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Summary. Camber and twist is applied to the problem of producing low-drag wings with no leading-edge 
pressure singularities, at design lift. The suction peaks near the leading edges of the wing are removed and the 
associated adverse pressure gradients reduced. This is equivalent to keeping the pressures finite along the 
leading edge, and thus making the leading edge an attachment line. Linearised wing theory is used. 

The optimising process of Ref. 1 is used to obtain some wings with minimum drag due to lift. Suggestions 
are made for modifying the load distribution and shape of the wing if required. 

An outline of the general method for designing cambered and twisted wings and, in particular, those with 
no leading-edge load is also given. 

1. Introduction. In Ref. 1, camber and twist is applied to the problem of reducing drag, due to 

incidence, of thin triangular or swept-back wings at supersonic speeds, with subsonic leading edges 
and supersonic or sonic trailing edges. 

I t  is know that, unless care is taken, an infinite suction (corresponding to a singularity) will occur 

(according to linear theory) on an infinitely thin leading edge, giving rise to a finite thrust locally. 

In practice, a wing is not infinitely thin, and an infinite suction does not occur. In incompressible flow, 

it is well known that an equivalent thrust at the leading edge does appear, at least when there is no 

leading-edge separation. I t  is not yet known how much suction will occur in supersonic flow. 
In Ref. 1, two cases were considered: 

(a) with leading edge suction forces included 

(b) with leading edge suction forces omitted 

in the process of finding 'optimum' drag for given lift. In each case, the (theoretical) leading-edge 

suction was modified, being different from that on the uncambered wing of the same plan-form, for 
the same lift. This suction vanished, as it should, when the leading edges were sonic, and also became 
small, and tended to vanish, for 'very slender' wings (that is, when (M 2 -- 1) lI'~ tan y --~ 0, M being 
the free-stream Mach number, and 7 the semi-apex-magle of the wing). 

* R.A.E. Report Aero. 2614, received 12th May, 1959. 



In this report, wings are designed with no (theoretical) leading-edge load at design lift. By removing 
the suction peaks near the leading edges of the wing, the associated adverse pressure gradients are 
reduced, thereby (it is hoped) reducing the tendency for the boundary layer to separate. Two examples 
of wings of this type were given in Ref. 4, but no particular attention was then paid to obtaining a 

wing with low drag. 
Three topics are dealt with in this report: 

(i) The calculation of some further solutions of the linearised supersonic-flow equations : 

In Ref. 1, the load distributions on the nine separate surfaces z = -- (3x"- 2.~ (h y)=S [n(> 2s) = 1,2, 
3, 4, 5; s = 0, 1, 2] are given, where d is a small arbitrary constant, x is measured downstream from 

the apex, y is measured to starboard, and z is measured vertically upwards.. In this report, solutions 

for n -- 6, s = 0, ), 2 are given ; further solutions can be calculated, using the methods Of Refs. 3 and 2. 

The load distribution on the surface z = -- ~x 1 by] is also given. " 

(ii) The design of wings with no leading-edge load: 
Suitable selections of the thirteen surfaces mentioned in (i) are linearly combined to form surfaces 

for which the leading-edge singularities vanish. Formulae for the total lift, drag due to incidence, and 

positions of the centres of pressure of the surfaces are deduced, and also the interference drag terms 

which appear when any two surfaces are combined. 
An outline of the general method for designing cambered and twisted wings, with particular 

reference to those with zero leading-edge load (which might be used for more extensive calculations 

on an electronic computor) is given in Section 6. 

(iii) Application of the methods of Ref. 1 to obtain some low-drag wings with zero load on the leading 

edges: 
Simple ('basic') surfaces with no leading-edge load are combined, and the optimising process of 

Ref. 1 is used to obtain some minimum-drag wings with no leading-edge load. An alternative method 
would be to apply the optimising process to the 'basic' surfaces mentioned in (i), with the condition 
that the loadings on the leading edges of the final wing are zero. The two methods are essentially the 
same and give the same final results. The variation of drag with lift (or incidence) of the designed wing 

is also calculated. 
Suggestions are made for modifying the load distribution or shape of a designed wing, if this should 

be required. 

2. The Load Distributions on the Basic Cambered and Twisted Surfaces. In Ref. 3, the linearised 
supersonic-flow equation is solved, and the velocity potential is obtained in terms of two kinds of 

Lain6 functions, which are such that solutions can be applied to a swept-back plan-form with Super- 
sonic or sonic trailing edges, and the boundary conditions on the Mach cone of the apex are satisfied. 

The shapes of the corresponding cambered and twisted surfaces are found, it being assumed that the 

surfaces all lie close to the plane z = 0. 
The load distributions corresponding to the nine basic surfaces given by equations of the form 

z, = -- bx"- 2., (ky)2S (n > 2s), for n = 1 to 5, (r = 1 to 6 and 8 to 10) are given in Ref. 1, where 

k = cot y, and ~/is the semi-apex-angle. 
Using the methods of Ref. 3, it can be shown that the velocity potentials for the surfaces given by 

n = 6 are as follows: 



T A B L E  1 

The velocity potentials for  surfaces g~ven by u = 6 

I x  = ( ~  - k~yb "~] 

Surface Velocity potential, qS, on the surface 

(} X6  
2 ' l t  = =  - -  

zla - -  ~ h4Y 4x~ 
u 

VdF4 , ~ h 2 2 a + . f~k*y4x]  X 

VdF~ , 2 2 a 
c~kE(~) [ f2,x  5 T f=,h 3' x + f 2 8 h ~ y % X  

VbF~ ~ , ( k2 ~ axa + falk.~y~x]X ~ ) [ A o *  ~-.~o y 

where V is the free-stream velocity, a s --  1 -- f12 tan ~ y, E(a) is the complete elliptic integral of the 

second kind of modulus ~, and f2a, f2~, • • • fal ,  F4, F=a, F=~, F~9 are functions of ~ which are calculated 

in Appendices I to I I I  of this report. 

Formulae for the local slope, e., and the load per unit area, p ,  on the basic surfaces, z,., given in 

Table 1, are given in Table  2 below. 

, Henceforth all forces are normalised by dividing by (7ep V2c~)/(k2E(z) ). 
t 

T A B L E  2 

The Local Slope and Loading on the Basic Surfaces z,. 

11 (} X 6  

12 -- .~ k~3,2x 4 

13 ± ~k~y~x ~ 

O~ r - -  

6~ x5 
7~ 

46 

26 
7 k~y~x 

Oz,. 
8x 2k/p' 

(~ X 6 

-- \ 7 2  2 2 + @ 2 , -  :~)R y o~ +. f2jCv~}x]  

d x (; 
- ./2s)X c~ V4 [F2~.2 + ((5f:~ ---.f27 - ,4 

h a, 4/X1 + (a.f=, -.t=B k'~y ~'x~ +.,2,, y ~- ., 

" X 6  

75 F , [F ~ ,  72 + ( (sf~, - f a, - - f a , )  x'' 

+ (3fao -- fa , )k2Y 2x2 + f a , k 4 Y  ' }X] 

Formulae for calculat ingfs3,f~ . . . .  fat ,  F4,.Fsa, Fss, F~9 are given in Appendices I to III .  



Surfaces of the form z = -- dx"-  2s-1 I kYl ~'+1 (n > 2s + 1) could also be used. Th e  surfaces 

z2 ---- -- (3x ~ and z~  = -- r3x ] ky] are combined to form the surface zg (See Section 3, Table 3), this 

being the only 'no singularity' surface, of the type considered in this report, with a non-zero pressure 

gradient at the apex. 

For  the surface z~a = --  c3x [ hy I : 
the velocity potential on the surface is 

7,.o = L \ A  - 1 xX + cosh-  

the local incidence is ~ = 6]ky] ; the (normalised) load distribution is given by: 

) ] 2k) p ~ =  z~ L f ~ \ x  + x  - 2 x  . 

The  formulae for f l  is given in Appendix I;  a table of values is given in Refs. 1, 2 and 3. 

3. Load Distributions on Cambered and Twisted Surfaces with no Leading-Edge Load. By suitable 

combinations of the surfaces mentioned in Section 2, it is possible to determine the shape of a thin 

wing with swept-back leading edges and supersonic or sonic trailing edges, which, at design incidence, 

has finite pressure everywhere, the load becoming zero at the leading edges. 

For  all values of n, there are n surfaces of the form z = -- ~x ~-t  [ kyl  t (n > t), where n, t, are 

positive integers, and (n -- 1) independent 'no singularity' surfaces of degree n can be formed for 

each value of n. I f  even powers only of y are used, there are (n -- 1)/2 or (n -- 2)/2 'no singularity' 

surfaces of degree n, when n is odd or even respectively. 

In this report, the thirteen surfaces for n = 1, 2, 3, 4, 5, 6; t = 0, 2, 4, and n = 2, t = 1 are used 

to determine the seven 'basic' no-singularity surfaces whose equations and local slopes are given in 

Tables 3 and 4 below. 

Formulae for the load per unit area on these surfaces are given in Table 5, and the positions of the 
centres of pressure are given in Table 4. 

These surfaces can then be combined to form a minimum-drag wing with no leading-edge singu- 
larities, or to satisfy other given conditions. 

The  same wing can be obtained from the original surfaces (given in Table 9), with the additional 
conditions that the leading-edge singularities vanish. 

4. Formulae for the Calculation of Minimum Drag for Given Wing Combinations. Formulae for the 

local surface slope, position of centre of pressure, load per unit area, lift and drag for a surface of 

the form z = ~ (Arz,.), where Ar are constant's, are given in Ref. 1. The  formulae are givenl in a 
slightly different form below. 

Writing (A~Lr)/L = a,  where L~ is the (normalised) lift of surface z ,  and L the total (normalised) 

lift, the equation of the final surface can be written in the form: 

kE( ) _ / a , \  
z - -  ~ CLo ~ t-fir z , ) +  F(y) for atr iangular  wing, (i) 



TABLE 3 

Formulae for the Shape, z,., and Local Surface Slopes, ~ ,  of the 'Basic' Cambered 
and Twisted Surfaces, with No Leading-Edge Load 

(Formulae  for f4 , f5 • • • F17 , • • • are given in Appendix  I) 

a 

b 

C 

d 

e 

f 

Z r  

_ ~ ( A . "  - f ~ k ~ y ~ )  

- -  (~ ( f l 0  x4 - -  2 f l l k 2 y 2 x  2) 

+8 (F~vx ~ q- F,4k2y2x 3) 

- ~ (F=ok=y=x ~ + G~k~y'x)  

- -  6 (F2~x 6 -- F2~k2y2x 4) 

_ ~ ( G . k ~ y ~  o _ G ~ k ~ y ~ )  

Yg 

0~r 

(3f 4x 2 -- f ~k~y ~) 

43 ( A 0 x  ~ - A , k = g x )  

-- ~ (5F17x 4 q- 3F14k~y~x ~) 

(3Gok~y2x ~ + F17k~2 ~) 

(6F~6x 5 -- 4F~ak~y2x 3) 

(4F29k2y2x~ -- 2F2Gk4y%) 

" 7g 

T A B L E  4 

Positions of the Centres of Pressure of Cambered and Twisted 
Triangular Surfaces 

v~ = distance downs t ream of  the apex, in roo t -chord  lengths 
(The  equat ions of  the surfaces r = 1 to 13 are given in Table  9, at the end of  this report)  

1 

2 or 2a 

3 o r 5  

4 o r 6  

8, 9, or 10 

11, 12, or 13 

r 

2/3 

3/4 g 

4/5 a 

s/6 b 

6/7 c or d 

7/8 e or f 

~r 

3/4 

4/5 

5/6 

6/7 

7/8 



T A B L E  5 

Formulae.for the (Normalised) Load per unit area, p .  on the Basic 
'No Singularity' Surfaces 

a 

b 

C 

f 

g 

J 

36xX  

4~(4x 2 - -  k2y2)X 

OF3[{ F ~ ( 4 f  ~7 -- f ~s -- .ft9) -- F~,(4f  t4 -- f ~5 -- f ~6) ) x3 

+ { F ~  (2A. - Ao) -- FI~ (2A.~ -- A . )  }k~Y M X  

8F8[{ F~7 (4f20 -- .fz~ -- ,f2z) -- f2o (4fx7 -- f~a -- f19) } xa 

-1- { F~7 (2f2~ -- f2z) -- F2o (2f~s -- A . )  }h~y~x] X 

dFa[{ Fz6 (Sf2a -- f~4 --f25)  -- F2,~ (5f26 - f27 -- f~s)} x4 

+ { F26 (3f24 -- f25) -- F~a (3f~7 -- f2s) }k2Y ~x2 

+ {F~6f25 -- F2J2s}h~y~]X 

F~[{ F ~  (5f~, -- fz7 -- f~s) -- F~6 (5f~9 -- fao -- fa~) } x~ 

+ { F~9 (3f~v -- f~s) -- f~6 (3f~o -- fat)}k~Y ~x~ 

+ { F ~ f ~ s  -- F~f f~}k~y~]X 

26X 

z --  27c(1 -- a) CLo L, zr + F(y) for a swept-back wing (2) 

with supersonic or sonic trailing edges, where CL 0 is the design lift coefficient, based on the area of 
the plan-form, F(y)  is a small arbitrary function of y,  and a is the ratio tan y/ tan or, y, a being the 
leading-edge and trailing-edge semi-apex-angles respectively. 

The  corresponding loading coefficients are: 

2 ~ ( a ~ 7 ~ c 2 \  
Cp = ~ CL o -~ ~-~ p~) for a triangular wing, (3) 

Cp --  ~(1 -- a) CL o ~ ~-~ Pr) for a swept-back wing. (4) 

For  each wing, the (normalised) drag/(lift) ~ is given by: 

(r < s ) ;  (5) 



C L  2 - -  27g d tor a triangular wing, (6) 

c a  kE( ) 
CL "---~ = 2z~(1 -- a) d for a swept-back wing, (7) 

where CL, CD are the lift and drag coefficients. 
The distance of the centre of pressure downstream of the apex, in root chord lengths, is 

= (8) 

where v r is the value of v for Surface z r. 

Formulae for zr, pr for the separate triangular or swept-back 'no singularity' surfaces are given in 
Tables 3 and 5. Formulae for ~,., d, d,,~ for triangular 'no singularky' surfaces are given in Tables 4, 
12 and 14; the formulae for swept-back surfaces can be deduced from results given in Ref. 1. Some 

further results for swept-back wings and modified methods for some of the calculations will be 
published later. 

The  minimum values o f d  ( =  dopt) and the appropriate coefficients, a,, are functions of the d,., d,., 
of the surfaces combined t. All forces were normalised by dividing by z~p V~c~/(k2E(z) ), but the ratio 

dido, where d~ is the value of d for the corresponding flat wing, is independent of the normalising factor. 
For the combination of n surfaces, r = a, b , . . .  n, 

where AN -~ 2d~ 

db,,~ 

a,_. _ 2dopt _ 1 
- -  , ( 9 )  

Z j  r - -  / i  N 

A, / 
/.--...4 

da, b 

2db 

4,o d.,b 

db,o • • • db, n 

and A, (r = a, b . . . .  n) is equal to AN, with each term in the rth column (or row) replaced by 1. 

(10) 

a, = 2X, dopt, (13) 

Also dopt= Z ~a,2d,. + a, aJ ,@,  r < s, (11) 
r ~ a  

$ 

where a,, as are given by (9). 
Alternative formulae giving the values of a,. and dovt, which are more suitable when an electronic 

computor is used, are: 

/[ gx ] dopt = 1 2 , (12) 



where Xr are the roots of the linear equations 

' ( d , , , X , )  = 1 ,  

r = Q  

s = a, b, . . . n, and d,.,, ----- 2d,. 

Another formula giving dopt, (useful for checking), is 

$ 

Another check on calculations is: 

2 a r  ~--- 1 .  

r ~ a  

(14) 

I" < s (15) 

(16) 

Formulae for the calculation of minimum drag for given wing combinations, when the centre of 

pressure is'fixed at design CL, are given in Ref. 1. 

5. Modifications to. Designed Wings. 

(a) Position of Centre of Pressure. 
If the position of the centre of pressure of a designed 'no singularity' (or any other) wing is un- 

favourable, the position can be altered by superimposing a suitable combination of other solutions, 
and the corresponding changes in drag/(lift) z can be calculated (Positions of the centres of pressure 

of the separate surfaces are given in Table 4). 
Formulae for the calculation of minimum drag, when the centre of pressure is fixed at design CL 

are given in Ref. 1. 

(b) Non-zero Pressure Gradient at the Apex.  
For the wings discussed in this report, the loading at the apex is zero. The chordwise pressure 

gradient at the apex for all the basic 'no singularity' surfaces, except surface ze, is also zero. Therefore, 
if a pressure gradient at the apex is desired, surface zg must be included in the combination taken. 
But it is found, in general, that the drag/(lift) 2 increases fairly quickly with the increase of a favourable 

pressure gradient at the apex. 

(c) Modification of Adverse Pressure Gradient. 
When a 'no singularity' wing is designed for minimum drag/(lift) 2, it is, in some cases, found that 

there is a (theoretical) adverse pressure gradient along the root chord, towards the trailing edge. This 
can be partly remedied by superposing solutions with more favourable load distributions ; in particular, 
the superposition of solutions having zero load at the trailing ~dge of the root chord has, in general, 
the effect of 'flattening' the root chord load 'pattern'. Or, it is possible first to form solutions which 
give zero load at the trailing edge of the root chord, and then to find a minimum-drag wing by com- 
bining these solutions. Using the seven basic surfaces given in Table 3, there are six independent 

8 



'no singularity' surfaces having zero load on the.root chord at the trailing edge, viz, : 

%A - - :  b z a  - -  a%b, , %B = C2;a - -  a z c ,  

%C = d,~'a - -  a2;d,  %19 = e,~a - -  a Z e ,  

z e = fz~ --  az  s, zar = aZg - - g z . ,  

where a, b, c, d, e, f ,  g are the coefficients of x 2, x a, x 4, x 4, x 5, x 5, x respectively in the formulae for 

(xe2/2k)pr (r = a, . . . g) when y = 0 (See Table 5). 

(d) Modz;fication of  Shape of  Camber Surface. 

(i) The  equation of a camber surface has been found in the form z = ~ (A,~,.) + F(y) ,  where F(y)  

is an arbitrary function of y ,  which does not affect the load distribution, or the downwash. F(y)  can 
be chosen to satisfy any suitable condition: e.g., z = 0 at the leading edge or trailing edge, or at any 

other chordwise position. 

(ii) The  chordwise local slope (and also the spanwise local slope if, for example, F(y)  satisfies one of 
the conditions suggested above) can be modified by taking z = ~ (A~zr )+  F ~ ( y ) +  c~x as the 
equation of the camber surface, and placing the wing at the original design incidence plus incidence c,.. 

With the linear-theory approximations, the theoretical load distribution, lift, drag, and position of the 

centre of pressure of the modified wing are the same as for the original wing. 
The  modifications suggested above are obviously only a few of those which could be made. Many 

more are possible, using the basic solutions given in this report, or higher-order solutions constructed 

from the general solutions given in Ref. 3 (See also Section 6 of this report). 

6. General Formulae for  the Design of Delta Wings, or Swept-bach Wings. Using the general results 
given in Ref. 3, it can be shown that, for all positive integral values of n, there are solutions of the 

linearised supersonic flow equation for the velocity potential, ~, (on the wing), of the form: 

6 V (n ~ l f z  

¢':" - ;L E 
(m ----- 1 , 2 , . . .  (n q- 1)/2 ; c, >~ 0), 

Cr (1 
1 - -  Cr m X'  

if n is odd; (17a) 

<"-')/' E d,. 1 c~,:" - -  c, ,_lkE(~) ~x ,.=,II z2xZ 1 -- d, . . . .  (1 -- ~2)X2 X, 

( m = l , 2 , . . . n / 2 ;  d r > / 0 ) ,  i f n i s e v e n ,  (17b) 

where (Ret. 3, Appendix III)  X = (x 2 --  k~y2)l¢ ~, the values of c;. (r = 1, 2, . . . (n - 1)/2, for each 

value of m, are given by the (n -- 1)/2 equations 

( n  - 1 ) /2  

5+er  x--------a+ + 2  =0, s : r ,  (lSa) 

and the values of dr (r ----- 1, 2 , . . .  (n -- 2)/2, for each value of m, are given by the (n -- 2)/2 equations 

. 



(n--2)]2 

2--d~ , d _ ~ 2 +  + 2  = 0 ,  
S = I  

(See also Append ix  VI).  

T h e  gradients  of the cor responding  camber  surfaces are given by : 

s # r  OSb) 

OZ,n (~ (n -- 1))'2 

Ox - c ~---~ J"~ II 
r = I  I (z~ - -  c,.)x 2 -t- G ( 1  - -  z~)k2y21,  ~ 

if n is odd:  

(19a) 

(n--2)1'2 
Oz,,, 6 Jm~x [I 
~ X  - -  C n - 1  

r = l  



Alternative equations for calculating a~, b,., G, c, are given in Appendix 6. 
The corresponding loading coefficients are given by 

4 a¢,, m 
- C P - - v  Ox (24) 

Hence, on the wing: 

- - c " - U e E ( . )  1~__~= E { ~ x  ~ 1 - c ~ ( 1 - -  

and 

(n -- I)/'2 
24 3 - -  C r 

r = I  

Cv ,,, - -  c n - t h E ( . )  ~=~ 1 - - d r  

~ , if n is odd; 

X 2 

(2sa) 

(7~ -- 2)/2 

+ 2x~X 

r = l  

,2 _ d~)x2 + dr(1 _ ,2)k2y~ , if n is even. (25b) 

The surfaces given by equations (22a) and (22b) can now be combined to form wings with no 
leading-edge singularities. 

For each value of n, (n --  1)/2 (if n is odd), or (n -- 2)/2 (if n is even), independent cambered 
surfaces with zero leading-edge load can be found by combining surfaces of the form given above. 
These surfaces could be taken as: 

z,.,, _= (z,. -- z,),,, r,s = 1,2, . . . (n + 1)/2 if n is odd, 

= l , 2 , . . . n / 2 i f n i s e v e n ,  r < s .  

A general equation of 'no singularity' surfaces (containing even powers of y only) is 

(26) 

(n-- I)/2 or (n--2):'2( ) 

Z = Z.---.t"/ ~ Ar'sZr's ' 
; '1~0 r j g = ]  

(r < s), (27) 

where Ar, s are arbitrary constants, which can be chosen to.satisfy given conditions. 
The corresponding loading coefficient is 

: ] 
11 I",S ¢Z r~s 

(2s) 

There are also (n - 1)/2 (if n odd), or n/2 (if n even), surfaces of the form z, . . . .  ~x ..... "[ k y  I r, 
and their corresponding loading coefficients (Surface z = -- c~x [ k y  ]has been used in one of the 
examples given in this report). 

If  these surfaces are combined with each other, and with those given above, to form surfaces zr.s, 

so that leading-edge singularities are eliminatect, it can be shown that the general equation (in the form 

11 



of a polynomial) of 'no singularity' surfaces can be written 

,5": 11 -~ I 

~7~0 r~s = 1 

The lift and drag coefficients are given by 

(29) 

CD--(I_CP~xdS)/S;, (31) 

the pitching moment coefficient about the leading edge apex is 

CM = ( f  xCpdS)/ (cS);  (32) 

and the distance, in root chord lengths, of the centre of pressure from the leading edge apex is 

--CM/CL. (33) 

The integration is over the wing plan-form, of which the area is S, and the root chord c. 
Formulae for evaluating certain double integrals, which are required for the calculation of the lift 

and drag of triangular and swept-back wings, are given in Appendices V and VI of Ref. 1. Some further 

formulae are given in Appendix IV of this report. 

7. Variation of Drag with Lift. If a designed 'no singularity' wing is placed in the free stream at 
other than design incidence, there is a (theoretical) leading-edge suction force. If CL is the lift co- 
efficient in the new position, the variation of the drag coefficient, CD, with CL is given by: (for a 

triangular wing) 

kE(~) ItlCL2 @ (dl, 0 -- 2tl)CLCLo@-(t 1 ~- d o -  dl,o)CLo2~ , (34) 
CD--  2~ 

where Cz 0 is the design lift coefficient, d o is the design value of d, tl is the (normalised) drag/(lift) 2 of 

the flat wing, with suction included, and 

dl,o = Z (afll,r). 

The variation of the pressure drag coefficient, CD p, (suction ignored) i s given by 

(35) 

hE(z) r-- .7 
[._IdlCL':' @ (dx,0 2dl) C L  L o -]-  -~- o~.J , -- '  C (dl do -- dl,o)CL C D p -- 2:~ (36) 

d~ being the value of (normalised) drag/(lift) ~ for the flat wing, with suction ignored. 

12 



The formulae for the flat triangular wing are: 

hE(z)  t iCz2,  
C D - -  2~ 

CD e = kE(z )  d~CL 2 
27c 

(37) 

(38). 

dl, 0 is the 'interference' term for the flat wing and the designed 'no singularity' wing. 

The separate 'interference' terms, dl, r, for the triangular surfaces used in this report are: 

1 
dl'a = La ( f  4L3dl, a --  f sLsdl,5) ; 

1 
dl'b = f,b ( f  l°L~dl'4 - - 2 f l l L J 1 ' 6 ) ;  

1 
dl,c = --  _Ec (F17Lsd~'s + F~+Lfl~,~); 

1 
dl,d = Ed (F2oLgdl,9 + F17L~od~,~o); 

1 
dl'e = ff'e (F~6Llldml  -- F~3Ll~dl'I~); 

1 (F~gLI~d 11~ -- F26Llada,13); dx,f = [,f 

1 1 
d~,g --  4 E(z) " (39) 

Some graphs showing the variation of CD and CD p with CL are shown in Figs. 8 and 13. 
The  formulae giving the variation of CD, CD p with CL, for a swept-back wing, are of the same form 

as (32) to (36), with denominator 2~(1 -- a) instead of 2~, and the appropriate values of do, d l , ,  dl, t v 

8. Numerical  Examples. A number  of examples of deka wings, cambered and twisted so that there 
are no leading-edge loads, have been investigated. The theoretical shape of camber surface, and load 
distribution of three delta wings with finite leading edge pressures, and also the variation of drag with 

lift, are shown in Figs. 1 to 13. Some details concerning these wings are given below: (x, y,  z are 
measured in root chord lengths; z = 0 at the trailing edge.) 

Wing 1 

Wing 1 was designed for minimum drag for given lift. 

, fl tan ~, --- 0.614, z ~ = 0.6231, M = 2.5; 

7 = 15 deg, k = 2 + %/3, aspect  ratio = 1.0718.  

13 



where  

T h e  shape of the camber  surface is given by :  

z / C ~ o  = 

G =  

_/t a 

A c  

Z a 

~b 

Z d 

G(Aaza + AbZb + A~z~ + Aaza), 

kE(~)/(2~) ----0.763720, 

23.197489, Ab ---- - -  10'785131, 

5"406638, Ad = 1"211762; 

0.6622(1 --  x a) - -  2.5134k2y~(1 - -  x), 

2.3670(1 --  x ~) --  5.6642k~y2(1 -- x~), 

2.1590(1 -- x 5) -- 4.1494 h=2'~(1 -- xa), 

0.6533k)y=(1 +- x ~) - :  2- i590h~y~(1 - x). 

T h e  loading coefficient at design incidence is gjyen by :  

(Fig. 1) 

C~/C~o = 

where  Pa = 

P b =  

P ~ =  

P ~ =  

d / d , =  

tl/dl = 

(h),,,~/d~ = 

where  d ---= drag/(lift) =, 

(2/z)(AaP, + AbPb + AcP~ + A~P~), (Figs. 2 and 3) 

3x(x  ~ - k~y~)" L 

4(4~" _ k"y~) (~  - k.y~)~'~, 

(19.482989x a --  7.609982xk~y~)(x 2 -- l?y=)*l =, 

(0.172987x 3 + 1.593199xk~y2)(x 2 -- k~y2)l/2, 

0.8966 (_lid/all) per  cent = 10.34 per  cent, 

0.6930, 

0.8465, ((Ad)g~/d~) per cent = - -  5.01 per cent. 

d l =  drag/(lift)" for  flat wing, suction omit ted,  

t l  ---= drag/(lift)" for  flat wing, full suct ion included,  

(tl)s/2 = drag/(lift) 2 for  flat wing, half-suct ion included,  

A d  = d l  - -  d, ( A d ) ~  = ( t l )s~ - -  d. 

Wing 2 
Wing  1 was modif ied so tha t  Cv = 0 at the trail ing edge of the root  chord,  and the chordwise adverse 

pressure gradient  along the  root  chord  reduced.  

/3 tan y ~ 0.614, z~ = 0.6231, M = 2.5;  

Y = 15 deg, k = 2 + ~/3, aspect ratio = 1.0718. 

i4 



Design lift 6oef f ic{ent  fi.l: 

T h e  equat ion of  the  camber  surface is: 

z = 0.556 (1 --  x) [0.1759(1 q- x q- x 2) --  1-0584x ~ ~ 0.6770x 4 - -  0 .0033x a --  

--  k2y2(1.6947 --  2.9901x q- 1.1627x 2 --  0.0055x 3) - -  

- -  0.4603h4y 4] (Figs. 4 and 5). 

T h e  loading coefficient at design incidence is: 

Ce = [x (2.5919 --  5.4372x + 2.8626x ~ --  0.0173x 3) + 

+ h~y ~ (1.3593 - -  0.9540x q- 0.0082x 2) q- 

-t- 0"0001k4y a] (x ~ -- h2Y~) 1'2. (Figs. 6 and 7) 

Distance of  the centre ot pressure f rom the  apex = 0 .6562 root  chord  lengths. 

d/da = 0.8409, (Ad/dl) per cent  = 15.91 per cent, 

t,/d~ = 0.6930, , 

(h)s/2/d~ = 0.8465, ((Ads/dd~) per cent - -  0.56 per  cent. 

Wing 3 

W i n g  3 was designed for  m i n i m u m  drag for given lift. 

/3 tan ), = 0.3, ~2 = 0.91, M -~ 1.56205; 

y --  14 ° 2 ' ,  k = 4 aspect ratio = 1. 

T h e  shape of  the  camber  surface is given b y :  

z/CLo = (1 - -  x) [0.925579 (1 q- x if- x ~) - -  5"540635x3 + 

q- 3.423581X 4 - -  k2y2(10.911018 - -  20"823776x q- 6"854739x ~) - -  

--  5"539211k4y4]. (Figs. 9 and 10). 

T h e  loading coefficient at design incidence is given by :  

Cp/CLo = [x(31.088880 - -  69.630130x q -  32.513480x ~) 

+ k~y2(17.407533 - -  12.009394x)] (x ~ -- h2y2) 1/~. 

Distance of  the centre  of  pressure f rom the apex = 0.6478 root  chord  lengths. 

d/d1 = 0.6339, (dd/dl) per  cent = 36-6 per  cent, 

t~/d 1 = 0"5650, - 

(tl),/2/dl = 0"7825, ((Ad),/2/(h)s/2) per  cent  = 19.0 per cent. 
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Models of these three wings are being made, and will be tested in the 8-ft Tunnel at the Royal 
Aircraft Establishment, Bedford. 

From a considerable number of examples investigated, it seems that the minimum drag for given 
lift of a delta wing, cambered and twisted so that the leading-edge loading is zero, is slightly greater 
than the drag of the uncambered wing (with full suction) for the lower values of fi tan y, but less than 
the drag of the uncambered wing for larger values of fl tan y. For/~ tan y --  1 (that is, sonic leading 
edges), a percentage drag reduction of about 10 per cent is predicted. If only half-suction forces are 
included for the uncambered wing, there is a possible (theoretical) percentage drag reduction (with 
infinite pressures on leading edges eliminated), increasing from about 10 per cent (for/~ tan y = 1) 
to 33} per cent (for/~ tan 7 -+ O, that is, for very slender wings). It is assumed here that separation 
reduces the suction on the flat wing by one half, whereas no separation takes place on the cambered 
wing, which, perhaps, makes the comparison not quite fair. 

9. Conch~sion. Camber and twist has been applied to the problem of producing low-drag delta or 
swept-back wings, with subsonic leading edges, but with the (theoretical) infinite leading-edge 
pressures eliminated. Some delta wings have been designed and suggestions made for modifying the 
load distribution and shape of the wings if required. 

For the lower values of fi tan y, most of the predicted drag reduction on the uncambered wing due 
to leading-edge suction can (theoretically) also be obtained by camber and twist. For values of 
//tan 7 near to one, a drag reduction higher than that due to suction is predicted. 

An outline of the general method for designing cambered and twisted wings, with special reference 
to wings with infinite leading-edge pressures eliminated, is given in Section 6. 

It is hoped that some results for cropped delta wings and fully tapered and cropped swept-back 
wings will be published in a further report. 

Acknowledgements. Acknowledgements are due to Miss J. Parker and Miss R. Hensby for their 
help with the computations, to Miss R. Hensby for the careful preparation of the drawings, and to 
Miss A. Paton for calculating the results of Appendix II on DEUCE. 
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L I S T  OF SYMBOLS 

A 

A1, A2, A~ 

Ar 

am 

ar 

a 

B 

B1, B~, B~ 

bm 

C1, .C2, C3 

c~ 

c ~  

c~ 

c~o 

CM 

Cv 

C 

6 

D 

Dr 

d 

d~ 

4 

d~ 

Coefficient depending on n (See Appendix II) 

Coefficients depending on ~ (See Appendix III) 

Constant coefficients (See Section IV) 

A Lam6 coefficient (See Appendix II) 

ArLr/Z 

h/k 

Coefficient depending on ~ (See Append!x II) 

Coefficients depending on n (See Appendix III) 

A Lam6 coefficient (See Appendix III) 

Coefficients depending on ~ (See Appendix III) 

Drag coefficient 

Pressure drag coefficient 

Lift coefficient 

Design lift coefficient 

Pitching-moment coefficient 

Loading coefficient ( =  -- 2 × pressure coefficient) 

Length of root chord 

Zeros of Lam6 functions (Appendix I I I  and Section 6) 

(Normalised) drag 

(Normalised) drag of surface, zr 

(Normalised) 'interference drag' of surfaces zr, z, 

D/L 2 

Zeros of Lam6 functions (in Appendix III  and Section 6 only) 

DdL2 

(Normalised) drag/(lift) 2 for flat wing (suction ignored) 
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LIST OF SYMBOLS--con t inued  

dr~s = 

A , f , , .  . 

F1, F2, F3, F4; 

F 1 4 , .  • • F~9 

h = 

~/?bn 

2m + l~n 

Ym - -  

K(~) 

k = 

L 

Lr 

L2m~t 

L2m + lm 

M = 

Prim(t) 

S 

t l  

V 

X 

D ,s/(L,Ls) 

Complete elliptic integral of the second kind of modulus 

t Functions Of in I given Appendix 

cot a 

t See Appendix IV ' 

1 - - ~  ~ ( ~ ° d [  1 ] d t  
- - - -  P"(I~ E(~) " ' J . 1  ~ )[P~'n(t)]~( t ~ -  ~2)1/2 (t 2. 1)x/~ 

Complete elliptic integral of the first kind of modulus 

cot 7 

(Normalised) lift 

(Normalised) lift of surface z~ 

t See Appendix IV 

Mach number 

(n-- 1)/2 
II ( t ~ - G )  i fn i sodd  

n = l  

(~--2)/2 
t IF[ (t 2 -d r )  i fn iseven 

n = l  

(Normalised) load per unit area of surface z r 

Area of wing plan=form 

(Normalised) drag/(liff) ~ for flat wing, suction included 

Free-stream velocity 

G/(2dop,) (cf. equations (13) and (14)) 
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X 

Y 

0¢ r 

Y 

A 

Ar 

Ad- 

d 

~4 

# 

P 

~Y 

LIST OF SYMBOLS--continued 

Chordwise co-ordinate (measured downstream from the apex) 

Spanwise co-ordinate (positive to starboard) 

Normal co-ordinate (positive upwards) 

Local slope ( =  -- ~z/ax) 

Local slope of surface zr 

( M  2 --  1)i/2 

Apex semi-angle 

See Appendix III 

cf. equation (9) 

4. equations (9) and 00) 

d l - -d  

Small dimensionless constant 

(1 - - /52tan ~ y) 1/2 

Coefficients depending on n (See Appendix III) 

Argument of Lam6 function (See Tables 7 and 8) 

Distance of centre .of pt:essure, in root chord lengths, from the apex 

Value of ~, for surface & 

Free-stream density 

Apex semi-angle of trailing edge (of a swept-back wing) 

Velocity potential 
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A P P E N D I X  I 

T h e  F u n c t i o n s  f t ,  f~ ,  • • • f a t ;  F t ,  F2, F3,  F~;  F ,  

f t  = f ,  = {( 2 ~  - -  1)E(~) d- (1 - -  n~)K(x)}/(2x e E(n)  ) 

.f~ = 3((1 + u~)E(n) - -  (1 - -  n~)g (n ) } / (2~E(z )  ) 

.f, ---- {(2 -t- u~ - -  3 z  a) K(n)  - -  (2 + 2~ ~ - -  6z" )E(~)} / (2~ '  E(z )  ) 

.f7 ---- {(2 - -  3 : J  + u~)E(z) - -  (2 - -  4z  ~ + 2z¢)K(z )} / (2z  ~ E ( z )  ~) 

f~.o = {(2 ÷ 2~ ~ - -  4 ~ ) K ( ~ )  - -  (2 ÷ 3 z  2 - 8~ ~) E(z)} / (2~ ~ E(~)  ) 

,fta = 3((2  - -  2~ ~ + 2n~)E(u) - -  (2 - -  3~ ~ ÷ z~)K(u)}/(2~:~E(n) ) 

{(8 - -  z '  -+- 5 z '  - -  1 2 z " ) K ( z )  - -  (8 ÷ 3:~ a + 7~ '  - -  24~6)E(z)} 
As = (~.°E(.)) 

f l a  {(8 - -  11z 2 4-  u4 ÷ 2~6)E(z)  _ (8 - -  15z 2 ÷ 6 z  4 + z6)K(z)} 
= (2~"E(z)) 

F~ = 1/( f6f6  - 3 f ,  fT)  

F, = 1 / ( f , ~ f t ~  - -  k a r m a )  

A4 = B2Ca - -  BaC2, A~ = B~Ca - BaC~, 

f17 = C~A~ - -  C3A~, f l s  = C1Aa - -  C a A .  

f~o = A~B3 - -  AaB~,  f21--- A t B a  --  AaB1,  

F a  = 1 / ( A ~ f t ,  - -  A2fi~-+ A~fi.) 

= 1/(BIf~v -- B ,58  + Bff~.) 

w h e r e  A,,  B,, Cs (s = 1, 2, 3), (n = 5) are g iven  in  A p p e n d i x  I I I ,  

f 2 a = B 2 C a  - -  BaC~, 

f2 ,  = CaA2 - -  C2Aa, 

f~9 = A2Ba --  AaB2,  

f~4 = B tC3  - -  B3Ct ,  

f27 ---- CaA1 - -  C1Aa, 

fa9 = A1B3 --  AaBI ,  

= - -  1 / ( B f l C 2 6  - -  Bff~7 + B,.f~s) 

= 1 / ( C J , 9  - C2fao + Cafal), 

w h e r e  A, ,  Bs, Cs, (n = 6), are  g i v e n  in A p p e n d i x  I I I ,  

F~ = f ,  4 : - f .+ l  + f . + 2  

f 1 6 = B 1 C 2  - -  B~C1; 

f l p _ = C 1 A z  - -  C2A1; 

. ~  = A1B2 --  A~B1 

(s = 14, 17, 20, 23, 26, 29) 

f~a = BIC~- - -  B~C1; 

¢'~8 = C2A1 - C1A~; 

f31 -~ A1B2 - A2B1 
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where  

A P P E N D I X  I I  

Equat ions  for an,, bm for n ---- 5 and n = 6 
n = 5  

a~ (m = 1, 2, 3) are the roots o f  the cubic equation 

2 7 %  3 --  Aa,~ 2 + Barn - -  C = O, 

A = 60~ 2 ~- 42, 

B = 32~, 4 + 68~ 2 + 16, 

C = 2u2(12~ ~ + 8). 

b,~ is given by :  

b m =  ~ a~/(12n ~ + - 8  - -  9am) 

or 14b,,, = 9am 2 - -  (8~ 2 + 6)a,~ + 6~ ~ 

n = 6  

a,. (m = 1, 2, 3) are the roots of  the  cubic equation 

121a., a --  Aa,,,  2 + Ba , .  - -  C = O, 

where d = 286n 2 + 220, 

B = 160~ 4 + 412~ 2 + 96, 

C = 40n2(4~ 2 + 3). 

b,,, is given by: 

18b,,, = l l a , .  2 - -  (10~ ~ + 8)a,~, + 10~ 2. 

Numer ica l  values of A,  B, C for  n = 5 and n = 6 are given in Tab le  6. 

Numer ica l  values of  a,,,, b,,, for n = 5 and n = 6 are gi~erl in Tables  7 and 8. 
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T A B L E  6 

NumericalVa~es  ~ A , B , C ~ r n  = 5 a n d n =  6 

n n z A B C fl tan 7 

5 0 
0.0975 
0.19 
0.2775 
0.36 
0.4375 
0.48 
0.51 
0.5211 
0.5775 
0.64 
0.6975 
0.75 
0.7975 
0.84 
0.8775 
0.91 
0.9375 
0"96 
0.99 
1 

0 
0.0975 
0.19 
0-2775 
0.36 
0.4375 
0.48 
0.51 
0.5211 
0.5775 
0-64 
0.6975 
0.75 
0.7975 
0.84 
0.8775 
0.91 
0.9375 
0.96 
0.99 
1 

42 
47"85 
53"4 
58.65 
63"6 
68.25 
70-8 
72.6 
73.266 
76.65 
80"4 
83.85 
87.0 
89.85 
92.4  
94.65 
96.6 
98.25 
99.6 

101.4 
102 

220 
247.885 
274"34 
299"365 
322.96 
345.125 
357.28 
365"86 
369"0346 
385"165 
403-04 
419"485 
434-50 
448"085 
460"24 
470.965 
480.26 
488.125 
494.56 
503"14 
506 

16 
22.9342 
30.0752 
37.3342 
44.6272 
51.875 
56.0128 
59.0032 
60.12424672 
65.9422 
72.6272 
78.9982 
85.0 
90.5822 
95.6992 

100-3102 
104.3792 
107.875 
110.7712 
114.6832 
116 

96 
137.691 
180.056 
222.651 
265.056 
306.875 
330.624 
347-736 
354.1404336 
387.291 
425.216 
461-211 
495 
526.331 
554.976 
580.731 
603.416 
622.875 
638.976 
660.696 
668 

0 
1-78815 
3-9064 
6.28815 
8.8704 

11.59375 
13.2096 
14.4024 
14.85468504 
17.24415 
20.0704 
22.83615 
25.5 
28.02415 
30-3744 
32-52015 
34-4344 
36-09375 
37.4784 
39-3624 
4O 

0 
13.221 
28.576 
45.621 
63.936 
83.125 
94.464 

102.816 
105.9792336 
122.661 
142.336 
161.541 
180 
197.461 
213.696 
228-501 
241-696 
253.125 
262.656 
275.616 
280 

1 
0.95 
0.9 
0.85 
0.8 
0.75 
0.7211 
0.7 
0.692 
0.65 
0.6 
0.55 
0.5 
0"45 
0.4 
0.35 
0.3 
0.25 
0.2 
0.1 
0 

1 
0.95 
0.9 
0.85 
0.8 
0.75 
0.7211 
0.7 
0.692 
0.65 
0.6 
0.55 
0.5 
0.45 
0.4 
0.35 
0.3 
0.25 
0-2 
0.1 
0 
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T A B L E  7 

Numerical  values of  a,., b~,, f o r  the Lamd  function 

Es,,,(# ) = (#4 _ a,,kZff2_]_ b,,,t,?) ( [u  2 - -  k2]) ~/2 a l >  a . , >  a3 

/3 tan 7 a~ b~ a 2 b 2 a 3 b 3 

1 
0.95 
0.9 
0.85 
0.8 
0-75 
0.7211 
0.7 
0.692 
0.65 
0.6 
0.55 
0.5 
0.45 
0.4 
0.35 
0.3 
0-25 
0.2 
0.1 
0 

8/9 
0.956796079 
1.04214165 
1" 13389213 
1.22583351 
1-31512832 
1.36494874 
1-40040828 
1 "41358329 
1-48093637 
1.55627204 
1.62612869 
1 "69030748 
1 "74866391 
1.80108932 
1.84750020 
1.88783150 
1-92203256 
1.95006379 
1-98750392 

2 

8/63 
0.16693222 
0.219830559 
0.27970064 
0"342757754 
0.40695309 
0"444047822 
0.471012478 
0"481150961 
0.53400059 
0.595149908 
0-653791468 
0.709326001 
0.761212108 
0.808960628 
0.85213296 
0"890340489 
0.92324594 
0-950561911 
0.987535117 

1 

2/3 
0"719180036 
0"750701123 
0"772420884 
0-790825303 
0.809112846 
0.820339242 
0.829012542 
0.832406215 
0.851447494 
0'876653373 
0"904198007 
0.933138349 
0.962308994 
0.990589561 
1.01704871 
1.04097597 
1.06185459 
1.07931970 
1.10308120 

lO/9 

0 
0.02599562 
0.040478366 
0.04895761 
0.054722374 
0.05931431 
0-061747862 
0.063493551 
0.06415205 
0.06766379 
0.072021763 
0.076610959 
0.081361742 
0.08614014 
0.090793564 
0-09517990 
0-099179843 
0.10269854 
0-105663261 
0.109728783 

1/9 

0 
0.0962461071 
0.184935007 
0-265909211 
0.338896743 
0.403536607 
0.436934233 
0.459468070 
0.467566044 
0.506505024 
0.544852372 
0.575228861 
0-598776383 
0.616804867 
0.630543347 
0.641006638 
0.648970305 
0.655001740 
0.659505402 
0-664970421 

2/3 

0 
0.00113009 
0.00~078382 
0.00825683 
0.013161138 
0.01835560 
0.021340775 
0.023468573 
0.02425546 
0.02820305 
0.032358470 
0.03584600 
0.038677271 
0.04092785 
0-042696632 
0-04407852 
0.045152604 
0-045980015 
0.046606606 
0.047377337 

1/21 

T A B L E  8 

2¥umerical values of  a,,, b,,, for  the Lam~ function 

E¢'(f f )  = (if5 _ a,,,k2:,~ + b , , ,k '#) (1#  ~ - k~l)~/~, a ~ >  a ~ >  ~ 

/3 tan Y 61 bl a2 b2 a3 b3 

1 
0.95 
0.9 
0.85 
0.8 
0.75 
0.7211 
0.7 
0.692 
0.65 
0.6 
0.55 
0.5 
0.45 
0.4 
0-35 
0.3 
0"25 
0"2 
0"1 
0 

12/11 
1.11887587 
1.15982909 
1.21509373 
1.28140265 
1.35346781 
1.39599192 
1.42702890 
1.43870185 
1.49939626 
1.56895165 
1-63468796 
1.69594127 
1.75224811 
1.80326987 
1.84875105 
1.88849468 
1.92234768 
1-95019137 
1.98751176 

2 

8/33 
0.26132247 
0.289718372 
0.32907475 
0"377647195 
0-43202567 
0.464890325 
0.489247094 
0.49848906 
0.54727206 
0.604711017 
0"66054440 
0.713960834 
0'76427468 
0.810887699 
0.85216033 
0.890959705 
0.92354643 
0.95068567 
0-987542914 

1 

8/11 
0.809057627 
0.874637826 
0.922717171 
0'956639902 
0.981848623 
O.9942761O9 
1.00285836 
1"00603985 
1.02270524 
1"04336009 
1.06598281 
1.09090912 
1.11763757 
1.14505777 
1.17185516 
1.19684203 
1.21909627 
1.23796155 
1.26390395 

14/11 

0 
0.05077914 
0-091999450 
0.12212218 
0-142763114 
0.15716207 
0.163761143 
0.168084959 
0.16963808 
0.17735674 
0-186123208 
0.19507890 
0.204545469 
0.21449950 
0.224654601 
0.23460108 
0.243930032 
0.25229751 
0-259439639 
0.269339135 

3/11 

0 
0.120702862 
0.232805809 
0.336280009 
0.431048341 
0.516956285 
0-562459232 
0.593749101 
0.605131022 
0.661080324 
0.718597325 
0:766147383 
0"804058681 
0"833296141 
@855308710 
0-871666535 
0"883754224 
0'892646959 
0"899119837 
0-906766096 

lO/11 

0 
0-002886267 
0-010633693 
0.02197275 
0.035759368 
0.05096377 
0.060027005 
0.066655817 
0.06914629 
0-08199543 
0.096244544 
0.10581905 
0.119372468 
0.12785007 
0"134~45557 
0"13947899 
0"143279976 
0.14612576 
0"148226231 
0.150742175 

5/33 
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APPENDIX III 
Formulae for Calculating A,, B,, C~ for n = 5, n = 6 

The constants A~, B,, C, required for the calculation off~4, f~5, • • • f22 are given by the formulae : 
(s = 1, 2, 3) 

8 

A. -- '--_51)' ~ [ ( 2 . , ) .  ( 1 - -  a,,, + b ~ ) ( ~ '  -- a,,, z ? -  b.,)ff,,,] 
m =  1 

3 

B . -  (-- 1) '-  1 (1 -- z ~ ) ~ [ ( 2 m ) .  ( 1 - _ 3  a,,, +b,,,)(a,,,z. '  -- 2bm)fm] , (40) 
r a = l  

3 

C ~ = ( - - 1 ) ' ( 1 - - z 2 ) ° " S [ ( L , , ) ~ ( 1 - - a , . + b , , , ) b , , , J , , , ]  , 
m =  I 

where (See Appendix II, Ref. 1)* 

1 (,.) = ~  (o.,. a.b.). 
(2.)=zl-~A (a3b. - -a .b~) ,  

1 
(~3)I == ~-cA (al b~ -- a~bl) , 

1 [b2 - b3 + 1 (21)2- -¢~(1-  2)A ~ (a~ba -- a~b2)] , etc. 

_ 1 2 @ ,  ba) (a ,  a3)]  ,etc. (~.)~ /~ ~.~.~[~.(~.~ a~,.)+ ~ 
A = a ~ b 3 - - a 3 b ~ - l - a 3 b l - - a l b s + a l b 2 - - a ~ b l ;  

(41) 

~,~, b,~ are given in Appendix II, and 
i -  

(1- -  z~)(1--  a'" + b"~) I I  a,,, 2z2-- am 
Y., = am2.4b,,, 2 ~ -]- (1 -- g2)2z2(m4 -- amg2 --~- bin) 

- - 3  - -  ~ ) ( l _ a , , , + b . , ) ~ ] + ( l _ z Z ) 2 \ l _ a m + ~  ' -t- 

+ (1 - -  x~) (1  - -  a,,, -+- bm E(z)  2 bin(1 __ a m  .@ bm ) @ 

, : ( 1 ~  +,4 '~ ~4~, 
*(2m) , here replaces the (k~+z2,n0 used in Ref. 1. 
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~2=  1 --/72 tan 2y, and K(~), E(n) are complete elliptic integrals of the first and second ldnd 
respectively, of modulus n. 

The constants A~, B, ,  C,  required for the calculation off2a, f ,4 ,  • • • f31 are given by the formulae: 
(, = 1, 2, 3) 

3 

6 7 , 
r a = l  

B~ (-- 1)'-1 
- -  4 

3 

3 

m =  1 

(43) 

where (~m). is given by formulae (41), a,~, b., are given in Appendix II, and 

(1 - -  ~2) (1 - -  a,,, + bin) 1 1 - 

r = l  

_ i 3 ~ ( 2 4  - 1) - 24(1 - 4 ) ~ t  K(,,) 

1 / 7  3 ~ "~ [ - -  2 d , ) -  (1 
- ,~ '4(1  --5,~-(~. - - ; ; ~  j,,, + 

/~  ~ + 4 (1 - 4 )  / K(~)-  1 
+ t - ~ , ~  - -  Z )  / m e(~)_l ' 

(44) 

and, for each value of m, d 1, d2 are the roots of the equation 

D ~ - -  a,~D + b m  = O. 
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APPENDIX IV 

Formulae .for the Evaluation of Certain Integrals 

The following integrals occur in calculations for the triangular wing: 

; i lk  f l  ]~2my2m x n ~ ( 2 m )  ! 
Izm, n ~ k *y ( x Z _  k~y2)l/2 dx dy = 2e.t + 1(2m _~. n q- 1) (m l) z 

• fl/,~ ~.l k ~m+ly 2,,~+1X,, 2~'n(m l) 2 
I 2 " + l ' " = - - k  o Jk~,(x--g----k---~7 ~ d x d y =  ( 2 m + n +  2 ) ( 2 m +  1)l 

;.1/k f i~  k2Y2)l/2 ~(2m) ! (2m + 2) L,, ..... =_hJo ~ , (ky)2"tx ' (x  2 -- . dx dy = 2~m.+a(2 m + n + 3)[(m @ 1)[] f 

f l , ,  f l  . _ -2 2"̀  (m 0 2 (2m + 2) 
L ~ m .  1,n :__k ( k y ) ~ ' + l x n ( x 2 - - k 2 y 2 ) l / 2 d x d Y = i 2 m + n + 4 ) ( 2 m + 3 ) . l  ..... 

o ~y 

Reduction formulae 

(2m + n + 1)I8 .... -- (2m + n)I~. , , ._  ~ = 0 

2 m ( 2 m + n + l ) [ ~  ...... - - ( 2 m - - 1 ) ( 2 m + n - - 1 ) I ~  .... ~,,, = 0 

(2m + n + 2)I~,,,+ i,,, - -  (2m + n + a)I~,,,_~ ~ , , , - 1  = 0 

(2m + 1) (2m + n + 2)I~m+ 1., - -  2m(2m + n ) I ~  . . . .  1,~ = 0 

(2m + n + 3)L~ ...... - -  (2m + n + 2)L~,~, n_ 1 = 0 

2(m + 1) (2m + n + 3)L2.,,n -- (2m -- 1) (2m + n + 1)L~ ..... ~.,, = 0 

(2m + n + 4)L2.,+ 1.,, --  (2m + n + 3)L2m+ 1.,,-1 = 0 

(2m + 3) (2m + n + 4)L~,,,+ ~,,, - -  2m (2m + n + 2)L2,,t- ~.,, = 0. 

Also : 

L2m, n ~ [2m, n+ 2 - -  I 2 m +  2, n 

g~.~+ 1.~ = I2m+ 1.,.+ 2 - -  I2,,,+ 3.. 
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A P P E N D I X  V 

Triangular Wing with No Leading-Edge Load 
Numerical Values for dr, dr,~. (dro~ = 2d,) 

fl tan 7 = 0.614, ~2 = 0.6231 

a 

b 
C 

d 
e 

f 

d, 

1"207333 
1'421814 
1"642218 
1"761130 
1"863598 
2"000332 

2.414667 
2.597448 
2.737294 
2.075978 
2.845250 
2.144872 

2.597448 
2.843628 
3.038806 
2.286968 
3.194439 
2.390097 

2.737294 
3.038806 
3.284435 
2.457858 
3.485107 
2.595555 

d r  

2.075978 
2.286968 
2.457858 
3.522260 
2.597721 
3.740358 

2.845257 
3.194448 
3.485107 
2.733143 
3.727195 
2.901664 

2.144872 
2.390097 
2.595555 
3"740358 
2-901664 
4.000664 

fl tan y = 0"3, n~ = 0"91 

r dr d~,~ 4,t 4,, dd.~ 4,~ dr,, 

a 

b 
£ 

d 
e 

f 
g 

0"896865 
1.001545 
1.112449 
1.099744 
1.227887 
1.228749 
0.882011 

1.793729 
1.884127 
1.957296 
1-480487 
2.017396 
1.507162 
1-747990 

1"884127 
2"003090 
2.101986 
1"601042 
2.185025 
1"646064 
1.809823 

1.957296 
2.101986 
2.224899 
1.702337 
2.329978 
1.765171 
1.858327 

1.480487 
1.601042 
1.702337 
2-199488 
1.788382 
2.318303 
1.241938 

2.017396 
2.185025 
2.329978 
1.788382 
2.455773 
1.867502 
1.949171 

1.507162 
1.646064 
1.765171 
2.318303 
1.867502 
2.457497 
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A P P E N D I X  VI  

Formulae for  Calculating the Coefficients a, or bs, and the Zeros c~ or d,. 

of  S tandard Lamg  Functions of the M Class for  any Value of  n 

T h e  s tandard  L a m 6  funct ions of  the M glass can be wri t ten in the forms : 

(n  - : ) / 3  

(n - 1)12 
= ([,a~ -- k2[) ~12 1-] ( # 2 - - c ,  k 2 ) i f n i s o d d ,  

y = I  

and (n  - 2 ) / 2  

E,,(#)----- (]#2-- h2])1/2 ~ [(--1)'bfl2'# "- 2"~-:] 
S = 0  

(n  - 3 ) / 2  

(1~2 __ k 2 [ ) 1 / 2 #  1 I  (~2 _ dry2) i f n  is  e v e n ,  

where a0 -= b0 = 1, and as, be, c .  d,. are all real and positive. 

I t  can be  shown that  the Lamd coefficients a~, b~ and the zeros c~, d~ are given by  the following 

relations: 

a o = l  

2(2n --  1)a 1 = n2~ ~ ,a_ (n - -  1) 2 - -  2, 

2s(2n -- 2~ ÷ 1)as = [(n --  2s + 2)2~ 2 + (n --  2~ + 1) 3 --  2]a~-1 + 

- ~ - ( n - - 2 ~ + 3 ) ( n - - 2 ~ + 2 ) z 2 a ~ _ 2 ,  s = 2 , 3  . . . .  ( n - - 1 ) / 2 ,  

0 = ( ~ 2  _ 2)a(,,_ :)/3 + 2~2a(,, -- 3)/2, 

w h e r e  2 is an unknown  quant i ty  propor t ional  to 1 + ~2. These  (n + 1)/2 equat ions give the (n + 1)/2 

values of  2 and of  each of  the (n --  1)/-2 quantit ies a, for any value of  z 2. 

c,. are the roots  of  the equat ion 

( n  - 1)I2 

S = 0  

b 0 . = l  

2(2n --  1)b: = n% 2 + (n --  1) 3 --  ),, 

2s(2n --  2s ~- 1)bs = [(n --  2s + 2)2y. 2 + (n - -  2s + 1) 2 --  ~]b ,_ :  -!- 

- -  (n - 2s + 3) (n - 2s + 2 )~2b,_  .,, s - -  2, 3 , . . .  (n - -  2) /2 ,  

0 = (4y. 2 + 1 - -  2)b(._2)/2 + 6~2b(.-4/~2 • 
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These n/2 equations give the n/2 values of ~ and of each of the (n -- 2)/2 quantities bs for the value 
o f  N 2. 

d r are the roots of the equation 

( n  - ~ ) / 2  

S=0 

c, dr can also be calculated from equations (18a) and (18b), and a,, b, from equations (23) given in 

Section 6. 
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TABLES 9 to 14 

All Forces are Normalised by Dividing by (zpV~c~)/(k~E(n) 

TABLE 9 

Formulae for the Total Lift on 'Basic' Triangular Surfaces 

r z, L, Type of surface 

2 

11 

2a 

9 

12 

10 

13 

2_6o, 

_ O_x~ 
C 

_ _  ~ X  3 
C 2 

O x4 

Ox5 - -fi 

d x6 

- ~ x l k y [  

- f-3k~y~x ~ 

- ~k~y~x  ~ 

-- ~ k'Y ~x4 

~ 4  4 x 

- - f i R y  

- ~k~y~x ~ 

6 

A 

3 
~Fl(gf5 -- 3f7) 

aF~(4f ll - aA3) 

1 
dF3(Sf~ + 2f15 + f~6) 

1 

7g 

3 
dYa(4f4 -- f .) 

1 
6Fe(4f, o -- 3f~_) 

- s OF3(Sf. + 2.A8 +flo) 

~ OFdSAo + 2f. +.As) 

g df~(Sf~ o + 2f~ + f22) 

~OFdSA~ + 2Ao + L d  

Camber 

- Twist 

J 

Cambe and 

Twist 

twist 

Camber and twist 

- 3 1  



TABLE I0 

Formulae for the Total Lif t  on Baffc 'No singularity' Triangular Surfaces 
(x, y, z are Measured in Chord Lengths) 

zr L,, 

a 

b 

C 

d 

e 

f 

g 

-- 6([~x 3 -- fskZy~x) 

- -  (~(fl0X 4 - -  2 f l l k 2 y 2 x 2  i 

+ 6(F~7 x5 + F~k2y2x  3) 

- - .  ~ 2 2 3 (F2ok y x + F17k~ytx) 

- -  6 (F26x 6 -- F23k2y~x ~) 

- -  6 (F'2.k=y2x 4 -- F26k4y% 2) 

- ~ (x~ E(~) x I hyl )  

36 

-- (F17Ls + F14Lo) 

F20Lo -}- F17Llo 

F26Ln ---F23LI~ 

F2~L12 -- F2~LIa 

~6 



TABLE 11 

Formulae for the Drag Component, D,., of the Pressure Integral for Triangular Surfaces 
(Formulae.for r = 1 to 10 are Given in Table 4, Ref. 1) 

r D r 

8 

10 

n 

12 

13 

3~L 8 

- ~o a'r.~ (l~.fl, + sf18 + sfl°) 

1 = 
a Fa (16f=o "-- 1qf.ol q- 7f~=) 

7 
5L** 

7~8 62F4(16f~9 + 10fao -k- 7f~) 
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TABLE 12. 

Formulae for d, : D,/L,2 for Basic 'No singularity' Triangular Surfaces 

r 

d 

f 

2 (12f~ -- f~) 

1 (~OAo - 7A~) 

l=EF~72D ~- F~4=D, + F,TF,aDs.91 Lc s 

ff---~a[F.o'D. -4- Ft 7 2 D1 o ,  F~oF17Do.lo] 

I~ EF2.2Dn + F232D12 - F26F23D11,~2] 

I, ~F2,2D12 -{- F2.~D13 - F~gF~6D12.13] ' 
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TABLE 13 

Formulae for the 'Interference' Pressure Integral for Triangular Surfaces 

(Dr,, ---- D~,r is the 'interference' pressure integral for the two surfaces give by zr, z,) 
Formulae for r = 1 to 10, s ---- 1 to 10 are given in Table 6, Ref. 1 

r, s D,,g 

1,11 

1, 12 

1, 13 

2,11 

2, 12 

2, 13 

3, 11 

3, 12 

3, 13 

4, 11 

4, 12 

4, 13 

5, 11 

5, 12 

70 
7 

7 Lla) 

7 

7 
($ I(~F1(2f5 --fi)-~- ~L12- ] 

7 Lla] 

,~ ,~F~(2AI -A~) + -5- L~ 
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TABLE 1S--continued 

r, s Dr, s 

5, 13 

6, 11 

6, 12 

6, 13 

8,11 

8. 12 

8, 13 

9,11 

9, 12 

9, 13 

10, 11 

10, 12 

10, 13 

11, 12 

11, 13 

12, 13 

c32 F~(Sf4 -- f . )  4- 6-4 F4 (16fro -1- 8f~o + 5f~) 

3L6 -~- 3-~ 6F4(16f~8 + 8f2¢ + 5f~5) 

+ + + 

9 c~2 [2F~(Sflo_ 3f~) + F4(16f2~ + 8f~o + 5f3~)] ffff0 

~ $ E4L. + ~ ~F~(l~f~ + Sf~ + Sf~)] 

27 
62 [3--~ F4(16f~, + 8f~v + 5f2s) -- Fa(16f17 -~- 8f18 + 5f19)] 

] 70-4 27F4(16f~o + 8/3o -t- 5fat) -- 10F3(16f17 + 10dis + 7fro) 

~ Llo + ff-S f~(l~f~ + 10A, + 7A~) 

a " ~ 5  1F,~(16f~. q-10f3o-t- 7f~1)] F~(16f~ o ÷ 1qf~ + 7f~) + 7t 

3 1 3  $Fd16f~ + Sf~ ÷ 5f~) + 7  Ltzl 

[11 7 ] 

~ [ 1 1  ] 
~-~ ]~ F~(16f~. + 10f~ q- 7f~s) -5- 3F~(16f~, + 8f~ o + 5f~) 
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TABLE 14 

For, ,dae for d~,~ = D~,/(L~L 3 for Basic 'No singularity' Triangzda; Surfaces 

r~ 3 dr~ s 

a ,b  

a~ c 

a , d  

a, e 

a,f 

b~ £ 

b , d  

b, e 

b,f 

c , d  

c, e 

c,f 

d~ e 

d,f 

e,f 

1 

1 

1 
~ L  d 

1 

(f~ . f~oDa,~ + f ~ . 2f~D~,~ -- f~ .  2f~Da,~ -- f ~ . f loD¢,~) 

( A  . FzoDa,~ -- f ~ . F~vD ~,~o -[- f ~ . F~vDa, lo -- f ~ . Fo, oD ~,9) 

( f  ~ . F ~ D ~  m -[-f~. F~aD s,~ - - f ~ .  F~Dao~ - - f ~ .  F ~ D  ~,n) 

1 f~ ~ L ~  ( . F~Da,I~ + f~ " F~6Da,~a -- f~ .  F~Da,~a -- f ~. F~9D~,,~) 

1 
L~-ffc ( - - f~9 .  F~D~,s  -]- 2 f n .  FleD6,9 -- f~o. F~D~,9 + 2 f ~ .  FinDs,s) 

+ d ( f ~ o .  F~oD~,o -- 2 f n .  F~TD~,~o + f lo .  F~,D¢,~o -- 2 f ~ .  F2oD~, 9) 

(f~o. F26D4,n + 2 f n .  F~aD~,~ -- f~o. F~aDa,~ -- 2 f ~ .  F~D6,n) 

( f lo.  F~gDa,,2 + 2fa~. F26D6,~a -- f lo .  F,,6D4,~a -- 2 f ~ .  F~.gD6,~2 ) 

(F17. F2oDs, o -k F14. F1709,1o @ F172Ds, lo + 2F14. F2oDg) 

1 

1 

- - 1  

1 

1 

~7L7 
1 

1 

1 

( -  F17. F26D8,11 -}- FI( .  F2aDg, 12 Jr F17. F~aDs,12 -- FI~. F~6Dg,11) 

( -  F , .  F~,D,,~ + F~. F~°D,,~. ÷ F~,. F~oD~,~ -- F~. F~.Do,~) 

(F20. F~6Dg, n - F~v. F~D~o,~2 -- F,,o. V~aD9,~2 @ F~7. F~,DIo,~) 

(F~o. F29Dg, t2 - -  F17. F26Dlo,1a - -  F20. F~6Dg, ls + F17. F29Dlo, 12) 

(Fa6. F29Dn, 12 + F2a. F ~ 6 D 1 2 , 1 a  - -  F262Dll,la -- 2F2a. F~gD12) 

37 



TABLE 14--continued 

r ,  S 

a, g 

b, g 

c, g 

d, g 

e, g 

Lg 

'E 87 g 1 2 f 4 - - f s + 1 2 - - E ~  

3 1 (20F17 + 3F1~) -+- -- -- -- 

1 4 F~{ - -  F .  (16A~ - 2A~ --  5Ao) 10S E(~) F ~  (20A, - - f ~  --  7A~) - -  

3 1 F8 {F~7 (16f~o -- 2f21 - -  5f22) --" F2o(16f~7 -- ~ -  E~- ~ (6F2o ÷ F~7) ÷ ]~ 

_ 2f~s-  5f~9)} 4 F3.{F17(20f2o_f,1_7f2~)_ ~5 E@) 

- 

~',3 E~ (6F26 -- F2a) + F' { -- 2f~4- 9f~5)- F23(40f~6- 

-- 2f27- 9f2s)} F, {F26(175f~a Jr- 7f2,--41f25)-  210E(~) 

-- F~a(175f26 + 7f2v--4'f28)}7 

~ s  (SF. - F~o) + g2 

F26(40f~. -- 2fao -- 9f3~)} Fa {F2.(175f26 -I- 7f~7 -- 41f2.) - -  

- -  2 1 0 E ( u )  

-- F2a(i75f~.+ Tf3o--41fal)}] 
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~ : O ' I S  
Z 

f 

- 0 , 1  O ' l  

X.= 0 , 3  

f -  

Z 

O-t 

-O.I  0'~ 

0 , 1  

f 

f - - ~  ,.y 
-0"1 0.1 

Fro. 1. Shape of camber  smface of W i n g  1. 
(Spanwise sections), y = 15 deg., designed for m i n i m u m  CD/CL z, with no leading-edge pressure singularities, 

at M = 2.5, CLo = 0.1 (x, y,  z are measured in root chord lengths, z = 0 at the trail ing edge). 
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.Y,. -" 0 " /  

3- -  

C.,p, 

L 

-0.2_ F -0"I 

I \ 
g.=O,G 

-o,z. - O , I  

1 [ 
NO $1Nr~ULARITY 

. . . .  F L A T  W I b,lC~. 

_------~ J 
-0"I al a-t 

0-1 
. - - . . . -~  J 

0'~.  

Fro. 2. Spanwise variation of loading coefficient, Cp, of Wing 1 at M = 2.5, CL0 = 0-1. 
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-0-2 -0.1 

Cp 

0-I 

I I 
- -  NO SINGULARITY WIN~ 

FLAT W I N ~ .  

0.I ' 0-2 

,x2 = I.O Cp 

0-1 

1 

1 
/ 

J 

J 

J 
/ 

/ 
f 

5 

-O-2. -0.1 0.1 

FIG. 2--continued. $panwise variat ion of loading coefficient of  W i n g  1 at M = 2-5, CLf, = O ' l .  
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o'~ 

Cp 

o'1 

-0°1 

0 0'1 0-~ 0.3 0"4 0.5 0.6 o~ ~ . . . . / o . ~  

• 
_._...,._~ ~ 

I '0 

FIG. 3. Variation of loading coefficient along the root chord 
of Wing  1, at M = 2-5, CL0 = 0"1. 



0-I 
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0'II12 

° -i 
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0.,¢ 

o .5  

o.E 

0-7 
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