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Summmary.—The simple model used by Brown and Michael to represent the flow past a slender delta wing with leading
edge separation, is extended to treat wings which have pointed apexes, curved leading edges and straight, unswept trailing
edges. The vorticity of the fluid near the leading edge is represented by an isolated vortex of varying strength, which is
curved in the non-conical cases considered here. A step-by-step method of calculation is used which starts from an
assumed conical flow near the apex and employs the condition of zero total force on the vortex system in one cross-flow
plane to obtain the configuration in the next. Numerical values of the co-ordinates and strength of the vortex, the
lift coefficient and the centre-of-pressure position are found for three plan-form families at different incidences.

1. Introduction—The flow past a highly swept leading edge usually separates there, with the
formation of a core of rotating fluid above and inboard of the leading edge, joined to it by a vortex
layer. Potential-flow models representing this type of flow with separation from all edges of a
wing have been proposed by several authors (Legendre!, Brown and Michael?, Mangler and Smith® ¢,
Kiichemann®, Roy®), for the flat plate delta - wing, on the assumption of conical flow. In Ref. 3,
it is supposed that the vorticity of the fluid is concentrated into vortex sheets springing from
the leading edges and rolling up into spirals in the core regions. The shapes of these and the
distribution of vortex strength along them are determined in principle by the two boundary
conditions that a vortex sheet must lie in a stream surface and that it cannot sustain a pressure
diffference. Calculations based on this model, employing slender-wing theory, are described in
Ref. 4. ' :

- If this model is simplified by condensing the entire vorticity of the sheets into a pair of isolated
vortices, joined to the leading edges by cutst, it is found that a pressure difference remains
across the cuts. This is an unrealistic feature of the model, which arises from the simplifications
introduced. However, the force acting on the cut can be balanced by the force which acts on
the isolated vortex terminating it owing to the vortex not lying along a streamline. The pressure
difference across the cut is constant, and so the force on it is independent of its shape between
the lines that bound it, viz., the isolated vortex-and the leading edge. When the condition of
zero total force on cut and vortex combined is applied, together with the condition of finite
velocity at the wing leading edge (smooth outflow condition), we obtain the model studied by
Brown and Michael? '

* R.ALE. Tech. Note Aero. 2535, received 24th March, 1958.

- 1 These are curves across which a jump in the potential occurs. They are a feature of the mathematical model only,
required to keep the velocity potential single valued. :



Here, this treatment is applied to the flow separated from the leading edge of a flat slender
wing of more general plan-form. The only restrictions on the plan-form are to pointed noses,
unswept trailing edges, and leading edges without discontinuities of slope. The conditions in
each cross-flow plane, which now involve the variation in the streamwise direction of the strength
and relative position of the vortex, are no longer sufficient to determine the solution. However,
if the strength and position of the vortex are known at one streamwise station, these values can
- be used to calculate their rates of change there and thus the strength and position may be found

at a neighbouring station downstream. In the neighbourhood of the pointed apex of the wing,
the conical solution of Ref. 2 may be introduced to initiate the procedure. Thus a step-by-step
method is obtained by which this model of the flow can be calculated. The step size is regulated
by the rate of change of the leading-edge slope : if the slope changes too much from one step to
the next, large changes in vortex position and strength are predicted and these seem to be over-
corrected at the following step, leading to a divergent oscillation in the numerical solution.
Thus a discontinuity in leading-edge slope can only be treated by fairing it with a smooth curve
and using an appropriately small step size.

The properties of several families of plan-forms at different incidences have been calculated,
more as test cases than as part of a systematic investigation. The results obtained are interpreted
by making use of the relations between the delta-wing solutions of Ref. 2, where the present
model is used, and those of Ref. 4, where a more elaborate model is used.

2. Method of Caleulation.—We consider the configuration shown in Fig. 1. With axes fixed in
the wing, origin at the apex, Ox along the centre-line, Oy to starboard, Oz upwards, the free stream
is at an incidence o to Ox. We resolve it, for small incidences, into U along Ox and «U along Oz.
We shall make use of the complex co-ordinate Z = y - 4z in the plane x = constant, known as
the cross-flow plane. '

The separated flow is represented in the first place by vortex sheets springing from the leading
edges and rolling up inte spirals, this configuration being determined in principle by the two
conditions that the sheets lie in stream surfaces and sustain no pressure difference. This model
is then simplified by condensing the vorticity of each sheet into an isolated vortex, leaving the
trace of the sheet as a cut, across which the velocity potential is discontinuous. A pressure
difference now remains across the cut, so long as the isolated vortex continues to grow in strength
in the streamwise direction. Since the cross-flow velocities (in the plane x = constant) are
continuous across the cut now that the vorticity has been condensed, we can write this pressure
difference, 4C,, by slender-wing theory, as '

2 2dr
AC, = UA@,,_ i .. .. .. e (1)
for the right-hand vortex, where 4 means the difference taken ‘inside’ minus ‘outside’, @ is the
velocity potential and I' the strength of the isolated vortex. ;

This pressure difference is a function of x only, so that the force acting in the plane x = x, on -
a section of the cut lying between the planes ¥ = %, and ¥ = x, - 8x is given at once as
' — 1(Zy — 5)3pU4C, 6%,

where Z, = y, - 1%, is the point where the right-hand isolated vortex meets the plane x = x,
and s is the local semi-span of the wing in this plane. Thus, using equation (1), the force on this
section of the cut is

. ar
?pUéx(Zo—s)ﬂ. .. .. . .. .. (2)

This force is to be balanced by an equal and opposite force acting in the plane ¥ = %, on the
section of the right-hand isolated vortex between the planes ¥ = %, and ¥ = %, + éx. By the
well-known formula this is the product of — 7pI" 65 and the velocity normal to the isolated.
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vortex at its station due to the remainder of the flow field. This velocity is due in part to the
~ components v, and w, of the cross-flow at the station of the isolated vortex due to the remainder
of the cross-flow field and in part to the free-stream component normal to the vortex (the perturba-
tion velocity parallel to Ox makes a contribution of higher order). The free-stréam component
normal to the vortex has components — U(dy,/dx) and — U(dz,/dx) parallel to Oy and Oz, where
the co-ordinates of the vortex are regarded as functions of ¥. Thus the force on the section of
the isolated vortex is

— g¢pI" 6% vl—U%+i<@1—U%) (3)

ax
Equating the sum of (2) and (3) to zero and re-arranging, we find
T . ar iz
U(vl—l—zwl):(Zo——s)ﬂ—}al’%?. - . . (4)

The two-dimensional potential in the cross-flow plane must have the following properties.
At infinity, the velocity w parallel to Oz must tend to «U. On the wing, the normal velocity
must vanish. At the leading edge the velocity must be finite, z.e., the outflow is smooth. In
the neighbourhood of Z = Z, and — Z,, the potential must have the singularities associated
with vortices of strengths 4- I The complex potential, W, is most easily constructed in the
plane Z*, where

ZR—pros. .. .. ... B

Under this transformation, the wing slit (Z real, | Z| < s) becomes part of the imaginary axis and
is a streamline by symmetry. Conditions at infinity are unchanged, but the point Z* = 0,
Z = 4 s is singular, so that a finite velocity at the leading edge in the cross-flow plane arises
from a stagnation point in the transformed plane. Thus for the complex potential we have :

r % — Zp*
6)

d 0
‘ N W:——'ZOCUZ*'—I—Z—;;IOgm,
where Z* = Z,* is the point corresponding to Z = Z,, the position of the right-hand vortex.
The smooth outflow condition is expressed by dW[dZ* = 0 for Z* = 0, i.e., :
L _ L )
2nall  Zy* + Z,*

* The conjugate of the velocity v, 4 7w, due to the remainder of the flow field at the station of the
right-hand vortex is given by ,

7)1—7:101=————

. where
. T _ |
W1: W’_‘%log (Z_ Zo) N . o

After some manipulation, using equations (5), (6) and (7), we find
r ﬁ(zo* + Z* 1 s )

v — 1w, = , = — = —
: 21 Ly¥ \ Zg* Zy* ZF + ZyF 27} )%
Combining this with the conjugate of (4) yields -
_ : 7 ' * | 7% 2
g((zo_s)”i]:er%):i_ﬁ(zo + Zo* - 1 S ) (8)
r adx ax 2t ZF¥ \ Z¥ Zy* Zo*¥ - L% 2772 Z¥

Equations (7) and (8), equivalent to three real ‘equatiOns, together with appropriate initial
values at some station x = constant, determine the solution. In the case of the conical flow
past a delta wing, I" and Z, are known to be proportional to x and the equations reduce to the

3
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algebraic equations solved by Brown and Michael®. In the present case, we assume that in the
neighbourhood of the apex of the wing (supposed pointed), the flow is approximately conical.
We use (7) to eliminate I' and its derivative from (8). The real and imaginary parts of the
resulting equation are then simultaneous ordinary linear first-order differential equations for
¥e and 2, which can be solved by step-by-step integration for a given plan-form (s.c., given

s = s(x)) and incidence, using the boundary values obtained from the assumed conical flow
near x = 0. :

In practice non-dimensional quantities have been used and the equations simplified as described
in Appendix I. Equations (I.7) and (I.8) provide a routine which leads from the co-ordinates
and strength of the vortex at ¥ = %, to those at x = %, - 4Ax for a particular plan-form and
incidence. The time taken for each step was about 30 minutes on a fully automatic desk machine.
No general rule about the size of step, 4%, can be given. It must be small when the slope of the
leading edge changes rapidly and also when the local semi-span is small. It can apparently be
larger for a higher incidence on the same plan-form, without leading to a divergent oscillation
in the results. Tables 1 to 3 show the actual step sizes used in the calculation carried out, but

no systematic attempt was made to enlarge the step size or to try the effect on the results of
reducing it.

The co-ordinates and strength of the isolated vortex in the cross-flow plane x = ¢ lead directly
to the lift acting on that part of the plan-form forward of x = ¢. Denoting this by L{c), we have,
by considering the momentum integral (cf., equation (18) of Ref. 2)

b

L(e) = pUme + 20)°(c), .. .. . . (9)

where s(c) is the semi-span at x = ¢, and y and ¢ are the non-dimensional vortex strength and a
non-dimensional co-ordinate introduced in Appendix I (205 is the distance separating the vortices
in the transformed plane). Thus the lift coefficient is given by “

C, = $A(na 4 2p0) . .. .. .. .. .. (10

The centre of pressure of the wing terminated by a straight unswept trailing edge at x = ¢ is at
the point '

v

a
Lie) L(e)

Thus the distance of the centre of pressure from the apex is a fraction % of the chord where

[ o
R '

Since, in slender-wing theory, the flow upstream of the plane x = ¢ is unaffected by changes
downstream of it, it is natural to consider each step of the step-by-step integration as terminating
a plan-form with a straight trailing edge. Thus the solution for a particular plan-form at a certain
incidence includes the solutions for a family of plan-forms at this incidence, obtained by cutting
it short at different chordwise stations.

fcxd—de_cL(c)—rL(x)dx
x=he="0 % = °

The basic plan-forms considered are shown in Figs. 2, 3 and 4. The cropped delta (apex
angle 90 deg) with slight fairing of Fig. 2 was calculated at an incidence of 0-4 radian (= 22-9 deg)
only. The results for various chord lengths are given in Table 1. Tabulated are the non-dimen-
sional (», ) and dimensional (y,, z,) co-ordinates of the isolated vortex (y, =s, 2, = s); the
vortex strength (I'/U) ; the lift coefficient C, ; the distance, %, in chord lengths, of the centre
of pressure from the apex ; the local aspect ratio, local semi-span and cotangent of local sweep

(4, s and s’) ; and the values of lift coefficient and centre of pressure position (Craw and %y,
calculated on the basis of attached-flow theory. In Tables 2 and 3 the same quantities are listed
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for the fully-faired cropped delta (apex angle 28 deg.) of Fig. 3 at « = 5-73 deg (0-1°) and
11-45 deg (0-2°) and the extended ‘Gothic’ wing of Fig. 4 at « = 15-3 deg and 30-6 deg. The
numbers tabulated are quoted to more significant figures than is justified by the simple technique
used to solve equations (7) and (8), in order to illustrate the behaviour of the process. The
projections of the vortex paths on to the co-ordinate planes are shown in Figs. 2, 3, and 4 for the
larger incidences. Fig. 5 shows the non-dimensional height of the vortex above the trailing edge
of a number of members of the plan-form families calculated, plotted against the ratio of incidence
to aspect ratio. In Fig. 6 the lift coefficient divided by «4 is plotted against «/4 for the same
wings.

3. Discussion of Results—The results calculated for the position of the isolated vortex are
listed in columns 4 to 7 of Tables 1 to 3. In addition, the three projections of the vortex on to
the co-ordinate planes are drawn in Figs. 2 to 4 for one incidence in each case. We see that, on
these convex plan-forms, the vortex approaches the leading edge in plan view as we go down-
stream, crosses it and then continues to move slowly outboard. Owing to the increasing local
sweep-back angle, however, the inclination of the plan projection of the vortex to the centre-line
decreases. On the other hand, the vortex not only continues to rise above the wing as we go
downstream, but also its inclination to the plane of the wing increases, to become of the order

“of one half the incidence. This is of interest in that the streamwise parts of the leading edges of
these plan-forms can be regarded as side edges. The upper edge of the vortex sheet from 'the
side edge of a retangular plan-form has beeu taken to be inclined at «/2 to the wing and the
stream by Mangler’, following a suggestion of Betz. Regarding the calculations as applying to
families of plan-forms obtained by terminating the basic plan-forms (Figs. 2 to 4) at different
chordwise stations, we can consider the height of the vortex above the wing trailing edge for a
variety of wings and incidences. In Fig. 5 the height, made non-dimensional by reference to the
span, is plotted against the ratio. of incidence to aspect ratio. For delta wings, the same -

- mathematical model of the flow was calculated by Brown and Michael® and their curve is also

shown in Fig. 5. The scatter of the points is small enough for it to be guessed that the non-
dimensional - height is a function of «/4 only, in a first approximation. If this is so in this
mathematical model, it may well be so in others and also in real flows where trailing-edge effects
are small. There is, therefore, some reason to think that the second curve in Fig. 5 drawn from

Ref. 4, where a more sophisticated model was studied for the delta wing, may be a better guide
to the relationship between the non-dimensional vortex height, ¢, and «/4. However, some
caution is needed in predicting details of real flows from the mathematical models. Experimental
results for the vortex positions on the delta wing at low speeds are not yet in agreement with each
other and differ in almost all cases from those calculated in Ref. 4. In spite of this, the theoretical
results of Ref. 4 are preferred to those of Ref. 2 ; furthermore, these difficulties do not affect
the conjecture that the non-dimensional height depends primarily on «/A4.

The lift coefficients of the members of the plan-form families are listed in column 9 of Tables 1
to 3, with their aspect ratios and their lift coefficients as calculated by R. T. Jones’s slender-wing
theory for attached flow in columns 11 and 12 for comparison. Although the lift coefficient still
falls as the wing is extended downstream with increasing sweep, the fall with aspect ratio is
much slower than in the attached-flow theory. This is because R. T. Jones’s theory predicts no
lift on any part of a flat wing where the local span is constant, while the present model predicts
lift forces due to changes in the vortex strength and position. In Fig. 6 the lift coefficients,
divided in each case by the product «4, are plotted against «/4, the parameter used to collapse
the vortex heights. R. T. Jones’s theory yields the horizontal line shown. The values for the
present curved-edge plan-forms lie reasonably close to the curve tor the delta plan-form, drawn
from Ref. 2. We may guess therefore, that calculations using other models would show the
same behaviour, viz.,

G = df(afA), . a9

where f depends on the mathematical model, but not the plan-form. Now the function f was
found for delta wings in Ref. 4 by calculating a more sophisticated model, so the curve drawn
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from Ref. 4 in Fig. 6 may be taken as the best theoretical estimate available for the lift coefficient

of wings with this type of flow, regardless of leading-edge shape. A simple expression was found
in Ref. 4 to fit f closely ; it now becomes : :

7 8|«
. CL:'QOLA<1+; Z) [“[S,Q"lz‘l o N L3
or ‘
‘ CL — CLAtt + 40&2 O < o < 0'4A

The centre-of-pressure position is given as a fraction of the chord in column 10 of the Tables
with the value on R. T. Jones’s theory of attached flow in column 13 for comparison. Except
for the delta wings, where the flow on both theories is conical, the present theory predicts a
centre-of-pressure position nearer the trailing edge, the difference becoming large as the plan-
form deviates more from the delta. There is also a change of centre of pressure with incidence ;
the movement being backward as the incidence increases, on a particular plan-form. However,

plan-forms of this type can still yield centres of pressure well forward of the 2/3 chord point
found for the delta.

With certain exceptions, the strength of the isolated vortex (column 8 of the Tables), increases
in the streamwise direction, though the rate of growth becomes much less as the leading edge
inclines towards the streamwise direction. At first sight it appears impossible for the strength
to decrease, since this would imply the shedding of negative vorticity from the leading edge.
The fact that such a decrease is found in the calculations for the lower incidences and the more
sharply curved leading edges (Table 1, 1-25 < % < 1-60.; Table 2 (@), 1-8 < x < 2-2), would
. then indicate a defect in the mathematical model or in the calculation. However, in Fig. 7 are

plotted the bound vortex configurations on a delta wing at two different incidences, calculated
for the model of Ref. 4. From this it is clear that if the plan-forms could be cropped along the
dashed lines without altering the bound vortex configurations, negative vorticity would be shed
from the part a-a of the leading (tip) edge at the lower incidence. At the higher incidence the
vorticity shed from the leading (tip) edge would be positive. The values of « [A for the delta
wings of Fig. 7 correspond roughly to those of the member of plan-form family II terminating.
in the region of decreasing vortex strength, at the two calculated incidences. Since, at the higher
incidence, this decrease is not found in the calculation and no decrease is found on the smoother
plan-form of Fig. 4, we may suppose that this decrease, when it occurs, is neither a consequence
of the calculation method nor of the simplification of the model from that of Ref. 4. This still
does not imply that it would be found experimentally, since slender-wing theory itself may be
inadequate to treat wings with sharply curved leading edges.

When comparing the results discussed above with experiment, or using them to predict the
characteristics of aircraft designs, the following features of the model must be borne in mind :

(@) No account is taken of trailing-edge effects. At subsonic speeds these may be large and

~ may be expected to produce loss of lift on the rear part ot the plan-form and movement

of the vortices closer to the stream direction. Thus the overall lift coefficient will be

reduced and the centre of pressure moved forward. The effects will be greatest on

those plan-forms where theory predicts the highest loads near the trailing edge, i.c.,

the deltas, and lower on plan-forms with substantial regions of constant span. At
supersonic speeds the effect of the trailing edge is likely to be much. less. ‘

(6) No account is taken of secondary separation of the boundary layer in the adverse pressure
gradient between the projection of the vortex and the leading edge. This will certainly
tend to spread and reduce the suction peaks predicted, but need have little effect on
the lift, Its influence on the vortex position is unknown, but may be considerable.
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(c) No account is taken of wing thickness. The effect of this on the distribution of lifting
pressure is unknown. It was shown in Ref. 4 that, if the lifting pressure distribution
on a delta wing was unaffected by the presence of a symmetrical thickness distribution,
the lift-dependent drag was reduced by a term proportional to the thickness/chord
‘ratio. Since, for large values of the thickness/chord ratio, this implies the absurdity

. of negative lift-dependent drag, we must conclude that the lifting pressures are modified
- on thick wings. ' ‘ '

(@) No account is taken of compressibility. For attached flow, the slender-wing theory can
" be compared at many points with supersonic linearised theory; no theoretical studies
of leading-edge separation capable of indicating the variation of the flow field with
Mach number are known. It is also possible that, at high speeds and incidences, a
shock may occur in the fluid between the vortices, in which case the present treatment

is inadequate.

4. Conclusions.—A method has been given for calculating a simplified model of the flow past
a thin, slender, pointed wing, with unswept trailing edge, which takes account of the separation
of the flow at the leading edge. Numerical results calculated suggest that the relations giving
the height of the vortex above the wing and the lift coefficient in terms of the ratio of incidence
to aspect ratio for the delta wing apply to more general convex plan-forms. Although the
limitations of the model have to be remembered in applying the results to real flows, the treatment
should be adequate to show the variations in aerodynamic characteristics occurring with separa-
tion and also to indicate the effect of plan-form variation on these characteristics in separated
flow. '
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LIST OF SYMBOLS

Aspect ratio

Root chord

Lift coefficient

Lift coefficient on attached-flow theory

Pressure coefficient ’

Distance of centre of pressure from apex, referred to root chord
The same on attached-flow theory

Lift on plan-form terminated at x

Local semi-span |

Free-stream velocity

Cross-flow velocity at station of right-hand vortex due to remainder of flow
~ field : .

Complex potential

Rectangular cartesian co-ordinates, origin at wing apex, Ox along centre-line
downstream, Oy to starboard, Oz upwards.

¥ -+ 2z (complex co-ordinate in cross-flow plane)
Yo -1 22, (position of right-hand vortex)

(2% — s%)*/% (complex co-ordinate in transformed plane)
Incidence

Strength of right-hand vortex

r|Us A .

Difference operator across vortex sheet or cut : ‘inside’ — ‘outside’
Zols

Perturbation potential

- Density

Zy*s
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APPENDIX 1

" Reduction of the Equations to a Form Amenable to Numerical Cdl'c%}zlé'tion

We make the substitutions : -
I'=+Us, Zy= (g + 10)s, - Zy* = (o + ir)s

in equations (5), (7) and (8) of Section 2. We obtain :
from (5) : l : S ’
o — 7t ot =9 — * — 1+ 2:p¢ .. . .o .. (L
from (7) : | : o o
2 2 . B R
A N
from (8) o | | B

sy — it + 520 — 1= 2i0) + 5L (g — 1 — ie)

_ iy |l — il)(o — in)? m+xwéﬁwi_ Z )
— 9. 2(7]2 + Cz)(o_z I ,L_z)z' o + TZ. % o? + 1°

where the prime denotes differentiation with respect to ». Now the real and Imaginary parts

of (I.3) can be written, using (1.2) for y, as

R )

7

sp’ = Aa — s'(27 — 1) + s(1 _n)%

and ) - .. . .o (I4)
sC’:Boc——ZCs’—sCy7 '

where 4 and B are listed below. By differentiating (I.1), separating real and imagihary parts

and solving we have : '
o'(6* 4 %) = n'(on + <L) 4 L'(wy — ol)

7'(6® + 1°) = 5'(¢& — ) + (v + on) :
Differentiating (I.2) logarithmically yields : '
y' _ (o — 1%’ + Zotr’
y oo 47

by (1.5), where C and D are listed below. The three equations (I.4) to (1.6) aré now solved, by
substituting in (I.8) for " and ¢’ to give
' v _ {2y — 1) — AejC + (285" — Ba)D
y ST+ (1 —C — D}

and hence, by (1.4)

y' = Asa . s?’ (21 — 1)+ i (11—_n;7C — |:{S'(277 — 1) — Ao}C + (288" — Boc)D}

, Bx ¢ , , |
: :T_%zc“su — _CW)C_CD}[{SQn—l)——Aa}C—{—(ZCS —Ba)D:|, .. (L)
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_ 1 tn* — 3(x* — o)} | (nr — Lo)(z® — 3¢?)
A= 2
20(0* +- 7°) [ n* + T 2 }
B 1 [17{52 + 3(z° — %)} (o + L7)(z* — 302)}
20(c® + 1%) n* 4 ¢* ‘ 20
C — (3890 + ¢v) — o*(8%T + 7o)
o(e® + 7%)°
D-: TZ(T]’E' — 3@'0‘) — 0‘2(3771 —_ CO‘)
. 0.(0.2 _]_ T2)2

11
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TABLE 1

Solutions fm' the Family of Plan-forms I, Fig. 2; at Incidence 22-9° _ 0-4°

7

¢ N s 7 £ Yo 2 g ‘ Cy h ' A4 ‘ Craw I

1 1 1 0-9110 | 0-0975 | 0-9110 | 0-0975 | 1-661 378 | 0-667 /| 4 2-51 0-667
. 1:025 | 1-024 0-95 | 0-9110 | 0-0974 | 0-9329 | 0-0997 | 1-701

1-050 | 1-048 0:-90 0-9115 | 0-0983 | 0-9552 | 0-1030 | 1-729

1-075 | 1-069 0-85 | 0-9122 | 0-0997 | 0-9751 | 0-1066 | 1-747

1-100 | 1-020 0-80 0-9130 | 0-1019 | 0-9952 | 0-1111 | 1-759 | 8-74 - 3-930

1-125 1 1-109 | 1 0-75 | 0-9137 | 0-1038 | 1-0133 | 0-1151 | 1-771

1-150 | 1-128 | 0-70 | 0-9145 | 0-1060 | 10316 | 0-1196 | 1-782

1-200 | 1-160 | 0-60 0-9162 | 0-1113 | 1-0628 | 0-1291 | 1-793 | 3-82 3-750

1-250 | 1-188 | 0-50 0-9180 | 0-1175 | 1-0906 | 0-1396 | 1-801

1-300 | 1-210 | 0-40 0-9204 | 0-1244 | 1-1137 | 0-1505 | 1-796 | 83-45 3-502

1-350 | 1-228 | 0-30 | 0-9233 | 0-1322 | 1-1338 | 0-1623 | 1-786

1-400 | 1-240 | 0-20 | 0-9270 | 0-1413 | 1-1495 | 0-1752 | 1-767 | 3-26 3-208

1-450 | 1-248 | 0-10 | 0-9317 | 0-1519 | 1-1628 | (0-1896 | 1-748 .

1-500 | 1-250 | © 0:9876 | 0-1635 | 1-1720 | 0-2044 | 1-722 3-05 0-599 | 2-884 1-81 0-566

1-600 | 1-250 { O 0-9527 | 0-1895 | 1-1909 | 0-2369 | 1-686 | 2-87 2-586 :

1-700 | 1-250 | O 0-9645 | 0-2110.| 1-2056 | 0-2638 | 1-691 2-72 2-344

1-800 | 1-250 | O 0-9732 | 0-2297 | 1-2165 | 0-2871 | 1-716 | 2-58 2-142

1-900 | 1-250 | O 0-9804 | 0-2471 | 1-2255 { 0-3089 | 1-749 | 2-47 1-973

2-100 | 1250 | © 0-9928 | 0-2800 | 1-2410 | 0-3500 | 1-825 | 2-28 | 0-516 | 1-704 1-07 0-405

2-300 | 1:250 | © 1-0027 | 0-3104 | 1-2534 | 0-3880 | 1-907 | 2-13 1-500

2:500 | 1:250 | O 1-0101 | 0-3894 | 1-2626 | 0-4243 | 1-990 | 2-01 1-340

2-700 | 1-:250 | O 1-0169 | 0-3673 | 1-2711 | 0-4591 | 2-072 1-91 1-210

2-900 | 1:250 | © 1-0228 | 0-3943 | 1-2785 | 0-4929 | 2-154 1-82 | 0-465 | 1-103 | 0-69 0-293
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‘ TABLE 2 (a)
Solutions for the Family of Plan-forms II, Fig. 3, at Incidence 6-73° = 0-1°

s s’ 7 ¢ Yo % rju Cy h 4 Cran hag
1-0 0-2500 | 0-250 | 09100 | 0-1000 | 0-2275 | 0-0250 | 0-1041
1-1 - 1 0-2750 | 0-250 | 0-9109 | 0-0979 | 0-2505 | 0-0269 | 0-1142 | 0-236 | 0-667 | 0-998 | 0-157 | 0-667
S 1-2 0-2988 | 0-225 | 0-9110 | 0-0975 | 0-2722 | 0-0291 | 0-1241
1-3 0-3200 | 0-200 | 0-9141 | 0-1034 | 0-2927 | 0-0331 | 0-1276 | 0-231 0-970
1-4 0-3388 | 0-175 | 0-9154 | 0-1084 | 0-3101 | 0-0367 | 0-1324
1-5 0-3550 | 0-150 | 0-9159 | 0-1106 | 0-3252 | 0-0393 | 0-1377 | 0-218 | 0-642 | 0-906 | 0-142 | 0-636
1-6 0-3688 { 0-125 | 0-9195 | 0-1206 | 0-3391 | 0-0445 | 0-1378 : :
1-7 0-3800 | 0-100 | 0-9220 | 0-1301 | 0-3504 | 0-0494 | 0-1393 | 0-204 0-820
1-8 0-3888 | 0-075 | 09250 | 0-1406 | 0-3596 | 0-0547 | 0-1423 :
1-9 0-3950 | 0-050 | 0-9292 | 0-1535 | 0-3670 | 0-0606 | 0-1405 | 0-189 | 0-603 | 0-726 | 0-114 | 0-575
2-0 0-3988 | 0-025 | 0-9367 | 0-1667 | 0-3735-| 0:0665 | 0-1386
© 21 0-4 0 0-9440 | 0-1822 | 0-3776 | 0-0729 | 0-1379 | 0-172 ) 0-628
2-2 0-4 0 0-9540 | 0-1960 | 0-3816 | 0-0784 | 0-1360 :
2-3 0-4 0 0-9623 | 0-2121 | 0-3849 | 0-0848 | 0-1365 | 0-158 | 0550 | 0-543 | 0-085 | 0-485
2-4 0-4 0 . 0-9693 | 0-2268 | 0:-3877 | 0-0907 | 0-1379 ’
2-5 0-4 0 0-9754 | 0-2407 | 0-3902 | 0-0963 | 0-1397 | 0-147 0-478
2:6 0-4 0 0-9807 | 0-2539 | 0-3923 | 0-1016 | 0-1419
2-8 0-4 0 0-9902 | 0-2793 | 0-3961 | 0-1117 | 0-1465 | 0-135 | 0-510 | 0-408 | 0-064 | 0-398
3-0 0-4 0 0-9980 | 0-3033 | 0-3992 | 0-1213 | 01515 | 0-129 0-369
3-2 0-4 0 1-0085 | 0-3251 | 0-4026 | 0-1300 | 0-1558 | 0-122 | 0-489 | 0-338 | 0-053 | 0-348

0L GO OB B D DO DD bt bt bt b ik e
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TABLE 2 (b)

Solutions for the Family of Plan-forms II, Fig. 3, at Incidence 11-45° = 0-2°
‘ s ’ s’ ‘ n ‘ ¢ I Yo ’ 2 o Cy ) A Cyant Pags
0:2750 | 0-250 | 0-8807 | 0-1908 | 0-2422 | 0-0525 | 0-2562 | 0-580 | 0-667 | 0-998 | 0-314 | 0-667
0-2988 | 0-225 | 0-8800 | 0-1904 | 0-2629 | 0-0569 | 0-2792

0-3200 | 0-200 | 0-8840 | 0-1981 | 0-2829 | 0-0634 | 0-2039 | 0-570 0-970

0-3388.| 0-175 | 0-8874 | 0-2076 | 0-3006 | 0-0703 | 0-3074

0-3550 | 0-150 | 0-8910 | 0-2186 | 0-3163 | 0-0776 | 0-3193 | 0-549 | 0-659 | 0-906 | 0-284 | 0-636
0-3800 | 0-100 | 0-8991 | 0-2439 | 0-3417 | 0-0927 | 0-3384 | 0-518 0-820

0-3950 | 0-050 | 0-9114 | 0-2775 | 0-3600 | 0-1096 | 0-3511 | 0-485 | 0-619 | 0-726 | 0-228 | 0-575
0-4 0 0-9326 | 0-3216 | 0-3731 | 0-1286 | 0-3573 | 0-451 0-628

0-4 0 0-9604 | 0-3749 | 0-3842 | 0-1500 | 0-3659 | 0-427 | 0-581 | 0-548 | 0-170 | 0-485
0-4 0 0-9800 | 0-4205 | 0-3920-| 0-1682 | 0-3799 | 0-406 .1 0-478

0-4 0 0-9950 | 0-4624 | 0-3980 | 0-1850 | 0-3958 | 0-388 | 0-551 | 0-427 | 0-134 | 0-413
0-4 0 1-0072 | 0-5017 | 0-4029 | 0-2007 | 0-4123 | 0-373 0-386

0-4 0 1-0175 |'0-5392 | 0-4070 | 0-2157 | 0-4290 0-531 0-359
0-4 0 1-0262 | 0-5750 | 0-4105 | 0-2300 | 0-4457 | 0-348 0-323 | 0-101 '
0-4 0 1-0339 [ 0-6096 | 0-4136 | 0-2438 | 0-4622

0-4 0 1-0407 | 0-6427 | 0-4163 | 0-2571 | 0-4784 | 0-329 | 0-509 | 0-278 | 0-087 | 0-301
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TABLE 3 (a)

Solutions for the Family of Plan-forms I11, Fig. 4, at Incidence 15-3 deg

¢ s s’ 7 z Yo 2y i o h 4 Cram Prass
0-400 | 0-2489 | 0-5778 | 09110 | 0-0974 | 0-2267 | 0-0243 | 0-2756
0-425 | 0-2633 | 0-5722 | 0-9143 | 0-1037 | 0-2407 | 0-0273 | 0-2790
0-450 | 0-2775 | 0-5667 | 0-9136 | 0-1048 | 0-2535 | 0-0291 | 0-2953
0-500 | 0-3056 | 0-5556 | 0-9124 | 0-1071 | 0-2788 | 0-0327 | 0-3270
0-600 | 0-3800 | 0-5333 | 0-9106 | 0-1113 | 0-3278 | 0-0401 | 0-3885 | 1-499 2-814 | 0-971
0-800 | 0-4622 | 0-4889 | 0-9082 | 0-1192 | 0-4197 | 0-0551 | 0-5027 :
1-000 | 0-5556 | 0-4444 | 0-9069 | 0-1272 | 0-5039 | 0-0707 | 0-6045
1-200 | 0-6400 | 0-4000 | 0-9060 | 0-1357 | 0-5798 | 0-0868 | 0-6969 )
. 1-400 | 0-7156 | 0-3556 | 0-9055 | 0-1453 | 0-6479 | 0-1040 | 0-7788 | 1-304 | 0-634 | 1-873 | 0-785 | 0-613
1-800.| 0-8400 | 0-2667 | 0-9048 | 0-1668 | 0-7601 | 0-1401 | 0-9191
2-200 | 0-9289 | 0-1778 | 0-9109 | 0-1961 | 0-8461 | 0-1822 | 1-0058 | 1-084 1-416
2-600 | 0-9822 | 0-0889 | 0-9195 | 0-2313 | 0-9032 | 0-2271 | 1-0692
3-000 | 1-0 0O 0-9386 | 0-2699 | 0-9386 | 0-2699 | 1-0850 | 0-873 | 0-535 | 1-000 | 0-419 | 0-467
3-400 ; 1-0 0 0-9711 | 0-3815 | 0-9711 | 0-3315 | 1-1163
3-800 | 1-0 -0 0-9918 | 0-3772 | 0-9918 | 0-3772 | '1-1639 | 0-757 0-714
4-200 | 1-0 - |0 1-0066 | 0-4217 | 1-0066 | 0-4217 | 1-2243
.4-600 | 1:0 0 1-0183 | 0-4649 | 1-0183 | 0-46490 | 1-2889 | 0-681 | 0-488 | 0-556 | 0-233 | 0-305
5-000 | 1-0 0 1-0278 | 0-5059 | 1-0278 | 0-5059 | 1-3534
5-400 | 1-0 0 1-0364 | 0-5494 | 1-0364 | 0-5494 | 1-4303 | 0-636 0-455
5-800 | 1-0 0 1-0440 | 0-5904 | 1-0440 | 0-5904 | 1-4921
6-200 | 1-0 0 1-0503 | 0-6266 | 1-0503 | 0-6266 | 1-5524 | 0-595 | 0-467 | 0-385 | 0-161 | 0-226

TABLE 3 ()
Solutions for the Famaily of Plan-forms I11, Fig. 4, at Incidence 30-6 deg

¢ S s’ g £ Yo % r|g o h A Cran oas
0-400 | 0-2489 | 0-5778 | 0-8800 | 0-1900 | 0-2190-; 0-0473 | 0-6204
0-410 | 0-2547 | 0-5756 | 0-8817 | 0-1933 | 0-2245 | 0-0492 | 0-6296
0-425 | 0-2633 | 0-5722 | 0-8835 | 0-1972 | 0-2326 | 0-0519 | 0-6461
0-450 | 0-2775.| 0-5667 | 0-8853 | 0-2021 | 0-2457 | 0-0561 | 0-6762
0-500 | 0-3056 | 0-5556 | 0-8856 | (-2086 | 0-2706 | 0-0637 | 0-7455 .
0-600 | 0-3600.| 0-5333 | 0-8819 | 0-2172 | 0-3175 | 0-0782 | ©-8959 | 3-755 2-314 | 1-943
0-800 | 0-4622 | 0-4889 | 0-8798 | 0-2340 | 0-4067 | 0-1082 | 1-1701
. 1-000 | 0-5556 | 0-4444 | 0-8777 | 0-2393 | 0-4876 | 0-1330 | 1-4218
1-200 | 0-6400 | 0-4000 | 0-8843 | 0-2617 | 0-5660 | 0-1675 | 1-6255
1-400 | 0-7156-| 0-3556 | 0-8824 | 0-2768 | 0-6314 | 0-1981 | 1-8530 | 3-365 | 0-635 | 1-873 | 1-571 | 0-613
1-800 | 0-8400 | 0-2667 | 0-8824 | 0-3241 | 0-7412 | 0-2723 | 2-2743
2-200 | 0-9289-| 0-1778 | 0-8922 | 0-3655 | 0-8288 | 0-3395 | 2-5577 | 2-923 1-416
2+600 | 0-9822 | 0-0889 | 0-9095 | 0-4193 | 0-8934 | 0-4119 | 2-7882
3-000 | 1-0 10 0-9358 | 0-4872 | 0-9358 | (0-4872 | 2-9535 | 2-481 .| 0-560 | 1-000 | 0-839 | 0-467 -
3-400 | 1-0 0 0-9755 | 0-5770 | 0-9755 | 0-5770 | 3-1347
3-800 | 1-0 0 1-0017 | 0-6516 | 1-0017 | 0-6516 | 3-3335 | 2-240 0-714
4-200 | 1-0 0 1-0208 | 0-7175 | 1-0208 | 0-7175 | 3-5316
4-600 | 1-0 0 1-0356 | 0-7800 | 1-0356 | 0-7800 | 3-7363 | 2-050 | 0-497 | 0-556 | 0-466 | 0-305
5-000 |1-0 0 1-0474 | 0-8378 | 1-0474 | 0-8378 | 3-9319 i
5-400 | 1-0 0 1-0566 | 0-8845 | 1-0566 | 0-8845 | 4-0948 | 1-892 0-455
5-800 | 1-0 - 0 1-0647 {-0-9301--1-0847 | 0-9301 | 4-2591 e : SR
6-200 | 1-0 0 1-0719 | 0-9783 | 1-0719 | 0-9783 | 4-4339 | 1-769 | 0-468 | 0-385 | 0-323 | 0-226
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Fic. 2. Three projections of plan-form family I at « = 229 deg.
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Fig. 4. Three projections of plan-form family IIT at

F1c. 3. Three projections of plan-form family I at

o = 306 deg.

o= 11-45 deg.
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Fig. 6. Theoretical variation of the normal-force coefficient.
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