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Summary.--T~s report investigates the extent to which the dynamic behaviour of a torpedo is sensitive to changes 
in its stability derivatives. The main object in carrying out the investigation was to provide guidance on the accuracy 
of measurement of the stability derivatives that should be necessary for any given torpedo. The considerations of the 
report are, however, also pertinent to the problem of deciding the effectiveness of possible changes in the design of a 
torpedo, the dynamic behaviour of which is unsatisfactory. Illustrative examples are worked out in detail. The report 
emphasises the importance of the so-called margin of stability. 

1. Introduct ion.- -The purpose of this report is to investigate the  extent to which the dynamic 
behaviour of a torpedo is sensitive to changes in its stability derivatives. Since dynamic 
behaviour covers the whole class of possible motions of a torpedo, at tention has had to be confined 
to certain well defined aspects. The main object in carrying out the investigation was to provide 
guidance on the accuracy of measurement of the stability derivatives that  would be necessary 
for any given torpedo : specifically, what error in predicted performance will given errors in 
the stability derivatives cause ? The considerations of the report are, however, also pertinent 
to the problem of deciding the effectiveness of possible changes in the design of a torpedo, the 
dynamic behaviour of which is unsatisfactory. 

2. The Motion of the Torpedo . - -We consider motion in a vertical plane only, and neglect 
buoyancy and trim effects. The treatment applies equally to •motion in a horizontal plane only. 

The relevant equations of motion are 

Z~¢ + Zq$ + Z~e~ ~ = m ~ V ( ~ -  mlVO , 

M ~  + M~O + M @ ~ = J y O  , . .  . .  
where 

V z 

0 = 

q = 

Z 

speed of torpedo, assumed constant 

angle of at tack 

pitch angle 

elevator angle 

6 ---- pitching rate 

denotes the coefficient of a force normal to the torpedo axis 

0 m 

• g D I 

(a) 
(2) 
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M 

Z~ 

m s 

~44f 

Jy = 

I y  z 

.[y:  --= 

K', K1, Ks 

denotes the coefficient of a moment about the transverse horizontal axis 
through the torpedo c.g. 

OZ/~c~, etc. 

total transverse mass of torpedo -"- m + K~m: 

---- total longitudinal mass of torpedo ~ m + K~m: 

= mass of torpedo- 

= mass of displaced fluid 

total moment of inertia about the transverse horizontal axis through the 
c.g. -"- Iy + K'Iy: 

moment of inertia of torpedo about the transverse horizontal axis through 
the c.g. 

moment of inertia of displaced fluid about the transverse horizontal axis 
through the c.g. 

are Lamb's inertia coefficients for an equivalent ellipsoid. 

The positive senses of the various parameters are illustrated in Fig. 1. 

If we multiply each term of equations (1) and (2) by e -p~ and integrate with respect to the 
time t between 0 and ~ throughout (denoting Laplace-transformed quantities by a bar) and 
eliminate O we have 

[m2VJ,fl ~ -- (JyZ~ + m2VM~)p + M~Z~ -- M~(mlV + Zq)]a 

= [ l . Z ,  2 + M,( IV + G)  --  M J , 3 : , .  . . . . . .  (3) 

If we had found, instead, the equation connecting G or p0 with 3,, the left-hand side would have 
been identical with that  of equation (3). We write this left-hand side as 

where [Alfis q- Asp + A3]~, ) 

A1 = m2VJy 

J A s  = - -  J,z  - . . . . . . . . . . .  (4) 
A,  = + MqZ~ -- M~(m~V + Zq) 

I t  follows from equation (3) that  the transient part of the solution for ~ (t) will be 

21 e",' + ;~s e 's*" . . . . . . . . . . . . . . . . .  (5) 

where/~, and/zs, the decay constants of the motion are the roots of 

AI~ s + A~/~ + A~ = 0 . . . . . . . . . . . . . . . . . .  (6) 

and 21 and ~. are constants. 

In particular, if the elevators are locked at zero, the right-hand side of equation (3) disappears, 
and the expression (5) represents the complete solution for the angle of at tack ~, following a 
disturbance. 

A torpedo is said to have dynamic stability, if, when disturbed from a straight-line path, it 
will again settle down to a straight-line path (but not necessarily the original straight-line path), 
tha t  is, i t  tends to reduce its angle of at tack to zero. If a dynamically unstable torpedo is 
disturbed from its straight-line path, it will circle with smaller and smaller radius until  the 
linear analysLs used here _no longer applies. I t  is clear from equation (5) that  the necessary and 
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sufficient condition for the torpedo to have dynamic stability is tha t  the roots of equation (6) 
have negative real parts. The necessary and sufficient condition for this is that  At ,  As and A3 
all have the same sign" 

A~ = m~VJy > 0 

As  = - -  JyZ~ - m~VMq > 0 

since Z~ < 0, M~ < 0 for all conventional torpedoes. The criterion for dynamic stability is 
therefore that  Aa > 0. Since Z~Me > 0, we can write 

G = 1 M~(m~V + Zq) 
- -  Z~Mq > 0 for dynamic stability . . . . .  (7) 

G is called the margin of stability. The following Table indicates torpedo behaviour for different 
values of G. 

Stability 

Dynamically unstable 
Marginally stable 

Dynamically stable 

G 

<0  
0 

0.1 
0.2 
0.3 
0.4 

0.5 
0.6 

0.7 
0.8 

0 .9  
1.0 

>1.0  

Controllability 

Requires special control equipment 

t Turns rapidly with small rudders ; hard to 
control and maintain in straight flight. 

Turns rapidIy with medium-sized rudders; 
controls moderately well. 

Turns rapidly with large rudders ; controls 
easily. 

l Requires very large rudders ; controls very 
easily. 

Application 

No known application. 

Homing torpedoes. 

Homing torpedoes and 
straight-running torpedoes. 

Straight-running torpedoes. 

Straight-running torpedoes. 

2.1. Circling M o t i o n . - - S u p p o s e  the torpedo is moving steadily in a vertical circle of constant 
radius R, with the following (constant) values of its parameters 

q = O  = 0 ' ' ,  ~ = ~ * ' ,  ~ d~* 

~ = 0 = 0 .  

Putt ing these values in equations (1) and (2) and solving for 0* and ~* we have 

O* M~Z~ e - -  Z~M~ 
G ~ ,  = Z~Mq . . . . . . . . . . . . . .  (8) 

G ~-~. = Z~M~ . . . . . . . . . .  (9) 

(We note that,  since tile right-hand side of equations (8) and (9) are both negative for all con- 
ventional torpedoes, 

0* 6" 
sgn ~ ---= sgn~fi, = --  sgn G. 

This implies that  a dynamically stable torpedo (G > 0) turns with its elevators, while a dynamic -  
ally unstable one (G < 0) turns against its elevators.) 
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In  a stable (G > 0) turn  of constant  radius R, V = RO*, and from equat ion (8) we have  

R = VGZ~Mq 1 
M~Z~ - -  Z~M~ ~ ~* " " . . . . . . . . . . . . .  (10) 

3. The Effect of  Errors in the Stability Der iva t ives . - -We can now s tudy the  effects of errors in 
the  stabil i ty derivatives Z~, M~, Z~, M~,, Zq and M e on three aspects of the  dynamic  behaviour  
of a torpedo : 

(a) The effect on the  radius of turn  R for a given elevator angle ~,* 

(b) The effect on the  margin of stabil i ty G 

(c) The effect on the  t ransient  mot ion  of the  torpedo following a disturbance. This is done 
by  s tudying the  effect on the  decay constants  ~z and ¢2 defined by  equat ion (5). 

Errors in the  range ± 20 per cent will be considered for the  static and control surface 
derivatives Z~, M~, Z~, and Me0, and errors in the  range -¢- 50 per cent for the  rotary derivatives 
Z e and M e. Each  case will be i l lustrated by  examples of two torpedoes of widely differing 
hydrodynamic  characteristics, Torpedo A (G about  1.0), and Torpedo 13 (G about  0.6). They 
have  the  following hydrodynamic  coefficients : 

T O R P E D O  A. 

OCL 

OCM 

W e  u s e  t h e  . r e l a t i o n s  

where 

3" 09 " bCL aCt 
' 0 8 .  - -  0 . 7 0  ; ~ ( l / R )  - -  - -  1 . 4 0 ~  

0.055 ; OCM _ 0.37 ; ~C~ 
0~, O(IlR) - -  - -  0"63. .  

aCL 
Z= = ½pA V ~ OC__~L ' Ze . = ½oA V 2 ~CL~o . ," Ze = ½pA V1 0 (l/R) 

OCM M o =  ~pAV~I ~C~'~ , M~ = ~pAV~I ~C~'~ , M ~ = ½ p A V Z ~ ( I / R )  

p = densi ty of water  = 2 slugs/cu ft 

A = m a x i m u m  cross-sectionM area of torpedo = 2 .4  ft ~ 

V = speed of torpedo = 40 ft/sec 

This gives 

Also 

l = length  of torpedo = 14 ft. 

Z~ Z,~ e Zq 
10 ~ - -  11"866; 1 0 3 - - 2 . 6 8 8 ;  1 0 3 - -  1"888 

M~ Me e Me 
103 --  2"957 ; 103 --  19"891 ; 1 0 3 -  11"967. 

mass of torpedo = 58.5 slugs 

ary = m o m e n t  of inertia of torpedo about the  transverse horizontal  axis th rough  
the  c.g. = 745 slugs/ft ~. 
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The L a m b  inert ia  coefficients for an ellipsoid of the  same fineness ratio (8) are 

K1 = 0" 029 ; K2 = 0" 945 ; K '  = 0" 840, giving 

m~V + 2" 408 " m~V Jy 
10 a - 10 a - + 4"551 " - -  q- 1"371 . 

• , , 10 ~ 

T O R P E D O  B. 

These give 

OCL ~CL ~CL 
_ _  . _ _  - -  o _ _  8e 2-29, ~8o 0.396, ~(I/R) 

aCM ~CM ~CM 
80~ b 0 . 5 5 6 ,  ~ ,  0-229 • ~(I/R) 

p --  2 slugs/cu It m = 94.47 slugs 

A = 2"405 fff 

V = 49 ft/sec 

l = 20.49 It 

Iy = 1886" 8 slugs/It 2 

Fineness rat io - -  11.7, whence  

K1 = 0.019 ; K~ = 0.968 ; 

Z2 Z~ Z~ 
103 --  13.223 ; 10 ~ --  2.287 ; 103 --  

M~ M~ M~ 
g _ _  - -  

1 0 3 - + 6 5 " 7 8 5 ;  103 = - -  27" 095;  10 ~ 

V - V j ,  
10 a - -  + 9 " 1 1 0 "  1 0  a - - - ¢ - 4 " 7 1 7 "  - -  

, , 1 0  ~ 

1 . 0 4  

0.50 

K '  = 0 .908 .  

2-511 

24. 738 

b 3 -600 .  

3.1. The Effect on Radius of T u r n . - - F o r  
(equation (10)). 

where 

a given elevator  deflection dr*, the radius pf t u rn  is 

R = R '  V " } 
dr* 

. 

R' = 7 -  77V  

We denote  by  R0 and 
derivatives,  and  by  ~R 
one of Z~, M~, Zo , M~,, 

. . . . . .  ( 1 1 )  

Ro' the  values of R and R' when there  are no errors in the s tabi l i ty  
and OR' the  changes in R and  R '  due to changes aC in C, where C is 
Zq and Mq. 

Since V and d,* are constant ,  it is clear t h a t  

~R ~R' 
R R'" 

The  fract ional  change in R for any  given fract ional  error in C can be calculated from equat ion (11) 
as set down below, for alt six in terpre ta t ions  of C. 

We note  t ha t  Ro has the  following va lues  for the two torpedoes chosen as examples • 

Torpedo A Ro = 144 ft when ~*  = 10 deg 

Torpedo B R0 = 100 It when dd" = 10 deg. 

5 
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Errors  in Z~ 

Torpedo A • 

Torpedo 13 • 

Errors  in M~ 

Torpedo A • 

Torpedo B • 

Errors  in Z% 

Torpedo A • 

Torpedo B • 

Errors  in Mo~ 

Torpedo A • 

Torpedo B "  

Z~-+Z~+OZ~ 

aR M~EMqZ % -- M%(m~V + Zq)] 

R MqZ~, - -  M~,(mfl7 + Zq) 

~R 
R 

~R 
R 

2,5 e 
M~Z~ 

aZ~/Z~ 
oZ~ 

--  21.95 --  22.71 Z~ 

oZ~" 
+ 0 .92 + 0 .64  Z~ 

M~-~M~+OM~ 

R MqZ~ -- M~(m~V + Zq) 

R dM~ 
+ 21.95 - -  0"77 M= 

~M~/M~ . 
~M~ " 

- - 0 . 9 2 - - 0 . 2 7  M~ 

~R 
R 

~R dZ~JZ~ 
R - -  M% Z~ 1 -- - -  

M~ Z~ Z~ 

~R ~Z~ /Z~ 

~R 
R 

~R 
R 

~R 
R 

m d  e 
Z~M~ 

28.70 d Z~ 
Z% 

dZo /Z~, 

--  3" 38 ~Z~ 
Z~ 

M6~ 

1 
Z~ M~ Mot 

- -  O" 97 0M~ 
mo¢ 

(g m~ e 
- -  1.42 

M~ 

~M~IM~ 

--> M,~ + ~M~ 

8R 

R 

(1 +-#7/ 



Errors in Zq Z~ ~ Zq + (~Zq 

~ R  - - "Mo:Z  q ~Zq __ Zq ~0 - -  1 (}Zf[ 
R - -  ~/iqZo: - -  ]V_fa(~/]~I g + Zq) Zq (]/y/,lV + Zq) G O Zq ' 

where Go is the value oi G, the margin of stability, when there are no errors in the stabili ty 
derivatives. 

Torpedo A : 

Torpedo B : 

Errors in M e 

, R  __ 0"04 dZq 
R Zq 

dR ~Zq 
R - - + 0 " 9 1  Zq " 

Mq 

~R MqZ~ 
R - -  - -  M (mlV + & )  

Torpedo A • ~R ~Mq R - + 0 . 9 9  

"-+ Mq + 6Mq 

~Mq_ 1 ~M~ 
Go Mg 

b R cSMq 
Torpedo B"  R -- + 1"80 M-~-" 

These results are plotted in the form percentage error in R against percentage error in C in Fig. 2 
for Torpedo A, and in Fig. 3 for Torpedo ]3. I t  is clear from Fig. 2 that,  for Torpedo A, errors 
only in Mq and M~, are significant. I t  is therefore useful to s tudy the variation of R when there 
are errors in Mq and M~ simultaneously. The result for Torpedo A is 

6 Mq 6 M,~ ~ 
+ 0 " 9 9 - -  -- 1 " 0 4 - -  

~R Mq M~ e 
R ~M,~ 

1 + 1 . 0 4 - -  
M~ 

Th i scan  be plotted as a family of straight lines in the ~R/R -- bMq/Mq plane with ~M~,/M~ as 
parameter. From this it Call be seen what ranges of errors (positive and negative) in M~ and 
M~ are permissible for a given permissible range of error in R. This information is plotted in 
Fig.  4. 

For Torpedo B errors in all stabili ty derivatives are: significant, and there is no point in 
considering simultaneous variations of two only. 

3.2. The Effect on the Margin of Stability.--G was defined by equation (7) as 

GO --- 1 - -  M~(mlY + Zq) 
Z~Mq 

where Go is the value of G when there are no errors in the stabili ty derivatives. We are now 
interested in the value of G when errors in the stabil i ty derivatives exist, and not in the fractional 
change in G. The values of Go for the two torpedoes being considered are 

Torpedo A : Go = + 1.011 

Torpedo B : Go = + 0. 556. 

7 
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Errors  in Z~ 

Errors in M ,  

Torpedo A : 

Torpedo B : 

Errors  in Zq 

G = I +  

Errors in Mq 

Z~-~ Z~+oZ~  

G o - -  1 
OZ~ 

l+z~ 
0.011 G=I+- 

OZ~ 
1 + Z~ 

0.444 
~Z~ 

1+ z~ 

M ~ - ~ M ~ +  OM~ 

G = I - -  

G=Go-F(Go--1)~M~ 
M~ 

~M~ 
Torpedo A • G = 1.011 + 0-011 M~ 

Torpedo B • G ---- 0 .556 - -  0. 444 aM~ 
M~ 

Zq-->" Zq ~-- a Zq 

(Go- 1) G = Go + mlV + Zq Z 

OZq 
Torpedo A • G = 1.011 --  0" 040 

" OZq 
Torpedo B " G ---- 0-556 + 0" 050 Zq " 

Mq --+ Mq + (~Mq 

Go - -  1 
G = I +  

aMq 1 +  

0.011 
Torpedo A : G = 1 + 

~Mg 
1 + M q  

0.444 
Torpedo B • G = I aMq which is the same variation as for OZ~ 

1 +  M q '  Z~ 

These results are p lo t ted  with  OC/C as a percentage in Fig. 5 for Torpedo A and in Fig. 6 for 
Torpedo B. I t  is obvious from the form of the  equat ions tha t  the var ia t ion of G wi th  errors in 
the  derivat ives decreases as Go approaches un i ty  and is in fact zero at  Go = 1. 

3.3. The Effect on the Transient Motion of the TorTbedo, Following a Disturbance.--It was shown 
in Section 2 tha t  the t rans ient  pa r t  of the  solution for the  angle of a t t ack  ~(t) following a 
d is turbance  was the  expression (5) : 

~1 e ~'1~ + 2~ e~ ~ . 
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The transient solution for the depth Zo, or pitching rate 0 would be of the same form, with of 
course, different values of the constants 2~ and ~2. Real  values of ~ and ~ will be associated 
with aperiodic motion, and imaginary values with oscillatory motion. 

The effect of errors in the stabili ty derivatives on the transient motion of tile torpedo can be 
studied in two sub-sections : 

(a) The effect of such errors on the decay constants ~ and ~2 
(b) The effect of such errors on the transient motion following one particular disturbance 

which will be taken as a step function input to the elevators. 

3.3 (a).--The effect of errors on the decay constants.--The decay constants were defined by  
equations (4) and (6). I t  is obvious from these that  there are two types of problem involved 
since errors in Zq or M~ cause A8 only to vary, while errors in Z~ or Me cause both A2 and A3 to 
vary. 

Errors in M~ M~ --> M~ + ~M~ 

Let # be a root of the new equation (replacing equation (6)) 

Al:d + A2~ + As -- (miV + Zq)M~ ~M~ M~ - 0 .  

Put  # ----y and ~M~/M~ = x, and this becomes the equation of a conic in the x-y  plane. In 
conventional conic notation, it becomes 

b~y ~ + 2g~x + 2fly + cl --- O, 

where bl = + A1 = m2VJy 

2g~ = -- M~(m~V + Zq) 

2fl = + A2 = -- m~VMq --J,Z~, 

cl = + As = MqZ~ -- m~(m~V + Zq). 

The discriminant A is, in conic notation, h~ ~ -- a~b~ = 0. Hence the equation above represents 
a parabola, providing the conic is non-degenerate (the case where the conic is degenerate is 
discussed below). The parabola passes through the points (0, ~ )  and (0, ~ )  and its axis is parallel 
to the x axis. Its vertex has an x co-ordinate of 

' A - _ 1 - ( 2VM  - -  J ,  z o )  

2b~g~ 4m~VJy M~,(m~V + Ze) " 

The value of the decay constants for any given error in M~, say OM~*, are the values of y at 
which the line x = ~M~*/M¢ meets the parabola. 

The parabola cuts the x axis at the point x = Go~(1 -- Go), y = 0, where Go is the margin of 
stabil i ty calculated when no errors exist in any derivative. With this value of x, the  torpedo is 
marginally dynamically stable. Moreover, the nearer Go is to uni ty  the smaller is the change in 
the decay constants for any given error. At Go = 1, the coefficient gl in the equation of the 
parabola disappears, and this is t h e  condition for the parabola to degenerate into a parallel 
line-pa!r in the direction of the x axis, which implies no change at all in the decay constants for 
errors m M~. W e  assume that  when no errors exist, the torpedo is dynamically stable, tha t  is 
Go > 0 and ~z and s~ negative. I t  follows that  the parabola faces right or left according as 
G 0 ~ l .  

The parabola is plotted in Fig. 7 for Torpedo A, and in Fig. 8 for Torpedo B. I t  should be 
noticed that  the horizontal scales of these diagrams are in units of ~M~/M~ and not (~M~/M~) 
per cent as in previous diagrams. The variations of the decay constants are greater for 
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Torpedo B than for Torpedo A, as is to be expected, since Go is nearer uni ty  for Torpedo A. In 
dM~ 

fact, for Torpedo A, over the range ~ ~< 0.2 (ile., ~ 20 per cent error), there is no noticeable 

change in the decay constants. For Torpedo B the change in the decay constants for the same 
range of ~M~/M~ is noticeable but no t significant• 

The torpedo is dynamically stable or unstable according as #1 and ~2 have negative or positive 
real parts• When ~1 and t*2 become imaginary (i.e., in the region of the diagram past the vertex 
of the parabola), the motion hitherto aperiodic becomes oscillatory. That  the oscillatory motion 
is, in fact, stable can be easily checked. 

Errors in Zq Zq-+ Zq 4- ~ Zq 

Let # be a root of the new equation 

Axl~ 2 Jr- A2¢ + A3 -- M~Zq c}Zq Zq --  O. 

Put/z  = y  and OZq/Zq = x and we can write this in conic notation as before 

b~y e 4- 2g~x 4- 2fey + ee = 0 ,  

where be = + A1 = meVJy 

2ge = -- M~Zq 
2re = + A e = --  m2VMq --  J,Z~ 

ce = + Aa = MqZ~ -- M~(m~V + Zq). 

This is, again, a parabola passing through (0, /~) and (0, ~e). The x co-ordinate of the vertex 
is now 

A e -  b2ce I : (meVMq - - J ,Z~ )  2_ ] m~V + Z e 
2beg~ ~-- 1 --  4meVJyM~(m~V + Ze)J Z e 

It  will meet the x axis where 
Go m~V + Z e X - -  

1 - -  Go Zq 

I t  is in fact the same parabola as before, but with the horizontal scale multiplied by  a factor 
(m~V + Ze)/Z e. Minimum variation again occurs when Go = 1, when the parabola degenerates 
as before. The parabola is plotted in Fig. 7 for Torpedo A and Fig. 8 for Torpedo B. In both 
cases the variation of the decay constants is a little greater than for the M~ case but  it is still 

negligible for Torpedo A and not very significant for Torpedo ]3 in the range _~[e < 0" 2. 
* /  

Errors in M e M e --~ M e + ~Mq 

Le t / ,  be a root of the new equation 
/ ~Me~ ~Me 

A ~  e + ~A2 - -  m e V M  e -M~q ] /* + A8 + Z~M~ Me - -  0 P 

Put  y = / z  and x = dMq/Mq. In conic notation the equation becomes 

2h3xy 4- bay e 4- 2&x 4- 2fay + ca = 0 . . . . . . . . .  (12) 
where 

2ha = - -  m e V M q .  

l 

293 = + Z~Mq 

2f~ = + A~ = - - J ~ &  - m ~ V M ~  

ca = + Aa = M J ~  -- M~(mlV + Zq) 

10 
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The discriminant A = h~ ~ - -  a~b~ = hd > O, so the equation represents a conic which, if non- 
degenerate, is a hyperbola. (The case when the conic is degenerate.will be discussed below). The 
equation of the asymptotes is got from this equation by adding a constant z such that  

h3 g~ 

ha b~ f~ = 0 .  

g~ f~ c~ + 
Solving for ~ we get 

c3 + ~ = 2& ( 4Ah~ --22bsg3~ j = 2 g 3 ,  

since 4f3h8 - -  2b~g~ = 4h~ ~ from (13). 

The asymptote pair has, therefore, the equation 

2h~xy + b~y ~ + 2&x  + 2f~y + 2& = 0 . . . . . . . . . .  (14) 

The absence of a term in x ~ shows that  one of the asymptotes is parallel to the x axis. The slope 
of the  other one is therefore the tangent of the angle between them and is 

2~¢/(ha ~ - -  a a b a )  M q  

+- + - -  J 7  " 

From (14) we see that  the point (-- 1, 0) lies on the asymptote pair, and since the horizontal 
asymptote is certainly not y = 0, the point (-- 1, 0) necessarily lies on the sloping asymptote, 
whose equation is therefore 

Mq (1 + x) 

Since the hyperbola passes through the points (0, /~1) and (0, /~2) where/~1 and #2 are negative, 
this asymptote must have a negative gradient, whence its equation is 

Mq (1 -¢- x) 

Mq being negative for all conventional torpedoes. The equation of the other asymptote is found 
by differentiating equation (14) and finding the value of y for which dy /dx  vanishes. It  is 

g~ Z~ 
Y - -  h8 - -  m2V" 

The horizontal asymptote has therefore the equation 

Z~ 
Y = m~V " 

We note that  the asymptotes intersect at  (x*, y*), where 

x* = JyZ~ - -  m2VMq 
m=VMq 

We can now draw the asymptotes directly, and_ we know, moreover, two points on the hyperbola, 
namely, (0,/~) and (0,/,~). There is o n e  other point of interest on the hyperbola. From 
equation (12) the x axis cuts the hyperbola where 

- -  6 8  
x - -  --  Go. 

There are four possible configurations of the hyperbola depending on whether x* X 0 and 
Go <> 1. These are shown in Fig. 9. If we use the fact that  the intercepts on any straight line 
cut off between a hyperbola and its asymptotes are equal, it is possible to sketch in the hyperbola 
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with reasonable accuracy from a knowledge of its asymptotes,  the points (0,/,,), (0, ~)  and 
( - -  Go, 0), which are known to lie on it. In the case Go < 1, as Go --> 1, the rate of variation of 
one decay constant decreases, while that  of the other increases to the slope of the sloping 
asymptote. In the case Go > 1 it is clear that  the variation of both decay constants decreases 
as Go approaches unity. If Go = 1, the hyperbola degenerates into its asymptotes, and only one 
decay constant varies. 

The hyperbola for Torpedo A is shown in Fig. 10, and for Torpedo B in Fig. 11, and the 
.stabilit.y regions are shown for each. It is easily proved that the region of oscillatory motion 
is a region of stable motion. It is interesting to note that  when Go < 1 it is impossible to reach 
a condition of oscillatory motion of the body by altering M e only. 

It is clear from these Figures that errors in M e are far more significant as regards the decay 
constants, than are errors in Z~ and M~. In fact an error of -- 60 per cent in M~ would cause 
Torpedo A to oscillate, and Tori~edo B to become dynamically unstable. 

Errors in Z~ Z~.--> Z~ q- $ Z~ 

Le t / ,  be a root of the new equation 

( ~z 4 ~z~ 
A I~ ~ + A ~ - -  J , . &  72~1 ~* + A 3 + M J .  & _ O . 

Putting/~ = y and dZ~/Z~. = X, this equation becomes, in conic notation. 

2h4xy + b~y ~ + 2g,x + 2f4y + ca = O, 
where 

b~ = + 

2 g , = +  

2 A = +  

C 4 ~  -{- 

Th i s  is again a hyperbola, and, in the 
equations 

y = + - -  

- - J , &  

A1 = m,~vJ, 

MqZ~ 

A2 - -  JyZ~ - m 2 V M  e 

A3 = MeZ~ - -  M~(r~lV + Z~). 

same way as before, we find that  the asymptotes have the 

Me 
jy (horizontal asymptote) 

Z~ (1 + x) (sloping asymptote) . y= + ~  
They intersect in the point (x*, y*) where 

x* = m2VMq - -  JyZ~ 

Since the x axis cuts the hyperbola at x = -- c4/2g~ =- - -  Go, as before, the remarks made about 
the significance of having a value of Go close to unity still apply. The four configurations shown 
in Fig. 9 also apply, if the new expression for x* is used. These hyperbolae are'plotted in Fig. 10 
for Torpedo A and in Fig. 11 for Torpedo B. The variations in the decay constants are still 
large, but not so.seriously as they were for errors in Mq, particularly as regards measuring accuracy, 
since accuracy m measuring Z~ is far easier to achieve than accuracy in measuring M v For 
Torpedo A an error of -- 100 per cent would be necessary to cause instability and an error of 
+ 200 per cent to cause oscillatory motion. For Torpedo 13, instability would occur when Z~ 
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had an error of - -  60 per cent.  For both torpedoes, x* is positive for the Z~ case and negative 
for the M s case. This implies tha t  the sloping asymptote has a less steep gradient in the Z~ case 
than in the M s case, and that  the variations in the decay constants are correspondingly less. 

3.3• (b). The elect Of errors on the transient motion for one particular disturbance.--The 
disturbance will be taken as a step function input on the elevators. The subsequent solution for 
the angle of at tack will be studied.  The relevant equation is equation (3), where ~(t) is now a 
step function of magnitude ~,*. Then, 

1 
<(p) = } 

and equation (3) gives, 

~(p) ],z~,p + M~o(my + z~) - MsZ~, 
< *  m W J , p ( p  - #I)(P - #3) 

by  the definition of #i and #3. Splitting the right-hand side into partial  fractions we have 

where 

a ( p ) _ h = q  h ~ q  h2 . . . . . . . . . . .  (is) 

h = M o b ( m y  + Zs) --  MsZ~ ~ 

m2VJy #i#2 

hi = ]yZ~#l + M%(mlV + Zs) - -  M J %  

m.VJ~#d#l- #2) 

h~ = J,Z~.#~ -}- M%(mlV -J- Zs) - -  MqZo. 

(16) 

Inverse Laplace-transforming equation (15) gives 

~ ( t ) =  ha + hle~U + ~2 e'*2 ' . ~* 

Since we are interested only in the transient solution, and not in the steady-state solution (which 
is ha), we divide by  ~3 to get finally', 

where 

~(t) _ 1 + hI e~ l '+  hl e.2' 

hl- hi F /,z,,#1 ] 
h~ - I_M~JmY + Zs) MsZ~ + 1 - -  # 1  - -  # 2  

h i - L - -  M~ (m~V + Zs) MJoo +I - -  - -  # 3  - -  # 1  

(17) 

#i and #3 are affected by  errors in Z~, M=, Zs and M s as already shown, hl and ,~1 are affected 
by errors in all six derivatives. I t  is therefore possible to s tudy how the solution (16) varies 
with errors in each of the six stabili ty derivatives, one at a time. This has been done for three 
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values of error in each derivative, namely 0, ~ 50 per cent for the rotary derivatives Zq and Mq, 
and 0, ± 20 per cent for the others. The results for Torpedo A are conta inedin  Fig. 12, and for 
Torpedo B in Fig. 13. The time for the ordinate to reach 95 per cent of its final value is marked 
in each case. Errors in Z~c and M~ e do not affect either torpedo noticeably. For the remaining 
derivatives, errors appear to affect Torpedo B more adversely than they do Torpedo A particularly 
in the case of the rotary derivatives Z e and Mq. An error of - - 5 0  per cent in M e causes a 
substantial change in tile motion of Torpedo B. I t  should-be noticed tha t  the time to reach 
95 per cent of the final value is less for Torpedo A than for Torpedo B ; this is to be expected 
since Torpedo A has a larger margin of stability. 

4. Summary a~cd Comlusiom.--In this report, the extent to which the dynamic behaviour of 
the torpedo is sensitive to changes in its stabili ty derivatives has been investigated. Attention 
has necessarily been confined to certain well defined aspects of dynamic behaviour. These aspects 
were the radius of turn for a given elevator angle, the margin of stability, the decay constants of 
disturbed motion, and the motion following a particular disturbance, namely, a step function 
input to tile elevators. I t  is not too unreasonable to suppose tha t  these aspects are broadly 
representative of dynamic behaviour. I t  must be admitted, however, that  the theoretical results 
apply to an uncontrolled torpedo. Nevertheless, it should be noted that  according to tile Table, 
the margin of stabili ty indicates the ease with which a control system for a homing torpedo can 
be designed. 

The results obtained in particular cases, namely, Torpedo A and Torpedo B which have been 
used as illustrative examples, may be summarised as follows : The radius of turn per elevator 
angle of Torpedo A is very susceptible to errors in M~ c and Me;  tha t  of Torpedo 13 is very 
susceptible to errors in all derivatives except perhaps Zo. The margin of stabili ty G, for Torpedo 
A varies very little with errors in the stabili ty derivatives. For Torpedo B, G varies rapidly 
with errors in Z~; Mq and M~. For both torpedoes, tile decay constants vary  much more with 
errors i n  Z~ and M e than with errors in M~ and Zq. This tendency is reflected in the effect of 
errors on the solution for angle of at tack following a step function input to the elevators, but it 
is not as pronounced as one would expect, presumably due to the effects of the errors on tile 
coefficients ~1 and ~1. For Torpedo A, the variation of the solution is small for all feasible errors. 
This is not so for Torpedo B, the variations due to errors in Z~ and Mq being rather severe. 

In view of tile complexity of the concept of dynamic behaviour and tile number of parameters 
involved, it is difficult to draw general conclusions. I t  does seem clear, however, that  the 
susceptibility of torpedo performance to changes or errors in tile stabil i ty derivatives depends 
to a great extent on the margin of stability. Tile effect of errors is, in most respects, at a 
minimum when Go = 1, that  is, when the torpedo is marginally statically stable.  

A cknowledgements.--The author is indebted to Mr. I. J. Campbell of the Admiralty Research 
Laboratory and to Mr. A. MacDonald of the Torpedo Experimental Establishment, for much 
helpful advice given during the preparation of this report. 
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FIo. 2. Percentage error in ;adius of turn R against percentage error in hydro: 
dynamic coefficients C Torpedo A). 
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