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Summary. Camber and twist is applied to the problem of producing low-drag wings with no leading-edge
pressure singularities, at design lift. "The suction peaks near the leading edges of the wing are removed and the
associated adverse pressure gradients reduced. This is equivalent to keeping the pressures finite along the
leading edge, and thus making the leading edge an attachment line. Linearised wing theory is used.

The optimising process of Ref. 1 is used to obtain some wings with minimum drag due to lift. Suggestions
are made for modifying the load distribution and shape of the wing if required. :

An outline of the general method for designing cambered and twisted wings and, in particular, those with
no leading-edge load is also given. ’

1. Introduction. In Ref. 1, camber and twist is applied to the problem of reducing drag, due to
incidence, of thin triangular or swept-back wings at supersonic speeds, with subsonic leading edges
and supersonic or sonic trailing edges.

Tt is know that, unless care is taken, an infinite suction (corresponding to a singularity) will occur
(according to linear theory) on an infinitely thin leading edge, giving rise to a finite thrust locally.
In practice, a wing is not infinitely thin, and an infinite suction does not occur. In incompressible flow,
it is well known that an equivalent thrust at the leading edge does appear, at least when there is no
leading-edge separation. It is not yet known how much suction will occur in supersonic flow.

In Ref. 1, two cases were considered:

(@) with leading edge suction forces included
(6) with leading edge suction forces omitted

in the process of finding ‘optimum’ drag for given lift. In each case, the (theoretical) leading-edge ‘
suction was modified, being different from that on the uncambered wing of the same plan-form, for
the same lift. This suction vanished, as it should, when the leading edges were sonic, and also became
small, and tended to vanish, for ‘very slender’ wings (that is, when (M* — 1)*tan y — 0, M being
the free-stream Mach number, and y the semi-apex-angle of the wing).

* R.A.E. Report Aero. 2614, received 12th May, 1959,



In this report, wings are designed with no (theoretical) leading-edge load at design lift. By removing
the suction peaks near the leading edges of the wing, the associated adverse pressure gradients are
reduced, thereby (it is hoped) reducing the tendency for the boundary layer to separate. Two examples
of wings of this type were given in Ref. 4, but no partlcular attention was then paid to obtaining a
wing with low drag.

Three topics are dealt with in this report:

(i) The calculation of some further solutions of the linearised supersonic-flow equations:

In Ref. 1, the load distributions on the nine separate surfaces ¥ = — da"~ * (k)™ [n(> 25) = 1,2,
3,4,5;s =0, 1, 2] are given, where § is a small arbitrary constant, x is measured downstream from
the apex, y is measured to starboard, and z is measured vertically upwards.. In this report, solutions
forn == 6,5 = 0, 1, 2 are given; further solutlons can be calculated, usmg the methods of Refs. 3and 2.
The load distribution on the surface ¥ = — dx | ky | is also given.

(ii) The design of wings with no leading-edge load:

Suitable selections of the thirteen surfaces mentioned in (i) are linearly combined to forrn surfaces
for which the leading-edge singularities vanish. Formulae for the total lift, drag due to incidence, and
positions of the centres of pressure of the surfaces are deduced, and also the interference drag terms
which appear when any two surfaces are combined.

An outline of the general method for designing cambered and twisted wings, with particular
reference to those with zero leading-edge load (which might be used for more extensive calculations
on an electronic computor) is given in Section 6. '

(iif) Application of the methods of Ref. 1 to obtain some low-drag wings with zero load on the leading
edges: '

Simple (‘basic’) surfaces with no leading-edge load are combined, and the optimising process of
Ref. 1 is used to obtain some minimum-drag wings with no leading-edge load. An alternative method -
would be to apply the optimising process to the ‘basic’ surfaces mentioned in (i), with the condition
that the loadings on the leading edges of the final wing are zero. The two methods are essentially the
same and give the same final results. The variation of drag with lift (or incidence) of the designed wing
is also calculated. '

Suggestions are made for modifying the load distribution or shape of a designed wing, if this should
be required.

Q. The Load Distributions on the Basic Cambered and Twisted Surfaces. In Ref. 3, the linearised
supersonic-flow equation is solved, and the velocity potential is obtained in terms of two kinds of
Lamé functions, which are such that solutions can be applied to a swept-back plan-form with super-
sonic or sonic trailing edges, and the boundary conditions on the Mach cone of the apex are satisfied.
The shapes of the corresponding cambered and twisted surfaces are found, it being assumed that the
surfaces all lie close to the plane & = 0.

The load distributions corresponding to the nine basic surfaces given by eqm‘mons of the form
% = — 0u"" % (ky)* (n>> 25), for n =110 5, (r = 1 to 6 and 8 to 10) are given in Ref. 1, where
k = cot y, and y is the semi-apex-angle.

Using the methods of Ref. 3, it can be shown that the velocity potentials for the surfaces given by
n = 6 are as tollows:



TABLE 1
The velocity potentials for surfaces grven by n =6 .

[X = (37 — 3%
Surface Velocity potential, ¢, on the surface
ty=— Dat T fese® = Fuk?ta? <+ fuhty 41X
= = ks S s+ Fuh's? = fublyls)X
. o oot + frok"a + fukly 5]

where V is the free-stream velocity, »* == 1 — p¥tan®y, E(x) is the complete elliptic integral of the
second kind of modulus %, and fas, fos, - « - fa1, Fao Fas, Fag, Fag are functions of » which are calculated

in Appendices I'to IIT of this report.
Formulae for the local slope, «,, and the load per unit area, p,, on the bas1c surfaces, z,, given in

Table 1, are given in Table 2 below.
. Henceforth all forces are normalised by dividing by (mpV?c?)/(K*E(x) ).

¢

TABLE 2

The Local Slope and Loading on the Basic Surfaces =,
oz ac’

7 3, @ = — <2}’>
no| - Ot 6?'5599 O F, [F%§ (B = for = Sl

4 (Bfar — fas)k'y*x? + fosk'y 1 X]

| 12 — %kzyzr‘l ijgkzyzxg §5 Iy [F, J—;g A (5Ffes — far - [fos)s®

+ (3far — fas) Ky +fzsk“y4}-‘X ]
i3 ———-k4 Tx? 2(5k}’ x ’6’F4[F29X {(5f29 — fao — far)x*

+ (3fs0 — far)k"y %" +f31k43’4}X]

Formulae for calculating fye, fas, - -
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Surfaces of the form z = — dx"~ %=1 |ky|*+! (n > 9% + 1) could also be used. The surfaces
2y = — 0x”and 2,, = — dx | ky| are combined to form the surface z, (See Section 3, Table 3), this

being the only ‘no singularity’ surface, of the type considered in this report, with a non-zero pressure
gradient at the apex.

For the surface z,, = — dx | ky] :
the velocity potential on the surface is

o

the local incidence is a,, = 6 | ky| ; the (normalised) load distribution is given by:

(B2 3+ x) -],

The formulae for f, is given in Appendix I; a table of values is given in Refs. 1, 2 and 3.

b = il; <} - 1) xX + k*y*cosh—*
1

3. Load Distributions on Cambered and Twisted Surfaces with no Leading-Edge Load. By suitable
combinations of the surfaces mentioned in Section 2, it is possible to determine the shape of a thin
wing with swept-back leading edges and supersonic or sonic trailing edges, which, at design incidence,
has finite pressure everywhere, the load becoming zero at the leading edges.

For all values of 7, there are 7 surfaces of the form 2 = — dx"~*|ky| (n > £), where », ¢, are
positive integers, and (z — 1) independent ‘no singularity’ surfaces of degree n can be formed for
each value of . If even powers only of y are used, there are ( — 1)/2 or (n — 2)/2 ‘no singularity’
surfaces of degree #, when # is odd or even respectively. A

In this report, the thirteen surfaces forn =1, 2, 3,4,5,8;¢=0,2,4,and n = 2, = 1 are used
to determine the seven ‘basic’ no-singularity surfaces whose equations and local slopes are given in
Tables 3 and 4 below.

Formulae for the load per unit area on these surfaces are given in Table 5, and the positions of the
centres of pressure are given in Table 4.

These surfaces can then be combined to form a minimum-drag wing with no leading-edge singu-
larities, or to satisfy other given conditions.

The same wing can be obtained from the original surfaces (given in Table 9), with the additional
conditions that the leading-edge singularities vanish.

4. Formulae for the Calculation of Minimum Drag for Given Wing Combinations. Formulae for the
local surface slope, position of centre of pressure, load per unit area, lift and drag for a surface of
the form 2z = Z (4,%,), where A, are constants, are given in Ref. 1. The formulae are given, in a
slightly different form below.

Writing (4,L,)/L = a,, where L, is the (normalised) lift of surface 2,, and L the total (normalised)
lift, the equation of the final surface can be written in the form:

z = kgf:) Cro Z (%: z,); + F(y) for ?. triangular Wing, (1)
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TABLE 3

Formulae for the Shape, z,, and Local Surface Slopes, a,, of the ‘Basic’ Cambered
and Twisted Surfaces, with No Leading-Edge Load

(Formulae tor f,, f5 . . . Fyy , . . . are given in Appendix I)
¥ 2, ’ o,
a — O (fox® — fsk®y2x) 8 (Bfax® — fsk>y*)
b - 67(](10”4 — 2f 1Ry %x®) 46 (fro%® — fuk®y"x)
c +-6 (F179C5 + F14k2y2x3) — 0 (5F17x + 3F14k2 )
d — 6 (F20k2y2x3 + F17k4y4x) é (3F20k2y2x2 + F17k4y4)
e — 8 (Faex® — Fyyk?y®x?) 8 (BF g5 — 4F 3k y%x®)
f — 0 (Fyy k2y2x4 - 26k4y4x2) 4 (4F29k2y2x3 - 2F26k4y4x)

7 I
g — 06" — g e D 0 (2% — gy WD)
TABLE 4

Positions of the Centres of Pressure of Cambered and Twisted
Triangular Surfaces

v, = distance downstream of the apex, in root-chord lengths
(The equations of the surfaces » = 1 to 13 are given in Table 9, at the end of this report)

¥ v, oy v,
1, - 2/38
2 or 2a 3/4 g 3/4
3orb 4/5 a 4/5
4 or 6 5/6 b 5/6
8,9,0r 10 6/7 cord 6/7
11, 12, or 13 7/8 eorf 7/8




TABLE 5

Formulae for the (Normalised) Load per umit area, p,, on the Basic
‘No Singularity’ Surfaces

nct ‘
7- @&

a 36x X
b 45(4x® — k)X
¢ 5F3[{F14(4f17 — fis — f19) — F1i4fis — fis —f16)}x3

+ {Fru@f1s — fro) = F1o (215 — fra) IRy 2] X

d OF[{ F1z (4fa0 — for — fa2) — Fao(Af17 — f1s — Fro) J#°

+ {F12 (2o — fre) — Foo(Zf1s — f10) B7y*2] X

e OFA[{ Fas (8fas — for = fas) — Faa (826 — far — fag) J*
+ {Fa5(3fas — fas) — Foa(3for — fos) %"

+ {Faofas — Faafas}k'y']1X

f 8 Ful{ Foo (526 — far — f2s) — Fag (520 — fao — far) J"

(a0 3fer — Fas) — Fos (8so — fo) JE2y*a

+ {Fasfas — FaofuJR'Y']X

g 20X

RE(x a; A .
g = L)_ym_(:)—a) Cy OZ (E _z,) + F(y) fo/r a swept-back wing @

with supersonic or sonic trailing edges, where Cy,, is the design lift coefficient, based on the area of
the plan-form, F(y) is a small arbitrary function of y, and a is the ratio tan y/tan g, y, o being the
leading-edge and trailing-edge semi-apex-angles respectively.

The corresponding loading coefficients are:

2 2
Cp = ;'CCL 0 E (I’,a—: 7212— pr> for a triangular wing, . (3)
2 a, nc* .
Cp = B CLo Lo for a swept-back wing. (4)

For each wing, the (normalised) drag/(lift)? is given by:

d = Z (a,.zd,. + a,asd,,s> (r <s); (5)
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Co _ kB(x)

o o d tor a triangular wing, (6)
Cp kE(G) - L
cp= Il — 3) d for a swept-back wing, . (7)

where Cy, Cp are the lift and drag coefhicients,
The distance of the centre of pressure downstream of the apex, in root chord lengths, is

v=> (@) | ®
- where », is the value of » for surface 2
Formulae for z,, p, for the separate triangular or swept-back ‘no singularity’ surfaces are given in
"Tables 3 and 5. Formulae for v, d,, d, , for triangular ‘no singularity’ surfaces are given in Tables 4,
12 and 14; the formulae for swept-back surfaces can be deduced from results given in Ref. 1. Some
further results for swept-back wings and modified methods for some of the calculations will be
published later. '
The minimum values of d (= d,p) and the appropriate coeflicients, a,, are functions of the d,, d,
of the surfaces combined®. All forces were normalised by dividing by mpV%*/(k*E(x) ), but the ratio
d/d,, where d, is the value of d for the corresponding flat wing, is independent of the normalising factor.

For the combination of # surfaces, » = a, b, . . . #,
a2, 1
1=y ~ ®)
>4,
—
where ) An=| 2, doy e o Aoy
pa 2d, dpe « « » dy,,
. . . s . (10)
dr;,a . d.n,b d.mc 2dn
and 4, (r = a, b, . . . n) is equal to 4y, with each term in the 7th column (or row) replaced by 1.
Also Bopr = Z (a,zd,. + a,asd,,s) , ¥ <5, (11)

5
where a,, a, are given by (9). ‘
Alternative formulae giving the values of 4, and d,,,, which are more suitable when an electronic

dops = 1 / [22 X] : (12)

a, = 2X,do, (18)

computor is used, are:
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where X, are the roots of the linear equations

n

‘ Z (ds,rXr) =1, : ‘ (14)

r=a
s=a,b,...nandd, , =2d,.

Another formula giving d,, (useful for checking), is

Qo = 1/ |:4 Z (X%, + X,Xsdr,s)il Ce T <s (15)

Another check on calculations is:

n

Z a, = 1. (16)

r=a

Formulae for the calculation of minimum drag for given wing combinations, when the centre of
pressure is fixed at design C;, are given in Ref. 1.

5. Modifications to Designed Wings.

(@) Position of Centre of Pressure.

If the position of the centre of pressure of a designed ‘no singularity’ (or any other) wing is un-
favourable, the position can be altered by superimposing a suitable combination of other solutions,
and the corresponding changes in drag/(lift)* can be calculated (Positions of the centres of pressure
of the separate surfaces are given in Table 4).

Formulae for the calculation of minimum drag, when the centre of pressure is fixed at design C7,
are given in Ref. 1.

(b) Non-zero Pressure Gradient at the Apex.

For the wings discussed in this report, the loading at the apex is zero. The chordwise pressure
gradient at the apex for all the basic ‘no singularity’ surfaces, except surface 2, is also zero. 'Therefore,
if a pressure gradient at the apex is desired, surface 2, must be included in the combination taken.
But it is found, in general, that the drag/(lift)” increases fairly quickly with the increase of a favourable
pressure gradient at the apex.

(¢) Modification of Adverse Pressure Gradient.

When a ‘no singularity’ wing is designed for minimum drag/(lift)?, it is, in some cases, found that
there is a (theoretical) adverse pressure gradient along the root chord, towards the trailing edge. This ~
can be partly remedied by superposing solutions with more favourable load distributions; in particular,
the superposition of solutions having zero load at the trailing edge of the root chord has, in general,
the effect of ‘flattening’ the root chord load ‘pattern’. Or, it is possible first to form solutions which
give zero load at the trailing edge of the root chord, and then to find a minimum-drag wing by com-
bining these solutions. Using the seven basic surfaces given in Table 3, there are six independent

8



‘no singularity’ surfaces having zero load on the.root chord at the trailing edge, viz,:

24 =bz, —az, . &=, — az,
2o = dz, — azy, 2p = ez, — az,,
Rp = [z, — az;, Iy = A%, — L2,

where a, b, ¢, d, e, f, g are the coefficients of &%, %% ¥*, x*, &%, &%, x respectively in the formulae for

(nc®/2k)p, (r = a, . . . g) when y = 0 (See Table 5).

(d) Modification of Shape of Camber Surface.

(i) The equation of a camber surface has been found in the form z = Z (4,2,) 4+ E(y), where F(y)
is an arbitrary function of y, which does not affect the load distribution, or the downwash.  F{(y) can
be chosen to satisfy any suitable condition: e.g., & = 0 at the leading edge or trailing edge, or at any
other chordwise position.

(ii) The chordwise local slope (and also the spanwise local slope if, for example, F(y) satisfies one of
the conditions suggested above) can be modified by taking = = > (4,%,) + Fy(y) + ax as the
equation of the camber surface, and placing the wing at the original design incidence plus incidence a.
With the linear-theory approximations, the theoretical load distribution, lift, drag, and position of the
centre of pressure of the modified wing are the same as for the original wing.

The modifications suggested above are obviously only a few of those which could be made. Many
more are possible, using the basic solutions given in this report, or higher-order solutions constructed
from the general solutions given in Ref. 3 (See also Section 6 of this report).

6. General Formulae for the Design of Delta Wings, or Swept-back Wings. Using the general results
given in Ref. 3, it can be shown that, for all positive integral values of #, there are solutions of the
linearised supersonic flow equation for the velocity potential, ¢, (on the wing), of the form:

m 6V Dl 2,,2 Cr ) 2
b = gy | i (Y X
m=12,...(n+1)/2; ¢, =0), ifnisodd; ' (170)
5V (=22 d,
b= st e 0L [ g = X

(m =12, ...1/2; d,>0), ifniseven, ' T (17h)
where (Ret. 3, Appendix III) X = (x* — k%y*)"/%, the values of ¢, (* = 1, 2, . . . (n — 1)/2, for each
value of m, are given by the (r — 1)/2 equations

(n—1)/2

1 (. P 3 1
g sttt ) +2 > (7=5) =0 o4 (184)

s=1

and the values of 4, (r = 1, 2, . . . (n — 2)/2, for each value of m, are given by the (n — 2)/2 equations

9






Alternative equations for calculating a,, b,, c,, ¢, are given in Appendix 6.
The corresponding loading coefficients are given by

4 3
~V ox

Cr (24)

Hence, on the wing:

c ' 45 (uﬁ)/z 5 s ) i
(), = L[|+ - g0

(n—1)/2

20X z <( o 1:(61 — y2>}] , if 7 is odd; (25a)

+

Pl s

r=
and

Ay 22 f ) d, o e
A (Cp)mzcrm) El l:l%x—l_dr(l—x)X}{)—(+X+
n—2)/2 '

+ 242X z (( — d)x;‘ J_"dzil — 5 2>}] , if 7 is even. (255)

=1

The surfaces given by equations (224) and (226) can now be combined to form wings with no
leading-edge singularities. -

For each value of #n, (n — 1)/2 (if » is odd) or (n — 2)/2 (if # is even), independent cambered
surfaces with zero leading-edge load can be found by combining surfaces of the form given above.
These surfaces could be taken as:

2y = (2, — 2 7 =12,...(n+ 1)/2if nis odd,
=12,...n/2ifniseven, 7 <'s. (26)
A general equation of ‘no singularity’ surfaces (containing even powers of ¥ only) is

© (n—1)j2or(n—2),2 -
2= Y/\ Z <Amzm> , (r<s), (27)

i

n=0 #s=1

where A, ; are arbitrary constants, which can be chosen to_satisfy given conditions.
The corresponding loading coeflicient is

0SS ]-SS[AE)- )] @

There are also (n — 1)/2 (if # odd), or #/2 (if » even), surfaces of the form z, = — dx" ™" [ky |,
and their corresponding loading coefficients (Surface 2 = — dx | ky | has been used in one of the
examples given in this report).

If these surfaces are combined with each other, and with those given above, to form surfaces z,,
so that leading-edge singularities are eliminated, 1t can be shown that the general equation (in the form

11



of a polynomial) of ‘no singularity’ surfaces can be written °

z = N (B, %), (¥ <s). (29)

The lift and drag coefficients are given by

C, = < f Cp dS> / S, (30)
Cp = ( — Cpm dS>/S (31)

the pitching moment coefficient about the leading edge apex is

Cyr = (fxcp dS> / (S); (32)

and the distance, in root chord lengths, of the centre of pressure from the leading edge apex is

The integration is over the wing plan-form, of which the area is S, and the root chord ¢.

Formulae for evaluating certain double integrals, which are required for the calculation of the lift
and drag of triangular and swept-back wings, are given in Appendices V and VI of Ref. 1. Some further
formulae are given in Appendix IV of this report.

7. Variation of Drag with Lifs. 1f a designed ‘no singularity’ wing is placed in the free stream at
other than design incidence, there is a (theoretical) leading-edge suction force. If C; is the lift co-
efficient in the new position, the variation of the drag coefficient, Cp, with Cy, is given by: (for a
triangular wing)

Cp —REC: [z Cr2+ (dvg — 260) CuCro + (6 + dov—dl,ocmﬂ, (34)

where Cy , is the design lift coefficient, d, is the design value of d, #, is the (normalised) clr'ag/(lift)2 of
the flat wing, with suction included, and

b= > (adsy) (35)

The variation of the pressure drag coefficient, Cp p, (suction ignored) is given by

kE
Cor =B a0+ (dhy — 28 Corot (G do— i, (36)
d, being the value of (normalised) drag/(lift)® for the flat wing, with suction ignored.

12



The formulae for the flat triangular wing are:

RE(3 . '
CD = 2§Z ) tEI.CL2 » (37)
RE(» ‘
Cor =22 4cy2. 39

dy,o is the ‘interference’ term for the flat wing and the designed ‘no singularity’ wing.
The separate ‘interference’ terms, d;,, for the triangular surfaces used in this report are:

1
dio= L (falsdy,s — fslsdy,s);
1 :
diy = Eb (fioLadi,s — 211 Led,6);
3
dl,c = - I (F17L8d1,8 + F14L9d1,9f);

1
da= L_d (onLsdl,s + F17L10d1,1o);

1
d1,e =r (F26L11d1,11 - F23L1zd1,12)§
1
d1,f = Ef (F 29L12d1,12 — F, zsL13d1,1s);
1 1
die = i~ m) . (39)

Some graphs showing the variation. of C, and Cj, » with Cy, are shown in Figs. 8 and 18.
The formulae giving the variation of Cp, Cp p with Cy, for a swept-back wing, are of the same form
as (32) to (36), with denominator 27(1 — a) instead of 2, and the appropriate values of dy, d;,,, d;, ;.

8. Numerical Examples. A number of examples of delta wings, cambered and twisted so that there
are no leading-edge loads, have been investigated. The theoretical shape of camber surface, and load
distribution of three delta wings with finite leading edge pressures, and also the variation of drag with
lift, are shown in Figs. 1 to 13. Some details concerning these wings are given below: (x, y, z are
measured in root chord lengths; 2 = 0 at the trailing edge.)

Wing 1

Wing 1 was designed for minimum drag for given lift.
Btany = 0614, »*=0-6231, M = 2-5;
5} =15deg, k=2 /3, - -aspect ratio = 1-0718."
13



The shape of the camber surface is given by:
2[Cp o = G(Auz, + Aps + Az, + Auzg),  (Fig. 1)
where G = kE(%)/(2m) =.0-763720,
A, = 23-197489, A, = — 10-785131,
A, = 5406638, Aq = 1-211762;
7, = 0-6622(1 — x°) — 2:5134%%*(1 — ),
2, = 2-3670(1 — x*) — 5-6642k%*(1 — &%),
5 = 21590(1 — a%) — 4-1494 K3¥(1 — °)
54 = 0-6533k%%(1 + &%)~ 2-1590k%y*(1 — x).
The loading coefficient at des1gn 1n01dence is given by
CplCr o = 2[m) (AP, + APy + AP + Ade), (Figs. 2 and 3)
where P, = 3x(x® — K*y%)V%, ‘
Py = A(da® — Kyt — By
P, = (19-482989x® — 7-609962xk™y*)(x* — k*y?)*3,
P, = (0-172987x° -} 1-593199xk>y*)(x* — k*y*)/%,
dfd, = 0-8966 (Ad|d,) per cent = 10-34 per cent,
t,/d, = 0-6930,
(#1)5/0/d: = 0-8465, ((Ad)ys/d,) per cent = — 5:01 per cent.
where d = drag/(lift)?, | ‘
d, = drag/(lift)* for flat wing, suction omitted,
= drag/(.lift)2 for flat wing, full suction included,
(t1)g2 = drag/(lift)® for flat wing, half-suction included,
Ad =dy —d, (dd)ys=(t1)y2— d
Wing 2

Wing 1 was modified so that Cp = 0 at the trailing edge of the root chord and the chordw1se adverse
pressure gradient along the root chord reduced.

ftany = 0614, »*=06231, M =2-5;
y = 15 deg, k=2 +/8, - aspect ratio = 1-0718,

14



“Design lift coefficient = 0-1:
The equation of the camber surface is:

g = 0-556 (1 — %) [0-1759(1 + = + x%) — 1-0584x° - 0-6770x* — 0-0033x° —
— E%*(1-6947 — 2:9901x + 1-1627x* — 0-0055x%) —
— 0-4608%y*]  (Figs. 4 and 5).
‘ The loéding coefficient at design incidence is:
Cp =[x (2~59i9 — 5-4372x -+ 2-8626x% — 0-0173x%) +
4 BYF(1:8593 — 0-9540% - 0-00824%) +
-4~ 0-0001%**] (x* — E%®)'2  (Figs. 6 and 7)
Distance of the centre ot pressure from the apex = 0-6562 root chord lengths.
d/d, = 0-8409, (4d/d,) per cent = 1591 per cent,
t;/d; = 0-6930,
(t1)y2/dy = 0-8465, 7 ( (4d,5/d,) per cent = 0-56 per cent.

Wing 3

Wing 3 was designed for minimum drag for given lift.
B tan-y =038, »*=091, M = 1-56205;
y = 14°2', k=4 aspect ratio = 1.
The shape of the camber surface is given by:
%[Cp o= (1 — x)[0-925579 (1 + x + x%) — 5-540835x° +
-+ 3-423581x* — K%*y*(10-911018 — 20-823776x + 6-854739x%) —
— 5-539211%%"]. (Figs. 9 and 10).
_The Iéading coeflicient at design incidence is given by:
Cp/Cy o = [2(31-088880 — 69-630130x + 32-513480x7)
1 k*y*(17-407533 — 12:009394x)] (x* — R2y?)2.
Distance of the centre of pressure from the apex = 0-6478 root éhord lengths.
dld, = 0-6339, (4d/d,) per cent = 36-6 per cent,
t,/d, — 0-5650, |
(t1)s10/dy, = 0-7825, ( (4d)ys/(t1)s2) per cent = 190 per cent.
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Models of these three wings are being made, and will be tested in the 8-ft Tunnel at the Royal
Aircraft Establishment, Bedford. .

From a considerable number of examples investigated, it seems that the minimum drag for given
lift of a delta wing, cambered and twisted so that the leading-edge loading is zero, is slightly greater
than the drag of the uncambered wing (with full suction) for the lower values of § tan y, but less than
the drag of the uncambered wing for larger values of 8 tany. For §tany == 1 (that is, sonic leading
edges), a percentage drag reduction of about 10 per cent is predicted. If only half-suction forces are
included for the uncambered wing, there is a possible (theoretical) percentage drag reduction (with
infinite pressures on leading edges eliminated), increasing from about 10 per cent (for ftany = 1)
to 33% per cent (for f tany — 0, that is, for very slender wings). It is assumed here that separation
reduces the suction on the flat wing by one half, whereas no separation takes place on the cambered
wing, which, perhaps, makes the comparison not quite fair.

9. Conclusion. Camber and twist has been applied to the problem of producing low-drag delta or
swept-back wings, with subsonic leading edges, but with the (theoretical) infinite leading-edge
pressures eliminated. Some delta wings have been designed and suggestions made for modifying the
load distribution and shape of the wings if required.

For the lower values of § tan y, most of the predicted drag reduction on the uncambered wing due
to leading-edge suction can (theoretically) also be obtained by camber and twist. For values of
B tan y near to one, a drag reduction higher than that due to suction is predicted.

An outline of the general method for designing cambered and twisted wings, with special reference
to wings with infinite leading-edge pressures eliminated, is given in Section 6.

It is hoped that some results for cropped delta wings and fully tapered and cropped swept-back
wings will be published in a further report. '

Acknowledgements. Acknowledgements are due to Miss J. Parker and Miss R. Hensby for their
help with the computations, to Miss R. Hensby for the careful preparation of the drawings, and to
Miss A. Paton for calculating the results of Appendix IT on DEUCE.
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LIST OF SYMBOLS

A Coeflicient depending on » (See Appendix II)
Ay, Asy Ay Coefficients depending on » (See Appendix III)
A, Constant coefficients (See Section IV)
- A Lamé coefficient (See Appendix IT)
a, = ALJL
a = hlk
B Coefficient depending on # (See Appendix II)
By, By, B, Coefficients depending on x (See Appendix III)
b, A Lamé coeflicient (See Appendix I1I)
Cy, Gy, Cy Coeflicients depgnding on % (See Appendix III)
Cp Drag coefficient
Cpp Pressure drag coefficient
Cr - Lift coeflicient
Cry Design lift coefficient
Cu Pitching-moment coeflicient
Cp Loading coeﬂicieﬁt (= — 2 X pressure coefficient)
c Length of root chord ‘

Zeros of Lamé functions (Appendix ITI and Section 6)

D (Normalised) drag
D, (Normalised} drag of surface, z,
D, =D, (Normalised) ‘interference drag’ of surfaces z,, %
d -—— D/L*?
d, Zeros of Lamé functions (in Appendix III and Section 6 only)
d, = DL’
d; (Normalised) dra'g/(lift)2 for flat wing (suction ignored)
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f1yf4a .. -f31§
F, Fy, Fy, Fy;
Fl. . . Fy

h

I

2m>n

I, 2m + Lyn

LIST OF SYMBOLS—continued

D, /(L,L,)

Complete elliptic integral of the second kind of modulus

Functions of » given in Appendix I

cot o
} See Appendix IV

1 — ® d 1 dt
W Pn (1) .[1 zz l:t[P,l’"(t)]2(t2 _ %2)1/2 (iz T 1)1/2

Complete elliptic integral of the first kind of modulus »
cot y
(Normalised) lift

(Normalised) lift of surface 2,
} See Appendix IV

Mach number

(n—1)/2

IT (#—¢)ifnisodd
n=1

‘-2z ‘
t II (*—4d)ifniseven
n=1

{(Normalised) load per unit area of surface z,

Area of wing plan-form

(Normalised) drag/(lift)? for flat wing, suction included
Free-stream velocity

(5 — Rytyie

a,/(ZcZopt) (¢f. equations (13) and (14) )
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Ax

Ad

LIST OF SYMBOLS—continued

Chordwise co-ordinate (measured downstream from the apex)
Spanwise co-ordinate (positive to starboard)

Normal co-ordinate (positive upWards)

Local slope (= — 9z/dx)

Local slope of surface z,

(M2 — 1yt

Apex semi-angle

See Appendix II1

cf. equation (9)

¢f. equations (9) and (10)

dy—d

Small dimensionless constant

(1 — f*tan® y)'/2

Coefficients depending on x (See Appendix 11D

Argument of Lamé function (See Tables 7 and 8)

Dis‘Fance of centre of pressure, in root chord lengths, from the apex
Value of » for surfacerz,

Free-stream density

Apex semi-angie of trailing edge (of a swept-back wing)

Velocity potential
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APPENDIX 1
The Functions f3, fy, . - - fs1; F1, Fay Fs, Fy3 F

fi=fi= {2~ DEGe) + (1 — %) K2 E(=) )

fa=3{(1 + #)BGe) — (1 — #)K(}/(2%°E(x) )

Jo =12+ & — 3YK() — (2 + 26 — 6x)E()} /(2" () )
fr={(2 — 3+ VE() — (2 — d® + VK ()} /(2" B() )
Fro=1{(2 + 2 — 4 K(%) — (2 -+ B® — 8ut) E()}/(2* E() )
Ju=3{(2 — 2* + BNE(x) — (2 — 3 + )K()}/(24E(2) )

(8 — 1%+ 5t — 12)K() — (8 + B> - Tt — 24%)E(x)}

frz= ‘ | (GMGE(’{) )
b= (8 = 11 + #* + 2ME(x) — (8 — 151 4 6" -+ YK (%))
1= @B

Fl =1/(fsfs — 3fuf?)
Fy = 1/(fufre — frofia)
fia = ByCs — B;C,,  fi5 = B,Cy — B:;CII, fis = B1Cy — B,Cy;
fin=Cpd; — C3d,, f1g =C1d3— Csd,, fio =014, —Cody;
o= AsBy — AsBy,  fa= AyBy — ABy,  fu= d,By — AgBy
Fy = 1/(41f1a — Azf1s + Asfe)
= 1/(B1f17 — Bsf1s + Bsfuy)
= 1/(C1fao— Cafur+ Csfa),
where A, B,, C; (s = 1, 2, 3), (n = 5) are given in Appendix 11,
Fus = BoCs— BsCo  foa=BiCs — BsCy,  fas = BiCy — ByCy;
Fao = Cady — CoAy  for = Csdy — CiAy,  fag = Cady — CyAy;
foo = AsBs — A3Bs,  fao=A;B; — A3B1, fa = A.By — A,B,
Fo=1(Asfis — Aofs + Asf)
- - 1/(Bifzes — Bafar + Bafas)
= 1/(Cifes — Cafso+ Csfar)s
where 4,, B, C;, (n = 6), are given in Appendix III,
P fod fosr--fira (s = 14, 17, 20, 23, 26, 29)
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APPENDIX 1II

Equations for a,, b, forn =5and n =6
n=>5
a., (m =1, 2, 3) are the roots of the cubic equation

27a,° — Aa,®+ Ba, — C =0,
where )
A = 60 + 42,
B = 3% + 68 -+ 16,
C = 2212 + 8).
b, is given by: '
b, = n* a,|(12* +8 — 9a,,)
or 148,, = 9a,* — (8« + B)a,, + 6x*
n=2~06
a, (m = 1, 2, 3) are the roots of the cubic equation
121‘11'13 - Aamz + B(l,,, —C= O),
where A = 286x® + 220,
B = 160" - 412x* - 98,
C = 40x*(4»* + 3).
b, is given by:
18b,, = 11a,® — (10%* + 8)a,, -+ 10x

Numerical values of 4, B, C forn = 5 and n = 8 are given in Table 6.

Numerical values of @, b,, for n =5 and » = 6 are given in Tables 7- and 8.
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TABLE 6

Numerical Values of A, B, C forn =5 and n =6

x? 4 B C ptany
0 42 16 0 1
0-0975 47-85 22-9342 1-78815 0-95
0-19 534 30-0752 3-9064 0-9
0-2775 58-65 37-3342 628815 0-85
0-36 636 44-6272 8:8704 0-8
0-4375 68-25 51-875 11-59375 075
0-48 70-8 56-0128 18-2096 0-7211
0-51 72-6 59-0032 14-4024 0-7
0-5211 73-266 60-12424672 14-85468504 0-692
0-5775 76-65 65-9422 17-24415 0-65
0-64 80-4 72-6272 20-0704 0-6
0-6975 83-85 78-9982 22-83615 0-55
0-75 870 85-0 255 0-5
0-7975 89-85 90-5822 28:02415 0-45
0-84 92-4° 95-6992 30-3744 0-4
0-8775 94-65 100-3102 32-52015 0-35
0-91 966 104-3792 34-4344 0-3
0-9375 98-25 107-875 36-09375 0-25
0-96 996 110-7712 57-4784 0-2
0-99 101-4 114-6832 39-3624 01
1 102 116 40 0
0 220 96 0 1
0-0975 247-885 137-691 13-221 0-95
0-19 274-34 180-056 28-576 09
0-2775 299-365 222-651 45-621 0-85
0-36 322-96 265-056 63-936 08
0-4875 345-125 306-875 83-125 075
048 357-28 330-624 94-464 0-7211
0-51 365-86 347-736 102-816 07
0-5211 369-0346 354-1404336 105-9792336 0-692
05775 385-165 387-291 122-661 065
0-64 403-04 425-216 142-336 06
0-6975 419-485 461-211 161-541 0:55
0-75 434-50 495 180 05
07975 448-085 526-331 197-461 0-45
0-84 460-24 554-976 213-696 0-4
0-8775 470-965 580-731 228-501 0-35
0-91 480-26 603-416 241-696 0-3
0-9375 488-125 622-875 253125 0-25
0-96 494-56 638-976 262-656 0-2
0-99 503-14 660-696 275-616 01
1 506 668 280 0
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TABLE 7

Numerical values of a,, b, for the Lamé function l
E(u) = (u* — auk®p® 4 b,k") (|u® — R*))" @

Ay > ag

a, b, a, b, a; b,
1 8/9 8/63 2/3 0 0 0
0-95 0-956796079 | 0-16693222 0-719180036 | 0-02599562 0-0962461071] 0-00113009
0-9 1-04214165 0-219830559 | 0-750701123 | 0-040478366 | 0-184935007 1 0-004078382
0-85 1-13389213 0-27970064 0-772420884 | 0-04895761 0-265909211 | 0-00825683
0-8 1-22583351 0-342757754 | 0-790825303 | 0-054722374 | 0-338896743 | 0-013161138
0-75 1-31512832 0-40695309 0-809112846 | (0-05931431 0-403536607 | 0-01835560
0-7211 1-36404874 0-444047822 | 0-820339242 | 0-061747862 | 0-436934233 | 0-021340775
0-7 1-40040828 0-471012478 | 0-829012542 | 0-063493551 | 0-459468070 | 0-023468573
0-692 1-41358329 0-481150961 | 0-832406215 | 0-06415205 0-467566044 | 0-02425546
0-65 1-48093637 0-53400059 0-851447494 | 0-06766379 0-506505024 | 0-02820305
0-6 1-55627204 0-595149908 | 0-876653373 | 0072021763 | 0-544852372 | 0-032358470
0-55 1-62612869 0-653791468 | 0-904198007 | 0-076610959 | 0-575228861 | 0-03584600
0-5 1-69030748 0-700326001 | 0-933138349 | 0-081361742 | 0-598776383 | 0-038677271
0-45 1-74866391 0761212108 | 0-962308994 | 0-08614014 0-616804867 | 0-04092785
0-4 1-80108932 0-808960628 | 0-990589561 | 0-090793564 | 0-630543347 | 0-042696632
0-35 1-84750020 0-85213296 1-01704871 0-09517990 0-641006838 | 0-04407852
0-3 1-88783150 0-890340489 | 1-04097597 0-099179843 | 0-648970305 | 0-045152604
0-25 1-92203256 0-92324594 | 1-08185459 0-10269854 0-855001740 | 0-045980015
0-2 1-95006379 0-950561911 | 1-07931970 0-105663261 | 0-659505402 | 0-046606606
0-1 1-98750392 0-987535117 | 1-10308120 0-109728783 | (-664970421 | 0-047377337
0 2 g 10/9 1/9 2/3 1)21

TABLE 8
Numerical values of a,, b, for the Lamé function ‘
Eg(u) = (p° — auk®u® 4 buk'u) (I:“a - kzl)”z' a;> Q> 4y

a by @, b, a; by
1 12/11 8/33 8/11 0 0 0
0-95 1-11887587 0-26132247 0-809057627 | (0-05077914 0-120702862 | (0-002886267
0-9 1-15982909 0-289718372 | 0-874637826 | 0-091999450 | 0-232805809 | 0-010633693
0-85 1-21509373 0-32907475 0-922717171 | 0-12212218 0-336280009 | 0-02197275
0-8 1-28140265 0-377647195 | (0-956639902 | 0-142763114 | 0-431048341 | 0-035759368
0-75 1-35346781 0-43202567 0-981848623 | 015716207 0-516956285 | 0-05006377
0-7211 1-39599192 0-464890625 | 0-994276109 | 0-163761143 | 0-562459232 | 0-060027005
0-7 1-42702890 0-489247094 | 1-00285836 0-168084959 | 0-593749101 | 0-066655817
0-692 1-43870185 0-49848906 1-00603985 0-16963808 0-605131022 | 0-06914629

- 085 149939626 0-54727206 1-02270524 0-17735674 0-661080324 | 0-08199543

0-6 1-56895165 0-604711017 | 1-04336009 0-186123208 | 0-718597325 | 0-096244544
0-55 1-63468796 0-66054440 1-08598281 0-19507890 0-766147383 | 0-10581905
05 1-69594127 0-713960834 | 1-09090912 0-204545469 | 0-804058681 | 0:119372468
0-45 1-75224811 076427468 1-11763757 0-21449950 0-833266141 | 0-12785007
0-4 1-80326987 0-810887699 | 1-14505777 0-224654601 | 0-855308710 | 0-134445557
0-35 1-84875105 0-85216033 1-17185516 0-23460108 0-871666535 | 0-13947899
0-3 1-88849468 0-890959705 | 1-19684203 0-243930032 | 0-883754224 | 0-143279976
0-25 1-92234768 0:92354643 1-21909627 0-25229751 0-892646959 | 0-14612576
0-2 1-95019137 0-95068567 1-23796155 0-259439639 | 0-899119837 | 0-148226231
0-1 198751176 | 0-987542914 | 1-26390395 0-269339135 | 0-906766096 | 0-150742175
0 2 1 14/11 3/11 10/11 5/33

24



APPENDIX III
Formulae for Calculating A, B, C; forn =5,n =6

The constants 4, B, C; required for the calculation of fi,, fi5, . . . fs are given by the formulae :
(s=1,223)
. 3 ' .
(AT
m=1

B == 31)5 “a - 32)2[(3,,,)5 (1 gt bm> <a,,, W — 2bm> jf:I , (40)

3
CS = (— 1).; (1 - %2)2 S\ (&n) <1 — ay + bm> bm‘ym] 3
e s

m=1

where (See Appendix II, Ref. 1)*

1 1
,'{1>2 = %—2(—1—_—%2)7] [bz — b3 + ;‘2 (le b3 — dg b2>:] , etc.

- 1 1 2
Ay \ = m [;4 <azb3 — 4362)—{— o’ <b2 — b3> — (az — ag):’ , etc.

2, b, are given in Appendix 11, and

( | |
<13>1 - ;4121 (alb2 — azbl) , | | G
(
(

] _ (1 — %2) (1 — &y + bul) 1 : [ . 2%2 — Gy
m Q

a,? — 4b,, ;Zb-m (1— %2)2%2(%4 o ) —

.3 2 —2a, + a,?— 25, x?— 2 2—a,
T A —a T o) AN T e T

TS %2)(1_4— P b} - 2{ 83 {2 <bm(l ia;i bm)> *

%[47”2 - 2bm - 2am <am2 - bm) + amaE —{_ 4amzbm - 14bm2 - 4ambm <am2 - 3b7n>}
-+

2
bm2<1 — 4y + bm)

*(Am)s here replaces the (R¥+22,5) used in Ref. 1.

. (42)
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W= 1 — f?tan %y, and K(x), E(x) are complete elliptic integrais of the first and second kind

respectively, of modulus ».

The constants 4,, B,, C, required for the calculation of fu3, fas, . . . fa are given by the formulae:

(s=1,23)

4, = (—61)x Z[(gm)s (1 — a, + b,,,) (%4 — gt bm) 7,,;' ,
B, (_i)s:-l (1 _ mi[(z,n)s (1 R b,,,) <a,,,%2 — 25”,) }m] :

m=1

o D (1) (1 )82

m==

I

where (A,,), is given by formulae (41), a,, b,, are given in Appendix 11, and

(1 = %) (1 — am -+ by) <[ 1 1 A

I = AP AR: Z[{wﬁ torm A =4
1 3224, — 1) — 241 —d)?| K(¥)
(Y- dr)z}m { 27 (1 — )t },,, (%)

R e I G e s
= 56)

)

and, for each value of m, d,, d, are the roots of the equation

D*—a,D +b,=0.

26
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APPENDIX 1V

Formulae for the Evaluation of Certain Integrals

The following integrals occur in calculations for the triangular wing:

Yk Jo By B 7(2m)!
Lomn = kf o (7% — T By 2)1/2 dx dy = 2T O | 1 F 1) (m1)®

Yk rl k2m+1 2m+1x11 22"l(m !)2
Tons tn ——kf ky (x TN Rk dx dy :(2m+n 4+ 2) (2m 4 1)!

" : “n(2m)! (2m + 2)
— " 2ot (a2 B2.,2Y1/2 __ A il T
Ly = kfo N (k) 'x (% — B2 dx dva ST Om + n kB T DI

Lkt : e g (m)2(2m -+ 2) -
— 2m +1,n 2 L2,,2\1/2 —
Lo 10 = kfo Ly (Ry)™+iam (u% — RY) e &y = oy @ - B)1

Reduction formulae

@+ 1+ Dl — @+ 1)1 =0

2m (2m + 1+ Wgny — (@m — 1) @m 4 1 — Dy =0

@m+n+ Dl 1 — @m0+ Dy, 1=0

@2m+ 1) Cm+n+ 2Dony 1,0 — 2m(2m +n)l,, 4,=0

(2m 4+ n+ 3) Loy, — 2m+n+ 2)Loy, =0

%m -+ 1) (2m + 7 4 3)Lgmn — @m — 1) (2m + 2+ DLy 5, =0

@m 4+ 2+ DLgny 1n — (21 47+ gy 1 1=0

(@m +3) (2 41+ DLy, 10 — 2 (2m 4 1+ 2L - 1, = 0.
Also: '

Lzm,n = [2m,n+ 2 12m+ 2n

L2m+ e = Izm—l— Lin+ 27 Izm 4+ 3y
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Triangular Wing with No Leadz’ng-EdgeALoad

APPENDIX V

Numerical Values for d,, d, .. (d,, = 2d,)
f tan y = 0-614, %% = 0-6231

¥ d, Aoy dor deyr - dg, d,q drr

a 1-207333 2414667 2-597448 2-737294 2-075978 2-845257 2-144872
b 1-421814 2:597448 2-843628 3-038806 2-286968 3-104448 2-390097
c 1642218 2-737204 3-038806 3-284435 2-457858 3-485107 2-595555
d 1-761130 2-075978 2-286968 2-457858 3-522260 2733143 3740358
e 1-863598 2-845250 3194439 3-485107 2-597721 3727195 2-901664
f 2-000332 , 2-144872 2-390097 2-595555 3-740358 2-901664 4-000664

B tan y = 0-3, x? =091

¥ d, da,r db,r dc,r dd,r de,r df,r

a 0-896865 1-793729 1-884127 1-957296 1-480487 2-017396 1-507162
b 1-:001545 1-884127 2-003090 2-101986 1-601042 2-185025 1-646064
c 1-112449 1-957296 2-101986 2224899 1-702337 2-329978 1-765171
d 1-099744 1-480487 1:601042 1-702337 2-199488 1-788382 2-318303
e 1-227887 2-017396 2-185025 2-320978 1-788382 2455773 1-867502
f 1-228749 1-507162 1-646064 1-765171 2318303 1-867502 2-457497
g 0-882011 | 1-747990 1-809823 1-858327 1-241938 1-949171
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APPENDIX VI

Formulae for _Calculatz'ng the Coefficients a, or b,, and the Zeros c, or d,
of Standard Lamé Functions of the M Class for any Value of n

The standard Lamé functions of the M class can be written in the forms:

(n ~1)/2

B ) = (1ut = B D> [ (= apmue- ]

s=0

(12 o
=(|p*— k) 1T (u®— ck* if nis odd,
- et

and (1 — 2)/2

B) = (= By > | (= 1ypate ]

s=0
(n —2)/2
= (|u® — E?) % u l;[l (u* — dk?) if nis even,

where a, = by = 1, and a4, b, ¢,, d, are all real and positive.
It can be shown that the Lamé coefficients a,, b, and the zeros ¢,, d, are given by the following
relations:
a,=1

©22n — Day =0+ (n — 1)% - ],
25(2n — 25+ Da, =[(n — 25 + 2)%* + (n — 2s + 1)® — Ala,_, +
-+ (n — 254+ 3)(n — 25+ 2xPa,_,, s =2,3,...(n — 1)/2,
0 = (%* — Nag -1 + 2% a4 —gy2, |

‘where 4 is an unknown quantity proportional to 1 + »* These (# 4 1)/2 equations give the (z + 1)/2
values of A and of each of the (# - 1)/2 quantities 4, for any value of »%.
¢, are the roots of the equation

(n—1)/2
[(— 1ya,Cn = 2- 1] =0.
bo=1
22n — 1)by = n%> 4 (n — 1)® — A,
28(2n — 25 + Db, = [(n — 25 + 2)%2+ (n — 25 -- 1)2 — AJb,_, +
(=2 L8y (n— 2+ 2, ,,  s=2,3...(n —2)2
0 = (4 + 1 — Do — sy + 6% -4y -
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These n/2 equations give the n/2 values of 4 and of each of the (n — 2)/2 quantities b, for the value
of 2.
d, are the roots of the equation
(n —_2)\/2 ‘
[( — 1ys,D" - 23—1] =0,

§=

¢,, d, can also be calculated from equations (184) and (18b), and a,, b, from equations (23) given in

Section 6.
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TABLES 9 to 14

All Forces are Normalised by Dividing by (wpV?%*)/(k%E(x) )

Formulae for the Total Lift on ‘Basic’ Triangular Surfaces

~ TABLE 9

r 2, L, Type of surface
1 - | =% P 3
' 8 8
2 — —x? —
c” 7
] 3
3 "‘é—zxg ZaF1(4f5_3f7) ’
5 ' . Camber
4 — =t OF 3(4f11 — 3f1s)
é . 1
8 —sz -§5F3(8f14 + 2f15 + fis)
5 1 '
11 — 8% §5F4(8f23+2f24+f25) J
dE(x) /2 1 5
2a — x| ky| T(g*ﬁ) )
. > T'wist
8., 5 3
5 —C_zkyx 16F1(4f4—f6) J
0 2,,2,,2 1 3
G —C_skyx §5F2(4f10_3f12)
é 1 .
9 — szzyzxs -3 OF 5(8f 17 + 2f15 + f19) \ Camber and twist
0.5 o4 1
12 - C_Ek“y x 86F4(8f26+ 2fa7 4+ fas) ] ‘
1 .
10 - Eik4y4x 8 0F3(8f 50 + 2fa1 + fa2) Twist
é 1 .
13 - ;kﬁ’%z 5] 5F4(8f29 -+ 2f30 + f31) Camber and twist
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TABLE 10

Formulae for the Total Lift on Basic ‘No singularity’ Triangular Surfaces

(%, v, & are Measured in Chord Lengths)

By LJ’
— &(fyx? ~fskzyéx) ) £0
— O(froxt — 2kt 36
+ (5(1717905 + F14k2y2x3) — (FyoLlig+ FuLy)
~ 0 (Fz;k2y2x3 + Fnka‘yﬁl x) FooLg+ Fiqlyg
— O (Fap® — Fosk®y®s*) FosLy “MF23L'12
— 4 (Fésk2y2x4 - F26k4y4x2) FooLyy — Faglys
L 2
— 8 (x —E(%)xlkyl) 0
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TABLE 11

' Formulae for the Drag Component, D,, of the Pressure Integral for Triangular Surfaces
(Formuldae for r = 1 to 10 are Given in Table 4, Ref. 1)

¥ Dr
8 3L,
3 ,
9 —8_()52Fﬁ(16‘f17+8f18+5f19)
1
10 25 8 Fs (16a0 + 10fa1 - 7fa)
] 7
11 7oLy
3 2 | -
. 64 0% F 4 (16f26 + 8f a7 -+ 5f1s)
13 11

'76——85' 62F4(16f29 + 10f30 —+ 7f31)
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TABLE 12.

Formulae for d, = D,[L,? for Basic ‘No singularity’ Triangular Surfaces

r d,
2
a S (127, — £3)
. .
b % (30f10 - 7f11)
1 7.
4 L? F172Ds + F142D9 + Fi,F, D 8,9]
1T
d fdz F202D9 + F172D10 + F20F17D9,1o
I
€ Ze‘z F262D11 + F232D12 - F2GF23D}1,12
1 r
f I—/fé F292D12 “[‘ Fzsles - F29F26D12,13
3 -2
£ 113 )
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TABLE 13

Formulae for the ‘Interference’ Pressure Integral for Triangular Surfaces

(Dr,s = D, is the ‘interference’ pressure integral for the two surfaces give by z,, %)
Formulae for » = 1 to 10, s = 1 to 10 are given in Table 6, Ref, 1

D,

2,11

2,12

3,13

4, 11

4,13

5, 11

5, 12

d l:dFl(Zfs —f)+ %Lm:l
) [1% Fi(8fs — 3f,) + %Lm:l

5 (3L4 + 2 Lu>

Wi ' 14

| §OFu — i)+ 5 Lae
"9 14

d _g(‘) oF 2(8f a1 3f 13) + g L13:|

S é
| 3Lo+ g1 P18+ St 520) |

5 ;

1
-§F1(6f4 _fe) + @F4(16f26+ 8f27 + 5f23):|
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TABLE 13—continued

7, § D,
1 1
5,08 | 8 g3 P8 — o)+ g Fa6fa0+ 8 + 510 |
9
6,11 | 8] BLy+ g SF16/ + 8 Fur) |
6, 12 §* ZF 2 9 F.(16 8 5
) 10 z(flo—flz)"i"rj_z‘b 4( f2n+ f27‘|’ fzs)
; |
6,13 | 50 0% | 2Pa810 — i)+ P10 + S0 + 5|
é
8,11 | 77 (86Ly+ 35Ly,)
6 [0
8,12 | i[5 P16+ Fust 510) + 5L
5 6 )
818 | 11 8| 3 a6+ 1075 -+ Tfun) + 7hag
9 3
9,11 1—1' (5[4L9—|—3—45F4(16f23—{—8f24—{—5f25):|
S 27
9; 12 7;2 3—2 F4(16f26 + 8fz7 + 5f28) - F3(16f17 + 8f18 + 5f19)]
62
0,13 | a5 | 27Pu16fu0 + Saa+ 8f) — 10FS(16%, + 1073+ T |
38 é
10» 11 0 [ﬂ Ll() ‘|‘ 178 F4(16f23 + 10f24 ‘5‘ 7f25):]
1 1
10,12 | 0] g P60+ 8o ) + 135 Fu16fs0 o 107+ Tf) |
) 525 1
10,13 | g5 | 33 Pa(16fe0 107+ Tfu) + 4 Fu16un - 10fuu 7o) |
3 7
11; 12 d @5F4(16f23+8f24+5f25)+§L12
11 7
1,18 | 8] g 0160+ 107+ Tfas) + 3 Lo |
2
12, 13 0

11 )
& [ 13 Fo06F s+ 1070+ 7)o BF (160 + 8120 + o) |
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TABLE 14

Formulae for d, , = D,,/(L,L;) for Basic ‘No singularity’ Triangular Surfaces

7,8 d, s

a, b %—E (Fa-FroDsa+ s 2uDs.s — fu- 2fuDss — fs - froDas)

a, ¢ % (—fa-FuuDsg -+ fs. FiuDy o — fo. FruDy o+ fs. F1Ds 5)
a,d | Z:Td (fa-FsoDayo — f5 F1aDsno+ fo- F1zDgo — fs. FaoDs,)
a, e % (fu- FasDyy+ fs- FasDs 1o — fo. FasDgia — s FasDs11)

b f

¢, d

It~

1

m(fz;- F29D3,12 +f5 'anDs,ls _f4-F26D3,13 _fﬁ' F29D5,12)
1 -

bet (““flo-F17D4,s+ 2f11- mee,s _f1n-F14D4,9+ 2f11- F17DG,8)
1

[TL;(flo' F20D4,9 - 2f11-F17D6,10 +f10-F17D4,10 - 2][11‘ FZGDG,H)
1

m (flO'F26D4,11 + 2][11 . F23D6,12 _flo-F23D4,12 - 2f11- erDs,u)

1
m (fl(l . F29D4,12 + 2](11 . F26D6,13 _flo . F26D4,13 - 2]‘.11 . F29D6,12)

1 ‘
Ld (F17- F20D8,9+ F14- F17D9,10+ F172D8,10+ 2F14- F20D9)
1.

LcLe (—" F17-F26D8,11 + F14- F23D9,12+ F17- F23D8,12 - F14'F26D9,11)
1 .

ITL; (“‘ F17- F29D8,12+ F14- F26D9,13 + F17'F26D8,13 — F14- F29D9,12)
1 .

Zd——Le (on- F26D9,11 - F17 . F23D10,12 “‘ on- F23D9,12+ F17'F26D10,11)
1

m (on- F29D9,12 - F17- F26D10,13 - on- F26D9,13 + F17 . F29D10,12)

1
IT-Lf (er . F29D11,12 + Fzs . F26D12,13 — F262D11,13 — 2F23 . F29D12)
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TABLE 14—continued

v, s dr,s
1 8 '
b, g 3’10[20f10_5f11+75'—2;(%:]
(794 .2%4 l:‘ 1‘121(201?17 + 3Fy) + % {F14(16f17 — 2f15 — 5f19) —
, . r
— Par (166~ %o — 520)| — 15 7 | Fu @ar —fas = o) =
— P (20— fis = 7)) |
Fy ' :
d, g f%d [2—18 (6F 'y + Fy7) + 14 {Fu (16f50 — 2fs — 5f52) — F20(16f17 -
4 3 |
- 2f18 - 5f19)} - 1_0‘5 EI(?—%) <F17(20f20 —le - 7f22) -
— Fa @1y — fao o) |
g | o | 56— Fu) B3 | Froli0fis — s — ) — Fusldia —
— 3~ 92| — g | Fasl75Fin - Tfus — 41fss) —
27 28 210E(%) 26 23 / 24 25
— Fu(178fau Ter — 41720 |
N4 ’2%]([?712‘(8-5‘29—}?26)‘{‘%[F29(40fzs—2f27—9f23)_‘

- F26(40f29 — 2fao - 9f31)} - mf%(—%) {F29(175f26 + 7f27 - 41f28) —

— Foy(175f 54 + 50 — 41f31)}]
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Shape of camber suiface of Wing 1.
(Spanwise sections), y == 15 deg., designed for minimum Cp/C72, with no leading-edge pressure singularities,
) at M = 2:5, Cry = 01 (x, y, » are measured in root chord lengths, » = 0 at the trailing edge).
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F1c. 2. Spanwise variation of loading coefficient, Cp, of Wing 1 at M = 25, Cr, = 0-1.
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F16. 2—continued. Spanwise variation of loading coefficient of Wing 1 at M = 2-5, Cy,, = 0-1.
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F1e. 3. Variation of loading coeflicient along the root chord
of Wing 1, at M = 2-5, Cr, = 0-1.
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Fi1e. 4. Shape of camber surface of Wing 2.
(Chordwise sections), ¥ = 15 deg., with no leading-edge pressure singularities at M = 2-3, CLO = 0-1.
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Fi6. 5. Shape of camber surface of Wing 2.
(Spanwise sections), ¥ = 15 deg., with no leading-edge pressure singularities at M = 25, Cy = 0-1.
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Fic. 6, Chordwise variation of loading coefficient of Wing 2, at M = 2:5, Cz, = 0-1.
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Fic. 7. Spanwise variation of loading coefficient, Cp, of
Wing 2, at M ==2-5, Cy = 0-1.
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Fi6. 7—continued. Spanwise variation of loading coefficient of
Wing 2, at M = 2-5, Cr, = 0-1.
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F1c. 8. Variation of drag with lift for Wing 2
(y = 15 deg.); design Cr = 0-1, M = 2-5.
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F1c. 9. Shape of camber surface of Wing 3.

- Z/C_L_

(Chordwise sections), y = 14° 2’ designed for minimum Cp/C;? with no leading-edge

pressure singularities at M = 1-562.
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Fic. 10. Shape of camber surface of Wing 3.
(Spanwise sections), ¢ = 14° 2’, with no leading-edge pressure singularities, at M = 1-562.
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F1c. 11. Chordwise variation of loading coefficient of Wing 3, at M = 1-562.

- 51



CP/C]_

\
NO SINGULARITY WING. - \\ /
————FLAT WING. \ 10 —Ff
N\ 7
X=0-15 N
—O.‘ O'l \S
\ c
\ P/c,_ I’
\ /
\
X=0-3 \ /
AN, 10 h/
& S~ |
2=

o

-0-2

=0l

Fic. 12. Spanwise variation of loading coefficient of Wing 3, at M = 1-562.
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Fic. 12—continued. Spanwise variation of loading coeflicient of Wing 3, at M = 1-562.
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F16. 13. Variation of drag with lift for Wing 3.
(y = 14° 27); design Cy, = 0-1, M = 1-562.
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