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Summary.--The simple model used by Brown and Michael to represent the flow past a slender delta wing with leading 
edge separation, is extended to treat wings which have pointed apexes, curved leading edges and straight, unswept trailing 
edges. The vorticity of the fluid near the leading edge is represented by all isolated vortex of varying strength, which is 
curved in the non-conical cases considered here. A step-by-step method of calculation is used which starts from an 
assumed conical flow near the apex and employs the condition of zero total force on the vortex system in one cross-flow 
plane to obtain the configuration ~n the next. Numerical values of the co-ordinates and strength of the vortex, the 
l ift  coefficient and the centre-of-pressure position are found for three plan-form families at different incidences. 

1. Introduction.--The flow past  a highly swept  leading edge usual ly  separates there, wi th  the  
format ion of a core of ro ta t ing  fluid above and  inboard  of the  leading edge, joined to it by  a vor tex  
layer. Potential-f low models represent ing this type  Of flow with  separat ion from all edges of a 
wing have  been proposed by  several authors  (Legendre 1, Brown and MichaeP, Mangler and  Smi th  3, 4, 
K t i chemann  5, Roy6), for the flat plate  delta.wing,  on the  assumption of conical flow. In  Ref. 3, 
it is supposed t ha t  the vor t ic i ty  of the  fluid is concent ra ted  into vor tex  sheets  springing from 
the  leading edges and  rolling up into spirals in the  core regions. The shapes of these and  the  
dis t r ibut ion of vor tex  s t rength  along t h e m  are de te rmined  iff principle b y  the  two b o u n d a r y  
condit ions t ha t  a vor tex  sheet  mus t  lie ill a s t ream surface and tha t  it cannot  sustain a pressure 
difference. Calculations based on this model,  employing slender-wing theory,  are described in 
Ref. 4. 

If this model  is simplified by  condensing the entire vor t ic i ty  of the  sheets into a pair  of isolated 
vortices, joined to the  leading edges by  cuts t,  it is found tha t  a pressure difference remains  
across the cuts. This is all unrealist ic  feature  of the  model,  which  arises from the  simplifications 
introduced.  However ,  the  force act ing on the  cut  can be balanced by  the force which acts on 
the  isolated vor tex  t e rmina t ing  it  owing to the  vor tex  not  lying along a streamline.  The pressure 
difference across the  cut  is constant ,  and so the  force on it is independent  of its shape be tween 
the  lines tha t  b o u n d i t ,  viz., the  isolated v o r t e x  and  the  leading edge. W h e n  the condit ion of 
zero total  force on cut  and v o r t e x  combined is applied, together  wi th  the  condit ion of finite 
veloci ty  at  the  wing leading edge (smootl~ outflow condition), we obtain the model  s tudied by  
Brown and MichaeP. 

* R.A.E. Tech. Note Aero. 2535, received 24th March, 1958. 
t These are curves across which a jump in the potential occurs. 

required to keep the velocity potential single valued. 
They are a feature of the mathematicalmodel only, 



Here, this t reatment  is applied to the flow separated from the leading edge of a flat slender 
wing of more general plan-form. The only restrictions on the plan-form are to pointed noses, 
unswept trailing edges, and leading edges without discontinuities of slope. The conditions in 
each cross-flow plane, which now involve the variation i n t h e  streamwise direction of the strength 
and relative posffion of the vortex, are no longer sufficient to determine the solution. However, 
if the strength and position of the vortex are known at one streamwise station, these values can 
be used to calculate their rates of change there and thus .the strength and position may be found 
at a neighbouring station downstream. In the neighbourhood of the pointed apex of the wing, 
the conical solution of Ref. 2 may be introduced to initiate the procedure. Thus a step-by-step 
method is obtained by which this model of the flow can be 'calculated. The s±ep size is regulated 
by  the rate of change of the leading-edge slope : if the slope changes too much from one step to 
tile next, large changes in vortex position and strength are predicted and these seem to be over- 
corrected a t  the following step, leading to a divergent oscillation in the numerical solution. 
Thus a discontinuity in leading-edge slope can only be treated by fairing it with a smooth curve 
and using an appropriately small step size. 

The properties of several families of plan-forms at different incidences have  been calculated, 
more as test cases than as part  of a systematic investigation. The results obtained are interpreted 
by making use of the relations between the delta-wing solutions of Ref. 2, where the present 
model is used, and those of Ref. 4, where a more elaborate model is used. 

2. M e t h o d  o f  C a l c u l a t i o n . - - W e  consider the configuration shown in Fig. 1. With axes fixed in 
the wing, origin at tile apex, O x  along the centre-line, 0y  to starboard, Oz upwards, the free stream 
is at an incidence ~ to Ox.  We resolve it, for small incidences, into U along O x  and ~ U along Oz. 
We shall make use of the complex co-ordinate Z = y + i z  in the plane x ---- constant, known as 
tile cross-flow plane. 

The separated flow is represented in the first place by vortex sheets springing from the leading 
edges and rolling UP into spirals, this configuration being determined in principle by tile two 
conditions tha t  the sheets lie in stream surfaces and sustain no pressure difference. This model 
is then simplified by  condensing the ~orticity of each sheet into an isolated vortex, leaving the 
trace of the sheet as a cut, across which the velocity potential is discontinuous. A pressure 
difference now remains across the cut, so long as the isolated vortex continues to grow in strength 
in the streamwise direction. Since the cross-flow velocities (in the plane x = constant) are 
continuous across the cut now that  the vorticity has beeI1 condensed, we can write this pressure 
difference, A @, by slender-wing theory, as 

2 9. d/ '  
ACp _ U A ~ ,  _ . . . . . . .  (1) U d x '  "" " 

for the right-hand vortex, where A means the difference taken 'inside' minus 'outside', ~ is the 
velocity potential and r the strength of the isolated vortex. 

This pressure difference is a function of x only, so that  the force acting in the plane x = x0 on 
a section of the cut lying between the planes x = x0 and x = Xo + Sx is given at once as 

- -  i(Zo --  s)½PU~ACp ~x ,  

where Z0 = Yo + izo is the point where the right-hand isolated vortex meets the plane x = x0 
and s is the local semi-span of the wing in this plane. Thus, using equation (1), the force on this 
section of tile cut is 

ip  U ~x  (Z0 - -  s) d r  
d x  . . . . . . . . . . .  (2) 

This force is to be balanced by  an equal and opposite force acting in the plane x = x0 on the 
section of the right-hand isolated vortex between the planes x = x0 and x = x0 A: ~x. By  the 
well-known formula this is the product of - - io /~  tx and the velocity normal to the isolated 
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vortex at its station due to the remainder of the flow field. This velocity is due in part  to the 
components vl and wt of the cross-flow at the station of the isolated vortex due to the remainder 
of the cr0ss-flow field and in part  to the free-stream component normal to the vortex (the perturba- 
tion velocity parallel to Ox makes a contribution of higher order). The free-stream component 
normal to the vortex has components -- U(dyo/dx) and -- U(dzo/dx) parallel to Oy and Oz, where' 
the co-ordinates of the vortex are regarded as functions of x. Thus the force on the section of 
the isolated vortex is 

~yo ~o~ - iPr ~x {v1-  U ~ + i ( w~ - U I (3) • d x ]  . . . . . . .  

Equating the sum of (2) and (3) to zero and re-arranging, we find 

u (vl + iwl) = (zo - s) d r  dZo 
- -  ~ + r dx  . . . . . . . . . .  ( 4 )  

The two-dimensional potential in the cross-flow plane must have the following properties. 
At infinity, the velocity w parallel to Oz must tend to ~U. On the wing, the  normal velocity 
must vanish. At the leading edge the velocity must be finite, i.e., the outflow is smooth. In 
the neighbourhood of Z = Z0 and -- 20, the potential must have the singularities associated 
with vortices of strengths + F. Tile complex potential, W, is most easily constructed in the 
plane Z*, where 

Z . 2  = Z ~ - s ~ . . . . . . . . . . . . .  ( 5 )  

Under this transformation, the wing slit (Z real, [ Z[ ~< s) becomes part of the imaginary axis and 
is a streamline by symmetry. Conditions at infinity are unchanged, but  the point Z* = 0, 
Z = -b s is singular, so that  a finite velocity at the leading edge in the cross-flow plane arises 
from a stagnation point in the transformed plane. Thus for the complex potential we have • 

P Z* -- Zo* 
W = - -  io~ U Z *  + ~ log Z* + Z0 ~ '  " . . . . .  (6) 

where Z* = Z0* is the point corresponding to Z---- Z0, the position of the right-hand vortex. 
The smooth outflow condition is expressed by d W / d Z *  = 0 for Z* = 0, i.e., 

/~ Z0* Zo* 
2u~U = Zo* + 20* . . . . . . . . . . . . .  (7) 

The Conjugate of tile velocity vl + iw~ due to the remainder of the flow field at the station of the 
right-hand vortex is given by 

v~ - -  iw~ - -  dW~ l 
_ dZ I~=z o' 

where 

W~ = W -- 2~--~ log (Z Zo). 

After some manipulation, Using equations (5), (6) and (7), we find 

v l - - i w ~ =  1" Zo ( Z o * + 2 o *  1 s ~ ) 
2~-~ Zo - ~  \ Z92' 2 ~  " Z9* + 20* 2Zo ~ Zo* " 

Combining this with the conjugate of (4) yields - 

r-u ( ( 2 o -  S) ~ r  + r ~2o~ = r zo (Zo* + 2o* 1 s ~ (s) 
d)--] 2~i Z0 ~ \ Z-°;2~ -~ Z°* + Z ° *  2Z0 ~ Z o * / "  "" 

Equations (7) and (8), equivalent to three real equations, together with appropriate initial 
values at some station x = constant, determine the solution. In the case of the conical flow 
past a delta w ing , / '  and Z0 are known to be proportional to x and the equations reduce to the 
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algebraic equations solved by Brown and MichaeP. In the present case, we assume that  in the 
neighbourhood of the apex of the wing (supposed pointed), the flow is approximately conical. 
We use (7) to eliminate F and its derivative from (8). The real and imaginary parts of the 
resulting equation are then simultaneous ordinary linear first-order differential equations for 
Y0 and z0; which can be solved by step-by-step integration for a given plan-form (i.e., given 
s = s(x)) and incidence, using the boundary values obtained from the assumed conical flow 
near x = 0. 

In practice non-dimensional quantities have been used and the equations simplified as described 
in Appendix I. Equations (I.7) and (I.8) provide a routine which leads from the co-ordinates 
and strength of the vortex at x = x0 to those at x = Xo ~- A x for a particular plan-form and 
incidence. The time taken for each step was about 30 minutes on a fully automatic desk machine. 
No general rule about the size of step, A x,  can be given. I t  must be small when the slope of the 
leading edge changes rapidly and also wher~ the local semi-span is small. I t  can apparently be 
larger for a higher incidence on the same plan-form, without leading to a divergent oscillation 
in the results. Tables 1 to 3 show the actual step sizes used in the calculation carried out, but 
no systematic at tempt was made to enlarge the step size or to t ry  the effect on the results of 
reducing it. 

The co-ordinates and strength of the isolated vortex in the cross-flow plane x = c lead directly 
to the lift acting on that  part  of the plan-form forward of x = c. Denoting this by  L(c),  we have; 
by  considering the momentum integral (@, equation (18) of Ref. 2), 

L ¢ )  = + . . . . . . . . . .  ( 9 )  

where s(c) is the semi-span at x = c, and ), and a are the non-dimensional vortex s t rength and a 
non-dimensional co-ordinate introduced in Appendix I (2~s is the distance separating the vortices 
in the transformed plane). Thus the lift coefficient is given by 

C~ = ~ A ( ~  + 2 ~ )  . . . . . . . . . . .  (10) 

The centre of pressure of the wing terminated by a straight unswept trailing edge at x = c is at 
the point f: L 

X ~ _  ] ¢ C  7__ - z 0 

L(c) 
Thus the distance of the centre of pressure from the apex is a fraction h of the chord where 

y 5(,) 
h = l  0  L(c) . . . . . . . . . .  (ll) 

Since, in slender-wing theory, the  flow upstream of the plane x ---- c is unaffected by changes 
downstream of it, it is natural  to consider each step of the step-by-step integration as terminating 
a plan-form with a straight trailing edge. Thus the solution for a particular plan-form at a certain 
incidence includes the solutions for a family of plan-forms at this incidence, obtained by  cutting 
it short at different chordwise stations. 

The basic plan-forms considered are shown ,in Figs. 2, 3 and 4. The cropped delta (apex 
angle 90 deg) with slight fairing of Fig. 2 was calculated at an incidence of 0.4 radian (=  22- 9 deg) 
only. The results for various chord lengths are given in Table 1. Tabulated are the non-dimen- 
sional (~, ~) and dimensional (Y0, z0) co-ordinates of the isolated vortex (Yo = vs, z0 = Cs) ; the 
vortex strength (F /U)  ; the lift coefficient CL ; the distance, h, in chord lengths, of the centre 
of pressure from the apex ; the local aspect ratio, local semi-span and cotangent of local sweep 
(A, s and s') ; and the values of lift coefficient and centre of pressure position (CLAtt and hAtt) 
calculated on the basis of attached-flow theory. Ill Tables 2 and 3 the same quantities are listed 
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for tile fully-faired cropped delta (apex angle 28 deg.) of Fig. 3 at ~ ----- 5.73 deg (0. V) and 
11.45 deg (0.2 c) and tile extended 'Gothic'  wing of Fig. 4 at ~ = 15.3 deg and 30.6 deg. The 
numbers tabulated are quoted to more significant figures than is justified by the simple technique 
used to solve equations (7) and (8), in order to illustrate the behaviour of the process. The 
projections of the vortex paths on to the co-ordinate planes are shown in Figs. 2, 3, and 4 for the 
larger incidences. Fig. 5 shows the non,dimensional height of the vor[ex above the trailing edge 
of a number of members of the plan-form families calculated, plotted against the ratio of incidence 
to aspect ratio. In Fig. 6 the lift coefficient divided by ~A is plotted against c~/A for tile same 
wings. 

3. Discussion of  Resu l t s . - -The  results calculated for the position of the isolated vortex are 
listed in columns 4 to 7 of Tables 1 to 3. In  addition, the three projections of the vor tex  on to 
the co-ordinate planes are drawn in Figs. 2 to 4 for one incidence in each case. We see that,  on 
these convex plan-forms, the vortex approaches the leading edge in plan view as we go down- 
stream, crosses it and then continues to move slowly outboard. Owing to the increasing local 
sweep-back angle, however, the inclination of tile plan projection of the vortex to the centre-line 
decreases. On the other hand, the vor tex not only continues to rise above the wing as we go 
downstream, but  also its inclination to the plane of the wing increases, to become of the order 
of one half the incidence. This is of interest in tha t  the streamwise parts of the leading edges of 
these plan-forms can be regarded as side edges. The upper edge of the vortex sheet from t h e  
side edge of a retangular plan-form has been taken to be inclined at ~/2 to tile wing and the 
s t ream by Mangler 7, following a suggestion of Betz. Regarding the calculations as applying to 
families of plan-forms obtained by terminating the basic plan-forms (Figs. 2 to 4) at different 
chordwise stations, we can consider the height of the vortex above the wing trailing edge for a 
variety of wings and incidences. In Fig. 5 the height, made non-dimensional by  reference to the 
span, is plotted against the r a t i o  of incidence to aspect ratio. For delta wings, the same 
mathematical  model of the flow was calculated by Brown and MichaeP and their curve is  also 
shown in Fig. 5. The scatter of the points is small enough for it to be guessed that  the non- 
dimensional height is a function of c~/A only, in a first approximation. If this is so in this 
mathematical  model, it may well be so in others and also in real flows where trailing-edge effects 
are small. There is, therefore, some reason to think that  the second curve in Fig. 5 drawn from 
Ref. 4, where a more sophisticated model was studied for the delta wing, may be a better guide 
to the relationship between the non-dimensional vortex height, ~, and o~/A. However, some 
caution is needed in predicting details of real flows from the mathematical  models. Exper imenta l  
results for the vortex positions on the delta wing at low speeds are not yet in agreement with each 
other and differ in almost all cases from those calculated in Ref. 4. In spite of this, the theoretical 
results of Ref. 4 are preferred to those of Ref. 2 ; furthermore, these difficulties do not affect 
the conjecture tha t  the non-dimensional height depends primarily on ~/A. 

The lift coefficients of the members of the plan-form families are listed in column 9 of Tables 1 
to 3, with their aspect ratios and their lift coefficients as calculated by R. T. Jones 's  slender-wing 
theory for attached flow in columns 11 and 12 for comparison. Although the lift coefficient still 
falls as the Wing is extended downstream with increasing sweep, the fall with aspect ratio is 
m-uch slower than in the attached-flow theory. This is because R. T. Jones's theory predicts no 
lift on any part of a flat wing where the  local span is constant, while the present model predicts 
lift forces due to changes in the vortex strength and position. In Fig. 6 the lift coefficients, 
divided in each case by the product ~A, are plotted against s /A ,  the parameter used to collapse 
the vortex heights. R . T .  Jones 's  theory yields the horizontal line shown. The values for the 

present  curved-edge plan-forms lie reasonably close to the curve ior the delta plan-form, drawn 
from Ref. 2. We may guess therefore, that  calculations using other models would show the 
same behaviour, viz., 

. . . .  CL -"- o~Af(o~/A) , . . . . . . . . . . . .  (12) 

where f depends on the mathematical model, but not the plan-form. Now the function f was 
found for de l ta  wings in Ref. 4 by  calculating a more sophisticated model, so the curve drawn 
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from Ref. 4 in Fig. 6 may be taken as the best theoretical estimate available for the lift coefficient 
of wings with this type of flow, regardless of leading-edge shape. A simple expression was found 
in Ref. 4 to fit f closely ; it now becomes : 

C ~ . = ~ A  1 + -  [~[~<0.4A 
2 (13) 

o r  " . . . . . .  

CL=CLAtt 1 - 4 ~  ~ 0~<o~ ~< 0"4A 

The centre-of-pressure position is given as a fraction of the chord in column 10 of the Tables 
with the value on R. T. Jones's theory of attached flow in column 13 for comparison. Except 
for the delta wings, where the flow on both theories is conical, the present theory predicts a 
centre-of-pressure position nearer the trailing edge, the difference becoming large as the plan- 
form deviates more from the delta. There is also a change of centre of pressure with incidence ; 
the movement being backward as the incidence increases, on a particular plan-form. However, 
plan-forms of this type can still yieid centres of pressure well forward of the 2/3 chord point 
found for the delta. 

With certain exceptions, the strength of the isolated vortex (column 8 of the Tables), increases 
in the streamwise direction, though the rate of growth becomes much  less as the leading edge 
inclines towards the streamwise direction. At first sigM it appears impossible for the strength 
to decrease, since this would imply the shedding of negative vorticity from the leading edge. 
The fact that  such a decrease is found in the calculations for the lower incidences and the more 
sharply curved leading edges (Table 1, 1.25 ~< x < 1.60 ; Table 2 (a), 1.8 ~ x <~ 2.2), would 
then indicate a defect in the mathematical model or in the calculation. However, in Fig. 7 are 
plotted the bound vortex configurations on a delta wing at two different incidences, calculated 
for the model of Ref. 4. From this it is clear that  if  the plan-forms could be cropped along the 
dashed lines without altering the bound vortex configurations, negative vorticity would be shed 
from the part  a-a  of the leading (tip) edge at the lower incidence. At the higher incidence the 
vorticity shed from the leading (tip) edge would be positive. The values of ~/A for the delta 
wings of Fig. 7 correspond roughly to those of the member of plan-form family I I  terminat ing 
in the region of decreasing vortex strength, at the two calculated incidences. Since, at the higher 
incidence, this decrease is not found in the calculation and no decrease is found on the smoother 
plan-form of Fig. 4, we may suppose that  this decrease, when it occurs, is neither a consequence 
of the calculation method nor of the simplification of the model from that  of Ref. 4. This still 
does not imply that  it would be found experimentally, since slender-wing theory itself may be 
inadequate to treat wings with sharply curved leading edges .  

When comparing the results discussed above with experiment, or using them to predict the 
characteristics of aircraft designs, t he  following features of the model must be borne Jn mind : 

(a) No account is taken of trailing-edge effects. At subsonic speeds these may be large and 
• may be expected to produce loss of lift on the rear part oi the plan-form and movement 
of the vortices closer to the stream direction. Thus the overall lift coefficient will b e  
reduced and the centre of pressure moved forward. The effects will be greatest on 
those plan-forms where theory predicts the highest loads near the trailing edge, i.e., 
the deltas, and lower on plan-forms with substantial regions of constant span. At 
supersonic speeds the effect of the trailing edge is likely to be much less. 

(b) No account is taken of secondary separation of the boundary layer in the adverse pressure 
gradient between the projection of the vortex and the leading edge. This will certainly 
tend to spread and reduce the suction peaks predicted, but need have little effect on 
the lift, Its influence on the vortex position is unknown, -but may be considerable. 
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(c) No account is taken of wing thickness. The effect of this on the distribution of lifting 
pressure is unknown. I f  was shown in Ref. 4 that,  if the lifting pressure distribution 
on a delta wing was unaffected by the presence of a symmetrical thickness distribution, 
the lift-dependent drag was reduced by a term proportional to the thickness/ch0rd 

ra t io .  Since, for large values of the thickness/chord ratio, this implies the absurdity 
of negative lift-dependent drag, we must conclude that  the lifting pressures are modified 
on thick wings. 

(d) NO account is taken of compressibility. For attached flow, the slender-wing theory can 
be compared at many points wi th  supersonic linearised theory; no theoretical studies 
of leading-edge separation capable of indicating the variation of the flow field with 
Mach number are known. It  is also possible that,  at  high speeds and incidences, a 
shock may occur in the fluid between the vortices, in which case the present t reatment  
is inadequate. 

4. Comlusions.--A method has been given for calculating a simplified model of the flow past 
a thin, slender, pointed .wing, with unswept trailing edge, which takes account of the separation 
of the flow at the leading edge. Numerical results calculated suggest that  the relations giving 
the height of the vortex above the wing and the lift coefficient ill terms of the ratio of incidence 
to aspect ratio for the delta wing apply to more general convex plan-forms. Although the 
limitations of the model have to be remembered ill applying the results to real flows, the treatment 
should be adequate to show the variations ill aerodynamic characteristics occurring with separa- 
tion and also to indicate the effect of plan-form variation on these characteristics in separated 
flow. 
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LIST OF .SYMBOLS 

Aspect ratio 

Root chord 

Lift coefficient 

Lift coefficient on attached-flow theory 

Pressure coefficient 

Distance of centre of pressure from apex, referred to root chord 

The same on attached-flow theory 

Lift on plan-form terminated at x 

Local semi-span 

Free-stream velocity 

Cross-flow velocity at station of right-hand vortex due to remainder of flow 
field .- 

Complex potential 

Rectangular cartesian co-ordinates, origin at wing apex, Ox along centre-line 
downstream, 0y to starboard, Oz upwards. 

y + iz (complex co-ordiilate in cross-flow plane) 

yo + izo (position of right-hand vortex) 

( Z  2 - -  s2) 1/" (complex co-ordinate in transformed plane) 

Incidence 

Strength of right-hand vortex 

-UUs 
Difference operator across vortex sheet or cut • 'inside' -- 'outside' 

Zo/s 
Perturbation potential 

.Density 

Zo*$ 

8 



No. Author 

1 R. Legendre . . . .  

3 

4 

5 

2 C . E .  Brown and W. H. Michael .. 

6 

'.7 

'K. W. Mangler and J. H. B. Smith 

, K. W. Mangler and J. H. B. Smith 

D. Ktichemann . . . . . .  

M. Roy . . . . .  • .. 

K. W. Mangler . . . . . .  

REFERENCES 

Title, etc. 

Ecoulement au voisinage de la pointe avant d'une aile ~ forte  fl&che aux 
incidences moyennes. La Recherche Adron~utique (O.N.E.R~.),  
No. 31, 1953. Translated as A.R.C. 16796. Presented at the 8th 
International Congress on .Theoretical and Applied Mechanics. August, 
1952. 

On slender delta wings with leading edge separation. N.A.C.A. Tech. 
Note 3430. April, 1955. Published in J. Ae.  Sci., Vol. 21, p. 690. 
October, 1954. 

A theory of slender delta wings with leading-edge separation. R.A.E. 
Tech. Note Aero. 2442. A.R.C. 18,757. April, 1956. 

Calculation of the flow past slender delta wings with leading-edge 
separafion. R.A.E. Report Aero. 2593. A.R.C. 19,634. May, 1957. 

A non-linear lifting-surface theory for wings of small aspect r a t iowi th  
edge separations. R.A.E. Report Aero. 2540. A.R.C. 17,769. April, 
1955. 

Sur la th~orie de l'aile en delta.--Tourbfllons d'apex et nappes en cornet. 
La Recherche Adronautique (O.N.E.R.A.) No. 56. February, 1957. 

Der kleinste induzierte-Widerstand eines Tragfliigels rnit ldeinem 
Seitenverh~iltnis. Jahrbucb 1939 der deutscben Luftfahrtforschung, 
Pt. I, p. 139. 

(74986) 

9 
A* 



A P P E N D I X  i 

Reduction of the Equations to a Form Amenable to Numerical Calculation : 

,We m a k e  the  subs t i tu t ions  • 

r = v U s ,  Zo = (~ + i t ) s ,  Zo* = (~ + i-~)s 

in equa t ions  (5), (7) a n d  (8) of  Sect ion 2. W e  ob ta in  • 
• . .  _ . [  . . 

f rom (5)- " 

~ 2 _  ~ + 2 i ~  = 7 ~ - ~ -  1 ' +  2 ~  (I.1) , ° ° . , . .  • • • . , ° " , 

f rom (7) ,' 
7 ~ + ,2 - .  , 

- -  • . .  " . .  ( I . 2 )  . . o . , . . . . .  

• 2 ~  2 a  

f rom (S) . . . . . . . . . . . .  
t 7 t 

s(7 - -  i¢ ' )  -[-s ' (2~ - -  1 - -  2i¢) -[- s - -  (~ - -  1 - -  i t )  

t + )f = ~ (2(~2 + ~..)(~ + ~2)~ + o~ + ~ .2~  ~ + ~ . ,  ' " : • 

where  the  p r ime  denotes  d i f ferent ia t ion  w i t h  respect  to x. N o w  the  rea l  a n d  i m a g i n a r y  par t s  
of (1.3) can be  wr i t t en ,  us ing (1.2) for ~, as 

s 7 ' = A c ~ - - s ' ( 2 ~ - - l ) + s ( 1 - - ~ ) ~ }  
a n d  . . . . . . . . .  (I.4) 

whe re  A a n d  B are l is ted below. B y  d i f ferent ia t ing  (I.1), s epa ra t ing  real  a n d  i m a g i n a r y  par t s  
a n d  solving we h a v e  • 

~'(o~ + ~ )  - -  ~'(o~ + ~ )  + ~'(-7 - ~¢)] 
(I.S) • ° , ° ° 

~'(o '  + ~ ) =  ~ ' ( . ~ -  ~ ) +  ~ ' ( ~  + <-DJ 
Dif fe ren t ia t ing  (1.2) l oga r i thmica l ly  yields  • 

L' = (~2 _ .2)~,  + 2o .~ '  

= - c ~ '  - D r '  . . . . . . . . . . . . . .  (I.~) 

b y  (I.5), whe re  C a n d  D are l is ted below. The  th ree  equa t ions  (I.4) to (I.6) are n o w  solved,  b y  
subs t i t u t i ng  in (I.6) for 7 '  a n d  ~' to give 

r_' = {s'(2V --  1) -=- Ac,}C 4:-(2gs' - -  Bo~)D 
r s{~ + (~ - ~ )c  - CD} 

a n d  hence,  b y  (I.4) 

7 ' - - ~ -  s ( 2 7 - -  1 ) + s { 1  + ( 1 - - v ) C - -  :D}  { s ' ( 2 7 - -  1 ) - - A a } C + ( 2 t s ' - - B o ~ ) D  

' . . . .  2 ~  - -  .s s s{1 + (1 - -  v)C - -  ~D} {s'(2v - -  1) - -  Ao~}C + (2ts'-- Bcx)D , .. (1.7) 
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w h e r e  

A _ 

B _ 

I [ ~ { ~  - ~ ( ~  - ~)}.+ (~ - ; ~ ) ( e  - 3 ~ )  l 
2~(~ ~ + ~ )  " ~ + ~ 2~ J 

~(~ + ~')' 

D - -"c~(~:  - -  3 ~ )  - -  ~(3~-~ - -  Ca) 
o(¢~ + ~)~ 

.. (1.8) 

- I  

" 1 1  



TABLE 1 

Solutions#rtheFami~ ~ Plan:formsI, Fig. 2, atlncidence22.9°= O.d ~ 

c s s '  V ~ Yo z o /1/U C~ h A C~ A~ hA~ 

3"78 0"667 4 2"51 0"667 1 
1.025 
1.050 
1-075 
1.100 
1.125 
1.150 
1.200 
1.250 
1.300 
1.350 
1.400 
1.450 
1.500 
1.600 
1.700 
1.800 
1.900 
2.100 
2.300 
2.500 
2.700 
2.900 

1 
1.024 
1.048 
1.069 
1.090 
1.109 
1-128 
1.160 
1-188 
1.210 
1.228 
1.240 
1.248 
1.250 
1.250 
1.250 
1.250 
1.250 
1.250 
1.250 
1.250 
1.250 
1.250 

0.85 
0.80 
0.75 
0.70 
0.60 
0.50 
0.40 
0.30 
0.20 
0.10 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0.9110 
0.9110 
0-9115 
0.9122 
0.9130 
0"9137 
0.9145 
0-9162 
0"9180 
0"9204 
0.9233 
0.9270 
0-9317 
0'9376 
0.9527 
0.9645 
0'9732 
0"9804 
0.9928 
1.0027 
1.0101 
1.0169 
1.0228 

0"0975 
0.0974 
0.0983 
0.0997 
0.1019 
0.1038 
0.1060 
0.1113 
0.1175 
0.1244 
0.1322 
0.1413 
0"1519 
0.1635 
0.1895 
0.2110 
0.2297 
0.2471 
0.2800 
0-3104 
0.3394 
0-3673 
0"3943 I 

0.9110 
0.9329 
0.9552 
0.9751 
0'9952 
1.0133 
1"0316 
1.0628 
1.0906! 
1:.1137 1 
1.1338~ 
1.1495 
1.1628 
1.1720 
1"1909  
1 . 2 0 5 6  
1.2165 
1.2255! 
1.2410 
1.2534 
1 . 2 6 2 6  
1.2711 
1.2785 

0..0975 
0"0997 
0.1030 
0.1066 
0.1111 
0.1151 
0.1196 
0.1291 
0.1396 
0.1505 
0.1623 
0-1752 
0"1896 
O'2044 
0.2369 
0.2638 
0"2871 
0.3089 
0.3500 
0.3880 
0.4243 
0.4591 
0.4929 

1 661 
1 701 
1 729 
1 747 
1 759 
1 771 
1 782 
1 793 
1 801 
1 796 
1 786 
1 767 
1 748 
1.722 
1.686 
1.691 
1.716 
1.749 
1.825 
1.907 
i.990 
2.072 
2.154 

3"74 

3- 62 

3"45 

3"26 

3-05 
2.87 
2.72 
2-58 
2.47 
2.28 
2.13 
2.01 
1.91 
1.82 

0.599 

0.516 

0.465 

3.930 

3.750 

3.502 

3.208 

2"884 
2"586 
2"344 
2"142 
1"973 
1"704 
1"500 
1"340 
1"210 
1"103 

1"81 

1 "07 

O. 69 

0.566 

0.405 

0.293 
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TABLE 2 (a) 

Solutions for the Family of Plan-forms I I ,  Fig. 3, at Incidence g. 73 ° = O. I c 

c s s' ~ ~ Yo z o I ' /U C~ h A CL~,~ hart 

1.0 
1"1 
1"2 
1.3 
1.4 
1.5 
1"6 
1"7 
1"8 
1.9 
2"0 
2"1 
2.2 
2-3 
2.4 
2.5 
2.6 
2-8 
3.0 
3.2 

0.2500 
0.2750 
O" 2988 
0.3200 
O" 3388 
0.3550 
O" 3688 
O" 3800 
O" 3888 
0 "3950 
O" 3988 
0"4 
0"4 
0.4 
0.4 
0"4 
0.4 
0.4 
0"4 
0"4 

0.250 
0.250 
0.225 
0,200 
0-175 
0.150 
0.125 
0.100 
0.075 
0-050 
0"025 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0.9100 
0.9109 
0.9110 
0.9141 
0.9154 
0.9159 
0.9195 
0.9220 
0.9250 
0.9292 
0.9367 
0.9440 
0-9540 
0-9623 
0.9693 
0-9754 
0.9807 
0-9902 
0.9980 
1-0065 

0.1000 
0.0979 
0.0975 
0.1034 
0.1084 
0.1106 
0.1206 
0.1301 
0.1406 
0.1535 
0.1667 
0.1822 
0..1960 
0.2121 
0.2268 
0.2407 
0.2539 
0.2793 
0.3033 
0.3251 

0.2275 
0.2505 
0.2722 
0.2927 
0.3101 
0.3252 
0.3391 
0.3504 
0.3596 
0.3670 
0.3735 
0.3776 
0.3816 
0.3849 
0.3877 
0.3902 
0.3923 
0.3961 
0.3992 
0-4026 

0.0250 
0.0269 
0.0291 
0.0331 
0-0367 
0.0393 
0.0445 
0.0494 
0.0547 
0.0606 
0.0665 
0.0729 
0.0784 
0.0848 
0.0907 
0.0963 
0.1016 
0.1117 
0.1213 
0.1300 

0.1041 
0.1142 
0.1241 
0.1276 
0-1324 
0-1377 
0-1378 
O. 1393 
O. 1423 
O. 1405 
O" 1386 
O. 1379 
0.1360 
0.1365 
0.1379 
0.1397 
0.1419 
0.1465 
0.1515 
0.1558 

0.236 

0.231 

0.218 

0.204 

0.189 

0" 172 

0.158 

0.147 

0. 135 
0.129 
0.122 

0.667 

0.642 

0.603 

0.550 

0.510 

0.489 

0"998 

0"970 

0"906 

0"820 

O" 726 

0 '628 

0"543 

0"478 

0"406 
0"369 
0"338 

O" 157 

0.142 

0.114 

O. 085 

0"064 

0"053 

0.667 

0.636 

0.575 

0.485 

O" 398 

0.348 

TABLE 2 (b) 

Solutions for the Family of Plan-forms I I ,  Fig. 3, at Incidence 11.45 ° : O. 2 c 

c s s' ~ ~ Yo z o I~/U Cs h A C s ~  hA~ 

0.580 0-667 0.998 0-314 0.667 1.1 
1.2 
1.3 
1.4 
1.5 
1.7 
1.9 
2.1 
2.3 
2.5 
2.7 
2.9 
3-1 
3 . 3  
3-5 
3.7 

0.2750 
O. 2988 
O. 3200 
O. 3388 
O. 3550 
O. 3800 
O. 3950 
0.4 
0.4 
0.4 
0.4 
0.4 
0.4 
0.4 
0-4 
0"4 

0.250 
0.225 
0.200 
0.175 
0.150 
0.100 
0.050 
0 
0 
0 
0 
0 
0 
0 
0 
0 

O. 8807 
O. 8800 
O. 8840 
O. 8874 
0.8910 
0-8991 
0.9114 
0.9326 
0-9604 
0.9800 
0.9950 
1.0072 
1.0175 
1.0262 
1.0339 
1.0407 

0.1908 
0.1904 
0.1981 
0.2076 
0-2186 
0.2439 
0-2775 
0.3216 
0.3749 
0-4205 
0.4624 
0.5017 

0.5392 
0.5750 
0.6096 
0-6427 

0.2422 
0.2629 
0.2829 
0.3006 
0.3163 
0.3417 
0.3600 
0"3731 
0.3842 
0.3920 
0"3980 
0.4029 
0"4070 
0.4105 
0"4136 
0-4163 

0.0525 
0.0569 
0.0634 
0"0703 
0.0776 
0.0927 
0.1096 
0.1286 
0.1500 
0.1682 
0"1850 
0.2007 
0.2157 
0"2300 
0.2438 
0.2571 

0.2562 
0"2792 
0.2939 
0.3074 
0"3183 
0.3384 
0.3511 
0.3573 
0-3659 
0"3799 
0.3958 
0.4123 
0.4290 
0.4457 
0.4622 
0-4784 

O" 570 

0.549 
0-518 
0.485 
0.451 
0-427 
0.406 
0.388 
0.373 

0.348 

0.329 

0.659 

0.619 

0.581 

o.55i 

0.531 

O. 509 

0.970 

0.906 
0.820 
0-726 
0.628 
0.543 
0-478 
0.427 
0.386 

0.323 

O. 278 

0.284 

0.228 

O. 170 

O. 134 

O. 101 

O. 087 

O. 636 

O. 575 

O. 485 

0.413 

O. 359 

0.301 
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T A B L E  3 (u) 

Solutions for the Family of Plan-forms I I I ,  Fig. #, at Incidence 15.3 deg 

c s s' ~ ¢ Yo z o I~/U Cz h A Cz.~ hA. 

0.400 0.2489 
0.425 0.2633 
0.450 0.2775 
0.500 0'3056 
0-600 0"3600 
0.800 0.4622 
1.000 0.5556 
1.200 0.6400 

1 . 4 0 0  0.7156 
1.800. 0-8400 
2.200 0-9289 
2.600 0-9822 
3"000 1"0 
3-400 1 . 0  
3.800 1.0 
4-200 1.0 

4 . 6 0 0  1.0 
5-000 1.0 
5.400 1.0 
5.800 1.0 
6.200 1-0 

0.5778 
0.5722 
0.5667 
0.5556 
0.5333 
0.4889 
0.4444 
0"4000 
0.3556 
0.2667 
0.1778 
0.0889 
0 
0 

0 
0 
0 
0 
0 
0 
0 

.9110 

.9143 

.9136 
,9124 
,9106 
.9082 
.9069 
.9060 
.9055 
'9048 
.9109 
.9195 
"9386 
.9711 
'9918 
"0066 
.0183 
-0278 
-0364 
.0440 
.0503 

0.0974 
0.1037 
0.1048 
0.1071 
0-11t3 
0-1192 
0.1272 
0.1357 
0.1453 
0.1668 
0.1961 
0.2313 
0.2699 
0.3315 
0-3772 
0-4217 
0.4649 
0-5059 
0.5494 
0.5904 
0.6266 

0.2267 
0-2407 
0-2535 
0.2788 
0-3278 
0.4197 
0.5039 
0.5798 
0.6479 
0-7601 
0.8461 
0.9032 
0"9386 
0.9711 
0-9918 
1-0066 
1.0183 
1.0278 
1.0364 
1.0440 
1.0503 

0.0243 
0-0273 
0.0291 
0.0327 
0.0401 
0.0551 
0.0707 
0.0868 
0.1040 
0.1401 
0.1822 
0.2271 
0.2699 
0-3315 
0.3772 
0.4217 
0.4649 
0.5059 
0.5494 
0.5904 

0 . 6 2 6 6  

0-2756 
0.2790 
0.2953 
0.3270 
0.3885 
0.5027 
0.6045 
0.6969 
0.7788 
0.9191 
1.0058 
1.0692 
1.0850 
1.1163 
1.1639 
1.2243 
1.2889 
1.3534 
1.4303 
1.4921 
1.5524 

1.499 

1.304 

1- 084 

0.873 

0"757 

~.681 

C.636 

0-595 

I 

0.634 

0.535 

0-488 

0.467 

0-613 

0.467 

0.305 

0.226 

T A B L E  3 (b) 

Solutions for the Family of Plan-forms H I ,  Fig. d ,  at Incidence 30.6 deg 

0.400 
0-410 
0-425 
0-450 
0:500 
0-600 
0.800 
!.ooo 
1.200 
1"400 
1"800 
2.200 
2.600 
3"000 
3.400 
3-8oo 
4.200 
4-600 
5-000 
5.400 
5.800 
6.200 

O" 2489 
O" 2547 
O" 2633 
0.2775 
0.3056 
O. 3600 
O. 4622 
O. 5556 
O. 6400 
0.7156 
0.8400 
O. 9289 
O- 9822 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0  
1-0 
1.0 
1.0 

0-5778 
0"5756 
0.5722 
0.5667 
0"5556 I 
0.5333 I 
o.4889 I 
0.44441 
0-4000 
0.3556 
0.2667 
0.1778 
0.0889 
0 
0 
0 
0 
0 
0 
0 
0 
0 

3.8800 
3.8817 
3.8835 
D.8853 
0.8856 
0-8819 
0-8798 
0-8777 
0"8843 
0.8824 
0.8824 
0-8922 
0"9095 
0.9358 
0-9755 
1.0017 
1.0208 
1.0356 
1.0474 
1-0566 
1-0647 
1-0719 

0"1900 
0-1933 
0"1972 
0.2021 
0"2086 
0-2172 
0"2340 
0"2393 
0"2617 
0"2768 
0"3241 
0.3655 
0.4193 
0.4872 
0.5770 
0-6516 
0-7175 
0.7800 
0.8378 
0.8845 
0.9301- 
0.9783 

3.2190 
0.2245 
0.2326 
0.2457 
0-2706 
0.3175 
0"4067 
0.4876 
0.5660 
O. 6314 
0"7412 
0.8288 
0.8934 
0"9358 
0.9755 
1.0017 
1.0208 
1.0356 
1.0474 
1.0566 
t.0647 
1.0719i 

0.0473 
0"0492 
0-0519 
0-0561 
0"0637 
0"0782 
0"1082 
0"1330 
0"1675 
0-1981 
0"2723 
0'3395 
0"4119 
0"4872 
0"5770 
0"6516 
0"7175 
0"7800 
0"8378 
0"8845 
0-93011 
0"9783! 

0.6204 
0.6296 
0.6461 
0.6762 
0.7455 
0.8959 
1.1701 
1.4218 
1.6255 
1.8530 
2.2743 
2.5577 
2.7882 
2-9535 
3.1347 
3-3335 
3.5316 
3.7363 
3.9319 
4.0948 1 
4.2591 
4.4339 

3.755 

3.365 

2.923 

2.481 

2.24C 

2.05C 

1.892 

1.76~ 

)-635 

)-560 

).497 

).468 

2.314 

1.873 

1.416 

1 "000 

0-714 

O" 55E 

O. 45~ 

0.38~ 

1.943 

1.571 

0-839 

0.466 

0.323 

O. 613 

0 . 4 6 7  

0.305 

o.2i6 
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