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Summary. The effect of certain parameters on binary wing-torsion aileron-rotation flutter are cons{dered 
in a simplified analysis. These parameters are: aileron circuit stiffness, aileron mass-balance, altitude and 
structural damping. It is shown-that flutter is prevented either by making the aileron natural frequency higher 
than that.of the wing-torsion mode, or by reducing the cross inertia between the modes below a certain critical 
value. This critical value depends only on three of the coefficients of the Lagrangian flutter equations. 

It is concluded that the best means of flutter prevention for a power-controlled aileron is to rely entirely on 
adequate circuit stiffness, using a fully duplicated power system, and to dispense with mass-balance altogether. 

1. Introduction. Flutter between the fundamental wing-torsion mode and aileron rotation can be 

prevented either by adding sufficient mass-balance to the aileron to reduce the cross inertia below 

a critical value, or by making the aileron natural frequency sufficiently high. When power operation 

of ailerons was first introduced it was commonly expected that the latter condition would be fulfilled 

automatically, because of the irreversibility of the control. In practice this is far from being the 

case. There are two common reasons for this: 

(i) When the installation is such that the linkage between the output of the power control and 

the aileron is long and flexible, for example, when the power unit is mounted in the fuselage. 

(ii) When the required aileron frequency is itself high. It has been found in many calculations 

that this frequency must be greater than that of the wing fundamental torsion mode. The 
stiffer the wing, therefore, the stiffer the aileron circuit has to be. 

It has also been found in many investigations that when the aileron carries some mass-balance, 

but insufficient to prevent flutter by this means alone, very low flutter speeds can occur if the aileron 
frequency is just below that of the torsion mode. A typical curve is shown in Fig. 1. 

This paper records a general investigation into binary wing-torsion aileron-rotation flutter, from 
which expressions are derived for the critical values of cross inertia and circuit stiffness to prevent 
flutter. The effects of altitude and structural damping are also considered. It is concluded that the 

best way of avoiding flutter of a power-controlled aileron is to design for high circuit stiffness, with 
duplicated power operation so that mass-balance is unnecessary. 

* R.A.E. Tech. Note Structures 239, received 3rd October, I958. 



2. Analys i s .  Denoting the wing-torsion-mode degree of freedom by ql and aileron rotation by 
qz, the  Lagrangian flutter equations can be obtained in their usual form: 

( -  allo) 2 + ibl~mV + q l v  ~ + en)ql  + ( -  a~zoo 2 + ib12mv + q2v~)q2 = 0 ,  (1) 

( -  a21o~ ~ + ib2~cov + cz~v2)q~ + ( -  a2zco 2 + ib2~ov + c22v 2 + e2~)q ~ = O,  (2) 

where co and v are the non-dimensional frequency and air speed at critical flutter and a, b, c, e are 
the non-dimensional coefficients relating to inertia, aerodynamic damping, aerodynamic stiffness 
and structural stiffness respectively. Structural damping has been neglected, for the moment.  

Now the cross inertia terms, a~ and a~,  are equal. Also b2l and c m are usually small. If  these latter 
two terms are neglected and the equations are scaled so that alt = a~z = 1, while the symmetry of 
the inertia matrix is preserved, which may be done without loss of generality, it is shown in the 
Appendix that the condition that flutter should b e  prevented at all speeds is: 

a~zZ(4b~b~z - baz ~) (c~2el~ - q~e~2) ~ + 

+ 2a~zb~z(atzq~ - bnb~2)(b~e~ - bnezz)(czze n - qtezz) - 

- -  ( a 1 2 c 1 2  - -  b~bzz)Z(bltezz + b~zert) ~ - 

- 4ba~b~(a~qz - b ~ i b z z ) ( c j n  - %e~z)(e n - e~) > 0 .  (3) 

It  is also shown in the Appendix that if this condition is not satisfied over some range of ezz (the 

aileron circuit stiffness), then as eze is varied, the minimum flutter speed, Vo, is given by: 

where v0 ~ = ke~a(1 - c11k) - ~  , 

( b1~ \ ( a ~ b ~ - ~  t . (4) 
k ~-- a~z ~ 1 4 b ~ b ~ )  1 2bzz ] (a~zqz - b~b2z) -~ 

The  circuit stiffness at which the minimum occurs is given approximately by the equation: 

12bl~b~ - al~b~(b~ + b~)  l 
e2~ ~- e~ ~-bx~b ~ = ~ 2 b ~  . (5) 

We shall now consider under  what conditions of circuit stiffness, mass-balance and altitude, 
flutter is prevented at all speeds, and the flutter speeds which can occur if these conditions do not exist. 

3. The  Ef fect  o f  Parameters .  3.1. The  Ef fect  o f  Circuit  Sti f fness.  It  is shown in the Appendix 
that (4bribe2 - ba~, 2) must be positive; hence the first term in the inequality (3) is always positive. 
Therefore if 

al~q2 = bnb2~, (6) 

the other three terms vanish and the inequality is satisfied for all values of e1~ and ez~. This condition 
therefore determines a lower bound to the critical cross inertia to prevent flutter. It is discussed 
further in Section 3.2 below. Hence it is only when (al~q2 - bnb22 ) is positive that circuit stiffness 

is called into play as a flutter preventive. Suppose, then, that al~q~ = Abnb~2, A being greater than 
unity. Then the inequafity (3) may be rewritten: 

\ c~  / 4~nb~,2] (cz2e~t - qlez2) + 

+ \2caz/  ( b~zen - bllezz ) - c2~ell cne~2 

+ e 2 2 - %  > 0 .  (7) 

.& 



The  first two terms in this inequality are usually positive, tending to suppress flutter, while the 
third is negative, tending to promote it. However,  it is usually the case that the sum of the three 
terms is small compared with ell (unless)t  is near to unity), so that the sign of the inequality is 
largely determined by the sign of (e2~ - en). If  it is sufficiently negative, i.e., if the aileron frequency 
is sufficiently less than ttie torsion-mode frequency, flutter occurs and if it is sufficiently positive, 
flutter is prevented. In practice the sum of the first three terms is usually positive, so that the critical 

aileron frequency to prevent flutter is usually just  less than the frequency of the torsion mode. 

In some cases, however, this sum may be negative and flutter can then occur for a range of values 

of e~9. whichare  greater than e n. The  easiest way for this to occur is when • is large and c22 is small, 
i.e., the aileron has little or no mass-balance but  has a fair amount of aerodynamic balance. 

It  is of interest to note that if (c22e n - Qle22) is negative, which would usually imply that the 

aileron was aerodynamically overbalanced, the sign of the inequality (7) is reversed (since all the 

terms in (3) have been divided by this factor) .  In this rather academic case, therefore, flutter is 
prevented by making the aileron frequency less than the torsion-mode frequency. 

It  is of interest to examine some curves of flutter speed plotted against aileron stiffness for an 
actual aeroplane. Table  1 gives the coefficients for a heavy bomber,  the cross inertia and aileron 
stiffness being left as parameters. 

T A B L E  1 

Flutter Coefficients for Heavy Bomber 

b 
C 

e, 

a.  

b 
F_, 

,8  

1.000 
0.052 

- O. 203 
1.000 

0. 0238 
0. 0224 

~12 
O. 250 
1. 089 

1.000 
0.418 
0.937 

e22 

It  will be seen that the coefficients have been scaled to make a n = a22 = el~ = 1.0. Flutter curves 

for various values of al~ are plotted in Fig. 2. It  will be seen that, as expected, for all the curves 

flutte~ is prevented when e22 > 1.0, i.e., when the aileron frequency is greater than that of the 
torsion mode. 

The  minimum flutter speed and the circuit stiffness at which this minimum occurs, as estimated 

from equations (4) and (5) are also shown in Fig. 2, for three values of a12. It  will be seen that fair 
agreement with the true values is obtained. The  discrepancy in minimum flutter speed is due to 
neglecting b~l and Q1, while the discrepancy in stiffness is partly due to this and partly due to the 
other approximations made. 

3.2. The Effect of Mass-balance and Cross Inertia. In equation (6) we found a lower bound to the 
value of cross inertia which would prevent flutter at any stiffness. In practice, this value (bnb~2/c12,) 
will usually be small, so that the inequality (3) will only be satisfied by a small margin. Hence this 

lower bound should prove to be a fairly close approximation to the true value, For the coefficients 

3 
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given in Table 1 the calculated critical value is 0. 0200. It will be seen from Fig. 2 that a very narrow 
band of flutter still remains when a1~ has this value. Thus what was thought to be a slightly con- 
servative value has proved to be slightly unconservative, again because b~l and c~1 have been 
neglected. Even so, the approximation appears to be sufficiently accurate for most purposes. 

Next we consider the form of the flutter curves when the mass-balance is insufficient to prevent 
flutter over some range of stiffness. The effect may be seen either from Fig. 2, or, more conveniently, 

from Fig. 3. The  latter is a cross-plot of Fig. 2, flutter speed being plotted against cross inertia for 
various values of circuit stiffness. It is clear from the curves that when the circuit stiffness is 0.9 the 
addition of mass-balance steadily makes the flutter characteristics worse, until the cross inertia 

is reduced to its critical value of 0.02. The effect is similar when e22 -- 0.6 but the position starts to 
improve when the cross inertia falls below 0.14. For zero circuit stiffness the addition of mass-balance 

is beneficial over most of the practical range of cross inertia. 

There is one important point to be remembered in connection with these curves. The  cross 

inertia has been reduced arbitrarily, keeping the direct aileron inertia constant. In practice, for a 
given aileron structure, reduction in cross inei)tia can only be brought about by adding mass-balance 
to the aileron, which increases the direct inertia. In many cases the addition of mass-balance is 

not very effective in reducing the cross inertia, since the mass-balance weight is usually fairly close 

to the nodal line of the torsion mode. Thus  to achieve a small value of cross inertia a great deal more 

weight than static balance wilt usually be required. This weight increases the aileron direct inertia 

appreciably , thereby reducing the  aileron natural frequency (assuming the aileron circuit stiffness is 

constant). In Fig. 2 this has the effect of pushing the noses of the curves progressively further to the 

right as the cross inertia is reduced. In Fig. 3 the effect is a little more complicated. Roughly, the 

curve for a given value of e22 is expanded towards the curve for a lower value of ¢2~ as the cross 

inertia is reduced. 

The relative merits of mass-balance and circuit stiffness as flutter preventives are discussed in 
Section 4 below. 

3.3. The Effect of Altitude. The effect of altitude is normally found by multiplying all the 

aerodynamic damping terms by ~/G, ~ being the relative air density. The flutter speed is then given 
to the same scale as previously, but in terms of equivalent air speed. Strictly, the aerodynamic 
inertias should also be factored by ~, but this correction is frequently omitted. 

It will be seen from equation (6) that the cross inertia required to prevent flutter is proportional 
to or. Hence a system which relies upon mass-balance to prevent flutter may be stable at sea level, 
but unstable above a certain altitude. On the other hand if no mass-balance is used, reliance being 
placed upon adequate stiffness, the system is not particularly sensitive to altitude. This is shown 
in Fig. 4, in which curves are plotted for the same example as previously, but for a height of 40,000 ft. 

Flutter curves for the two extreme cross inertia values of al~ = 0.02 and 0.50 are shown, the 
corresponding curves at sea level being plotted again for comparison. It will be seen that while the 
curve for the high cross inertia differs little from the sea level case, the band of flutter when 

al~ = 0.02 has been greatly increased by the increase in altitude. Thus any system in which mass- 
balance is used must be carefully examined to ensure that it is stable at the maximum altitude to 
which the aircraft will fly. 

3.4. The Effect of Structural Damping. It  has frequently been observed that this type of flutter is 
sensitive to structural damping, especially to damping in the wing mode. The introduction of 
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structural damping effectively increases the direct aerodynamic damping, by differing amounts at 

different air speeds. For example, structural damping d n increases the effective aerodynamic 

damping in mode 1 from b n to b n + duly, at an air speed v. Now we have shown that the mass-balance 
required to prevent flutter must be such that the cross inertia is approximately proportional to 
bub22. It will also be noted that the main effect of the direct aerodynamic dampings on the minimum 
flutter speed (equation (4)) arises through the product (bnb22), the term (a12baz/262e) usually being 

small compared with unity. Hence the effect of increasing b n by 1 per cent should be the same as 
increasing b2~ by 1 per cent, at least as far as the critical mass-balance and minimum flutter speed 

are concerned, i.e., the effectiveness of structural damping in either mode should be inversely 

proportional to the direct aerodynamic damping in that mode. Now it is usually the case that 

b22 > > bal (for the example worked out above, for instance, b~2 was 8 times bn) , so that the same 

amount of structural damping, expressed as a percentage of critical damping, is usually much more 

effective in the wing mode than it is in the aileron mode. Note also that at height, where bilbo2 is 
less than at sea level, damping on the control surface may be particularly ineffective. Fig. 5 shows 

flutter curves for three combinations of structural damping, for the same example as that shown 

in Figs. 2 to 4 with al~ = 0.1 and at sea level, as follows: 

(1) dl~ = d~ = 0 

(2) d22 = 0, dll = 0.025 (1.25 per cent critical 'damping in mode 1) 

(3) dll = 0, d22 = 0.200 (8 times the previous value of dn). 

It will be seen that while cases (2) and (3) are equivalent as far as the minimum flutter speed is 

concerned, case (2) is much better than case (3) in all other respects. The critical value of the cross 

inertia to prevent flutter was 0.041 in case (2) and 0. 042 in case (3), showing excellent agreement 

with prediction. 

It sometimes happens that an aircraft is built for which neither the aileron stiffness nor the aileron 

mass-balance can be made quite sufficient, as a result of which calculations show a marginal case 
of flutter, in  such cases the inclusion of structural damping can give a margin of safety, but if the 

aircraft is to be cleared on this basis (which would only be done as a last resort), it is important to 
know how much structural damping is present. Since the problem is fairly insensitive to damping 
in the aileron circuit it is recommended that some effort be devoted to estimating the damping of 

the wing torsion mode in the ground resonance tests. 

4. Discussion. We have shown that flutter between the aileron and the wing torsion mode can be 

prevented eithe r by makifig the control circuit stiff enough or by making the cross inertia between 
the two modes low enough. We have also shown that the two methods work against each other; for 

example, more circuit stiffness would be necessary to prevent flutter for a statically balanced aileron 

than for an unbalanced aileron, mainly due to the greater inertia of the former. A designer must 

therefore decide which method he is going to use in any particular case and the advantages and 

disadvantages of each system will l~OW be considered. 

Taking mass-balance first, its main advantage is that no moving parts are involved so that nothing 

can go wrong. Furthermore, the aircraft is protected no matter what may occur to the stiffness of 

the power control. Its disadvantage lies in the weight penalty, which may be severe in certain cases, 

since a great deal more weight than that required for static balance will usually be required. In 

addition there may be stowage difficulties in getting sufficient mass on to the aileron. A further 



possible disadvantage associated with mass-balance is that the torsional frequency of the aileron 
itself is reduced, because of the increased inertia. Thus flutter involving aileron torsion as a degree 

of freedom may occur. The main advantage of relying on high stiffness is that the weight penalty 
is avoided, but there are other advantages. For supersonic aircraft the possibility of single-degree- 

of-freedom flutter occurring at Mach numbers just greater tl~an unity is reduced as the frequency 

parameter is increased. Hence a high aileron frequency is desirable. A further adVantage of this 

system over mass-balance is that the required stiffness should be known fairly early in the design, 
whereas the amount of mass-balance required depends on the position of the nodal line of the wing- 
torsion mode, which is not known accurately until the ground resonance tests are carried out. 
The only disadvantage of the system is that certain parts of the power unit must he duplicated to 
guard against failure, i.e., manual reversion cannot be used. 

On balance, therefore, the advantage lies with the fully duplicated power control as a flutter 
preventive, especially for supersonic aircraft. It should be noted that if this method is used some 
care is necessary in the design to achieve the requisite stiffness. It will usually be found to be 
essential to mount the operating jack on stiff structure, close to the aileron. The actual servo- 
mechanism may be remote from the jack, if so  desired, provided that screw jacks are used which 
are operated by high-speed shafts driven by the servo. 

5. Conclusions. (1) The best method of ensuring that an aircraft is free from wing-torsion 
aileron-rotation flutter is to make the aileron circuit so stiff that the aileron natural frequency is 
higher than that of the fundamental wing-torsion mode. A fully duplicated system of power operation 
should be used, and then no aileron mass-balance is required. 

(2) If mass-balance has to be used, care must be taken to ensure that it is sufficient to prevent 
flutter under all flight conditions, particularly at altitude, which is usually the worst case. It should 

be noted that mass-balance and circuit stiffness work against each other as far as flutter prevention. 
is concerned, i.e., a small deficiency in stiffness cannot be made up by a sub-critical amount of 

mass-balance. Either the mass-balance or the stiffness must be sufficient to prevent flutter on its own. 

(3) Structural damping in the wing mode has a powerful beneficial effect, and some effort should 
be devoted to estimating this damping in the ground resonance tests, at least for border-line cases. 
Structural damping in the control-surface mode is not usually very effective. 
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LIST OF SYMBOLS 

Non-dimensional coefficient of inertia term in the Lagrangian flutter equations 

Non-dimensional coefficient of aerodynamic damping term in the Lagrangian 
flutter equations 

Non-dimensional coefficient of aerodynamic stiffness term in the Lagrangian 
flutter equations 

Non-dimensional coefficient of structural damping term in the Lagrangian 
flutter eqtlations 

Non-dimensional coefficient of structural stiffness term in the Lagrangian 
flutter equations 

A parameter involving some of the above coefficients, defined in equation (4) 

Non-dimensional air speed 

The ratio 
~11v22 

Relative air density 

Flutter frequency 



A P P E N D I X  

The  A p p r o x i m a t e  So lu t ion  o f  the Lagrang ian  F l u t t e r  Equat ions  

1. Condi t ion  f o r  F l u t t e r  to be P r e v e n t e d  at  a l l  Speeds.  We are assuming that b m and czt may be 

neglected and that equations (1) and (2) in the text are scaled so that as~ = a2~ = 1, the scaling 

being such that the symmetry  of the inertia matrix is preserved. Th en  writing e n + q t v  ~ = mt~ and 

e ~  + c ~ v  ~ = ~%~ and cross-multiplying to eliminate ql and q2 we obtain the complex equation: 

( ~ ?  - ~ + i 6 1 ~ v  ) ( ~  - ~ + ib~o~v)  + 

+ a ~ c o z ( -  a~zo) ~ + ibt~o~v + ca2v ~) = 0 .  (8) 

Equating the imaginary part of this equation to zero and dividing through by (o~v) gives: 

bn(w~ ~ - co s) + b~z(ool ~ - ~o ~) + axz~oZb~z = O,  

whence 
o~2 = bn~°~ 2 + baz~o~ ~ 

b n + b2z - a~zbx~" (9) 

Equating the real part of (8) to zero gives 

_ _ _ bllb 2  v  + a1  2(_ + = 0 .  

Substituting for 092 f rom (9) we have: 

[b~(~l ~ - o~ ~) - a~2bl~?] [b~(o~ 2 - ~1~) - a~2b~o~ ~] - 

- al~2[bn~% 2 + b2~co1~]~ + 

+ [ak~q2 - br, be~] [bn + b2~ - ~ b ~ ]  [bn~% ~ + b22~o~2]v ~ = 0 .  (10) 

We can now substitute back for ~o1~ and oJ~ 2, obtaining an equation relating v 2 and e22 which is of 
the form: 

av ~ + 2he~2v 2 + be222 + 2gv  2 + 2fe22 + c = O, (11) 
where 

a = - b~b~z (c~2 - cn)  ~ + a12612(c22 - -  £ 1 1 ) ( b l l C 2 2  - b22£11 ) -[- 

+ a~2b~22cr~c2~ - a~2(bnc~2 + b22cn) 2 + 

+ (a~q2 - bnb~2)(b n + b2~ - a~b~)(bnc22 + b~qa) 

b = - bnb22 + al~b~b n - a ~ b ~  ~ 

= + - 

2g = e n (Zbnb~z(c~z - Cll ) - a~2b~c~z(b ~ + b~)  + 
I 

"q- 2 a l ~ b ~ b ~ e l l  -q- a1226192c~2 - 

\ + b22(a~c~ - bnb~2)(b n + bzz - aa~b~) /  

2h = - 2bnb~(c~z - ql)  - a~b~2cn(bn + b22) + 

+ 2a~bz~bnc2~ + a~2b~2~Cll - 2a~22b~(b2zq~ + b~ac~) + 

+ bn(a~2q~ - b~ba2)(b n + b ~  - a~2b~2 ) 

2f = elt [2b~tb~z - a ~ b ~ ( b  n + b22) + a~2(b~2 ~ - 2b1~b~)]. 
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Now we require the condition that equation (11) should yield no real values for v. There are two 

ways in which this can occur; either the values of v 2 obtained can be imaginary or t h e y  can be 

negative. In most cases it is found that the limiting condition of flutter is obtained when v 2 becomes 
imaginary, i .e . ,  when 

(he22 + g)~ < abe22 ~ + 2afe~2 + a c .  

At first sight the algebraic values of a, b, c, etc., look so cumbersome that this condition appears too 

involved to be useful in an algebraic form. Fortunately many of the terms cancel, so that after 

reduction which includes dividing out by the common factor (b u + b2~ - a l ib i s )  2, we are left with 
the condition that:  

~ (4b,,b.. - b,~)(~..e~ - qle~.) ~ - ( ~ 2 q .  - b11b..)~ (b.e~. + b..e~)~ + 

+ 2a~2b~=(a~2ca2 - bx,b22)(b22e~l - ba,e22)(c~=e n - c11e22 ) -- 

- 4bnb~z(aazq ~ - b~b,.=)(c~ex,  - qae=z)(% - e22) > 0 .  (12) 

The significance of this inequality is discussed in the text. 

2. M i n i m u m  F l u t t e r  S p e e d .  If  the aileron mass-balance is such that flutter occurs for a range of 

aileron circuit stiffness,, the magnitude of the minimum flutter speed and the circuit stiffness at 

which it occurs are of interest. We shall therefore derive approximations to these two quantities. 
Referring to equation (10) we substitute: 

0022 = %2(1 + x) .  (13) 

Equation (10) then becomes: 

bnx=(a~22bn - a~2b12 + b2=) + 

+ x[2a~22b~(bu  + b22) - a122612 = - a , ~ b l = ( b n  - b22)] + 

+ a1==[(b~ + b~)= - bl= =] 
v~ 

= [b n + b~2 - al=ba~.][b~t + b22 + xba~][a~2q2 - bub22 ] - -  (14) O)12 " 

At the minimum flutter speed, %, say, dr~de22 = 0 .  

Therefore 
I ~ l  dTJ ~e22 

~=~0 _ gbT~ 7 ~ - 0 .  

Now equation (14) is of the form: 

po x~ + p l x  + p~ = (qlx + q~) v~. (15) 

Differentiating with respect to x, putting d v / d x  = 0 gives: 

2pox  + P l  = qlVo 2 .  (16) 

Substituting this value for x in (14) gives the turning values for v 2 as the roots of the equation: 

q~Vo" + 2(2p0q~ - p l q ~ ) v o  2 + p ?  - 4pop2 = o .  (17) 

Therefore 

¢~2Vo ~ = (Plq l  - 2p0q2) -+ (4p02q22 - 4poPlq~q2 + 4pop,q12) ~/2 • (18) 



There is some ambiguity regarding the sign of the square root to be taken. By differentiating (15) 

twice with respect to x, and then putting dv/dx  = 0 we find that 

2P0 at the turning point. 
dx~ ql x + q2 

Substituting for x from (16) gives: 

d 2 ( v  ~) 4po z 

dx2 - q12Vo ~ - P l q l  + 2p0q2" 

Substituting for vo ~ from (18) gives: 

= +_ 4Po~(4po2q2 ~ - 4poPNIq~ + 4poP~q~Z) -1/~. dx~ 

Hence the sign of dZ(vZ)/dx ~ is the same as the sign of the square root. Hence for a minimum in v ~ 

(and hence for a minimum in v) the positive sign must  be taken. 
On substituting for Po, P~, etc., the requi redvalue  Of v o is found to be given by 

Vo ~ (2b~z-  az~b~) + 2(al~2bllb2z - a~bl~b~ + b ~ )  11~ 

col ~ bn(al~cl~ - bllbzz ) 

Assuming that a~  is small, the square root may be expanded as a power series in a~. Neglecting 
terms in this expansion of order higher than a~2 2 we find that 

oj12 v°---~ ~ a%~ (1 4b~lb~z] ba2~ ~ ( 1 - -  

k ~ , say 

Substituting for ~ol 2 = e n + cnv 2 then gives: 

en.k 2 
v ° ~ -  1 - k 2 q l  " 

It  will be seen that (19) contains the term [1 

al¢1q-1 
2b~2 ] (a~2q2 - bn . (19) 

(20) 

- {bl~/(4bnb~2)}]. I f  this term is zero or negative, 

then flutter can occur at zero air-speed, i.e., at an infinite frequency parameter. I t  is known from 

experience that this cannot happen, so that the derivatives must  be such that 4bnb2~ > blz 2. Th i s  

fact is made use of in Section 3.1 of the text. 

I 

3. Circuit Stif fness at which Min imum Flutter Speed Occurs. The circuit stiffness at which the 
minimum flutter speed occurs is obtained by substituting for %2 in equation (16). 

We first note that 
ql (bll + b~2 - a12bl ,~) 

2p ° - 2(a12~bn + b2~ - aazba2 ) 

alzc12 - bnb22 
2co12 

since bll is small compared with bz~. 

Therefore 
qlv°Z ~ a122 {1 
2po 2 

(a1~c12 -- b11b22 ) 
OJ12 

{1 - -  
4b~lb~] 

alzb12 ~ -1 
2b~2 ] " 
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Also 

p o  

. . . . . . . .  × [2b~(b2~ - ~ b x ~  + a~2%)]  -~ . 

For a first approximation we may negIect a~2 2. 

Therefore 
: q;%2 _ K - ~ - 2  ........ a i2b~(~2 ± - b ~ ) / -  . . . . . . . . . . . . .  

Xo = " 2p ° ' ,  2 b n  (b2 2 _ a12bl~ ) ., 

x o being the value of x when the flutter sl~eed is, a minimum. 

From (13) 

l + x -  

P l  = [__ a~2b12(b22 _ bu ) + a ~ 2 ( b l Z  _ 2bnb22 _ 2bnZ)] x 

C022 e22 + C22V 9' 

cola - -  e l  I + CllV 2"  

Therefore at the minimum flutter speed 

e~2 = (ell + q~Vo2)(1 + x0) - c = % ~ .  

Since we are neglecting terms of the order of a122 we may neglect Vo ~ in (21). 

Therefore 

[ a12b12 (b22 -_ bn )  ] 
- e n  1 - ~ - a ~ b l ~ ) J  

[2bnb~2 " alzb12(b n + ] 

(21) 

:/ 

(78682) 
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