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Summary.---A simple formula is derived for determining the onset of leading-edge buckling due to aero- 
dynamic heating of wings which are either solid or thin-walled with a shear-resistant filling. The post-buckling 
behaviour is also investigated. 

1. Introduction.--Aerodvnamic heating of a thin wing causes spanwise temperature stresses which 

are compressive at the leading and trailing edges and tensile at the mid chord 1. These stresses reduce 

the torsional and flexural rigidities of the wing 2,a, 4. However, if the compressive stresses are sufficiently 

localised in the region of the leading edge, buckling will occur there at a lower intensity of stress than 

that required for complete loss of torsional or flexural rigidity. 
The present paper considers leading-edge buckling in wings which are either solid or thin-walled 

with a continuous shear-resistant filling. It is shown that buckling commences when the spanwise 
"stress at the leading edge reaches a value which depends on the shear modulus of the material and the 
wing geometry at the leading edge; furthermore, the spanwise wavelength is initially very small. The 

post-buckling behaviour is also investigated and it is shown that with increasing stress the wavelength 

and the magnitude of the buckles increase. 

2. Method of Sohttion.--The assumptions made and their implications are outlined in Section 2.1. 

Chordwise variations of temperature in the wing cause spanwise middle-surface forces which are 

self-equilibrating. In Section 2.2 the conditions of self-equilibration are shown to be satisfied if the 

middle-surface forces are derived from a type of force function. In Section 2.3 the conditions for 

buckling in terms of such a force function are outlined and it is noted that a particular force function 

(one, in fact, which is simply related to the variable wing rigidity) will have special properties. These 

special properties are discussed in Section 3. 

2.1. Assumptions.--The following assumptions are made: 

(i) The wing is of infinite aspect ratio 

(ii) The temperature and wing structure do not vary along the span 

* R.A.E. Report Structures 250, received 2lst October, 1959. 



( i i i )  

(iv) 

(v) 
(vi) 

( v i i )  

( v i i i )  

The wing acts as a plate (of variable rigidity) 

The shear-resistant filling in the thin-walled wing has no direct stiffness in the plane of the 
wing 

The wing section has sharp leading and trailing edges 

The effect of externally applied forces or moments is not considered 

The elastic constants and the coefficient of thermal expansion do not vary with temperature 

Temperatures due to aerodynamic heating are symmetrical about the mid-plane of the wing. 

The resuks obtained in this paper may be applied, despite assumptions (i) and (ii), to wings of low 
aspect ratio and high taper or sweep because of the essentially localised character of leading-edge 
buckling. The analysis cannot be applied to a hollow built-up wing for which assumption (iii) is 
untenable. Assumption (iv) is standard practice; appropriate allowances could be made if necessary. 
As for assumption (v), leading-edge buckling will not occur unless the leading edge is, for practical 
purposes, sharp. Assumption (vi) is unlikely to have any significant effect on leading-edge buckling, 
although a large applied bending moment or torque would tend to stabilise the leading edge. 
Assumption (vii) is not essential to the analysis and account can readily be taken of temperature 
dependent properties. Assumption (viii) implies that the heat transfer through the upper and lower 
surfaces of the wing is the same. The buckling behaviour of the wing depends only on the resultant 
of the stresses through the wing thickness and hence only on the average temperature through the 
wing thickness. 

2.2. Spanwise Equilibrium of Middle-Surface Forces.--The spanwise middle-surface forces/unit 
length, Ny must satisfy the conditions of self-equilibration 

. . . . . . . .  (1) 

| '": =o  
c i 2 

Th~es£ conditions are automatically satisfied by introducing a force function ~ from which the 
forces/unit length are obtained by double differentiation: 

d2# 
N ~ -  d~ ~ . . . . . . . . . . .  (2) 

provided the force function satisfies the following boundary conditions: 

- _ 0 . . . . . . . . .  ( 3 )  
x = : 1 : c / 2  

It follows from these definitions of q) that for any given distribution of forces Ny there is one corre- 
sponding force function ~b, and vice versa. The advantage of introducing this force function will 
appear in Section 3, where attention is given to a particular force function which has the unique 
property that under the action of the associated forces, buckling is equally likely to occur in any one of 
an infinite, variety of modes, including torsion, flexure and leading-edge waving. 



2.3. General Conditions for Buckling.--In determining the magnitude of the force function which 

will cause buckling it is convenient to write 

¢ = 7¢o, • . . . . .  . . . . . .  (4) 

A proportional increase where y is a constant of proportionalky while the magnitude of #0 is fixed. 
in the stresses throughout the wing is then represented by an increase in Y- 

At the onset of buckling the release of middle-surface strain energy, which can be regarded as the 
work done by the forces Ny, is equal to the strain energy of bending. Thus, equating these energies 

and regarding compressive N,. as positive s, gives 

2 kay/ e f f "  + 2(1-') 
a2 a2 17 ax ~ ay2j_l d .  dy, . .  (S) 

a 17 d.dy 
ax 2 Oy2JJ (6) 

whence, from equations (3) and (4) 

f f D [ (g2w)2 + 2(1- ~) l[[\ax ~2w ~2ay] 

and the magnitude of the forces at buckling may be found by determining the minimum value of 7. 
There will, in fact, be two 'minimum' values of practical interest corresponding to positive and 

negative Y- 
It is shown in Appendix 1 by integrating by parts and using conditions (2) that the denominator 

in equation (6) may be transformed so that equation (6) may be written in an alternative form: 

[\ax Oy/ ,,Ox 20y=j.j dx dy 
3 3 L  . . . .  (7) 

2 ~o ( / a w V  a 2 w 0 ~ t T d x d y  
t k a* ay] ax 2 Oy' i J 

So far, the analysis has been confined to a general formulation of the problem, and it is clear that an 
exact minimisation of y for a given variation of D and a given force function ~0 Will not generally 
be possible. However, a comparison of the numerator and denominator in equation (7) suggests 

that the particular force function for which 

¢0 = D . . . . . . . . . . . .  (8) 

may lend itself to an exact analysis. This particular force function, which is uniquely determined for 
any given wing section, satisfies the boundary conditions (2), by virtue of assumption (v), so that the 

corresponding forces Ny are self-equilibrating. 
A simple, yet rigorous, buckling analysis for this force function is given in Section 3. It is shown 

there that this force function has the unique and remarkable property that, under the action of the 
associated forces Ny, buckling can occur simultaneously in any combination of an infinite variety of 
modes including torsion, flexure and leading-edge waving. It is shown in Section 4 that this property 
of 'modal indeterminancy' may be used to determine the onset of leading-edge buckling in a wing 

with a different distribution of forces Ny. 
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3. Buckling Characteristics of  the Force Function ~ = yD.--Subst i tu t ing equations (7) and (8) in 
(6) gives 

f f D (V2w)~ dx dy 

2 D \O-7-@ a.= aye) &dy 

At this stage it is convenient to introduce the principal curvatures zl, ~2 at any point in the plate 
for we have 

) . .  (10) 

and equation (9) then becomes 

y = l - v -  fj'D( * + 
. . . . . .  (11) 

2 f f D,~d~ dy 
The numerator in the fraction on the right-hand side of equation (11) is essentially positive and the 

sign of the denominator therefore determines the sign of 7. If  the denominator is negative the 
minimum (positive) value for 7 occurs when 

i.e., 

zl + ~= = O, 

V2w = 0 
. .  ( 1 2 )  

and is given by 

7 (+) = 1 -- v ] 

so that ~(+1 = (1 -- v)D ) . .  . . . .  (13) 

Equation (12) confirms the assumption of a negative denominator. The case when the denominator is 
positive and 7 negative is considered in Appendix II. 

4.1. Buckling Modes Appropriate to #(+) . - -There  are an infinite variety of buckling modes 
appropriate to equations (12) and (13) so that the actual mode shape is indeterminate. However, a 
typical mode (representing leading-edge or trailing=edge buckling) is given by 

w oc (sin~ 
@--oos/ (y/2) exp (• x/2) . . . . . . . . .  (14) 

where 2 is an arbitrary wavelength parameter; the smaller the value the more localised the buckling 
mode. As 2 tends to infinity all semblance of a localised character in the mode disappears and the 
mode tends to 

w oc xy  . . . . . . . . . . . . . . .  (15) 
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which represents torsional buckling, or 

w oc x 2 --y2 . . . . . . . . . .  (16) 

which represents flexural buckling. These modes are illustrated in Fig. 2. 

In Section 4 it is shown that this property of 'modal indeterminancy' may be used to determine the 
onset of leading-edge buckling due to a different stress distribution. However, it is first necessary to 

consider in greater detail particular distributions of stresses appropriate to ¢(+). 

3.2. Stress Distributions Appropriate to ¢(+).--To fix ideas, let us determine the stress distributions 

corresponding to the force function ~b(+) for a number of representative wing sections. For an 

arbitrary chordwise variation of wing thickness t the stress a~(+)., can be expressed simply in terms of t 

and its derivatives. 
For a solid wing 

For a thin-walled wing 

= 

{ (d t )  2 1 det, 
= G  ~-~ q--~tdx2j.  . .  ( 1 7 )  

%(+) = Ny(+)/2h 

t 
- { 2 ( 1  - ,,2)t 

f(dty d< 
= G t \dx} + t ~ } .  ( i s )  

3.2.1. Chordwise Variation of %(+)for some Typical Wing Sections.--The chordwise variations of 
%(+) for a number of typical wing sections have been determined from equations (17)and (18) and 
are plotted in Figs. 3 and 4 for solid and thin-walled wings respectively. The sections, which are all 
symmetrical ones. include a diamond section, a lenticular parabolic section and a lenticular sine 
section. The broken lines in Figs. 3 and 4 are typical of the chordwise variations of % due to aero- 

dynamic heating. 

3.3. Leading-Edge Buckling vs. Overall Buckling.--The critical buckling stress distributions %(+~ 
have been shown to possess the property of causing buckling of the leading (or trailing) edge simul- 
taneously with overall buckling in torsion or flexure. These critical stress distributions may therefore 
be used as a criterion for deciding whether leading-edge buckling will occur before or after overall 
buckling in cases in which the actual stresses %, differ from the stresses %c+). For example, the solid 
wing of lenticular parabolic section treated in Section 3.2.1 is associated with a critical buckling stress 



distribution which varies as a parabola (82 -- 1/5), across the chord. If the actual stress distribution 
varies as a quartic (84 -- 3/35), across the chord the stresses are more localised in the region of the 
leading and trailing edges, and localised buckling will occur there before overall buckling. Conversely, 
if the actual stress distribution varies in a V-shape (] 8] -- 3/8), across the chord, overall buckling will 
occur first. These qualitative statements can be confirmed in a quantitative manner by using later 
results of the present paper together with results from Refs. 3 or 4 from which the onset of overall 
buckling may be determined. Detailed calculations for the lenticular parabolic-section .wing give 

st . . . .  ror loealised bo¢ldin~ = 0"59, for the quartic stress variation 
Stress for overall buckling 

= 1, for the parabolic stress variation 

= 1-40, for the V-shaped stress variation. 

4. Leading-Edge Buckling due to Aerodynamic-Heating Stresses.--If the distribution of a), stresses 
were identical to the @+) stress distribution it follows from equations (17) and (18) that leading-edge 
buckling would occur when 

ay, cage = Gfl ~ . . . . . . . . . .  (19) 

for both solid and thin-walled wings. Now a comparison of the distributions of @+) in Figs. 3 and 4 

with typical distributions of ~y due to aerodynamic heating shows one important difference: the stress 
distributions due to aerodynamic heating tend to be flatter over the mid-chord region and to rise 
more steeply towards the leading edge. From a consideration of average compressive stresses in the 
region of the leading edge it follows that equation (19) represents a lower limit for the true buckling 
stress. An upper limit for the buckling stress may be obtained by assuming that the buckling mode is 
given by equation (14) with 2 very small: 

w = Weage Lim sin (y/Z) exp { -- (x q- ½c)/2 }. 
,~-->0 

. .  ( 2 0 )  

Substituting equation (20) in equation (5) and integrating gives, for any G. distribution: 

ay, eaze = Gfi2@ O(~t) . . . . . . . . .  (21) 

As the wavelength ,~ tends to zero this upper limit converges to the 'lower' limit given by equation 
(19). Equation (19) is therefore the criterion for determining the onset of leading-edge buckling, and 
the initial buckling mode is similar to that given by equation (20). The physical significance of this 
arises from the fact that this limiting mode produces a disturbance confined to a vanishingly narrow 
strip along the leading edge. During buckling under any distribution of forces, the work done by the 
forces and the strain energy of bending depend only on the magnitude of ~y, edge and the wing 
geometry at the lead!ng edge. 

This physical explanation of the onset of leading-edge buckling is amplified in Appendix III, where 
a number of exact large-deflection solutions are derived. It is shown there that the wavelength increases 
after initial buckling. 

4.1. Summary of Results Obtained for Initial Buckling.--To summarise the position so far, it will 
be noted that for both solid and thin-walled wings with sharp leading and trailing edges: 
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(i) For any wing section there is one particular chordwise distribution of %, namely %3 + 
given by equation (17) or (18), for which torsional buckling, flexural buckling or leading- 

edge and trailing-edge buckling are equally likely; 
(ii) Aerodynamic-heating stresses generally rise more steeply towards the leading edge than do 

the @+) stresses; when this is so, leading-edge buckling occurs when the spanwise stress 

at the leading edge equals Gfi 2, and it occurs before overall buckling; 
(iii) At the onset of leading edge buckling the spanwise wavelength is very small. 

5. Post-Buckling Behaviour.--The variation of the wavelength and the magnitude of the buckles 
after initial buckling can be investigated only by using large-deflection theory. However, because of 
the inherent complexity of large-deflection theory it is possible to obtain exact solutions only for a 

limited range of ay distributions. 
It is shown in Appendix III  that an exact large-deflection solution exists for a wing of arbitrary 

section if the ay stresses that would exist if the wing were restrained from buckling, are of the form 

ay = @+) q- el exp { -- ~o(x - /  ½c)} - / A o  + A~x, .. .. (22) 

where A0 and A1 are chosen.to satisfy the conditions of self-equilibration, i.e., equation (1). The 
parameters al and ~0 are arbitrary. If the stresses ay are caused entirely by temperature effects it follows 

that exact solutions are possible whenever the chordwise temperature distribution is of the form 

T(x) = T (+~ 4- TI exp { -- ~o(x - / { c ) }  + Bo + B~x . . . . . .  (23) 

where T (+) is such as to produce stresses %,(+) and T~, ~o, B 0 and B~ are arbitrary. 
During buckling the ay stresses are reduced to %,(+) while the stresses a~ and T~y remain zero; the 

wing assumes the buckled form: 

1 c~ / . . . .  (24) w = W~dg~ sin (½~oy) exp { -- ½~o(x + ~ j~, .. 

_4 "o ) 
where Wedge = ~ Q ~ ) l  ° . . . . . . . .  (25) 

= ~ (~T1) 1 

5.1. Approximate Post-Buckling Sohltions.--It will generally be the case that the ay stresses cannot 
be represented exactly by equation (22) and approximate methods of calculation are then necessary. 
It has already been shown that the onset of leading-edge buckling depends only on the stress at the 
leading edge, and from similar physical considerations it is to be expected that the buckled form 
depends primarily on the stress at the leading edge and on the average rate of change of stress in the 
region of the leadirig edge. By equating the actual values of o'y, edge and (day/dX)edg~, say, with the 
corresponding values obtained from equation (22), it is possible to determine values for ~1 and ~p, and 

hence an approximate buckled form from equations (24) and (25). Thus 

~y, ~dg~ = Gfi 2 + ~1 + Ao -- ½cA1 

( )  \ dX/edge d-x edge -- ~0G1 AV A1 

. .  ( 2 6 )  



where, for a symmetrical wing section, 
--  (c/2 

al i exp { , -  !P (x -b ½c)} dx ! 
d -  et~ 

a _  c12 i dx  

--  a~ x i  exp { -- V,(x + lc)} dx 

U -  el2 J 

. .  ( 2 7 )  

In many instances the value of ~0 will be sufficiently large for the constants A 0 and A1 to be neglected. 
The  parameters al and ~ are then given simply by: 

~1 ~ %, ~a~o - G/~ ~ 1 
- 

ai \ d x / ~ a ~  J 
. .  ( 2 s )  

6. E x a m p l e s . - - T h e  purpose of these examples is to draw attention to the order of magnitude of 

leading-edge buckling. In the first example the reductions in the torsional and flexural rigidities at the 
onset of leading-edge buckling are determined and shown to be comparatively small. 

(i) A 3 per cent solid steel wing of diamond section, for which 

c = 20 in. 

v = 0-25 

= 1"2 × 10-5/deg C, 

is subjected to a temperature distribution that varies parabolically across the chord. At what tempera- 
ture difference will leading-edge buckling occur and how will the buckles vary with increasing 
temperature difference ? 

The temperature distribution is given by 

T = T O -~- (Tedg  e - -  T 0 ) ~  2, 

so that from equation (1) the stress distribution (away from tip effects) is given by 

ay = Ea(Tedgo --  To) (~2 _ {) . . . . .  

Thus aedg~ = ~ Eo:(Todg~ - -  To) 

= G/3 ~ at the onset of buckling 

. .  ( 2 9 )  

E 
- -  2(1 + v) {0"06}2 in this example. . .  ( 3 o )  



It follows from equation (30) that leading-edge buckling will occur when 

6 { 0 . 0 6 }  2 

T~dge - -  To - -  10(1 -k v):~ 

= 144 deg C . . . . . . . . . . . . .  (31) 

At this temperature difference it can be shown that the torsional and flexural rigidities have dropped 
to 0.72 and 0-83 respectively of their original (unheated) values. Note, too, that this temperature 

difference is independent of Young's modulus. 
The mode after buckling may be determined approximately from equations (24), (25) and (28). 

From equation (28): 

'~1 ~-- ~ E ~ { ( T e d g e  - -  T o )  - -  144} . . . . . .  (32) 

and 

4 E ~  

~- -- (L~ge - -  T o )  . . . . . . . . . .  (33) ~o c(h 

since, for a diamond section d f l / d x  is zero. 
Equation (25) now gives 

~ 1/2 

and when 

Tedge-- T 0 = 1 6 9 d e g C  or 194'degC, say, 

Wedg e ---~ 0"10in. or 0"19 in. 

and the spanwise buckle wavelength = 2~/~0 

= 3 . 9 i n .  or 6.8 in. 

( 3 4 )  

These numerical results are typical of the post-buckling behaviour of the leading edge in that they 
show that immediately after initial buckling the wavelength and the magnitude of the buckles increase 

linearly with the temperature of the leading edge. 

(ii) It is required to obtain a value for/3 such that leading-edge buckling will not occur under certain 
flight conditions. We shall confine attention to flight in the stratosphere where 

Tair --~ 210 deg K 

and the recovery temperature for laminar flow is given by 

Tr - 210(1 ~ - 0 - 1 7 M 2 ) . . .  . .  (35) 

If the wing is originally at a temperature corresponding to steady state conditions at M1 a rapid 
acceleration to Me will cause a leading-edge temperature given by equation (35). This is because the 
heat transfer is so high at the leading edge that there is virtually no time delay. Further, for a short 
acceleration time, the main body of the wing will be virtually unstressed and the compressive stress 



at the leading edge will be given approximately by 

a~ag~ ~ 210 × 0.17 × Ee (3//2 z -  3/12) . . . . . . .  (36) 

If  expression (36) is equated to G/32, it is found that 

f l  ~- 9 " 4 o ? / ~ ( M ~  2 - -  M I 2 )  ~j~ . . . . . . . . .  (37) 

For a steel in which ~ = 1.2 × 10-5/deg C: 

/3 ~-- 0 . 0 3 2 ( M I ~  2 - -  M12) l :  '2, 

while for a 'Duralumin in which ~ = 2.3 × 10-5/deg C: 

/3 --- 0.045(3//2 ~ -- M12)1, '2. 

These approximate resuks shout that if leading-edge buckling is to be avoided the angle /3 must 
exceed a critical angle which is proportional to a simple function of the Mach numbers at start and 
finish of a rapid acceleration. 

7.  C o n c l u s i o n s . - - T h i s  paper has considered the occurrence of leading-edge buckling in wings which 

may be regarded structurally as plates of variable rigidity. An inverse method of solution has been 
used in which a 'critical buckling stress distribution' appropriate to a given wing section is investigated. 
This critical buckling stress distribution has the unique property that buckling in any one of an infinite 
variety of modes (including torsion, flexure and leading-edge waving)is then equally probable: 
Comparisons with the stress distril~utions caused by aerodynamic heating shows that leading-edge 
buckling will Occur when the spanwise stress at the leading edge exceeds (the shear modulus of the 
material) × (the angle at the leading edge formed by tangents to the top and bottom surfaces) a, and 
the spanwise wavelength of the buckles is initially very small. The post-buckling behaviour of the 
mode has been investigated using large-deflection theory. 
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L I S T  OF SYMBOLS (See Fig. 1) 

c 

t 

Ox, Oy 

t o 

h 

i 

E, G 

D 

w 

~ ,  a~,, T.~y 

N ,  

¢~, ~ o  

~IJ ~2 

T 

M 

al, T11 
Ao, At, Bo, B1) 

Wing chord 

Wing thickness 

Cartesian axes, 0y measured spanwise, 0x measured chordwise from the mid- 
chord of the wing 

Wing thickness at mid-chord 

Skin thickness in thin-walled wing 

Thickness of direct stress bearing material 

= t for solid wing 

---- 2h for thin-walled wing 

Young's modulus, shear modulus (assumed constant) 

Poisson's ratio 

: Eta/{ 12(1 -- v2)} for solid wing 

= Eht2/{2(1 --v~)} for thin-walled wing 

Coefficient of thermal expansion (assumed constant) 

Angle at leading edge formed by lines which are normal to the leading edge stud 
tangents to top and bottom surfaces 

Deflection normal to plane of wing 

Direct and shear stresses in plane of wing (~x and ay positive if compressive) 

Spanwise middle-surface forces/unit length due to temperature effects (positive 

if compressive) 

Force functions defined by equations (2), (3) and (4) 

Principal curvatures 

Average temperature through wing thickness 

Mach number 

= 2x/c  

Parameters 

Arbitrary constants 

Indices ~+) and (-) refer to 'positive' and 'negative' critical stress distributions 

f; • . .  dx  dy = Integral over complete wing 
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I 

U, V 

Ae., Aey, Ay,~y 

A~rx, Zlay, Arxy 

f 

A , A  

Additional Symbols Used Only in the Appendices 

Integral  defined by equation (38) 

Displacements in plane of wing referred to unbuckled state 

Changes in strains f rom unbuckled state 

Changes in stresses from unbuckled state 

Stress in unbuckled state (~Tx and f ~  being z e r o )  

Displacement function introduced in equation (55) 

In t roduced in equation (58) 

No. Author 

1 J. Kaye . . . . . . . . . . . . .  

2 H . L .  Dryden and J. E. Duberg ... 

3 E . H .  Mansfield . . . . . . . . .  

4 S . L .  Kochanski and J. H. Argyris 

5 S. Timoshenko . . . . . . . . .  
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APPENDIX I 

Transformation of  an Integral 

It is shown here how the integral I may be transformed, where 

(=F  ++° f~=? 
I =  J0+-,+:  dx: \ • ]  &~Y . . . . . . . .  (38) 

and ¢0 (written hereafter for convenience as ¢)  is a function of x that satisfies the boundary conditions 

Integrating I by parts and using equation (39) gives 

- -  2 f  dO aw a2w 

= - 2  dy j_:/: ~ ax ay dO 

= - - 2  dy O ay a x a y  -el, J -¢~ a x \ a y  

f:f:': {(~'=)= ~: ~:o,, = 9 .  o -:+s ° ~ + + a ~ y J  d . @  

o+ ~t~ ~W ~= F cI2 " 

oo c/2 ~ 2 ~  2 

2f~) ~ aw a2w + 

~/2 a=w 2 a=w / 
- a.= ~ / g *  . . . . . . . . . .  (40) 

0 avo a2w o~ is zero, or finite compared with the other infinitely large terms, which provided the term Uy ax = o 

is so, for example, if w is periodic in y. 
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APPENDIX II 

Buckling Characteristics of the Force Function g~ = vD 
(y negative) 

If  the denominator of equation (11) is positive we may write 

P P f  ~ 

. . . .  

\.(+;]_-~+)+/ + 4, 

and because the terms in braces above are equal and everywhere positive the minimum (negative) 
value for y occurs when 

(< + ~)~ 

is a maximum, i.e., when 

z l  - -  x 2  = 0 . . . . . . . . . . . . .  ( 4 2 )  

Substituting equation (42) in (41) gives 

y ' - )  = -- (1 -/- v) ] 
(4a) 

so that ~(-)  = -- (1 q- v)D J 

The  buckling mode of deformation represented by equation (42) may be expressed in terms of 
w(x, y) by using equations (10). Thus  

Z - -  . 2 - -  

/a~wa~w : a~w Vt 
=_ (v~w) ~ - 4 tg-:: ay ~ \ o .  ay /  J 

g a'w a~wT~ g a=w T 
-= L a :  -~]y~J ÷ 4 La-x-Y~] . . . . . . . .  (44) 

and by virtue of equation (42) each of the terms above in square brackets vanishes so that, apart from 
rigid body terms, 

w ccx  ~ + y~ . . . . . . . . . . . .  (45) 
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A P P E N D I X  I I I  

Large Deflection Solutions 

Consider first the condition of compatibility. It is convenient to measure the displacements u, v, w 
with reference to the unbuckled and unstable state. In the buckled state the changes in strains Aey, 

z~, = ~ +  2 \ a y /  

a. ! / a %  ~ 

Ou av ~w Ow 

etc., are then given by 

..  (46) 

The equation of compatibility is obtained by eliminating u, v from equation (46) to give 

aX"-'-- ~ Aey -}- ay--"- ~ z]s x Ox Oy ATxy = \Ox  Oy,] ~x ~ ~ya . . . . . .  

The changes in strains are related to the changes in stresses A~y, etc., by the equations 

- d~, = (aoy - ~ao.) /E 
! 

- ~ .  = ( a ~  - ~d~,)/E ~ ,  
/ 

Ay~y = A~y/G J 

where compressive stresses are regarded as positive. 

(47) 

(48) 

Consider now the conditions of equilibrium• In the unbuckled state the orfly non-zero stresses are 

the (Ty stresses which are self-equilibrating; the changes in the middle-surface stresses therefore satisfy 

the equilibrium conditions: 

fao,  - ~  = o  j 

• .. . . . .  ( 4 9 )  

together With the overall conditions of self-equilibration : 

= f = 0  . . . . . . . . .  (50) 

The equilibrium condition normal to the wing depends on the final stresses in the plate, i.e., on 
~y -V Aay, Aa,, A~.~y since 8~, ?~v are zero. Because of the variable flexural rigidity the equilibrium 

equation involves derivatives of D:  

D p w + 2 a v [ o ~  ~ ~ a2V(a~w ~% 
ax \ax ~ + ax ay U + ~ \ax ~ + ~' ay ~] + 

+ i {(~y + ~ y )  a~w a% a% ay~ + ~ ~ - 2 ~ . ,  ~ ; - ~  = o. .• (51) 
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In order to obtain solutions of equations (47) to (51) some restriction on the form of ~,, is necessary. 

It  will now be shown that it is possible for Aa~ and A~,y to be zero for some distributions of By, and 

the simplification resulting from this restriction enables a variety of solutions to be found. 

Substituting ;' ' 

into equation (49) gives 

A ~  = Av~y = 0 . . . . . . . . . . . .  (52) 

zl% = function of x ,  

while from equations (47) and (48) 

(5a) 

8" t~ 82w \ 3 8~.w 8..w t 
. .  ( 54 )  

Now for leading-edge buckling we require the buckled mode to be of the form 
• ., . , 

w = f(x) sin (y/2) (55) ' , ' ,  , . . . .  . . . . . . .  

and equations (53) and (54) then give 

( al ' d's . 
dx/  cos' (y/2) 4- f -~x' sin (y/2) = function of x . . . . .  (56) 

so that 

( df~2 ---- ~" (57) A 
dx / ~ dx ~ . . . . . . . . . .  

and f is therefore of the form 

= A e -  ~ /A,  . . . .  . . . . .  . (58) 

where A and 51 are arbitrary. An obvious choice for A is to take 

A = ~ . . . . . . . . . . . .  (59)  

as suggested by results obtained in the main body of the report. 
Substituting 

w = A e- . la  sin (y/2) . . . . . . . .  (60) 

in equation (54) gives 

~ 2  

- -  ~x~(A%,) = EA22-4 e -z*/~', • . . . . . . . . .  (61) 

whence 

A% = -- }EA~;~- 2 e- }:"/~ + (linear terms to be chosen so as to satisfy equation (50)). . .  (62) 

Similarly, substituting equation (60) in (51) gives 

whence 

~ 2  D , .  

i(,~y + d%,)  = (1 - -  ~) ax~ . . . . . . . . . . .  ( 6a )  

~, 4- A% = %(+) . . . .  I . . . . . . . .  (64) 
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from the definition of aJ  +) given in equation (13) in the main body of the report. It follows that 
exact large deflection solutions for leading-edge buckling are possible whenever (Ty is of the form 

8~, = %(+) + -}EA22-2 e -2~/~ + linear terms. .. (65) 

Solut ions  f o r  Overal l  B u c k l i n g . - - E x a c t  solutions for buckling in torsion and flexure may be obtained 
from the above results by considering the limiting cases as )~ tends to infinity. It is, however more 

direct and simpler to substitute 

w --  Axy t 
(66 )  

J or ~ A ( x  ~ _ y2) 

in equation (54) to obtain 
~2 

~-ff~ (A%)  = E A  2 , . . . . . . . . . . . .  (67) 

from which it follows that 

~y = %(+) + ½EA~x 2 + linear terms. : . .  ( 6 s )  

By the same token we may obtain solutions for 'negative' overall buckling by substituting 

w = ~ A ( x  ~ + y2) . . . . . . . . . .  (69) 

in equation (54) to obtain 

~2 
8-~(A~y) = E A  2, . . . . . . . . . . . .  (70) 

from which it follows that 

8y = @ - )  - -  1 E A 2 x  2 + linear terms. 

Particular examples of equatiqns (68) and (71) were discussed in Ref. 6. 

.. (71) 
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