determination of the second derivative of the given function. Due to the inevitable inaccuracy of the second derivative when determined by numerical or graphical methods, this procedure is often not appropriate.

[^0]In the third case, it seems more advisable to apply the technique of Eminton ${ }^{3}$. The given function $S(x)$ is approximated by one which has the given values $S\left(x_{i}\right)$ at certain fixed positions x_{i} and which is chosen so as to make the double integral a minimum. To apply this method $S\left(x_{i}\right)$ need be known less accurately and at a considerably smaller number of positions x_{i} than for the direct application of the numerical techniques developed for case (i). Eminton has treated only cases for which the first derivatives of $S(x)$ at the ends of the range of integration $x=a$ and $x=b$ are zero. In this report, we extend the method to cases for which $S^{\prime}(b) \neq 0$; an extension to $S^{\prime}(a) \neq 0$ is not needed for slender configurations.

In cases (i) and (ii) a procedure similar to that in case (iii) is not possible. In case (ii) we approximate $L(x)$ by a finite Fourier series which has the given values $L\left(x_{\mu}\right)$ at fixed points x_{μ} and express the double integral as a double sum of the products $L\left(x_{\mu}\right) L\left(x_{\nu}\right)$ multiplied by fixed coefficients $f_{l v}$.

Though in case (i) the method of Ref. 1 is directly applicable, we derive another formula by means of a Fourier analysis of $F(x)$ since this seems to be more appropriate in certain cases.
2. The Numerical Calculation of the Zero-Lift Wave Drag According to Slender-Body Theory. 2.1. The Drag Formula. For slender bodies with a pointed apex, the wave drag due to volume is given by the relation (see for example Ref. 4):

$$
\begin{align*}
\frac{D}{q}= & -\frac{1}{2 \pi} \int_{0}^{1} \int_{0}^{1} S^{\prime \prime}(x) S^{\prime \prime}\left(x^{\prime}\right) \log \left|x-x^{\prime}\right| d x d x^{\prime} \\
& +\frac{S^{\prime}(1)}{\pi} \int_{0}^{1} S^{\prime \prime}(x) \log (1-x) d x \\
& +\frac{\left[S^{\prime}(1)\right]^{2}}{2 \pi}[k-\log \beta s] . \tag{1}
\end{align*}
$$

The x-axis is taken in the direction of the free stream and the body length is taken as unity. $S(x)$ is the cross sectional area in the plane $x=$ const; $S^{\prime}(x)$ and $S^{\prime \prime}(x)$ are the first and second derivatives of $S(x)$ with respect to x.
k depends only on the geometry near the trailing edge (see for example Ref. 4). For wings with sharp unswept trailing edge:

$$
\begin{equation*}
k=\log 2-\frac{\int_{-1}^{+1} \int_{-1}^{+1} \epsilon(\eta) \epsilon\left(\eta^{\prime}\right) \log \left|\eta-\eta^{\prime}\right| d \eta d \eta^{\prime}}{\left[\int_{-1}^{+1} \epsilon(\eta) d \eta\right]^{2}} \tag{2}
\end{equation*}
$$

where

$$
\begin{align*}
\epsilon(y) & =\left[\frac{\partial z(x, y)}{\partial x}\right]_{x=1} \tag{3}\\
\eta & =\frac{y}{s} . \tag{4}
\end{align*}
$$

x, y, z is a rectangular co-ordinate system, with z normal to the wing plane. s is the semi-span of the wing at the trailing edge.

2.2. A Numerical Method for Determining the Double Integral

$$
-\frac{1}{2 \pi} \int_{0}^{1} \int_{0}^{1} S^{\prime \prime}(x) S^{\prime \prime}\left(x^{\prime}\right) \log \left|x-x^{\prime}\right| d x d x^{\prime}
$$

As mentioned in the introduction Eminton ${ }^{3}$ has derived a method for calculating the double integral in Equation (1) for area distributions for which the first streamwise derivative is zero at the two ends: $S^{\prime}(o)=S^{\prime}(1)=0$. For wings with unswept trailing edge $S^{\prime}(1) \neq 0$, except for wings with cusped trailing edge. It is therefore desirable to extend Eminton's method to area distributions with $S^{\prime}(1) \neq 0$. It is not necessary to consider the case $S^{\prime}(o) \neq 0$, since the assumption $S^{\prime}(o)=0$ is a requirement of slender-body theory which permits only bodies with pointed apex to be treated.

We introduce the co-ordinate ϑ by

$$
\begin{equation*}
\cos \vartheta=1-2 x \tag{5}
\end{equation*}
$$

The first derivative of $S(x)$ can be written in the form:

$$
\begin{equation*}
S^{\prime}(x)=\frac{S^{\prime}(1)}{\pi} \vartheta+\sum_{n=1}^{\infty} a_{n} \sin n \vartheta \tag{6}
\end{equation*}
$$

Integrating this relation, we find that the area distribution is given by:-

$$
\begin{aligned}
S(x)= & S(0)+\frac{S^{\prime}(1)}{2 \pi}(\sin \vartheta-\vartheta \cos \vartheta)+\frac{a_{1}}{4}(\vartheta-\sin \vartheta \cos \vartheta) \\
& +\frac{1}{4} \sum_{n=2}^{\infty} a_{n}\left[\frac{\sin (n-1) \vartheta}{n-1}-\frac{\sin (n+1) \vartheta}{n+1}\right]
\end{aligned}
$$

.$S(x)$ has for $x=1$, i.e., $\vartheta=\pi$, the value $S(1)$, if

$$
\begin{equation*}
a_{1}=\frac{4}{\pi}\left[S(1)-S(o)-\frac{S^{\prime}(1)}{2}\right] \tag{7}
\end{equation*}
$$

Therefore:

$$
\begin{align*}
S(x)= & S(o)+\frac{S(1)-S(o)}{\pi}(\vartheta-\sin \vartheta \cos \vartheta) \\
& -\frac{S^{\prime}(1)}{2 \pi}(1+\cos \vartheta)(\vartheta-\sin \vartheta) \\
& +\frac{1}{4} \sum_{n=2}^{\infty} a_{n}\left[\frac{\sin (n-1) \vartheta}{n-1}-\frac{\sin (n+1) \vartheta}{n+1}\right] \tag{8}
\end{align*}
$$

For the double integral the following relation is obtained:

$$
\begin{aligned}
I_{1}= & -\frac{1}{2 \pi} \cdot \int_{0}^{1} \int_{0}^{1} S^{\prime \prime}(x) S^{\prime \prime}\left(x^{\prime}\right) \log \left|x-x^{\prime}\right| d x d x^{\prime} \\
= & \frac{1}{2 \pi}\left[S^{\prime}(1)\right]^{2} \log 2 \\
& -\frac{1}{2 \pi} \int_{0}^{\pi} \int_{0}^{\pi}\left[\frac{S^{\prime}(1)}{\pi}+\sum_{n=1}^{\infty} n a_{n} \cos n \vartheta\right]\left[\frac{S^{\prime}(1)}{\pi}+\sum_{n=1}^{\infty} n a_{n} \cos n \vartheta^{\prime}\right] \log \left|\cos \vartheta-\cos \vartheta^{\prime}\right| d \vartheta^{\prime} d \vartheta^{\prime} .
\end{aligned}
$$

Using the Relations (3) to (5) of the Appendix and the value of a_{1} from Equation (7), we obtain:

$$
\begin{align*}
I_{1} & =\frac{1}{\pi}\left[S^{\prime}(1)\right]^{2} \log 2+\frac{\pi}{4} \sum_{n=1}^{\infty} n a_{n}^{2} \\
& =\frac{1}{\pi}\left[S^{\prime}(1)\right]^{2} \log 2+\frac{4}{\pi}\left[S(1)-S(o)-\frac{S^{\prime}(1)}{2}\right]^{2}+\frac{\pi}{4} \sum_{n=2}^{\infty} n a_{n}^{2} \tag{9}
\end{align*}
$$

We determine the coefficients a_{n} such that the function $S(x)$, defined by Equation (8), has the prescribed values at $x=0, x=1$ and at N positions x_{i}, has the prescribed derivative $S^{\prime \prime}(1)$ and is such that the integral I_{1} has a minimum value for the specified conditions. We determine, therefore, the coefficients a_{2}, a_{3}, \ldots such that $\sum_{n=2}^{\infty} n a_{n}{ }^{2}$ has a minimum value and that the equations:

$$
\begin{align*}
\frac{1}{4} \sum_{n=2}^{\infty} a_{n}\left[\frac{\sin (n-1) \vartheta_{i}}{n-1}\right. & \left.-\frac{\sin (n+1) \vartheta_{i}}{n+1}\right]= \\
& S\left(x_{i}\right)-S(o)-\frac{S(1)-S(o)}{\pi}\left(\vartheta_{i}-\sin \vartheta_{i} \cos \vartheta_{i}\right)+ \\
& +\frac{S^{\prime}(1)}{2 \pi}\left(1+\cos \vartheta_{i}\right)\left(\vartheta_{i}-\sin \vartheta_{i}\right) \tag{10}
\end{align*}
$$

where $\vartheta_{i}=\cos ^{-1}\left(1-2 x_{i}\right)$, are satisfied for $i=1,2, \ldots N$. A necessary condition for this is the existence of N constant Lagrange multipliers λ_{j} such that

$$
\begin{equation*}
a_{n}=\frac{1}{n} \sum_{j=1}^{N} \lambda_{j}\left[\frac{\sin (n-1) \vartheta_{j}}{n-1}-\frac{\sin (n+1) \vartheta_{j}}{n+1}\right] . \tag{11}
\end{equation*}
$$

The constants λ_{j} are determined by inserting the a_{n} from Equation (11) into the system of Equations (10):

$$
\begin{gathered}
\frac{1}{4} \sum_{n=2}^{\infty} \frac{1}{n} \sum_{j=1}^{N} \lambda_{j}\left[\frac{\sin (n-1) \vartheta_{j}}{n-1}-\frac{\sin (n+1) \vartheta_{j}}{n+1}\right] \cdot\left[\frac{\sin (n-1) \vartheta_{i}}{n-1}-\frac{\sin (n+1) \vartheta_{i}}{n+1}\right]= \\
S\left(x_{i}\right)-S(o)-\frac{S(1)-S(o)}{\pi}\left(\vartheta_{i}-\sin \vartheta_{i} \cos \vartheta_{i}\right) \\
+\frac{S^{\prime}(1)}{2 \pi}\left(1+\cos \vartheta_{i}\right)\left(\vartheta_{i}-\sin \vartheta_{i}\right)
\end{gathered}
$$

Applying Relation (6) of the Appendix (derived in Ref. 3) we obtain the following N linear equations for the constants $\lambda_{1}, \lambda_{2}, \ldots \lambda_{N}$:

$$
\begin{aligned}
& \sum_{j=1}^{N} \lambda_{j}\left[-\frac{1}{8}\left(\cos \vartheta_{i}-\cos \vartheta_{j}\right)^{2} \log \frac{1-\cos \left(\vartheta_{i}+\vartheta_{j}\right)}{1-\cos \left(\vartheta_{i}-\vartheta_{j}\right)}+\right. \\
& \left.+\frac{1}{4} \sin \vartheta_{i} \sin \vartheta_{j}\left(1-\cos \vartheta_{i} \vartheta_{j}\right)\right]= \\
& S\left(x_{i}\right)-S(o)-\frac{S(1)-S(o)}{\pi}\left(\vartheta_{i}-\sin \vartheta_{i} \cos \vartheta_{i}\right)+ \\
& +\frac{S^{\prime}(1)}{2 \pi}\left(1+\cos \vartheta_{i}\right)\left(\vartheta_{i}-\sin \vartheta_{i}\right)
\end{aligned}
$$

or:

$$
\begin{align*}
\sum_{j=1}^{N} \lambda_{j}[- & \frac{1}{2}\left(x_{i}-x_{j}\right)^{2} \log \frac{x_{i}+x_{j}-2 x_{i} x_{j}+2 \sqrt{ }\left\{x_{i} x_{j}\left(1-x_{i}\right)\left(1-x_{j}\right)\right\}}{x_{i}+x_{j}-2 x_{i} x_{j}-2 \sqrt{ }\left\{x_{i} x_{j}\left(1-x_{i}\right)\left(1-x_{j}\right)\right\}} \\
& \left.+2\left(x_{i}+x_{j}-2 x_{i} x_{j}\right) \sqrt{ }\left\{x_{i} x_{j}\left(1-x_{i}\right)\left(1-x_{j}\right)\right\}\right]= \\
S\left(x_{i}\right) & -S(o)-\frac{S(1)-S(o)}{\pi}\left[\cos ^{-1}\left(1-2 x_{i}\right)-2\left(1-x_{i}\right) \sqrt{ }\left\{x_{i}\left(1-x_{i}\right)\right\}\right] \\
& +\frac{S^{\prime}(1)}{\pi}\left(1-x_{i}\right)\left[\cos ^{-1}\left(1-2 x_{i}\right)-2 \sqrt{ }\left\{x_{i}\left(1-x_{i}\right)\right\}\right] . \tag{12}
\end{align*}
$$

Inserting the a_{n} from Equation (11) into Equation (9) and applying again Relation (6) of the Appendix, we obtain for the approximate value of I_{1} the equation:

$$
\begin{align*}
I_{1}= & \frac{1}{\pi}\left[S^{\prime}(1)\right]^{2} \log 2+\frac{4}{\pi}\left[S(1)-S(o)-\frac{S^{\prime}(1)}{2}\right]^{2} \\
& +\pi \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_{i} \lambda_{j}\left[-\frac{1}{8}\left(\cos \vartheta_{i}-\cos \vartheta_{j}\right)^{2} \log \frac{1-\cos \left(\vartheta_{i}+\vartheta_{j}\right)}{1-\cos \left(\vartheta_{i}-\vartheta_{j}\right)}\right. \\
& \left.+\frac{1}{4} \sin \vartheta_{i} \sin \vartheta_{j}\left(1-\cos \vartheta_{i} \cos \vartheta_{j}\right)\right] \\
= & \frac{1}{\pi}\left[S^{\prime}(1)\right]^{2} \log 2+\frac{4}{\pi}\left[S(1)-S(o)-\frac{S^{\prime}(1)}{2}\right]^{2} \\
& +\pi \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_{i} \lambda_{j}\left[-\frac{1}{2}\left(x_{i}-x_{j}\right)^{2} \log \frac{x_{i}+x_{j}-2 x_{i} x_{j}+2 \sqrt{ }\left\{x_{i} x_{j}\left(1-x_{i}\right)\left(1-x_{j}\right)\right\}}{x_{i}+x_{j}-2 x_{i} x_{j}-2 \sqrt{ }\left\{x_{i} x_{j}\left(1-x_{i}\right)\left(1-x_{j}\right)\right\}}\right. \\
& \left.+2\left(x_{i}+x_{j}-2 x_{i} x_{j}\right) \sqrt{ }\left\{x_{i} x_{j}\left(1-x_{i}\right)\left(1-x_{j}\right)\right\}\right] . \tag{13}
\end{align*}
$$

The calculation of the double integral I_{1} is thus reduced to solving a system of N linear Equations, (12), and computing a double sum of N^{2} terms, Equation (13).

With the notation:

$$
\begin{align*}
u_{i}= & u\left(x_{i}\right)=\frac{1}{\pi}\left[\cos ^{-1}\left(1-2 x_{i}\right)-2\left(1-2 x_{i}\right) \sqrt{ }\left\{x_{i}\left(1-x_{i}\right)\right\}\right] \tag{14}\\
v_{i}= & v\left(x_{i}\right)=\frac{1}{\pi}\left(1-x_{i}\right)\left[\cos ^{-1}\left(1-2 x_{i}\right)-2 \sqrt{ }\left\{x_{i}\left(1-x_{i}\right)\right\}\right] \tag{15}\\
p_{i j}= & p\left(x_{i}, x_{j}\right)= \\
& -\frac{1}{2}\left(x_{i}-x_{j}\right)^{2} \log \frac{x_{i}+x_{j}-2 x_{i} x_{j}+2 \sqrt{ }\left\{x_{i} x_{j}\left(1-x_{i}\right)\left(1-x_{j}\right)\right\}}{x_{i}+x_{j}-2 x_{i} x_{j}-2 \sqrt{ }\left\{x_{i} x_{j}\left(1-x_{i}\right)\left(1-x_{j}\right)\right\}} \\
& +2\left(x_{i}+x_{j}-2 x_{i} x_{j}\right) \sqrt{ }\left\{x_{i} x_{j}\left(1-x_{i}\right)\left(1-x_{j}\right)\right\} \tag{16}\\
c_{i}= & c\left(x_{i}\right)=S\left(x_{i}\right)-S(o)-[S(1)-S(o)] u_{i}+S^{\prime}(1) v_{i} \tag{17}
\end{align*}
$$

the integral I_{1} is given by the relation:

$$
\begin{aligned}
I_{1}= & \frac{1}{\pi}\left[S^{\prime}(1)\right]^{2} \log 2+\frac{4}{\pi}\left[S(1)-S(o)-\frac{S^{\prime}(1)}{2}\right]^{2} \\
& +\pi \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_{i} \lambda_{j} p_{i j},
\end{aligned}
$$

where the λ_{j} are determined by the linear system of equations:

$$
\begin{equation*}
\sum_{j=1}^{N} \lambda_{j} p_{i j}=c_{i} \tag{18}
\end{equation*}
$$

If $\left\{f_{i j}\right\}$ is the inverted matrix of $\left\{p_{i j}\right\}$ the solution of Equation (18) is:

$$
\begin{equation*}
\lambda_{j}=\sum_{j=1}^{N} f_{i j} c_{i} . \tag{19}
\end{equation*}
$$

The final result reads:

$$
\begin{align*}
X_{1}= & -\frac{1}{2 \pi} \int_{0}^{1} \int_{0}^{1} S^{\prime \prime}(x) S^{\prime \prime}\left(x^{\prime}\right) \log \left|x-x^{\prime}\right| d x d x^{\prime} \\
= & \frac{1}{\pi}\left[S^{\prime}(1)\right]^{2} \log 2+\frac{4}{\pi}\left[S(1)-S(o)-\frac{S^{\prime}(1)}{2}\right]^{2} \\
& +\pi \sum_{i=1}^{N} \sum_{j=1}^{N} f_{i j} c_{i} c_{j} . \tag{20}
\end{align*}
$$

The coefficients $f_{i j}$ for $x_{i}=i / 20(i=1,2 \ldots 19)$ are tabulated in Ref. 3. The values of $f_{i j}$ are reproduced from Ref. 3 in Table 1. Table 2 gives the values of u_{i} and v_{i}, which are required for calculating c_{i} from Equation (17). The computation of the double sum is easily done on an automatic computer such as the DEUCE at the Royal Aircraft Establishment, for which a standard programme has been written.
2.3. Numerical Calculation of the Integral $\int_{0}^{1} S^{\prime \prime}(x) \log (1-x) d x$. Equation (1) for the zero-lift wave drag contains in addition to the double integral I_{1} a single integral:

$$
\begin{equation*}
I_{2}=\frac{S^{\prime}(1)}{\pi} \int_{0}^{1} S^{\prime \prime}(x) \log (1-x) d x \tag{21}
\end{equation*}
$$

One might think of determining I_{2} by means of the Fourier series for $S^{\prime}(x)$, Equation (6), and applying the above minimisation procedure to the sum $I_{1}+I_{2}$ of the double integral I_{1} and the single integral I_{2} (i.e., approximate the given area distribution by one which has the given values $S\left(x_{i}\right)$, the given $S^{\prime}(1)$, and which gives the minimum value of the sum $\left.I_{1}+I_{2}\right)$. Such a procedure is however not possible since it leads to non-convergent infinite series in the relations between λ_{j} and $S\left(x_{i}\right)$.

One may further think of using the Fourier series for $S^{\prime}(x)$, Equation (6), with the coefficients a_{n} from Equation (11), and determine I_{2} from:

$$
\begin{align*}
I_{2}= & -\frac{2}{\pi}\left[S^{\prime}(1)\right]^{2} \log 2+\frac{4}{\pi} S^{\prime}(1)\left[S(1)-S(o)-\frac{S^{\prime}(1)}{2}\right] \\
& -S^{\prime}(1) \sum_{n=2}^{\infty}(-1)^{n} a_{n} \\
= & -\frac{2}{\pi}\left[S^{\prime}(1)\right]^{2} \log 2+\frac{4}{\pi} S^{\prime}(1)\left[S(1)-S(o)-\frac{S^{\prime}(1)}{2}\right] \\
& -2 \pi S^{\prime}(1) \sum_{i=1}^{N} \sum_{j=1}^{N} f_{i j} v_{i} c_{j} \tag{22}
\end{align*}
$$

However, the area distribution which approximates to the given area distribution and gives the minimum value of I_{1} has infinitely large values of the second derivative at the points x_{i} where the values of $S\left(x_{i}\right)$ are specified. This property of the approximating area distribution does not affect the accuracy of the approximate value for I_{1} (being the minimum under the given conditions) but it may impair the accuracy of the approximate value for I_{2} derived from Equation (22). It is important that I_{2} should be found with sufficient accuracy since in many cases the value of I_{2} is of the same order as that of I_{1} but of opposite sign, so that the percentage total error of the drag $\frac{D}{q}$ is much larger than the percentage error of I_{1} or I_{2}.

It seems therefore advisable to determine I_{2} by a different method. It is sufficient to deal with area distributions for which the first and second derivative at the trailing edge are finite (slender theory is not applicable to configurations for which the second derivative at the trailing edge is infinite). Such area distributions can be written in the form:

$$
\begin{align*}
S(x)=S(o)+ & {\left[3 S(1)-3 S(o)-S^{\prime}(1)\right] x^{2} } \\
- & {\left[2 S(1)-2 S(o)-S^{\prime}(1)\right] x^{3}+\Delta S(x) } \tag{23}
\end{align*}
$$

where the function $\Delta S(x)$ and its first derivative $\Delta^{\prime} S(x)$ are zero at $x=0$ and $x=1$. As a consequence of these properties:

$$
\begin{align*}
\int_{0}^{1} \Delta^{\prime \prime} S(x) \log (1-x) d x & =\int_{0}^{1} \frac{\Delta^{\prime} S(x)}{1-x} d x \\
& =-\int_{0}^{1} \frac{\Delta S(x)}{(1-x)^{2}} d x \tag{24}
\end{align*}
$$

and

$$
\begin{equation*}
I_{2}=\frac{\mathrm{S}^{\prime}(1)}{\pi}\left\{3 S(1)-3 S(o)-\frac{5}{2} S^{\prime}(1)-\int_{0}^{1} \frac{\Delta S(x)}{(1-x)^{2}} d x\right\} \tag{25}
\end{equation*}
$$

The integrand is finite in the whole range of integration. At $x=1$:

$$
\frac{\Delta S(x)}{(1-x)^{2}}=3 S(1)-3 S(o)-2 S^{\prime}(1)+\frac{1}{2} S^{\prime \prime}(1)
$$

The integral can, therefore, be evaluated by the usual numerical methods.
It may be pointed out that for numerically given values of $S(x)$ reliable values of the wave drag can be obtained by determining the first derivative $S^{\prime}(x)$ by graphical or numerical means and applying Equations (39) and (45) of the following Section with $L(x)$, replaced by $S^{\prime}(x)$.
: 3. The Numerical Calculation of the Lift-Dependent Wave Drag According to the Not-So-SlenderWing Theory of Adams and Sears ${ }^{5}$. 3.1. The Drag Formula. Applying the so-called 'not-so-slender' wing theory, Adams and Sears ${ }^{5}$ derived the following formula for the lift-dependent wave drag:

$$
\begin{align*}
\frac{D}{q}= & \frac{\beta^{2}}{8}\left\{-\frac{1}{2 \pi} \int_{0}^{1} \int_{0}^{1} L^{\prime}(x) L^{\prime}\left(x^{\prime}\right) \log \left|x-x^{\prime}\right| d x d x^{\prime}\right. \\
& +\frac{L(1)}{\pi} \int_{0}^{1} L^{\prime}(x) \log (1-x) d x \\
& -\frac{1}{2 \pi} \int_{-1}^{+1} \int_{-1}^{+1} l(\eta) l\left(\eta^{\prime}\right) \log \left|\eta-\eta^{\prime}\right| d \eta d \eta^{\prime} \\
& \left.+\frac{[L(1)]^{2}}{2 \pi}\left[\frac{1}{2}+\log 2-\log \beta s\right]\right\} \tag{26}
\end{align*}
$$

where

$$
\begin{equation*}
L(x)=\int_{-s(x)}^{s(x)} l(x, y) d y \tag{27}
\end{equation*}
$$

is the cross load,

$$
\begin{equation*}
l(x, y)=-\Delta C_{p}(x, y) \tag{28}
\end{equation*}
$$

is the local load coefficient,

$$
l(\eta)=l(x=1, y)
$$

semi!
is the load coefficient at the trailing edge, $s(x)$ the local semi-span and s the span at the trailing edge.

In those cases where the distribution of the local total chord load

$$
\begin{equation*}
\bar{L}(x)=\int_{0}^{x} L(x) d x \tag{30}
\end{equation*}
$$

is known, Equations (20) and (25) can be applied, if $S(x)$ is replaced by $\bar{L}(x)$. (Such a case arises when slender-thin-wing theory is applied to design cambered wings with the attachment line along the leading edge. In Ref. 6 it was suggested that an estimate for the lift-dependent wave drag of the wings designed by slender-thin-wing theory might be obtained by inserting the load distribution resulting from slender-thin-wing theory into Equation (26). Within slender theory $\bar{L}(x)$ depends only on the downwash distribution at the station $x=$ const and can thus be determined by a simpler relation than the one for $L(x)$.)

3.2. A Numerical Method for Determining the Double Integral

$$
-\frac{1}{2 \pi} \int_{0}^{1} \int_{0}^{1} L^{\prime}(x) L^{\prime}\left(x^{\prime}\right) \log \left|x-x^{\prime}\right| d x d x^{\prime}
$$

In some cases $L(x)$ is a numerically given function and the task is to determine numerically the value of

$$
\begin{equation*}
I_{3}=-\frac{1}{2 \pi} \int_{0}^{1} \int_{0}^{1} L^{\prime}(x) L^{\prime}\left(x^{\prime}\right) \log \left|x-x^{\prime}\right| d x d x^{\prime} \tag{31}
\end{equation*}
$$

We consider $L(x)$ distributions with $L(0)=0$ and $L(1) \neq 0 . L(x)$ can be expressed in the same form as $S^{\prime \prime}(x)$ in Equation (6):

$$
\begin{equation*}
L(x)=\frac{L(1)}{\pi} \vartheta+\sum_{n=1}^{\infty} a_{n} \sin n \vartheta \tag{32}
\end{equation*}
$$

where ϑ is again defined by Equation (5) and

$$
\begin{equation*}
a_{n}=\frac{2}{\pi} \int_{0}^{\pi}\left[L(x)-L(1) \frac{\vartheta}{\pi}\right] \sin n \vartheta d \vartheta \tag{33}
\end{equation*}
$$

By Equation (32) and Relations (3) to (5) of the Appendix we obtain the relation

$$
\begin{equation*}
I_{3}=\frac{1}{\pi}[L(1)]^{2} \log 2+\frac{\pi}{4} \sum_{n=1}^{\infty} n a_{n}^{2} \tag{34}
\end{equation*}
$$

which corresponds to Equation (9).
It is not possible to apply a similar procedure as in Section 2.2 and determine an $L(x)$ distribution which has specified values $L\left(x_{i}\right)$ at given points x_{i} and which gives a minimum value of the integral I_{3} since a non-convergent infinite series does occur if one tries such a procedure.

We refrain therefore from using the infinite Fourier series, Equation (32), for determining the value of I_{3}. Instead we approximate $L(x)$ by a finite Fourier series of degree $N-1$ (N being an even integer) which has the specified values

$$
\begin{equation*}
L_{\mu}=L\left(x_{\mu}\right) \tag{35}
\end{equation*}
$$

at the positions

$$
\begin{equation*}
x_{\mu}=\frac{1-\cos \vartheta_{\mu}}{2} \text { with } \vartheta_{\mu}=\frac{\mu \pi}{N} \tag{36}
\end{equation*}
$$

This series is given by the relation (see for example Ref. 7):-

$$
\begin{align*}
L(x)= & \frac{L(1)}{\pi} \vartheta \\
& +\sum_{n=1}^{N-1} \frac{2}{N} \sum_{\mu=1}^{N-1}\left(L_{\mu}-\frac{L(1)}{\pi} \vartheta_{\mu}\right) \sin n \vartheta_{\mu} \sin n \vartheta \tag{37}
\end{align*}
$$

By Equations (34) and (37) we obtain as an approximate value of $I_{3}:$ -

$$
\begin{align*}
I_{3}= & \frac{1}{\pi}[L(1)]^{2} \log 2 \\
& +\frac{\pi}{N^{2}} \sum_{n=1}^{N-1} n\left\{\sum_{\mu=1}^{N-1}\left(L_{\mu}-\frac{L(1)}{\pi} \vartheta_{\mu}\right) \sin n \vartheta_{\mu}\right\}^{2} \\
= & \frac{1}{\pi}[L(1)]^{2} \log 2 \\
& +\frac{\pi}{N^{2}} \sum_{\mu} \sum_{v}\left(L_{\mu}-\frac{L(1)}{\pi} \vartheta_{\mu}\right)\left(L_{\nu}-\frac{L(1)}{\pi} \vartheta_{\nu}\right) \sum_{n=1}^{N-1} n \sin n \vartheta_{\mu} \sin n \vartheta_{\nu} \tag{38}
\end{align*}
$$

Now

$$
\sum_{n=1}^{N-1} n \cos n \vartheta=\frac{(N-1) \cos N \vartheta-N \cos (N-1) \vartheta+1}{2(\cos \vartheta-1)}
$$

and

$$
\begin{aligned}
& \cos N\left(\vartheta_{\mu}+\vartheta_{\nu}\right)=\cos N\left(\vartheta_{\mu}-\vartheta_{\nu}\right)=(-1)^{\mu-\nu} \\
& \sin N\left(\vartheta_{\mu}+\vartheta_{\nu}\right)=\sin N\left(\vartheta_{\mu}-\vartheta_{\nu}\right)=0,
\end{aligned}
$$

so that for $\mu \neq \nu$

$$
\begin{aligned}
& \sum_{n=1}^{N} n \sin n \vartheta_{\mu} \sin n \vartheta_{\nu} \\
&=\sum_{n}^{n} \frac{n}{2}\left[\cos n\left(\vartheta_{\mu}-\vartheta_{\nu}\right)-\cos n\left(\vartheta_{\mu}+\vartheta_{\nu}\right)\right] \\
&=\frac{1-(-1)^{\mu-\nu}}{4}\left[\frac{1}{\cos \left(\vartheta_{\mu}-\vartheta_{\nu}\right)-1}-\frac{1}{\cos \left(\vartheta_{\mu}+\vartheta_{\nu}\right)-1}\right] \\
&=-\frac{1-(-1)^{\mu-\nu}}{2} \frac{\sin \vartheta_{\mu} \sin \vartheta_{\nu}}{\left(\cos \vartheta_{\mu}-\cos \vartheta_{\nu}\right)^{2}}
\end{aligned}
$$

and for $\mu=\nu$

$$
\left.\begin{array}{rl}
\sum_{n=1}^{N-1} n \sin & n \vartheta_{\mu} \sin n \vartheta_{\nu} \\
& =\sum_{n=1}^{N-1} n \\
2
\end{array} 1-\cos n\left(2 \vartheta_{\nu}\right)\right] \quad \text {. } \quad=\frac{N^{2}}{4} .
$$

Thus

$$
\begin{align*}
I_{3}= & -\frac{1}{2 \pi} \int_{0}^{1} \int_{0}^{1} L^{\prime}(x) L^{\prime}\left(x^{\prime}\right) \log \left|x-x^{\prime}\right| d x d x^{\prime} \\
= & \frac{1}{\pi}[L(1)]^{2} \log 2 \\
& +\pi \sum_{\mu=1}^{N-1} \sum_{\nu=1}^{N-1} f_{\mu \nu}\left(L_{\mu}-\frac{L(1)}{\pi} \vartheta_{\mu}\right)\left(L_{\nu}-\frac{L(1)}{\pi} \vartheta_{\nu}\right) \tag{39}
\end{align*}
$$

with

$$
\begin{equation*}
f_{\mu \nu}=-\frac{1-(-1)^{\mu-\nu}}{2 N^{2}} \frac{\sin \vartheta_{\mu} \sin \vartheta_{\nu}}{\left(\cos \vartheta_{\mu}-\cos \vartheta_{\nu}\right)^{2}} \text { for } \mu \neq \nu \tag{40}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{v p}=\frac{1}{4} . \tag{41}
\end{equation*}
$$

The coefficients $f_{\mu \nu}$ are tabulated in Table 3 for $N=36$.
3.3. Numerical Calculation of the Integral $\int_{0}^{1} L^{\prime}(x) \log (1-x) d x$. Equation (26) for the liftdependent wave drag contains in addition to the integral I_{3} the term

$$
\begin{equation*}
I_{4}=\frac{L(1)}{\pi} \int_{0}^{1} L^{\prime}(x) \log (1-x) d x . \tag{42}
\end{equation*}
$$

Since we are only concerned with load distributions for which $L^{\prime}(1)$ is finite, the integral $\int_{0}^{1} L^{\prime}(x) \log (1-x) d x$ can be written in the form

$$
\begin{equation*}
\int_{0}^{1} L^{\prime}(x) \log (1-x) d x=\int_{0}^{1} \frac{L(x)-L(1)}{1-x} d x . \tag{43}
\end{equation*}
$$

The integrand $\{L(x)-L(1)\} /(1-x)$ is finite in the interval $0 \leqslant x \leqslant 1$; at $x=1$ the integrand is equal to $-L^{\prime}(1)$. Therefore, the usual numerical methods for evaluating the integral can be applied. These require however the knowledge of the function $L(x)$ at positions $x_{i}=i / N$ at equal distances. For the evaluation of the double integral I_{3}, we are however using the values of $L(x)$ at the positions x_{μ} (which are not at equal intervals). It is possible to use the same $L\left(x_{\mu}\right)$ for determining I_{4}.

By means of Equation (32) and Equations (1) and (2) of the Appendix, we obtain for I_{4} the relation:

$$
\begin{equation*}
I_{4}=-\frac{2}{\pi}[L(1)]^{2} \log 2-L(1) \sum_{n=1}^{\infty}(-1)^{n} a_{n} . \tag{44}
\end{equation*}
$$

With the approximate series, Equation (37), for $L(x)$:

$$
\begin{aligned}
I_{4}= & -\frac{2}{\pi}[L(1)]^{2} \log 2 \\
& -L(1) \frac{2}{N} \sum_{\mu=1}^{N-1}\left(L_{\mu}-\frac{L(1)}{\pi} \vartheta_{\mu}\right)^{N-1} \sum_{n=1}^{N-1}(-1)^{n} \sin n \vartheta_{\mu} .
\end{aligned}
$$

Since

$$
\sum_{n=1}^{N-1} \sin n \vartheta=\frac{\sin (N-1) \vartheta-\sin N \vartheta+\sin \vartheta}{2(1-\cos \vartheta)}
$$

and N is even

$$
\begin{aligned}
\sum_{n=1}^{N-1}(-1)^{n} \sin n \vartheta_{\mu} & =\Sigma \sin n\left(\pi+\vartheta_{\mu}\right) \\
& =-\frac{1-(-1)^{\mu}}{2} \frac{\sin \vartheta_{\mu}}{1+\cos \vartheta_{\mu}}
\end{aligned}
$$

Therefore:

$$
\begin{equation*}
\dot{I}_{4}=-\frac{2}{\pi}[L(1)]^{2} \log 2+L(1) \sum_{\mu=1}^{N-1} g_{\mu}\left(L_{\mu}-\frac{L(1)}{\pi} \vartheta_{\mu}\right) \tag{45}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{\mu}=\frac{\left[1-(-1)^{\mu}\right] \sin \vartheta_{\mu}}{N\left(1+\cos \vartheta_{\mu}\right)} . \tag{46}
\end{equation*}
$$

The coefficients g_{μ} and the positions x_{μ} are tabulated in Table 4 for $N=36$.
4. A Numerical Method for Determining the Double Integral $\int_{-1}^{+1} \int_{-1}^{+1} f(\eta) f\left(\eta^{\prime}\right) \log \left|\eta-\eta^{\prime}\right| d \eta d \eta^{\prime}$. When calculating the zero-lift wave drag by Equations (1) and (2) and the lift-dependent wave drag by Equation (26), we require the value of the double integral

$$
\begin{equation*}
I_{5}=\int_{-1}^{+1} \int_{-1}^{+1} f(\eta) f\left(\eta^{\prime}\right) \log \left|\eta-\eta^{\prime}\right| d \eta d \eta^{\prime} \tag{47}
\end{equation*}
$$

where $f(\eta)$ is a given function. Though in this case, the numerical methods of Refs. 1 and 2 can be applied, we consider here also the calculation of I_{5} by means of a Fourier series. We consider here only cases for which

$$
\begin{equation*}
f(\eta)=f(-\eta) \tag{48}
\end{equation*}
$$

and for which $f(\eta)$ is finite (only finite values of $\epsilon(\eta)$ in Equation (2) are permissible since Equation (1) is derived from a small-perturbation theory; on lifting wings with attached flow the load at the leading edge must be zero).

We introduce the angular co-ordinate φ by

$$
\begin{equation*}
\eta=\cos \varphi \tag{49}
\end{equation*}
$$

The function

$$
\begin{equation*}
g(\eta)=f(\eta) \sin \varphi \tag{50}
\end{equation*}
$$

can be written as a cosine series:

$$
\begin{equation*}
g(\eta)=\sum_{\nu=0}^{\infty} b_{\nu} \cos \nu \varphi \tag{51}
\end{equation*}
$$

Due to the symmetry of $g(\eta)$, Equation (48), only terms with even values of ν occur. It follows from

$$
g(\eta=1)=0
$$

that

$$
\begin{equation*}
b_{0}=-\sum_{\nu=2}^{\infty} b_{\nu} \tag{52}
\end{equation*}
$$

With Equations (49) to (51) and Equations (3) to (5) of the Appendix, the integral reads:

$$
\begin{align*}
I_{5}= & \int_{0}^{\pi} \int_{0}^{\pi} \sum_{\nu=0}^{\infty} b_{\nu} \cos \nu \varphi \sum_{\mu=0}^{\infty} b_{\mu} \cos \mu \varphi^{\prime} \log \left|\cos \varphi-\cos \varphi^{\prime}\right| d \varphi d \varphi^{\prime} \\
= & b_{0}{ }^{2} \int_{0}^{\pi} \int_{0}^{\pi} \log \left|\cos \varphi-\cos \varphi^{\prime}\right| d \varphi d \varphi^{\prime} \\
& +2 b_{0} \sum_{\nu=2}^{\infty} b_{\nu} \int_{0}^{\pi} \int_{0}^{\pi} \cos \nu \varphi \log \left|\cos \varphi-\cos \varphi^{\prime}\right| d \varphi d \varphi^{\prime} \\
& +\sum_{\nu=2}^{\infty} b_{\nu} \sum_{\mu=2}^{\infty} b_{\mu} \int_{0}^{\pi} \int_{0}^{\pi} \cos \nu \varphi \cos \mu \varphi^{\prime} \log \left|\cos \varphi-\cos \varphi^{\prime}\right| d \varphi d \varphi^{\prime} \\
= & -b_{0}{ }^{2} \pi^{2} \log 2-\frac{\pi^{2}}{2} \sum_{\nu=2}^{\infty} \frac{b_{\nu}{ }^{2}}{\nu} . \tag{53}
\end{align*}
$$

A comparison of this equation with the corresponding relations for I_{1} and I_{3}, Equations (9) and (34), shows that for I_{5} one can expect a more rapid convergence of the infinite sum than for I_{1} and I_{3}.

Instead of using the infinite Fourier series of Equation (51), it is again appropriate to use an approximate finite Fourier series. (The spanwise load distribution at the trailing edge, $l(\eta)$ in Equation (26), behaves near $\eta= \pm 1$ as $\sqrt{ }\left(1-\eta^{2}\right)$ multiplied by a polynomial in η. It seems appropriate to approximate such a function by a finite Fourier series.)

A finite Fourier series which has given values of an even function

$$
\begin{equation*}
g_{\mu}=g\left(\eta_{\mu}\right) \tag{54}
\end{equation*}
$$

at the $N+1$ positions

$$
\begin{equation*}
\eta_{\mu}=\cos \varphi_{\mu}, \quad \varphi_{\mu}=\frac{\mu \pi}{N}, \quad 0 \leqslant \mu \leqslant N \tag{55}
\end{equation*}
$$

(N being an even integer) is given by the relation (see for example Ref. 8):

$$
\begin{align*}
g(\varphi)= & \frac{2}{N}\left\{\sum_{\mu=1}^{N-1} g_{\mu}\left[\sum_{\nu=1}^{N-1} \cos \nu \varphi_{\mu} \cos \nu \varphi+\frac{1+\cos N \varphi_{\mu} \cos N \varphi}{2}\right]\right. \\
& +\frac{g_{0}}{2}\left[\sum_{\nu=1}^{N-1} \cos \nu \varphi+\frac{1+\cos N \varphi}{2}\right] \\
& \left.+\frac{g_{N}}{2}\left[\sum_{\nu=1}^{N-1} \cos \nu \pi \cos \nu \varphi+\frac{1+\cos N \varphi}{2}\right]\right\} . \tag{56}
\end{align*}
$$

In the present case

$$
\begin{equation*}
g_{0}=g_{N}=0 \tag{57}
\end{equation*}
$$

and by Equation (48)

$$
\begin{equation*}
g_{\mu}=g_{N-\mu} \tag{58}
\end{equation*}
$$

Thus an approximation to $g(\eta)$ is given by:

$$
\begin{equation*}
g(\varphi)=\sum_{\nu=0}^{N} b_{\nu} \cos \nu \varphi, \quad \nu \text { even } \tag{59}
\end{equation*}
$$

where

$$
\begin{align*}
& b_{0}=\frac{1}{N} \sum_{\mu=1}^{N-1} g_{\mu}=\frac{2}{N} \sum_{\mu=1}^{(N / 2)-1} g_{\mu}+\frac{1}{N} g(\eta=0), \tag{60}\\
& b_{\nu}=\frac{2}{N} \sum_{\mu=1}^{N-1} g_{\mu} \cos \nu \varphi_{\mu} \\
& =\frac{2}{N}\left\{2 \sum_{\mu=1}^{(N / 2)-1} g_{\mu} \cos \nu \varphi_{\mu}+(-1)^{2 / 2} g(\eta=0)\right\} \\
& \nu \text { even, } \neq 0, \quad \neq N \tag{61}\\
& b_{N}=\frac{1}{N} \sum_{\mu=1}^{N-1}(-1)^{\mu} g_{\mu} \\
& =\frac{1}{N}\left\{2 \sum_{\mu=1}^{(N / 2)-1}(-1)^{\mu} g_{\mu}+(-1)^{N / 2 g} g(\eta=0)\right\} . \tag{62}
\end{align*}
$$

An approximate value of I_{5} is thus:

$$
\begin{equation*}
I_{5}=-b_{0}{ }^{2} \pi^{2} \log 2-\frac{\pi^{2}}{2} \sum_{\nu=2}^{N} \frac{b_{\nu}{ }^{2}}{\nu} \tag{63}
\end{equation*}
$$

with b_{v} from Equations (60)-(62).
The sum $\sum_{\nu=2}^{N-2} \frac{b_{\nu}{ }^{2}}{\nu}$ could be written as a double sum:

$$
\begin{aligned}
\sum_{\nu=2}^{N-2} \frac{b_{\nu}{ }^{2}}{\nu} & =\frac{4}{N^{2}} \sum_{\mu=1}^{N-1} \sum_{m=1}^{N-1} g_{\mu} g_{m} \sum_{p=2}^{N-2} \frac{\cos \nu \varphi_{\mu} \cos \nu \varphi_{m}}{\nu} \\
& =\sum_{\mu=1}^{N-1} \sum_{m=1}^{N-1} g_{\mu} g_{m} c_{\mu m}
\end{aligned}
$$

but since there is no short formula for the sum

$$
\sum_{n=2}^{N-2} \frac{\cos n \vartheta}{n}
$$

the coefficients $c_{\mu m}$ cannot be expressed by explicit formulae. We have therefore not determined numerical values of the coefficients $c_{\mu m}$.

We can draw an interesting consequence of Equations (49) to (51). It follows from Equations (49) to (51) that

$$
\begin{equation*}
\int_{-1}^{+1} f(\eta) d \eta=\int_{0}^{\pi} f(\eta) \sin \varphi d \varphi=\pi b_{0} \tag{64}
\end{equation*}
$$

For the value of

$$
\begin{equation*}
k=\log 2-\frac{\int_{-1}^{+1} \int_{-1}^{+1} f(\eta) f\left(\eta^{\prime}\right) \log \left|\eta-\eta^{\prime}\right| d \eta d \eta^{\prime}}{\left[\int_{-1}^{+1} f(\eta) d \eta\right]^{2}} \tag{65}
\end{equation*}
$$

we obtain by Equations (53) and (64):-

$$
\begin{equation*}
k=2 \log 2+\left[\sum_{v=2}^{\infty} \frac{b v^{2}}{v}\right] / 2 b_{0}{ }^{2} \tag{66}
\end{equation*}
$$

$2 \log 2$ is therefore a lower bound for k.

REFERENCES

No.
Author
Title, etc.
1 M. S. Cahn and W. B. Olstad .. A numerical method for evaluating wave drag. N.A.C.A. Tech. Note 4258. June, 1958.

2 L. L. Levy and K. K. Yoskikawa
A numerical method for calculating the wave drag of a configuration from the second derivative of the area distribution of a series of equivalent bodies of revolution.
N.A.S.A./TIL/6324. April, 1959.

3 E. Eminton On the minimisation and numerical evaluation of wave drag. A.R.C. 19,212. November, 1955.

4 M. J. Lighthill The wave drag at zero lift of slender delta wings and similar configurations.
J. Fluid Mech. Vol. 1. Part 3. p. 337. September, 1956.

5 MacC. Adams and W. R. Sears .. Slender-body theory-Review and extension.
J. Ae. Sci. Vol. 20. p. 85. February, 1953.

6 J. Weber Design of warped slender wings with the attachment line along the leading edge.
A.R.C. 20,051. September, 1957.

7 H. Multhopp The calculation of the lift distribution of aerofoils.
Translation A.R.C. 8,516.
Die Berechnung der Auftriebsverteilung von Tragflügeln.
Luftfahrtforschung. Vol. 15. p. 153. 1938.
8 J. Weber The calculation of the pressure distribution on the surface of thick cambered wings and the design of wings with given pressure distribution.
R. \& M. 3026. June, 1955.

APPENDIX

List of Formulae Used

$$
\begin{gather*}
\int_{0}^{\pi} \log \left|\cos \vartheta-\cos \vartheta^{\prime}\right| d \vartheta^{\prime}=-\pi \log 2 \tag{1}\\
\int_{0}^{\pi} n \cos n \vartheta^{\prime} \log \left|\cos \vartheta-\cos \vartheta^{\prime}\right| d \vartheta^{\prime}=-\pi \cos n \vartheta \tag{2}\\
\int_{0}^{\pi} \int_{0}^{\pi} \log \left|\cos \vartheta-\cos \vartheta^{\prime}\right| d \vartheta d \vartheta^{\prime}=-\pi^{2} \log 2 \tag{3}\\
\int_{0}^{\pi} \int_{0}^{\pi} n \cos n \vartheta^{\prime} \log \left|\cos \vartheta-\cos \vartheta^{\prime}\right| d \vartheta d \vartheta^{\prime}=0 \tag{4}\\
\int_{0}^{\pi} \int_{0}^{\pi} n m \cos n \vartheta \cos m \vartheta^{\prime} \log \left|\cos \vartheta-\cos \vartheta^{\prime}\right| d \vartheta d \vartheta^{\prime}=\left\{\begin{array}{l}
0 \text { for } m \neq n \\
-\frac{\pi^{2} n}{2} \text { for } m=n \\
\sum_{n=2}^{\infty} \frac{1}{n}\left[\frac{\sin (n-1) \vartheta_{i}}{n-1}-\frac{\sin (n+1) \vartheta_{i}}{n+1}\right]\left[\frac{\sin (n-1) \vartheta_{j}}{n-1}-\frac{\sin (n+1) \vartheta_{j}}{n+1}\right.
\end{array}\right] \tag{5}\\
=-\frac{1}{2}\left(\cos \vartheta_{i}-\cos \vartheta_{j}\right)^{2} \log \frac{1-\cos \left(\vartheta_{i}+\vartheta_{j}\right)}{1-\cos \left(\vartheta_{i}-\vartheta_{j}\right)} \\
+\sin \vartheta_{i} \sin \vartheta_{j}\left(1-\cos \vartheta_{i} \cos \vartheta_{j}\right)
\end{gather*}
$$

TABLE 1
Coefficients $f_{i j}$ in Equation (20) for $x_{i}=i / 20$ (from Ref. 3)

$$
f_{i j}=f_{j i}=f_{20-i, 20-j}
$$

TABLE 2
Coefficients u_{i} and v_{i} in Eqvation (17) for $x_{i}=i / 20$

i	u_{i}	v_{i}
1	$0 \cdot 018693$	$0 \cdot 004577$
2	$0 \cdot 052044$	$0 \cdot 012462$
3	$0 \cdot 094060$	$0 \cdot 021985$
4	$0 \cdot 142378$	$0 \cdot 032415$
5	$0 \cdot 195501$	$0 \cdot 043251$
6	$0 \cdot 252316$	$0 \cdot 054092$
7	$0 \cdot 311919$	$0 \cdot 064587$
8	$0 \cdot 373530$	0.074416
9	0.436444	$0 \cdot 083271$
10	$0 \cdot 500000$	$0 \cdot 090845$
11	$0 \cdot 563556$	$0 \cdot 096826$
12	$0 \cdot 626470$	$0 \cdot 100886$
13	$0 \cdot 688081$	0-102668
14	0.747684	$0 \cdot 101776$
15	$0 \cdot 804499$	$0 \cdot 097751$
16	0.857622	$0 \cdot 090037$
17	$0 \cdot 905940$	$0 \cdot 077925$
18	0.947956	0.060418
19	$0 \cdot 981307$	$0 \cdot 035884$

TABLE 3
Coefficients $N^{2} f_{\mu \nu}$ in Equation (39) for $N=36, \quad f_{\mu \nu}=f_{\nu \mu}=f_{N-\mu, N-\nu}$

$\underline{\mu}$	1	2	3	4	5.	6	7	8	9	10	11	12	13	14	15	16	17	18
1	324.000000	F-																
2	-116.721748	324.000000																
3	0	-126.058997	324.000000															
4	- 9.337247	0	-128.630866	324.000000														
5	0	- 11.909117	0	-129.688512	324-000000													
6	- 2.571869	0	- 12.966763	0	-130.223076	324.000000												
7	0	- 3.629517	0	- 13.501327	0	$-130 \cdot 529641$	$324 \cdot 000000$											
8	- 1.057647	0	- 4.164080	0	- 13.807892	0	-130.721020	324.000000										
9	0	- 1.592210	0	- 4.470645	0	- 13.999271	0	-130.847881	324-000000									
10	- 0.534565	0	- 1.898775	0 .	- 4.662024	0	- 14.126132	0	-130.935703	324.000000								
11	0	- 0.841129	0	- 2.090146	0	- 4.788884	$\stackrel{0}{0}$	- 14.213954	0	-130.998422	324-000000							
12	- 0.306565	0	- 1.032508	0	- 2.217015	0	- 4.876707	. 0 .	- 14.276672	0	-131.044154	324.000000						
13	0	- 0.497944	0	- 1.159368	0	- 2.304838	0	- 4.939425	0 .	- 14.322405	0	-131.077871	324.000000					
14	- 0.191379	0	-0.624804	0	$-.1 \cdot 247191$	0	- $2 \cdot 367556$	0	- 4.985158	0	- 14.356123	0 .	$-131 \cdot 102726$	324-000000				
15	0	- 0.318239	0	- 0.712627	0	- 1.309909	0	- $2 \cdot 413289$	0	- 5.018875	0	- 14-380977	0	-131.120766	$324 \cdot 000000$			
16	- 0.126860	0	- 0.406063	0	-0.775345	0	- 1.355642	0	- 2.447006	0	- 5.043730	0	- 14.399017	0	$-131 \cdot 133324$	324.000000		
17	0	-0.214683	0	- 0.468781	0	- 0.821078	0	- 1.389366	0	- 2.471851	0	- 5.061769	0	- 14.411583	0	$-131 \cdot 141286$	324•000000	
18	- 0.087823	0	- 0:277401	0	- 0.514514	0	- 0.854796	0	- 1.414214	0	- 2.489900	0	- 5.074336	0	- 14.419537	0	$-131 \cdot 145143$	324.000000
19	0	- 0.150541	0	- 0.323135	0	- 0.548231	0	- 0.879650	0	- 1.432258	0	- 2.502466	0	- 5.082290	0	- 14.423394	0	
20	- 0.062718	0	- 0.196274	0	-0.356852	0	- 0.573085	0	- 0.897691	0	- 1.444820	0	-2.510420	0	- 5.086146	0		
21	0	- 0.108451	0	- 0.229991	0	- 0.381706	0	- 0.591125	0	- 0.910256	0	- 1-452774	0	- 2.514277	0			
22	- 0.045733	0	- 0.142168	0	-0.254846	0	- 0.399746	0	- 0.603691	0	- 0.918210	0	- 1.456630	0				
23	0	-0.079450	0	-0.167023	0	- 0.272886	0	-0.412313	0	-0.611645	0	- 0.922067	0					
24	- 0.033717	0	- 0.104304	0	- 0.185063	0	- 0.285451	0	- 0.420267	0	$\underline{-0.615502}$	0						
25	0	- 0.058571	0	- 0.122344	0	- 0.197629	0	- 0.293406	0	-0.424123	0							
26	- 0.024854	0	- 0.076611	0	- 0.134911	0	-0.205583	0	- 0.297263	0								
27	0	- 0.042894	0	- 0.089177	0	- 0.142865	0	- 0.209440	0									
28	- 0.018040	0	- 0.055461	0	-0.097132	0	- 0.146721	0										
29	0	- 0.030606	0	- 0.063414	0	- 0.100988	0											
30	- 0.012566	0	- 0.038560	0	- 0.067271	0												
31	0	- 0.020520	0	- 0.042417	0													
32	- 0.007954	0	- 0.024377	0														
33	0	-0.011811	0															
34	- 0.003857	0																
35	0																	

TABLE 4
Coefficients g_{μ} in Equation (45) and Positions x_{μ} for $N=36$

μ	x_{μ}	g_{μ}
1	$0 \cdot 00190$	$0 \cdot 002426$
2	$0 \cdot 00760$	0
3	$0 \cdot 01704$	$0 \cdot 007314$
4	$0 \cdot 03015$	0
5	$0 \cdot 04685$	$0 \cdot 012316$
6	$0 \cdot 06699$	0
7	$0 \cdot 09042$	$0 \cdot 017517$
8	$0 \cdot 11698$	0
9	$0 \cdot 14645$	$0 \cdot 023012$
10	$0 \cdot 17861$	0
11	$0 \cdot 21560$	$0 \cdot 028920$
12	0.25000	0
13	$0 \cdot 28869$	$0 \cdot 035393$
14	$0 \cdot 32899$	0
15	$0 \cdot 37059$	$0 \cdot 042629$
16	0.41318	0
17	0.45642	$0 \cdot 050907$
18	$0 \cdot 50000$	0
19	$0 \cdot 54358$	$0 \cdot 060628$
20	0.58682	0
21	$0 \cdot 62941$	$0 \cdot 072401$
22	0.67101	0
23	0.71131	$0 \cdot 087205$
24	0.75000	0
25	0.78440	$0 \cdot 106721$
26	0.82139	0
27	$0 \cdot 85355$	$0 \cdot 134123$
28	0.88302	0
29	$0 \cdot 90958$	$0 \cdot 176200$
30	0.93301	0
31	0.95315	$0 \cdot 250595$
32	0.96985	0
33	0.98296	0.421986
34	0.99240	0
35	0.99810	$1 \cdot 272431$

ANNUAL TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL (BOUND VOLUMES)

1941 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Stability and Control, Structures. 63 s. (post 2s. 3 d.)
1942 Vol. I. Aero and Hydrodynamics, Aerofoils, Airscrews, Engines. 75s. (post 2s. 3 d.)
Vol. II. Noise, Parachutes, Stability and Control, Structures, Vibration, Wind Tunnels. 47s. 6 d . (post is. 9 d .)
1943 Vol. I. Aerodynamics, Aerofoils, Airscrews. 8os. (post 2s.)
Vol. II. Engines, Flutter, Materials, Parachutes, Performance, Stability and Control, Structures.
1944 Vol, I. Aero and Hydrodynamics, Aerofoils, Aircraft, Airscrews, Controls. 84s. (post 2s. 6d.)
Vol. II. Flutter and Vibration, Materials, Miscellaneous, Navigation, Parachutes, Performance, Plates and Panels, Stability, Structures, Test Equipment, Wind Tunnels. 84s. (post 2s. 6d.)

1945 Vol. I. Aero and Hydrodynamics, Aérofoils. I30s. (post 3s.)
Vol. II. Aircraft, Airscrews, Controls. I30s. (post 3s.)
Vol. III. Flutter and Vibration, Instruments, Miscellaneous, Parachutes, Plates and Panels, Propulsion.

$$
1305 . \text { (post } 2 s .9 d . \text {) }
$$

Vol. IV. Stability, Structures, Wind Tunnels, Wind Tunnel Technique. I3os. (post 2s. 9d.)
1946 Vol. I. Accidents, Aerodynamics, Aerofoils and Hydrofoils. 168s. (post 3s. 3d.)
Vol. II. Airscrews, Cabin Cooling, Chemical Hazards, Controls, Flames, Flutter, Helicopters, Instruments and Instrumentation, Interference, Jets, Miscellaneous, Parachutes. 168s. (post 2s. 9d.)
Vol. III. Performance, Propulsion, Seaplanes, Stability, Structures, Wind Tunnels. 168s. (post 3s.)
1947 Vol. I. Aerodynamics, Aerofoils, Aircraft. 168s. (post 3s. 3 d.)
Vol. II. Airscrews and Rotors, Controls, Flutter, Materials, Miscellaneous, Parachutes, Propulsion, Seaplanes, Stability, Structures, Take-off and Landing. 168s. (post 3s. 3 d .)

Special Volumes

Vol. I. Aero and Hydrodynamics, Aerofoils, Controls, Flutter, Kites, Parachutes, Performance, Propulsion, Stability. 126s. (post 2s. $6 d$.)
Vol. II. Aero and Hydrodynamics, Aerofoils, Airscrews, Controls, Flutter, Materials, Miscellaneous, Parachutes, Propulsion, Stability, Structures. 1475. (post 2s. 6 d.)
Vol. III. Aero and Hydrodynamics, Aerofoils, Airscrews, Controls, Flutter, Kites, Miscellaneous, Parachutes, Propulsion, Seaplanes, Stability, Structures, Test Equipment. 189s. (post 3s. 3d.)

Reviews of the Aeronautical Research Council 1939-48 3 s. (post 5d.) $1949-54 \quad 5 s$. (post $5 d$.)

Index to all Reports and Memoranda published in the Annual Technical Reports 1909-1947 . R. \& M. 2500 6. (post 2d.)
Indexes to the Reports and Memoranda of the Aeronautical Research Council

Between Nos. 2351-2449
Between Nos. 2451-2549
Between Nos. $2551-2649$ Between Nos. 2651-2749 Between Nos. 2751-2849 Between Nos. $2851-2949$ Between Nos. 295I-3049
R. \& M. No. 2450
(post 2a.)
R. \& M. No. 255° 2s. $6 d$. (post 2d.)
R. \& M. No. 2650 2s. 6 d. (post $2 d$.)
R. 8 M. No. 2750 2s. $6 d$. (post 2d.)
R. \& M. No. 2850 2s. $6 d$. (post 2d.)
R. \& M. No. 2950 3s. (post 2d.)
R. \& M. No. 3050 3s. $6 d$. (post 2d.)

HER MAJESTY'S STATIONERY OFFICE

(C) Crown copyright 196 I
 Printed and published by Her Majesty's Stationery Office

To be purchased from
York House, Kingsway, London w.c. 2 423 Oxford Street, London w.x ${ }_{13}$ A Castle Street, Edinburgh 2 109 St. Mary Street, Cardiff 39 King Street, Manchester 2 50 Fairfax Street, Bristol 1
2 Edmund Street, Birmingham 3 8o Chichester Street, Belfast \mathbf{I} or through any bookseller

Printed in England

[^0]: * Previously issued as R.A.E. Report No. Aero. 2629—A.R.C. 21,890.

