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Summary. A binary flexure-torsion analysis has been made to check theoretically amethod for the 
prediction of flutter which depends on plotting vectorially the amplitudes of response relative to the exciting 
force and extracting the relevant damping rate. The results of this calculation are given in the form of graphs 
both of the vector plots themselves and of the estimated damping rate against forward speed. The estimated 
damping rates are compared with calculated values. The method has the advantage that, in a flight flutter 
test, damping can be estimated from continuous excitation records; the method is an extension of the Kennedy 
and Pancu technique used in ground resonance testing. 

1. Introduction. The measurement of normal modes in a ground resonance test needs an elaborate 
technique both to ensure that the modes are reasonably orthogonal, and to ensure that no mode is 
missed. The presence of structural damping presents one of the main difficulties. Kennedy and 

Pancu 1 have suggested a method of analysing the recordings taken by plotting vectorially the 
displacements relative to the exciting force. Near circles are obtained for each resonance and practical 
experience seems to show that this type of plot considerably reduces the likelihood of missing a 
resonance and also improves the accuracy of determining the resonant frequency. This in itself leads 
to modes being measured which are a better approximation to the true normal modes than is usually 

possible from amplitude plots alone. In addition, the structural damping can be estimated directly 
for each resonance. 

Because of its success in ground resonance tests the idea has arisen of adapting the technique for 

flight flutter testing. It is hoped that from the flight test under continuous excitation the resonances 

might be obtained in the same way as from a ground test, with at the same time estimates of the 

overall damping at each resonance frequency. Thus a graph of damping rate against air-speed can 

be obtained from a continuous excitation method of flight flutter testing. In this way it is hoped to 

obtain the best of two worlds; continuous excitation allows more accurate analysis in the presence of 

buffeting than is possible from a decaying oscillation, and at the same time damping can be plotted 

against air speed; and damping gives a more reliable warning of the approach to flutter than does 

amplitude response. Near the flutter speed, however, the analysis has to deal with a different type of 

equilibrium than in a ground resonance test, because the aerodynamic forces are powerful and do 

not represent a conservative system. In order to see whether this leads to any difficulty in application, 
a simple flexure-torsion binary example has been worked out in the present paper and analysed by 

* R.A.E. Tech. Note Struct. 233, received 18th February, 1958. 



the Kennedy-Pancu method at various forward speeds up to the flutter speed. The  dampings are 
obtained and plotted against air-speed and the results are found to agree well with calculated 

dampings. This promises well for the method but, of course, the vastly greater complications to be 
found in reality can be expected to lead to a more confused picture than that obtained from a binary 

example. 

2. Theory of lhe Method. The basis of the theory is outlined here for convenience. 

2.1. One Degree of Freedom. The equation of motion for one degree ot e freedom can be written 

in the form: 
a~ + e(1 + ig)q = Fe ~on (1) 

for a generalised exciting force Fe~% where a is an inertia coefficient, e is an elastic coefficient, 
q is a generalised co-ordinate and g is the phase angle of the restoring force (the damping coefficient). 
The steady solution will be motion of the form ei% so we substitute q = ~e ~'°t. 

Equation (1) now becomes: 
[ -  w~a + e(1 + ig)] q = F .  (2) 

We let coo be the natural frequency of the one degree of freedom, i.e., co0 ~ = e/a and we obtain: 

a [co0 z (1 - ~2) + igloo ~] q = F ,  (3) 
where c5 z = (co/co0) 9'. 

For the purpose of vector plotting ~ is written in the form: 
q = qr+ iq,. (4) 

For any exciting frequency, co, the quantities q,. and q~ can now be calculated and plotted on an 

Argand diagram to give the response vector at that frequency relative to the exciting force, i.e., F is 

taken to lie along the real axis. 
Substituting equation (4) in equation (3) and equating real and imaginary parts leads to: 

aco0 ~ [q,. (1 - ~5 2) - q,g] = F (5) 

and 
acoo ~ [q~g + q, (1 - ~ ) ]  = 0 .  (6)  

and 

Hence 

q ~ -  aco0 z 1 - ~ ) ~ 2 F g ~  (7) 

FE g 1 q'  - a c o 0  { 1  - + • ( 8 )  

As co is varied the locus of points (q,., q~) is a smooth curve obtained by eliminating ~5 from these two 
equations : 

q,Z _ F 
qi 2 acoo2qig + 1 (9) 

o r  

qr ~ + qi 2 + qi = 0 .  (10) 

This is the equation of a circle with its diameter lying on ' the negative imaginary axis and passing 

through the origin (see Fig. 1). 
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T h e  position of resonance. 

Resonance occurs when ~5 = 1 and from equation (7) q~ = 0, i.e., the vector O C  on Fig. 1 

represents the amplitude at resonance. We can obtain a relation between the rate of change of 

frequency along the curve at resonance and the damping g, so that if the curve itself is obtained from 

measurements on a structure of unknown damping, the damping can be estimated. 

Consider the point D in Fig. 1 when the frequency is 0)0 + 30). At D 

= tan 0 (11) q~ 
qi 

1 - ~52) ~ ( 1 2 )  
- g  

f rom equations (7) and (8). 

Hence 
0 30) 2 + cot (13) 

g = 0 ) o  z" 
I t  can be seen from equation (13) that if 30)/0) o is small, equal angles will be subtended by equal 

frequency increments on either side of the resonance. In the particular case when 0 = ½o we have : 

and when 0 = - ½ ~r (14) j ~ 2  = 1 - g = 

Hence 

and 

Whence 

_ 

0)A 2 - -  ~ B  2 

2 
0)0  

0)A. 2 -1- 0922 

2 
0 )  0 

} (15) 

0)x~ - c°~2 ( 1 6 )  
g - co2 + co~ 2 

- 0)A 
09 0 

I t  is common practice in this country to express the damping as a percentage of the critical damping. 

As long as the damping is small, g can be directly related to the percentage of critical damping which 

is derived from the concept of velocity damping, i.e., the appropriate differential equation i s :  

' a~ + d o + . e q  = Fe  ~ . (17) 

Comparing this with equation (1) 
d o = eigq (18) 

and substituting q = ~e ~'°t, 

i0)d = ieg . (19) 
H e n c e  

(20) 
g - -  e 

But d = (2c /c~)~(ae )  where c/c e is the fraction of critical damping. 



Hence 

so that at resonance 

' ( 2 1 )  

c d 
g = 2 - (22) 

co V ( a e )  " 

It should be noted that if the damping is of the form given by equation (17), the locus of points 
(q, qi) is no longer a circle; the steady solution will be motion of the form e i°'t, and substituting 
q = qe ~°'t the equation becomes: 

( -  aw 2 + dico + e)q = F .  (23) 

Proceeding as before we obtain: 

and 

F 1 - c5 z 
awo 2 (1 - ~52) 2 + ~2ff2 (24) 

- a%0  i l  - + " ( 2 5 )  

Here ~ = d/~/(ae), so that the two systems represented by equations (1) and (23) will have the 
same properties at resonance ifg = ft. The vector q defined by equations (24) and (25) now describes 
a quartic curve starting at the point (F/(a~oo2), 0) when co = 0 and finishing at the origin when 
co + co; any other branches are for unreal frequencies. In practice, for small values of ff thecurve 
is indistinguishable from a circle except at low frequencies; this is shown in Fig. 2 where the circle 
of equations (7) and (8) is compared with the quartic of equations (24) and (25). 

2.2. Two Degrees of Freedom. Kennedy and Pancu 1 suggest that with N degrees of freedom there 
will be N near circles. For any particular resonance, the best circle is put through the points and 
the resonance is given by the minimum 3~o/3s, where s represents distance along the curve. If  
equal increments of ~o are taken, the greatest change of phase gives the resonance. The damping (g) 
can then be extracted as for one degree of freedom. 

Because this method appears to be the best way of estimating damping in ground resonance tests, 
it has been suggested that it might well be extended to the estimation of damping in a flight flutter 
test, where continuous excitation is being employed. The method may be difficult when the dampings 
are high at medium flight speeds, but should improve again for low damping near the flutter speed. 
The difference between the flight condition near the flutter speed and the ground condition, where 
the damping is low in each case, is that in flight there will be large asymmetric couplings arising 
from the aerodynamic forces. It was decided to see how important these were in practice by 
calculating the response of a simple binary example at various speeds up to the flutter speed. 

3. Binary Example. 3.1. Basic Data. 
Geometry. 

For simplicity a two-dimensional rigid wing, restrained by springs in vertical translation and 
pitch, was considered. The two degrees of freedom are: 

Vertical translation: z = cql (representing wing flexure) 
Pitch: ~ = q2 (representing wing torsion) 
In general z = cql + xq2. 

The axis of pitch is at the half-chord. 
The axis of centre of gravity is at the half-chord. 



Since the modes are uncoupled at zero flight speed they are normal modes and the frequency ratio 
is ~i : ~o= : : 0.4676 : 1. 

Structural damping at a value of g = 0.02 is assumed to be present in each degree of freedom. 

It  is assumed that displacements to be  recorded in flight tests are linear displacements at the half- 

chord, quarter-chord and leading edge and the angle of pitch. Thus  the first and last of these 

'pick-ups' give measurements proportional to the generalised co-ordinates ql and q2 respectively. 

Finally, it is assumed that the excitation is linear vertical excitation applied at the quarter-chord. 

3.2. W i n g  f l u t t e r .  The aerodynamic derivatives are assumed to be constant both with the 
frequency parameter and forward speed, i.e., any Math-number  effect is neglected. 

The equations for free oscillation can be written in the form: 

06 wi+  7  : °  

+ (1 + 0.02i)y 0 

- 0.8906v ~' + 0 . 2 4 v v i  - 0.565v ~] q , (26) 

- 0 . 4 9 v v i  + 0-29(1 + 0.02i)y 0 

where V~ is the flutter speed, v = wc/Vc ,  v = V / V c ,  Yo = Ell/(PV~2scZ), c is the wing chord, and 

s is the wing span. The equations were solved for Yo with v = 1 (corresponding to the critical 
flutter speed), and gave Y0 = 2.92 and v = 0. 666. 

From a knowledge o f y  0 it is possible to relate any known Ell (the spring restraint against vertical 

translation), to an actual flutter speed (V~), knowing the dimensions. Here, however, we are only 
interested in the relative speeds, i.e., v, the fraction of V~. 

3.3. Response  Calculat ions.  With the excitation at the quarter-chord and after the substitution 
for Y.0 = 2.92, equation (26) becomes : 

2"27v 2 + 0 . 6 3 v v i  ( -  14.04~, ~ + 2.92) + 

+ (1.96vv + 0.0584)i 

l l: 025 ( -  0"8906v 2 - 0"565v z + 0.8468) + 

- 0 . 4 9 v v i  + (0.24vv + 0"016936)i 

where F is an arbitrary force level. For simplicity F is taken to be unity in the calculation which 

follows. Values of v = 0, 0.25, 0.5, 0.75, 0.9 and 1-0 were chosen, and in each case ql and q~ 

were calculated for a set of increments in u. Assuming perfect accuracy of recording the "measurements 
taken in flight from the four 'pick-ups' (half-chord, quarter-chord, leading edge, pitching angle) 

would be ql, ql - ~q2, ql - ½q2, q2- These are plotted vectorially in Figs. 3 to 26. 

3.4.  C o m m e n t s  on Figures.  I t  is convenient to comment on the Figures briefly in groups for each 
forward speed. On the Figures, the displacements of the four 'pick-ups' (see above) are referred to 
as displacement 1, displacement-2, displacement 3, displacement 4, respectively. 

v = 0.--Figs.  3 to 6. 

Since the first and fourth 'pick-ups' measure the generalised co-ordinates ql and q2, which are 
normal co-ordinates at zero speed, they each show a single perfect circle. 

The  second and third 'pick-ups' measure displacements which are dependent on both generalised 
co-ordinates and therefore show both resonances, with some slight distortion of the circles in each 
case. The  two circles in each case lie on the same side of the real axis. 

(78800) A* 



The resonance frequencies are given by v = 0.456 and 0. 975. 
v = 0.25.--Figs. 7 to 10. 

T~he size of the circles has diminished considerably in each case. The effect of the couplings 

causes the circles to be less perfect; in the first and fourth cases a distorted circle is introduced. 
The resonance frequencies are given by v = 0.455 and 0.955. 
v = 0.5.--Figs. 11 to 14. 

The size of the original circle from the first and fourth 'pick-ups' has again been decreased, l~ut 

the introduced coupling near-circle has increased. Both circles, from each of the second and third 
'pick-ups', have decreased in size. 

The resonance frequencies are given by v = 0.46 and 0.895, and the higher frequency is now 
reducing fairly rapidly as speed is increased. 

v = 0.75.--Figs. 15 to 18. 

From the first 'pick-up' the original circle is still decreasing but the new circle is of truer form 

and its size is increasing. From the fourth 'pick-up' both circles are increasing in size. The size of 

both circles from each of the second and third 'pick-ups' is less. 

The resonance frequencies are given by v = 0.4375 and 0.78. 
v -- 0.9.--Figs. 19 to 22. 

The size of the original circle from the first 'pick-up' has again decreased, but the new circle has 
increased and is now greater than the original. From the fourth 'pick-up' the size of both circles is 
increasing, but there is no resonance obtainable from the lower-frequency circle. From the second 
'pick-up', the size of the circle with the higher frequency has greatly increased, so that it is now 
almost equal to the lower-frequency circle. The circle with the higher frequency from the third 
'pick-up' has increased in size, but both circles are more imperfect. 

The resonance frequencies are given by v = 0.39 and 0.705. 
v = 1.0.--Figs. 23 to 26. 

As this is the flutter speed, one of the circles must now have increased indefinitely in size at the 
flutter frequency. This is in fact the circle corresponding to the higher frequency. 

The response curves are all plotted on the same Figure to the same scale for each of the four 
'pick-ups' (Figs. 27 to 30). 

3.5. Estimation of Damping in Flight and Conclusion. As outlined in Section 2, we estimate the 
damping c/c~ from the circles. Near each resonance suitable equal increments in frequency are 

chosen, and these are marked on the curves of Figs. 3 to 26. The actual resonance is picked out from 

the Figures by using a pair of dividers to get the maximum phase change. In this example there was 

never any difficulty in putting a circle through the points (these circles are shown in Figs. 3 to 26) 

and the damping was estimated from convenient increments of frequency as can be seen from the 
construction on the Figures. 

The damping as obtained from each 'pick-up' was then plotted against forward speed, and the 
results are shown in Fig. 31. Since our example is completely specified mathematically, the dampings 

can also be calculated exactly. In Fig. 32 the calculated roots are plotted and compared with the 
estimates from each of the four 'pick-ups'. Fig. 32a, shows the change in frequency of the lower 
frequency with forward speed and Fig. 32b shows the change in damping. Figs. 32c and d give the 
corresponding results for the higher-frequency root, which is the one that leads to flutter at v = 1.0. 
The agreement in general between the different estimates and the calculated values is very good. 



The only serious error in the lower-frequency root is obtained from the rotational 'pick-up'; this 
seems to give the wrong trend of frequency with speed when the damping exceeds 10 per cent of 
critical, a condition which would in any case be unimportant in practice. For the higher-frequency 
root the accuracy is good throughout, and best for this same rotational 'pick-up', as might be 
expected on qualitative grounds. Any of the 'pick-ups', however, would give a good prediction of 
the flutter speed (see Fig. 32d), provided the speed increments chosen were not too large. 

• From flight measurements in practice one could scarcely hope to get such a consistent set of 
results as has been obtained from the estimates in this simple binary example. On the other hand, the 
example does suggest that the method is sound in principle, so thai if there are practical arguments 
which favour recording from continuous excitation rather than decaying oscillations, the Kennedy 
and Pancu type of analysis is likely to provide good results. It may well be, however, that with many 
degrees of freedom present, as on real aircraft, the choice of 'pick-up' position is more important 
than in the binary example. In general, the flight analysis would be carried out for two or three 
'pick-ups' as a normal safety precaution. 

(7880~ A* S 
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LIST OF SYMBOLS 

An inertia coefficient 
A damping coefficient 
An elastic coefficient 
The phase angle of the restoring force (a damping coefficient) 
A generalised co-ordinate 
A generalised exciting force 
The natural frequency of one degree of freedom 
The exciting frequency 

The flutter speed 
The forward speed 

v/vo 
A frequency parameter oJc/V~ 
The wing chord; and also in the damping ratio c/c~ (See line under (20)) 
The wing span 
The air density 
The spring restraint against vertical translation 

En 
O VJsc 2 
Vertical displacement 
The angle of pitch 

No. Author 

1 C.C. Kennedy and C. D. P. Pancu .. 
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Use of vectors in vibration measurement and analysis. 
J. Ae. Sci. Vol. 14. No. 11. November, 1947. 
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FIG. 1. Vector diagram for one degree of 
freedom--Hysteresi~ damping. 
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FIG. 2. Vector diagram for one degree of 
freedom--Comparison between hysteresis and 

velocity damping. 
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displacement 3. 
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Fig. 18. Vector diagram for binary example: v = 0.75, 
displacement 4. 

16 



0"~£ 0.'725 

o o~,f "-~:~ 
o?os k( \\ x°7 

0.77~ / "... "-.. " \ \  / -.', 

0.65~ ' ' "\ \ //" \\\ 
{ "\./ 

o.~ ~ / 
' ~ \x/// 

FzQ. 19. 

1,0 

0.8 

/ t .o  0 - 5 \  ~ 

~\ . - ~0"~. 

,,~\ /o.3 
\ , ,  

- 1.0 \, \ A . 3 5  
" ~,~o~?G 

-~.'0 

Vector diagram for binary example: v = 0-9, 
displacement 1. 

O.'/Z5 0.73 0.74- 

--1'50m~ --I-0 ~ --0'5 \"~,.S 

o. / / /  

0.5% 

,t a. 

0'5 

\ ' "', ~,olos 

\10.2 -0"5~ . 

0,55 
-1'5 

FIG. 20. Vector diagram for binary example: v = 0.9, 
displacement 2. 

17 



_ _  - I . S  - - I ' 0  - - 0 ' 5  1.5 
, , O . S  i ,  . 

0.775 ~ / 

o.-,,/ ,,! \ 
h-,,[ / I o~.~ 
-'--I . f  o"~fVr 

\ . ' , '  o.ss~-f ~Io 
" / \ 7 o.~,'x. ~/ 'Vo'.~,~ 
• 0 '5  o .,o, - '%____~o ~ '  

0 " 5  

~ - ~  ~f'~ ~ ~ ~. 1.0 
I ' ~ ' J 

I \ ' ,  ~tO'l 

~l fo.zs 

- I . 5  

FIG. 21. Vector diagram for binary example: v = 0.9, 
displacement 3. 

0 . 6 9 '  

0 '7  \% 

F 
I 

\ 

% 
\ 

\ 
\ 

\ 
\ 

0 - 7 4 ,  

_ _ 70. 9 

O.Ii . ~ . o  . 

0.6 

FIG. 22. Vector diagram for binary example: v = 0-9, 
displacement 4. 

18 



- i ! o  

) '7  

,.7Z5 

/ '" 

! 
I 
I 
I 
\ 
\ 

\ 

• 0 -5~ 5~...~. 

0 0 ' $ ~ 0 " '  

7 

7 7 

.•00 -'t 75 

.\ \ 

\ I --T' \ \ ~o.os 
" rio., I', S. 

-~.0 

FIG. 23. Vector diagram for binary example: 
v = 1.0, displacement 1. 

-i.0 i 

FIG. 24. 

ol Ji ,i 
0"7~ 
0.7~ 

O.E 
/ 

/ 
! 
I 

/o:g " I'C~ ~, 
• 

")1 itt ° • f 

i\ / 
I ', /°'~ 

~,-,~o I \ / 4 . s  
0 ~ 0 . 3 ~ ,  5 - 

0"6 

- -2 '0  

\ 

0.55 
0.5/~ 

0-6~5 

Vector diagram for binary example: v = 1.0, 
displacement 2. 

19 



0"7 

i 0 q 5 " ~ 0 " 8  I,~ 
- I . o  "%9 , - 7 ~  

/ 
! 
I 
f 

\ 

0.525 

1.0 

I'0 

t 

,.S,s I ~  

N~ IX, 

I \ O'OS 

I o.J 
]J 

-20  

0'65 

Fro. 25. Vector diagram for binary example: v = 1.0, 
displacement 3. 

0"I'5 ~ 3 

o o°;7 

O.SZ! 

0.5'7S 

S 

1,< /f= 
0.775 

O.p8 0'8 

0.4- / l O .  ~ 
~%*"/>', o 

I-0 ~r 

"1.0 

- ~ . 0  

FIG. 26. Vector diagram for binary example: v = 1.0, 
displacement 4. 

20 



- 5  0 

- 5  

-;o 

~.0 

"I"=0-25 q/= 0-5 't;= 0"75 .'U'=O-S %~= I.C) 

%C 

C i :~ i:: ~:~ /~. 

Fm. 27. Vector diagrams for binary example: displacement 1, varying speed. 

aJ '=o 

" t r=O "b ~ --'0 ..~5 "iF = 0 " 5  ~'= 0-7,5 ~-= 0 - 9  %Y" I'O 

L,% i 

5"0 I 

"S .0 

20. O 

-$.0 'r~-O -~',0 2,0 -2. 2.'0 ' -la.O ~i:O],v 

-~-5-0 ' "-5"0 J-5'O -J-5-O 

r 

FIG. 28. Vector diagrams for binary example: displacement 2, varying speed. 

21 



"O'=O 

FIG. 29. 

"if= O.~.S 

~ C  

Z'O 

-~- '0 a 'O 

-5"O 

92"=0.5 

~U 

2-'0 

Z'O 

'S 'O 

"0"=0-75 

~U 

2--'0 

-S  'O 

-P.O 
--T--- 

"0": 0 . 9  "Lr= I, 0 

?,L 

Z.O. " - ~ . O  - 

'~ '0 ~ "q,'r 

"5.0  

Vector diagrams for binary example: displacement 3, varying speed. 

Z.O 

Z , O  

- . 0  

-E 'O  

- 1 5 - 0  

5 .o q',. 

~L 
-'5,0 

<9 c 
- e . o  8-o T r  - a - o  

'u- = 0 . T S  "u" = O'.~ 

- 5 . 0  5 ' 0  

) ;o-~, , o  a.o" °tr -4 .o  ~ 

" - 3 " o  p - 3 - o  

~ = 1 ' o  

- 5"0 

I -  i 

- - 2 ~ . o  

-5".0 

/ 
P-.O - o~ 

- - : ' , ' O  

Fio. 30. Vector diagrams for binary example: displacement 4, varying speed. 

22 



__~=~ 
C<. 2 

1.0' 

~-c - £ 

0.6 

0 , 4  

0 , 2  

0 " ,~'5 

FIG. 31. 

0-8 

/ 
. /  

.Y 
/ ~Cy  ~°" 

0 . 5  

[)|SPLAC~hENT I - -  i 
0 i 5  PLY, CEMENT E - - - -  i 
DISPLACEMENT 3 - - - ~  
01SPLACEHENT 4 : 

'II 

t; 

0.'/~ I" O"--~, "v: 

Damping estimates from the vector diagrams 
against forward speed. 

23 



tOO 

O'4 

Or3 

0"2 

0.1 

O.S 

0 .4  

O.~ 

RESONANCE FREC UENCy 

0,2S 0 .5  0.'15 (a) 
EXACT CALCULATION . . . . .  

DISPLACEMENT I 
DISPLACEIVtENT ~. 
DISPLACEMENT 3 
DISPLACEMENT 4 . . . . . . . . .  

- . - . t ~ ,  u . 
1.0 

t . 0  J 

0'8 

0-6 

0"4 

0 q  

R E S O N A N C E  F R E Q U E N C Y  

0-25 0.5 
(c) 0.75 1.0 

EXACT CALCULATION 
DISPt , .ACEMENT I - -  
DISPLACENENT 
D I S P L A C E M E N T  ~ ....... 
DISPLACEMENT 4 . . . . . . . . . .  

OAMPtNG 

.~5- / 

/ 
0'25 0 . 5  

(~ 
" - ' - - ~  ' I t  0.'15 1.0 

FIGS. 32a to 32d. 

O" 

0.0, ~ 

DANPIN~ 

0.~5 O'S 

(a) 
~-7~ 

Comparison between estimates of damping and frequency, and exact calculation. 

(78800) Wt. 84/8210 K.D 2/61 1-1w. 

24 



Publications of the 
Aeronautical Research Council 

i 9 4 6  

ANNUAL TECHNICAL REPORTS OF THE AERONAUTICAL 
RESEARCH COUNCIL (BOUND VOLUMES) 

t94x Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Stability and Control, Structures. 
63s. (post 2s. 3d.) 

x942 Vol. I. Aero and Hydrodynamics, Aerofoils, Airscrews, Engines. 75s. (post 2s. 3d.) 
Vol. II. Noise, Parachutes, Stability and Control, Structures, Vibration, Wind Tunnels. 47s. 6d. (post Is. 9d.) 

1943 Vol. I. Aerodynamics, Aerofoils, Airscrews. 8os. (post 2s.) 
Vol. II. Engines, Flutter, Materials, Parachutes, Performance, Stability and Control, Structures. 

9os. (post 2s. 3d.) 
I944 Vol. I. Aero and Hydrodynamics, Aerofoils, Aircraft, Airscrews, Controls. 84 s. (post 2s. 6d.) 

Vol. II.  Flutter and Vibration, Materials, Miscellaneous, Navigation, Parachutes, Performance, Plates and 
Panels, Stability, Structures, Test Equipment, Wind Tunnels. 84s. (post 2s. 6d.) 

I945 Vol. I. Aero and Hydrodynamics, Aerofoils. i3os. (post 3s.) 
Vol. II. Aircraft, Airscrews, Controls. x3os. (post 3s.) 
Vol. III.  Flutter and Vibration, Instruments, Miscellaneous, Parachutes, Plates and Panels, Propulsion. 

I3os. (post 2s. 9d.) 
Vol. IV. Stability, Structures, Wind Turmels, Win d Tunnel  Technique. x30s. (post 2s. 9d.) 

Vol. I. Accidents, Aerodynamics, Aerofoils and Hydrofoils. I68s. (post 3s. 3d.) 
Vol. II. Airscrews, Cabin Cooling, Chemical Hazards, Controls, Flames, Flutter, Helicopters, Instruments and 

Instrumentation, Interference, Jets, Miscellaneous, Parachutes. i68s. (post 2s. 9d.) 

x947 V01. I. Aerodynamics, Aerofoils, Aircraft. x68s. (post 3s. 3d.) 
Vol. II. Airscrews and Rotors, Controls, Flutter, Materials, Miscellaneous, Parachutes, Propulsion, Seaplanes, 

Stability, Structures, Take~off and Landing. i68s. (post 3s. 3d.) 

Special 
Vol. 

Vol. 

Vol. 

Volumes 
I. Aero and Hydrodynamics, Aerofoils, Controls, Flutter, Kites, Parachutes, Performance, Propulsion, 

Stability. I26S. (post 2s. 6d.) 
II.  Aero and Hydrodynamics, Aerofoils, Airserews, Controls, Flutter, Materials, Miscellaneous, Parachutes, 

Propulsion, Stability, Structures. I47S. (post 2s. 6d.) 
III.  Aero and Hydrodynamics, Aerofoils, Airscrews, Controls, Flutter, Kites, Miscellaneous, Parachutes. 

Propulsion, Seaplanes, Stability, Structures, Test Equipment. x89s. (post 3s. 3d.) 

Reviews of the Aeronautical Research Council 
t939--48 3s. (post 5d.) t949-54 5s. (post 5d.) 

Index to all Reports and Memoranda published in the Annual Technical Reports 
~9o9-1947 R. & M. 260o 6s. (post 2d.) 

Indexes to the Reports and Memoranda of the Aeronautical Research Council 
Between Nos. 2351-2449 R. & M. No. 245 o 2s. (post 2d.) 
Between Nos. 245.I-2549 R. & M. No. 2550 2s. 6d. (post 2d.) 
Between Nos. 255z-2649 R. & M. No. 2650 2s. 6d. (post 2d.) 
Between Nos. 265x-2749 R. & M. No. 275o 2s. 6d. (post 2d.) 
Between Nos. 275x-Z849 R. & M. No. 2850 2s. 6d. (post 2d.) 
Between Nos. 285x-2949 R. & M. No. 2950 3s. (post2d.) 

HER MAJESTY'S STATIONERY OFFICE 
from the addresse* overlea[ 



R. & M. No. 3125 

© Crown copyright i96z 

Printed and published by 
HER MAJESTY'S STATIONERY OFFICE 

T o  be purchased from 
York House, Kingsway, London w.c.2 

4z3 Oxford Street, London w. t  
I3A Castle Street, Edinburgh z 

Io9 St. Mary Street, Cardiff 
39 King Street, Manchester z 

5o Faiffax Street, Bristol I 
2 Edmund Street, Birmingham 3 

8o Chichester Street, Belfast I 
or through any bookseller 

Printed in England 

R. & M. No. 3125 

S.O. Code No. z3-3~25 


