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Sumimary —This report considers the loss of flexural rigidity of a thin wing due to the presence of middle-surface
stresses resulting from aerodynamic heating. The spanwise properties of the wing are assumed constant but the wing
section is arbitrary. The loss of flexural rigidity is comparable with the corresponding loss of torsional rigidity.

1. Introduction.—One of the problems arising from the aerodynamic heating of a wing is that
thermal stresses may reduce the overall stiffness of the wing.

If a thin solid wing is accelerated to a high Mach number its temperature will eventually reach
the saturation temperature appropriate to that Mach number. Before this steady state occurs,
however, there is a transient period during which the thinner parts of the wing, due mainly to
their smaller heat capacity, attain a higher temperature than the thicker parts of the wing. These
chordwise variations of temperature give rise to a thermal stress distribution which, away from
any end effect, is characterised by spanwise compressive stresses at the leading and trailing edges
and equilibrating tensile stresses at the mid-chord. If the wing remains perfectly flat these
middle surface stresses are completely self-equilibrating ; but if the wing is twisted the middle
surface stresses have a resultant torque acting in the same sense as the twist, and this results
in an effective reduction of the torsional rigidity"***>°.

The present report is concerned with the loss of flexural rigidity due to these middle surface
stresses. = If the wing bends, its cross-section distorts for two reasons : first, because of the
Poisson’s ratio effect, and second, because of the radial component of the middle surface stresses.
The middle surface stresses tend to relieve themselves as in the Brazier effect?, the elements in
compression expanding by moving radially further away from the centre of curvature and the
elements in tension contractiug by moving radially towards the centre of curvature.

These two components of the distortion of the cross-section are, roughly speaking, additive in
the sense that elements containing middle surface stresses of the same sign move away from the
neutral axis in the same direction. Because of this distortion the middle surface stresses now
have a resultant moment acting in the same sense as the applied moment, and this results in an
effective reduction of the flexural rigidity.

* R.A.E. Report Structures 229, received 28th February, 1958.



The main body of the report considers the flexural behaviour of a thin solid wing of infinite
aspect ratio with a given chordwise distribution of spanwise middle surface stresses. How these
middle surface stresses arise due to aerodynamic heating is discussed briefly in Appendix I and
the influence of end effects in a wing of finite aspect ratio is considered in Appendix II. The
flexural rigidity of a built-up wing is considered in Appendix III.

2. Method of Analysis in Large-Deflection Theory.—In order to determine the flexural rigidity
of the wing it is first necessary to determine the chordwise variation of distortion of the wing
due to a given spanwise curvature. The differential equation which governs this distortion is
found in Section 2.1. The boundary conditions appropriate to this differential equation, and
hence expressions for the spanwise bending moment and the flexural rigidity are found in
Section 2.2. The complete large-deflection behaviour of a strip of constant thickness with a
parabolic chordwise variation of middle-surface stresses is considered in Appendix IV. A small-
deflection theory for wings of arbitrary chordwise thickness variation is presented in Section 3.

2.1. Derivation of the Differential Equation.—The chordw1se variation of the distortion of the
wing may be found most conveniently by variational methods. We shall consider a long solid
wing with arbitrary chordwise thickness variation, bent into the form of a ‘near cylinder’ of
radius K. The distortion of the wing is then of the form

w(x,y) = 2R—|~w() .. .. . . . (1)

and w(x), hereafter referred to simply as w, is such that the total strain energy of the wing is a
minimum.

The strain energy due to strains in the middle surface of the wing will now be determined.
A displacement w from the cylindrical shape, positive if directed toward the centre of the cylinder,
reduces the circumferential strain by an amount w/R. The circumferential strain is therefore
given by

(2)

& = & —
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As there are no chordwise middle-surface stresses, the strain energy per unit length due to the
middle-surface strains is given by

+a/2
Vm:%f Et(e—E)dx LB

—a/2

The strain energy pér unit length due to flexure is given by*

a2 o*w(x,y) 0%w(x,y)
.. 2 - -
' f i D [{Vzw(x:y)} 201 — ) —5 2y? } ax
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by virtue of equation (1).

The total strain energy per unit length is the sum of these two and the condition that this
is a minimum with respect to w requires® w to satisfy the following differential equation

d? dw » Et( — wy
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At this stage it is convenient to introduce the following non-dimensional forms :

£ = 2x/a - I
n = 2yla

¥ = Et|Et,

D* = D|D,

= (#*)*, if E does not vary
. 81 — v¥)a
# = TI6R%,
wi(e ) = () wl),
so that from equation (1)
FwrEa) _ > ©)

Jems = H(Ehomurs + (Phm ]

N
I
——
N
S—
—
T

= temperature-strain parameter

o = & /[(8)ecs ~ H(E) e + Eead]

§ = Xg* (§]>2
, a . J

It should be noted that as x varies from — %a through zero to + }a, & varies from — 1 through
zero to 4 1 and #* and D* vary (for a wing section) from zero through 1 to zero. For a heated
wing, X' is proportional to the difference between the average temperature of the leading and
trailing edges and the mid-chord temperature. -

so that

In non-dimensional form, equation (5) becomes

d2

ast

D*dzw* 44** 31 2) 37pk o3k
(—W—Fv)—}—»,utw:(—v)_lta... @

2.2. Boundary Conditions—The differential equation above, which governs the chordwise
variation of the wing distortion, is of the fourth order and the four boundary conditions which
are required to complete the integration of the equation express the fact that the leading and
trailing edges are free. :

There are also restrictions on the possible forms of ¢ arising from the fact that the middle-surface
stresses have no spanwise resultants ; to achieve this spanwise equilibrium, the wing may expand
and assume a curvature in its own plane. The spanwise equilibrium is considered in Section 2.2.2.

- The total moment acting on the wing section depends on the spanwise radius of curvature and
on the chordwise distortion. A simple expression for the total moment is obtained in Section 2.2.3.
3
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2.2.1. Equilibrium normal to the strip.—The edges of the strip are free and this leads to the
following boundary conditions :

D@ =0 @
[%D*(%—l—v)(}é:ilzo... R 1<)

2.2.9. Spanwise, or circumferential, equilibrium.—The middle-surface forces have no resultant
in the original plane of the strip. Thus by resolving and taking moments we have

+aj2

Eetdx =10, .. . .. .. .. .. (10)
—al2

+a/2
ferzdxzo,.. N ¢ 5
—af2 ’

where ¢ is given by equation (2).

Equations (10) and (11) are valid for any value of R and are therefore valid when e isreplaced
by & or, by virtue of equation (2), w/R. In non-dimensional form equations (10) and (11) then
become

+1
fa*z*dgzo, P ¢ )
—1
+1
ErFAE =0, .. .. .. .. .. .. (83
—1
and
+1
fw*t*dgzo, O ¢ 7
-1
+1
EREAE = 0. .. . (15)

-1

It would appear at first sight that equations (14) and (15) represent two further boundary
conditions for w* in addition to the four given in Section 2.2.1, but this is not so, for they may be
obtained from them by integrating equation (7) and using the equilibrium conditions embodied
in equations (12) and (13).

It should be noted that for a heated wing with a chordwise temperature distribution 7'(x),
f=A, + Ay —aT(x) .. . . .. . .. (16)
and equations (12) and (13) enable the constants 4, and 4, to be determined.

2.2.3. Total moment acting on cross-section of wing.—The moment due to flexure about the
middle surface of the wing is given by

. . +a/2 Epf 82w(x’y) azw(x’y)
Mf = f—u/2 12(1 — 1)2) ( ayz + v A ) ax . .. (17)

and the moment due to the middle-surface forces is given by

+af/2
M, = — Estwdx. .. oo e e ... (18

—al2
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The total moment acting on the cross-section of the wing is the sum of these two and it is shown
in Appendix V that this may be expressed non-dimensionally in the form

MR:fl—lD*al—(Z;—gndg. 9

1
B (- Dra
_1 .

When there are no middle-surface stresses and deflections are small, MR/B = 1 on simple
engineer’s bending theory, so that the expression on the right-hand side of equation (19) provides
a convenient measure of the effects of middle-surface stresses.

In the large-deflection regime w* is not independent of the spanwise curvature and the
expression above for M R/B is therefore a function of the curvature 1/R. The flexural rigidity
in the large deflection regime is

1\ d(MR)
MR+ (5) (R’
so that the rigidity may be determined from equation (19) if w* is known. Unfortunately it is
not generally possible to obtain solutions of equation (7) in terms of known functions. . An
exception is the case of a solid wing, or strip, of constant thickness with a parabolic chordwise
variation of strain. This case is treated in Appendix IV and the results are shown in Figs. 3
and 4. From these results it is possible to estimate the probable range of validity of small-
deflection theory.

3. Small-Deflection Theory.—The initial distortion and stiffness of a thin solid wing of arbitrary
section with an arbitrary chordwise variation of middle-surface strains will now be found. If the
longitudinal curvature of the wing is small, u tends to zero and equation (7) becomes

az A*w*
- D*(d—gz—l—v) —sE(l— vt (20
This may be integrated once to give
a dw* 5
e D*(TZE—ZJH)E:32(1—v2)f1z*e*d5, L@

where the limit of integration, coupled with equation (12), has been chosen to satisfy the boundary
conditions (9). Further integration gives

D* d'w* 2 Frf >'<=x<” ‘ :
(dgz +v)=32(1—v)flflt-s de dt L2

where the limit of integration, coupled with equatioﬁs (12) and (18), has been chosen to satisfy
the boundary conditions (8).

The initial flexural rigidity may now be obtained from equations (19) and (22) :

1 e pE O 2)
GvZf f f pre* dEde de 9X(1 — vz)f 2 (f f fre* 4 df) §d§
Si . —1J1J1 (D 1J1
a1 : — 1 . (23)
‘ D* dé D* dé
—1 : -1

The distortion of the cross-section of the strip may be obtained by integrating equation (22)
to give

- ' : s pt s pt
w* — A’ - B'E — Lvg* + 33(1 — yz)f f (Dl_*f f peet dg dg) dede, .. .. (24)

[V 1J1
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where the constants 4’ and B’ may be determined from equations (14) and (15). A convenient
measure of this distortion is afforded by the camber. If we introduce the non-dimensional
camber parameter I' defined by

4R '
I' = ? {Z(w)x=0 - (w)x%a/z _ (w)x=~a/2} . «. .. .. (25)
we find, from equations (6) and (24), that |

I'= v —35(1 — (f:wdE—l—J-o—lwdf) |
where .. . .. (26)

(L r Et**d&d&)ds
v=](p=].]

3.1. Torsional Rigidity—For purposes of comparison the initial torsional rigidity>*® is given
below : ‘ ‘
L
32(1 + ») Exrek g
?:1—}“ 1 =1 . > e .. .« .. (27)
21 D*dé

-1

Note that the final term on the right-hand side of this equation is (1 -+ »)/2» times the second
term on the right-hand side of equation (23), a result that follows from the identity

1 I3 13 1
f f f pre*dededs = 3| £ver de
—1 1 1 —1

4. Some Particular Cases—The initial flexural rigidity and distortion may always be found
from equations (23) and (24) or (26) by graphical or numerical integration for any chordwise
variation of #* and ¢*. A number of important cases, however, lend themselves to exact integra-
tion, and some of these are considered below. For purposes of comparison the initial torsional
rigidity is also given. Attention is generally confined to distributions of # and &* which are

symmetrical about the mid-chord (§ = 0). For such symmetrical distributions the limits of
1

. 1
integration in equations (23) and (27) may be altered so that the symbols f are replaced by 2 f .
' 0

-1
In the first example the method of derivation is briefly outlined ; elsewhere only the results are
given. Throughout, E is assumed to be constant. The results are plotted in Figs. 5 and 6.

(1) Wing with Diamond Section and Linear Variation of * from Edges to Mid-chord. -

For such a wing
=1 —|&|
and
e¥ =4, —|¢&],

where the constant 4, is found from equation (12) to be 1.

Substituting these values of #* and ¢* in equations (23), (26) and (27) gives

S_M_I_L,LE_722(1—L2)
B 15 360
Z(1 — %)
I'=» 4 6
and
S_T~1__22(1—}—v)
C 15



(if) Wing with Diamond Section and Parabolic Variation of &*.

For such a wing

=1 —|¢]
and
| alig
so that
' Su__y _ TvE 79721 — )
B 30 50400
192(1 — »*
F=»+ (m0v>
and |

c 60 )

(ill) Wing with Lenticular parabolic Section and Parabolic Variation of &*.

For such a wing

=1 g
- and S
8*——é— £
so that
Su X 231 — »%)
B 5 100
_ 2(1 4 ») Z(1 — )
=11 — =5 21‘% o |
(1 — »Y
I = ~\L—7)
. REST/
dw*
- T deE
- and

Se_{_Z(1+)
c- 0 -

It will be seen that for this particular case the following simple relationship connects the

flexural and torsional rigidities :
() ()
14w 1+9J\C/{"

Equation (28) is valid whenever the variations with ¢ of #* and ¢* are such that the chordwise
curvature, (1/R) (d*»*[d¢?), is independent of &.

7
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(iv) Wing with Lenticular Parabolic Section and Quartic Variation of &*.

For such a strip

ph=1— g
and
[ 3 4
¥ = 35 &
so that
Su_ 1 — 20X 72721 — »7)
B 15 161700
392(1 — »%)
P=r+—"%5p
and
Sy [ _ Z(1 4 »)
15

(v) Strip of Constant Thickness with Cubic Variation of &*.

This is not a practical case, but it is the simplest example of a strip with an unsymmetrical
distribution of middle-surface strains.

For such a strip
=1
and

§ = X'g* (t—)z say
61 3 )

where e* = (3£/5) — &° (fresh definitions of ' and &* are given here because those of equation (6)
break down for this particular case) ;

>

whence
8(ZE(1 — »?)
9625

|

:1—-

and

ol

=1.

Thus, due to the presence of middle-surface forces, there is a reduction in the flexural rigidity
but no reduction in the torsional rigidity. '

4.1. Duscussion of Results.—In the examples the flexural rigidity vanishes (i.e., flexural buckling

occurs) slightly before the torsional rigidity vanishes. This result is generally true for a thin
solid wing. :

In the examples with a linear or parabolic stress variation the rigidities S, and S, become
zero for values of X that lie in the range 5-5 << X << 7-5. For the example with a quartic stress
variation the rigidities become zero at an appreciably greater value of X (about 11). This trend
reflects the fact that the middle-surface stresses tend to be more localised in the region of the
leading and trailing edges, and their effect on the wing as a whole is less marked ; if the middle-
surface stresses are sufficiently localised in the region of the leading and trailing edges a spanwise
wavy form of instability may occur there.

8



As for the order of magnitude of X due to aerodynamic heating, it is worth noting that for
Duralumin
a =23 x 107°

so that if
T, — T, = 200° C, say,
and ‘ '
b A,
0 0-03, say,

it follows that
. 2
£ —ofT; — T)) (;)
0
=5-0.

5. Conclusions.—An exact small-deflection analysis has been presented for determining the
flexural rigidity of a thin wing of arbitrary section and infinite aspect ratio with an arbitrary
chordwise distribution of spanwise middle-surface stresses. Approximate bounds for the validity
of this small-deflection analysis have been obtained from an exact large-deflection analysis of the
flexure of a strip of rectangular section with a parabolic chordwise distribution of middle-surface
stresses.

It is shown that the flexural rigidity varies with the magnitude of the middle-surface stresses
(Z) as the product of two linear terms :

' X x
(1-5)(1-5)
where X, and X, are of opposite sign.
The loss of flexural rigidity is comparable to the corresponding loss of torsional rigidity.

If = lies outside the Arange»of %, and Z,, the wing buckles and assumes a spanwise curvature
without the application of a bending moment.

The influence of end effects in a wing of finite aspect ratio is considered in Appendix IL.




Loads and strains

Non-dimensional parameters

Structural properties

LIST OF SYMBOLS

Cartesian axes, Oy measured spanwise, Ox measured chordwise from the
mid-chord of the wing

Spanwise radius of curvature of wing

Displacement towards the centre of spanwise curvature
Chordwise variation of distortion defined in equation (1)
Young’s modulus, which may be a function of T and therefore of
Value of £ at mid-chord (x = 0)

Poisson’s ratio, assumed constant

Wing chord ’

Wing thickness (a function of x)

E£[{12(1 — »*)}

Values of ¢, D at mid-chord (x = 0)

Initial flexural rigidity of strip

Initial torsional rigidity of strip

Value of S,, in the absence of middle-surface stresses

1 fra/g Ef dx

12 —a/2

Value of S, in the absence of middle-surface stresses

28

1+

Spanwise middle-surface strain, measured from a stress-free datum, so that
spanwise middle-surface stress (a function of x)

Value of ¢ when the wing is flat (R = <o)

Total moment acting on cross-section of wing

Part of M due to middle-surface stresses

Part of M due to flexure about middle surface

Strain energy per unit length due to middle-surface stresses

Strain energy per unit length due to flexure
2x]a

10



E
w2
g9
£8)
A= d
894
Z v
- Z"
(¢4
T{x)
TO) Tl
A17A27 AI: B,

LIST OF SYMBOLS-—continued

[ 2 = (Y @ MO+ (]

&/ [(©rms = $(E)acars + (Ehecard]

(200 — @y — (@)rm s
Introduced in equation (26)
Introduced in Section 4
Coefficient of thermal expansion
Temperature ‘

Values of T at mid-chord and leading or trailing edge
Constants

Additional symbols are introduced in the Appendices.
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APPENDIX I
Temperatures due to Aevodynamic Heating

1. A detailed method for determining the temperature distribution in a wing is given in
Ref. 10. A simpler approximate method, similar to that of Ref. 5, is available if the following
simplifications are made : : ’ '

(a) The temperature does not Véry across the wing thickness »
(b) There is no heat flow in the plane of the wing o

(¢) The variation of the heat-transfer coefficient is the same for the top and bottom surface.

With these simplifications we may write for each element of the wing .
dq .

E:Zh(Tm—T) ce T e e . v(29).
Cg=pxtT, .. .. .. e e (30)
where the following additional symbols have been introduced : ' o
time
h = heat-transfer coefficient
T.. = adiabatic wall temperature
g = heat stored per unit area of wing
p = density of wing material
» = specific heat of wing material.

If at time r = 0 the temperature of the wing is 7’ and T, is constant for 7 > 0, correéponding
to a sudden change of velocity, the solution of equations (29) and (30) is given by

T T' = (T — T 1'—exp(;t3—1’>'§; e

where
,

 pnty

Some typical chordwise temperature distributions at various values of =’ are shown in Fig. 7
for solid wings of diamond and lenticular parabolic section, assuming h constant. These
temperature distributions may be converted to stress distributions by using equation (12).

13
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APPENDIX II
End Effects in a wing of Finite Aspect Ratio

1. Imfluence of End Effects on the Middle-Surface Stresses.—The analysis given in the main body
of the report is strictly applicable to a wing of infinite aspect ratio. In a wing of finite aspect
ratio the spanwise middle-surface stresses necessarily fall to zero at the wing tips. In the
neighbourhood of the wing tips there will therefore be a region where the stress pattern is
changing. The magnitude of this ‘end effect’ may be readily estimated by assuming that

(@) the chordwise variation of spanwise stresses remains unaltered
(6) the magnitude of the ‘end effect’ stresses decays exponentially from the tip
(¢) chordwise strains may be ignored.
With these assumptions the problem reduces to the determination of the exponent of the
stress decay, which may be found from energy considerations. We shall apply a longitudinal

displacement v, = a¢ to one end of a semi-infinite strip and determine the strain energy of the
strip. From assumption (b) we have :

vzaéexp(—%g), .. .. .. .. .. . (32)
where 8 is a decay length parameter. On differentiating to obtain the stresses we find
oY
O'y - E-@
~ & y
= — — e —_—
7 e (= 3)
and :
E ov

(1 4 v) ox
_ Ea d: Yy )

o0+ v)d_xeXp( ap)

The strain energy of the strip is given by
[=2] a /2 t

I

0 —af2 ZE

[T g

ax dy

o, + 2(1 4+ »)7,°

exp (— %) dx dy .

In terms of non-dimensional functions it is found, after integrating with respect to y, that

1 28 (2 (de\ : -
VocEf—lt*(s*) as + = _lt*(—cg) e .. .. .. .. (33,

and g is found from the condition that this is a minimum with respect to g, whence

—~af2 2

1

(1+v)f £4(e%)? de '
= . O

- 1 de*\?
2[ () 2

14
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Values of g for examples (i) to (iv) of Section 4 are given below assuming » = 0-3 :

Example Number

() (ii) (iii) (iv)
8 ‘0-190 0-195 | 0-198 | 0-140

The maguitude of the spanwise middle-surface stresses varies as

—os(-3)]

in the region of the wing tip, v being zero at the tip. For a wing of rectangular plan-form
measuring 2/ X a, there are two end effects and the magnitude of the spanwise middle-surface

stresses varies as
(1- cosh (y/ap) )
cosh ({/aB) ]

where v is zero at the centre-line.

The end effects are confined roughly to a distance of fa from a tip and it follows from the
Table above that the tip end effect is only important for wings of aspect ratio less than about 2,
though it may be readily determined from the present analysis.

There is a further ‘end effect’ in a wing as shown in Fig. 8, in which the central region is at a
uniform temperature. This central region acts in the nature of a buffer between the outer regions,
and if sufficiently long it can reduce the middle-surface stresses at the junction sections by
50 per cent. It can be readily verified that the magnitude of the spanwise middle surface stresses
in the outer regions is now given by

@ 1 I:sinh (lofap) sinh {(;; — y)/aB} 4 cosh {(ZOV—{— y)/aﬁ}:| ; (35)
cosh {(¢y + 4,)[aB} '
where v is measured from the junction section.
In the central region
Z(y) _ {cosh (Ljap) — 1} cosh (y/aB) (36)

z cosh {(/y + L) /aB} ’
where y is measured from the centre section. '

Some examples of equations (35) and (36) are shown in Fig. 9, assurhing g =0-19 and
I, = 1-5a for values of /oJa = 0,0-25, 0-5.

The flexural or torsional rigidity at any section may be determined from the analysis in the
main body of the report, using 2(y) instead of Z.

2. End Effect due to Building-in.—Where a wing is built-in, its cross-section is prevented from
distorting and the flexural rigidity at that section will be unaffected by middle-surface stresses.
In the vicinity of a built-in section there will therefore be a region of varying flexural rigidity.
This end effect . may be estimated in a manner similar to that used for the tip end effect. The
following assumptions are made : :

(a) The chordwise variation of the distortion is constant
(b) The spanwise variation of the distortion varies as

(14 5) e (=2)

the linear term ensuring that 9w/0y vanishes at the built-in section.
15
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The parameter y is to be chosen so that the strain energy of the strip is a minimum. It is found
that the strain energy V is proportmnal to
%y 2 200y
(1 — ») (ﬁzw_) R U

1 " d2w$ L "
80y [ D (czgz) d£+ D - o

—1 —1

a¢

t+ 5[ Dy as

-1
and the condition that thisis a mimmum with respect to y yields the following equation for y

1 At 2 : dw*\? , &0
4 % . 2 * . -
807 f P (452) ae =8t DR ”).( d&) A=

as

. 1,
— 3| DEwtrdE=0. .. .. .. .. (37

-1

The chordwise distortion w* is given by equation (24); but some improvement in accuracy
may be achieved by choosing the constant A’ (or B’) differently.

If we confine attention to the case when B’ is zero and regard A’ as unknown, we can minimise
V with respect to 4’ and determine the following equation for A’

1 1 dzw‘k
f Drwrde =4w? [ D*“ge. .. . .. .. (3
1 1 dé

In view of the complexity of equations (24) and (87), an approximate value for y may be obtained
by writing ‘
w¥ o A" — }£%. . . . . .. (39)

After eliminating A’ by using equation (38) and substituting in equation (37), the following
equation for y results :

64y* 155 — v*) — 3% L Ly(1 — ») + 3(I* — L) =0,

1 R . .. (40)
I, = & D* d¢
-1
Values of y for a diamond-section wing and for a lenticular-parabolic-section wing, obtained
from equation (40), are given below

where

Diamond section .. y=0-111

Parabolic section .. | = 0-133

It should be noted that the value of 0-133 for y is strictly correct (within the framework of the
above assumptions) for example (iii) of the main text. This is'because the true variation of w*
in example (1i1) is the same as that of equation (39).

This end effect is confined roughly to a distance of 2ya from the built-in section. The influence
ot this end effect is confined to the flexural rigidity; the torsional rigidity is unaffected. -

The spanwise variation of the flexural rigidity is given approximately by

Su(y) = (Su)sw + B

e Gl (14 Z) e (Z2), .
where y is measured from the built-in section and (Su)zy 1s the value of S, appropriate to the
local value of Z(y).
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APPENDIX III
Analysis for a Built-up Wing

1. In considering a built-up wing, it is necessary to introduce the following symbols :

¢ (overall) thickness of wing
t  total thickness of spanwise stress-bearing material
o Et
(ET)s
Vy Yy values of Poisson’s ratio in x and v directions (see Ref. 11, p. 381)
EI, EI, flexural rigidities/unit length in the absence of middle-surface stresses (see
Ref. 11, p. 381)
EI
Dx* = &
(E1,),
ET
D} = =
’ (EL)o
. _
A= fely” , which tends to unity as the solidity of the wing increases.
127, y y g

The differential equation governing the chordwise distortion of the wing (¢f. equation (5)) is now

'%i,(if—%”(iﬁ )_%(a'—%)zo. N 2T

Confining attention to the small deflection regime, in which w/R may be neglected in comparison
with &, equation (42) may be written non-dimensionally in the form

2003 .
d"” ):3@2(1_%%)5*8*. O T

dssz e T

This equation may be integrated in a similar manner to that described in Section 3 to give

a'w*

The moment due to flexure about the middle surface of the Wing is given by

_ (" _EL (Pwelny) ( )
Mf_f%/2(1_vxvy ol . o (4
and the moment due to the middle surface forces is given by
: o .
Mm = - Eatw dx
—al2
Ix d*w
_f_m dx§ £ )( d2+v)§ L (48)

by virtue of equation, (42). g ‘
17



The total moment acting on the cross-section of the wing is the sum of these two and may
be expressed non-dimensionally, after integrating by parts as in Appendix V, in the form

OMR(L — wp)  (* P
sETy s = D1 ) 2
. Ix 1 dzw* dzw*
_(I_)J IDx*d_EZ(W—!L-vy)dE. R 7 4
o)

The initial flexural rigidity of the wing S, is equal to the initial value of MR and if we write
1
B — la(EL), f D* dt

—1

we find from equations (44) and (47) that

1
31z f [
SM _ 1 1 -1

D* I,
S\ () + % (1),

14 i
B D dé

£ pf
f j Pre* de d&] i
1 1

—1

1 £ pé ’ 2

9151 — v /) | § Dl,ﬁ( [ e e ae) gdf

. 1—-1 x 1 1 . (48)
D,* de

-1

Some. simplification of equation (48) is possible for a wing consisting simply of a top and
bottom skin (which may be relatively thick) and a stabilising filing. For such a wing

I,=1, |
D* = D* O 1)
V== v, = ¥

so that equation (48) becomes

1 & p&
wzf ffi*a*dfdfds
S—M—l—l— e 11
B— . 1
D, de
—1
1 1 £ g 2
92222(1—v2)f m(fjt*e*dg&df);dg
— -2l Yy A da ... (50)
D, de

—1

When the wing is solid, = #, so that 2 = 1, and equation (50) reduces to equation (23) of the
main text. For purposes of comparison with the solid wing it is convenient to consider the
limiting case of a wing with a thin skin of constant thickness (). For such a wing
I.=#) %1,

A =

S0 tha{

. (51)
18



Two examples are now given.
(a) Hollow Wing of Diamond Section and Parabolic Variation of Strain.

For such a wing
*=1,

if the skin thickness does not vary, so that

e* =1 — &
and
D = (1~ 2]

and from equation (50)

Sy _q _ bE 1121 — )
BT 5T 560

while from Refs. 3, 4 and 5 (bearing in mind the fact that, because of the stabilising filling, the
wing acts as a ‘ plate " instead of a hollow tube) :

Sy_{_ 221+ :

C 15

(b) Hollow Wing of Lenticular Parabolic Section and Pozmbolichz'oition of Strain.

For such a wing

Dv* — (1 — 52)2 ,
so that :
Sw _2(1 + ») Z(1 — )
7= ! T R

while from ’Refs. 3,4and 5

Sr_q_21+7)
C 2 -

2. Discussion.—The variations of the flexural and torsional rigidities with X for examples
(a) and (b) above are shown in Fig. 10.

It should be noted that in the above examples the skin thickness was constant and, if the heat
capacity of the stabilising filling could be ignored, there would be no chordwise temperature
gradients due to aerodynamic heating unless the heat-transfer coefficient varies in the chordwise
direction.
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APPENDIX IV
Large-Deflection Solution for a Solid Strip of Constant Thickness
1. We consider here the behaviour of a strip of constant thickness with a parabolic chordwise

variation of temperature and a constant value of E. For such a simple case the differential
equation (7) may be readily formulated and solved.

We have :
| ﬂ@:n+m—zw%an N (-
so that & . '
szqn—mg—eg, S -
by virtue of equations (12) and (13). Further, -
tr=D*=1, .. .. o .. .. . .. (54)

so that equation (7) reduces to
d'w* , 1
7§+@mw:&u_ww§_ﬂ
where ' . .o .. .. .. .. .. (55

ZZML—IQGY

The solution of equ_ation'(55) subject to the boundary conditions (8) and (9) is given by

. 21— »H(1 — 3&° 3Z(1 — »* ¢ — s
w* — ( V4)/E4 )_I_( (4”6 ?’)___2_’;;2) (m) cosh p& cos ué
oF + Fs\ . . | |
-{_(ﬁc—s)vsmhuésmu&;‘, . . .. (36)

where %, &, ¢, s stand for cosh p, sinh g, cos u, sin u respectively.

2. Bending-Moment—Curvature Relationship‘—The bending-moment-curvature relationship is
obtained by substituting equation (56) in equation (19), whence '

MR 1— %, o - .
= g, — (1 — g, T
where _ B
_3(#t 4§ ?Fcs
1= 4u(¢5 + cs) T (¢ - cs)?
.3 FE L §? CLcCs.
#_E@My+m*wy+mz ’ (58)
by — 9 5(5% 4 5% €Lcs
P4 ) - 4u(65 + o) T (¢S + cs)?)

The variation of MR/B against a®/(R¢), i.e., against 2-424%, is plotted in Fig. 3 for various
values of X. The variation of (Ma?)|B¢ with a?*/(R¢) (i.e., the bending-moment—curvature relation-
ship) is plotted in Fig. 4 for various values of X.

The initial flexural rigidity vanishes when ~ = 5:07. For values of X greater than this critical
value the strip assumes a spanwise curvature without the application of a bending moment.
For example, if X' = 7, it is seen from Figs. 3 or 4 that a*/(Rf) = 3-64 when the strip is unloaded.

20



APPENDIX V
Total Moment Acting on Cross-Section of Strip

1. The total moment acting on a cross-section of the strip is obtained from equations (17) and
(18). In non-dimensional form these equations.reduce to

MR B f_ [ (1 + dzw*) — wHA{BZeH(1 — o) — 4u4w*}} ds

B (- [ Drae

-1

(59)

The numerator of this expression 51mphﬁes considerably. From equation (7) the numerator
may be written as .
a*w*
*
D= (G + )| 2

i
_ k N e
de [wd§D<d§2+

() e (G o)

on integrating by parts. Further, by virtue of the boundary condition (9), the middle term above
vanishes. Integration by parts again gives

1 a*w* dw* dPw* 1 ! " d*w d*w*
D* (14 e as + [0 G (G o)) — [ om (G +0) G e

—1
Aw*\?
1= ( d&® )

by virtue of the boundary condition (8).

1 d2w* 1 dZ

ES
P (14 G ) 26 - f[w ar
1

— D*(l—{—v

—1

dzw*)

-1

1
= D*

-1

aé,

Equation (19) follows from these results.
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Fic. 1. Cross-section of wing..

FiG. 2. The distorted wing.
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Appendix I).
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