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Summary.--This report considers the loss of flexural rigidity of a thin wing due to the presence of middle-surface 
stresses resulting from aerodynamic heating. The spanwise properties of the wing are assumed constant but the wing 
section is arbitrary. The loss of flexural rigidity is comparable with the corresponding loss of torsional rigidity. 

1. Introduction.--One of the problems arising from the aerodynamic heating of a wing is that  
thermal stresses may reduce the overall stiffness of the wing. 

If a thin solid wing is accelerated to a high Mach number its temperature will eventually reach 
the saturation temperature appropriate to that  Mach number. Before this steady state occurs, 
however, there is a transient period during which the thinner parts of the wing, due mainly to 
their smaller heat capacity, attain a higher temperature than the thicker parts of the wing. These 
chordwise variations of temperature give rise to a thermal stress distribution which, away from 
any end effect, is characterised by spanwise compressive stresses at the leading and trailing edges 
and equilibrating tensile stresses at the mid-chord. If the wing remains perfectly flat these 
middle surface stresses are completely self-equilibrating ; but if Lhe wing is twisted the middle 
surface stresses have a resultant torque acting in the same sense as the twist, and this results 
in an effective reduction of the torsional rigidity l, ", 3, 4, 5, 6 

The present report is concerned with the loss of flexural rigidity due to these middle surface 
stresses. If the Wing bends, its cross-section distorts for two reasons: first, because of the 
Poisson's ratio effect, and second, because of the radial component of the middle surface stresses. 
The middle surface stresses tend to relieve themselves as in the Brazier effecff, the elements in 
compression expanding by moving radially further away from the centre of curvature and the 
elements in tension eontractidg by moving radially towards the centre of curvature. 

These two components of the distortion of the cross-section are, roughly speaking, additive in 
the sense that  elements containing middle surface stresses of the same sign move away from the 
neutral axis in the same direction. Because of this distortion the middle surface stresses now 
have a resultant moment acting in the same sense as the applied moment, and this results in an 
effective reduction of the flexural rigidity. 

* R.A.E. Report Structures 229, received 28th February, 1958. 



The main body of the report considers the flexural behaviour of a thin solid wing of infinite 
aspect ratio with a given chordwise distribution of spanwise middle surface stresses. How these 
middle surface stresses arise due to aerodynamic heating is discussed briefly in Appendix I and 
the influence of end effects in a wing of finite aspect ratio is considered in Appendix II. The 
flexural rigidity of a built-up wing is considered in Appendix III. 

2. Method of Analysis in Large-Deflection Theory.--In order to determine the flexural rigidity 
of the wing it is first necessary to determine the chordwise variation of distortion of the wing 
due to a given spanwise curvature. The differential equation which governs this distortion is 
found in Section 2.1. The boundary conditions appropriate to this differential equation, and 
hence expressions for the spanwise bending moment and the flexural rigidity are found in 
Section 2.2. The complete large-deflection behaviour of a strip of constant thickness with a 
parabolic chordwise variation of middle-surface stresses is considered in Appendix IV. A small- 
deflection theory for wings of arbitrary chordwise thickness variation is presented in Section 3. 

2.1. Derivation of the Differential Equation.--The chordwise variation of the distortion of the 
wing may be found most conveniently by variational methods. We shall consider a long solid 
wing with arbitrary chordwise thickness variation, bent into the form of a 'near cylinder' of 
radius R. The distortion of the wing is then of the form 

~'~ + w(x) w(x, y) -- 2R (1) 

and w(x), hereafter referred to simply as w, is such that the total strain energy of the wing is a 
minimum. 

The strain energy due to strains in the middle surface of the wing will now be determined. 
A displacement w from the cylindrical shape, positive if directed toward the centre of the cylinder, 
reduces the circumferential strain by an amount w/R. The circumferential strain is therefore 
given by 

e = e -- -~ . . . . . . . . . . . . .  (2) 

As there are no chordwise middle-surface stresses, the strain energy per unit length due to the 
middle-surface strains is given by 

V,~ { Et R)~dx . . . . . . . . . . .  

The strain energy per unit length due to flexure is given by 8 

V i ½[+~'/~D[ _ _ 

~2w(x, y) ~w(x, y)] 
J-~/~ ax ~ ~ ] dx 

[ d~w ~ ~ 2 ~ d~w 1 I  
= ½ [+~/~ D \-d~/ + R dx ~ + dx . . . .  

d --c~12. 

by virtue of equation (1). 

(4) 

The total strain energy per unit length is the sum of these two and the condition that  this 
is a minimum with respect to w requires 9 w to satisfy the following differential equation 

d ~ id~ 
. . . . .  . . . .  
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At this stage it is convenient  to introduce the  following non-dimensional  forms : 

w*( , ,  n) = 

so tha t  from equat ion (1) 

722" 

= 2 x / a  

= 2y /a  

t* = Et/Eoto 

D* = D/Do 

= (t*) 3 , if E does not vary  

¢~ 3(1 - -  v~)a ' 
- -  16R2to ~ 

7 = 

so tha t  

, 

_ 1 ~ (~) . . . .  ~ i J  ~{( ) ,:o/2 + 

temperature-s t ra in  parameter  

g l  [(g).=o --  ½{(').=./, + (g).~_.,,}] , 

e = z ~ *  (~)  ~ 

. . . .  (6) 

I t  should be noted  tha t  as x varies from --  ½a through zero to + ½a, ~ varies from --  1 through 
zero  to + 1 and t* and D* vary  (for a wing section) from zero through 1 to zero. For a heated  
wing, 27 is proport ional  to the  difference between the average tempera ture  of the  leading and 
trailing edges and the  mid-chord temperature.  

In  non-dimensional  form, equat ion (5) becomes 

)I d ~  \ d~ ~ + ~ + 4~t*w * = 3(1 --  v~)Zt*e* . . . . . . .  (7) 

2.2. Boundary  Condit ions.---The differential equat ion above, which governs the  cho,dwise 
variat ion of the  wing distortion, is of the f o m t h  order and the four boundary  conditions which 
are required to complete the  integrat ion of the  equat ion express the fact tha t  the  leading and 
trailing edges are free. 

There are also restrictions on the possible forms of e arising from tile fact tha t  the  middle-surface 
stresses have no spanwise resultants ; to achieve this spanwise equilibrium, the  wing may  expand 
and assume a curvature in its own plane. The spanwise equilibrium is considered in Section 2.2.2. 

T h e  total  momen t  acting on the  wing section depends on the spanwise radius of curva ture  and 
on the  Chordwise distortion. A simple expression for the  to ta l  momen t  is obtained in Sect ion 2.2.3. 
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2.2.1. Equi l ibr ium normal to the s t r i p . - -The  edges of the strip are free and this leads to the 
following boundary conditions • 

E )1 
D *  ~ - ~  + ~ = 0 ,  . . . . . . . . . . . .  (s) 

~=4-1 

. . . . . . .  ° . . . . . . .  

2.2.2. Spanwise,  or circumferential, equ i l ibr ium. - -The  middle-surface forces have no resultant 
in the original plane of the strip. Thus by resolving and taking moments we have 

f +~/2 E~t dx = O, . . . . . . . . . . . .  (10) 
- 4 /  

f +"/~ xEet  dx = O, . . . . . . . . . . . .  (11) 
-~/~ 

where s is given by equation (2). 

Equations (10) and (11) are valid for any value of R and are therefore valid when s isreplaced 
by e or, by virtue of equation (2), w/R.  In non-d~mensional form equations (10) and (11) then 
become 

f ~  ~*t* d~ = O , . . . . . . . . . . . . .  (12) 

= o  . . . . . . . . . . . . .  

and 

f ~ i  w*t* d~ = O , . . . . . . . . . . . .  (14) 

f ~ l  ~w*t*" d~ = 0  . . . .  . . . . . . . . .  (15) 

I t  would appear at first sight that  equations (14) and (15) represent two further boundary 
conditions for w* in addition to the four given in Section 2.2.1, but  this is not so, for they may be 
obtained from them by integrating equation (7) and using the equilibrium conditions embodied 
in equations (12) and (13). 

I t  should be noted tha t  for a heated wing with a chordwise temperature distribution T(x),  

e = AI  + A ~ x -  o~T(x) . . . . . . . . . . . .  (16) 

and equations (12) and (13) enable the constants A1 and A2 to be determined. 

2.2.3. Total moment acting on cross-section of w i n g . - - T h e  moment due to flexure about the 
middle surface of the wing is given by 

M I =  12(1 ~2)\ O~ -t- ~ - -  d -a /2  

and the moment due to tile middle-surface forces is given by  
= __ ~+a12 

M,, Eetw dx . . . . .  
,J--a,2 

4 

a2w(x,y) 
dx (17) 

dx ~ ] . . . .  

. . . . . . . .  ( 1 8 )  



The total  moment acting on the cross-section of the wing is the sum of these two and it is shown 
in Appendix V that  this may be expressed non-dimensionaUy in the form 

f~ D. ll _ [d~w*~t M R _  _~ \ d~-] t de (19) 
. . . . .  . , ,  

If B (1 -- ~ D* de 
- -1  

When there are no middle-surface stresses and deflections are small, M R / B  = 1 on simple 
engineer's bending theory, so that  the expression on the right-hand side of equation (19) provides 
a convenient measure of the effects of middle-surface stresses. 

In the large-deflection regime w* is not independent of the spanwise curvature and the 
expression above for MR/B is therefore a function of the curvature 1/R. The flexural rigidity 
in the large deflection regime is 

MR + ~/(1/R) ' 

so that  the r ig id i tymay  be determined fl-om equation (19) if w* is known. Unfortunately it is 
not generally possible to obtain solutions of equation (7) in terms of known functions.. An 
exception is the ease of a solid wing, or strip, of constant thickness with a parabolic chordwise 
variation of strain. This case is treated in Appendix IV and the results are shown in Figs. 3 
and 4. From these results it is possible to estimate the probable range of validity of small- 
deflection theory. 

3. Small-Deflection Theory.--The initial distortion and stiffness of a th in  solid wing of arbitrary 
section with an arbitrary chordwise variation of middle-surface strains will now be found) If the 
longitudinal curvature of the wing is small, ~ tends to zero and equation (7) becomes 

d = [~=w, ~I v~)~*=* • . .  d e = l D *  \ de = + /}  = 3 z ( 1 -  . . . . . .  
(20) 

This may be integrated once to give 

~---~l D*{d2w*k de s + v) I = 32:(1 --v=)~*t*e * de • . . . . .  (21) 

where the limit of integration, coupled with equation (12), has been chosen to satisfy the boundary 
conditions (9). Further integration gives 

) +  -- - f°l \ de ~ ~ :~ , . .  . .  

where the limit of integration, coupled with equations (12) and (13), has been chosen to satisfy 
the boundary conditions (8). 

The initial flexural rigidity may now be obtained from equations (19) and (22) : 

6~zfl 1 fl f*l t*** de de de 9X~(1- ~)f[1 l~* if1 f* t*=* de de)=l de 
s = _  1 + - - (23) 

The distortion of the cross-section of the strip may be obtained by integrating equation (22) 
to give 

w * = A ' +  B ' e - - ½ v e = q - 3 x ( 1  ' "~)flfo f~ t*e*dede) dede, .. .. (24) 



where the constants  A '  and B' may be de te rmined  from equations (14) and (15). A convenient  
measure of this distort ion is afforded by the camber. If we introduce the  non-dimensional  
camber parameter  F defined by  

4R 
/ 7 -  a2 {2(w).=o- (w),=~/2- (w) . . . .  /~} . . . . . . . .  (25) 

we find, from equations (6) and (24), tha t  

(fl0 F )] V = , p - - 3 2 " ( 1 - -  v ~) ~ o d ~ +  o ~od~ 

where . . . . . . .  (26) 

W =  o ~ i i 

3 . 1 .  

below • 
Torsional Rigidity.--For purposes of comparison the  initial torsional rigidity 3, 4, 5 is given 

f 
l 

ST 32'(1 + v) #~t*e* d~ e 
--1 

C -- 1 + 1 . . . . . . . .  (27) 
2f D* 

--1 

Note tha t  the final te rm on the r ight-hand side of°this equat ion is (1 + v)/2v, t imes the second 
te rm on tl~e r ight -hand side of equat ion (23), a result tha t  follows from the  ident i ty  

1 ~ t ' e *  d~ d~  d~ = ~ t * e *  d~ . 
- -1  1 --1 

4. Some Particular Cases.--The initial flexural r igidity and distort ion may  always be found 
from equations (23) and (24) or (26) by  graphical or numerical  integrat ion for any chordwise 
variat ion of t* and e*. A number  of impor tan t  cases, however, lend themselves to exact integra- 
tion, and some of these are considered below. For purposes of comparison the  initial torsional 
r igidity is also given. At ten t ion  is generally confined to distributions of t* and e* which are 
symmetr ica l  about  the  mid-chord (# = 0). For such symmetr ical  distributions the  limits of 

in tegrat ion in equations (23) and (27) may  be altered so tha t  tile symbols are replaced by  2 . 
--1 

In  the  first example the method  of derivat ion is briefly outl ined ; elsewhere only the results are 
given. Throughout ,  E is assumed to be constant.  The results are p lo t ted  in Figs. 5 and 6. 

(i) Wing with Diamond Section and Linear Variation of e* from Edges to Mid-chor& 

For such a wing 
t*=  1-1 1 

and 

where the  constant  A1 is found from equat ion (12) to be ½. 

Subst i tut ing these values of t* and e* in equations (23), (26) and (27) gives 

S_~_M 1 4v2 7272(1 -- v 2) 
B 15 360 

6 
and 

S T  
C 15 



(ii) Wing with Diamond Section and Parabolic Variation of e*. 

For such a wing 

and  

so tha t  

z*= 1 - 1 ~  I 

1 
8 ~ m ~ 

6 

S M =  1 7rE 79722(1 --  v~) 
B 30 50400 

and  

F - - v  + 1927(1 --  v 2) 
120 

S r  1 7x(1 + v) 
C 60 

(iii) Wing with Lenticular lbarabolic Sectioc¢ and Parabolic Variatio~ of ~*. 

For such a wing 

and 

so tha t  

t * = l  - ~2 

1 
5 

SM__ 1 vX X~(1 --  v~) 
B 5 100 

x(1 + ~) x ( 1 -  ~) ,oil  ol, 
I ' =  v q_Z,l( 

y~ 10 

• and  

d 2 w *  

d~ 2 

s_~=l z(l+~) 
C 10 

I t  will be seen t ha t - t o r  this par t icular  case the  following simple relat ionship connects the 
flexural and torsional rigidities • 

SM 
B C 1 + ~  \ 1 + ~ ]  " "" 

Equa t ion  (28) is val id whenever  the  var iat ions w i t h ,  of Z* and e* are such tha t  the  chordwise 
CUlvature, ( l /R) . (d~o*/d~) ,  is independent  of ~. 

7 



(iv) Wing with Lenticular Parabolic Section and Quartic Variation of e*. 

For such a strip 

and  

so tha t  

t* = 1 --  ~2 

3 

__Su= 1 2 ~ . 2  72722(1 -- ~2) 
B 15 161700 

and 

r = ,  + 39z(1  - 
560 

S_~__l Z(l+~,) 
C 1 5  

(v) Strip of Constant Thickness with Cubic Variation of e*. 

This is not  a practical case, but  it is the  simplest example of a strip with an unsymmetr ica l  
distr ibution of middle-surface strains. 

For  such a strip 

and 
t * =  1 

= Z ' e *  a ' s ay '  

where e* = (3~/5) --  ~3 (fresh definitions of Z '  and s* are given here because those of equat ion (6) 
break down for this particular case) ; 

whence 

and 

= 1 -  
B 9625 

S__r = 1.  
C 

Thus, due to the  presence of middle-surface forces, there is a reduct ion in the  flexural r igidity 
but  no reduct ion in the  torsional rigidity. 

4.1. Discussion of ResuIts.--In the examples the  ttexural r igidity vanishes (i.e., flexural buckling 
occurs) slightly before the  torsional r igidity vanishes. This result is generally t rue for a th in  
solid wing. 

In the  examples wi th  a linear or parabolic stress variat ion the  rigidit ies S~ and ST become 
zero for values of E tha t  lie in the  range 5.5 < E < 7.5. For the  example with a quartic stress 
variat ion the  rigidities become zero at an appreciably greater value of E (about 11). This t rend  
reflects the fact tha t  the  middle-surface stresses t end  to be more localised in the region of the  
leading and trailing edges, and their effect on the  wing as a whole is less marked  ; if the middle- 
surface stresses are sufficiently localised in the  region of the  leading and trailing edges a spanwise 
wavy  form of instabil i ty ma y  occur there. 

8 



As for the order of magnitude of 27 due to aerodynamic heating, it is worth noting that  for 
Duralumin 

-----2"3 × 10 -5 

so that  if 
TI -- To = 200 ° C, say, 

and . . 

t2 = 0 .03 ,  say, 
a 

it follows that  

x = To) 

-~ 5 . 0 .  

5. Conclusions.--An exact small-deflection analysis has been presented for determining the 
flexural rigidity of a thin wing of arbitrary section and infinite aspect ratio with an arbitrary 
chordwise distribution of spanwise middle-surface stresses. Approximate bounds for the validity 
of this small-deflection analysis have been obtained from an exact large-deflection analysis of the 
flexure of a strip of rectangular section with a parabolic chordwise distribution of middle-surface 
stresses. 

I t  is shown tha t  the flexural rigidity varies with the magnitude of the. middle-surface stresses 
(Z) as the product of two linear terms : 

where Z, and Z~ are of opposite sign. 

The loss of flexural rigidity is comparable to the corresponding loss of torsional rigidity. 

If Z lies outside the range .of Z~ and Z=, the wing buckles and assumes a spanwise curvature 
without the application of a bending moment. 

The influence of end effects in a wing of finite aspect ratio is considered in Appendix II. 
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LIST OF SYMBOLS 

Cartesian axes. Oy measured spanwise, Ox measured chordwise from the 
mid-chord of the wing 

Spanwise radius of curvature of wing 

Displacement towards the centre of spanwise curvature 

Chordwise variation of distortion defined in equation (1) 

Young's modulus, which may be a function of T and therefore of x 

Value of E at mid-chord (x = 0) 

Poisson's ratio, assumed constant 

Wing chord 

Wing thickness (a function of x) 

Values of t, D at mid-chord (x = O) 

Initial flexural rigidity of strip 

Initial torsional rigidity of strip 

Value of SM in the absence of middle-surface stresses 

1 f+~/~ Et 3 dx 
12 ~_~/. 

Value of Sr  in the absence of middle-surface stresses 

2B 
1 + ~  

Spanwise middle-surface strain, measured from a stress-free datum, so that  

spanwise middle-surface stress (a function of x) 

Value of e when the wing is flat (R = ~o) 

Total moment acting on cross-section of wing 

Part  of M due to middle-surface stresses 

Part  of M due to flexure about middle surface 

Strain energy per unit length due to middle-surface stresses 

Strain energy per unit length due to flexure 

2x/a 

2y/a 

Et/Eoto 

D/Do 

1 3a~(1 - ~) tl/~, 
~-R~o ~ , 

7 w 
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r 
c~ 

o~ 

T(x) 

To, T1 
A .  A~, A', B' 

LIST OF SYMBOLS---co~tinued 

4R 
r - a~ { 2 ( w ) . = 0 -  (w)~=~/2-  (~) . . . .  /2} 

Introduced in equation (26) 

Introduced in Section 4 

Coefficient of thermal expansion 

Temperature 

Values of T at mid-chord and leading or trailing edge 

Constants 

Additional symbols, are introduced in the Appendices. 

11 



No. Author 

1 H . L .  Dryden and J. E. Duberg . .  

2 L . F .  Vosteen and K. E. Ful le r . .  

3 R . L .  Bisplinghoff 

4 N . J .  Hoff . . . . . . . .  

5 B. Budiansky and J./vIayers . .  

6 J . H .  Argyris . . . . . .  

7 L .G .  Brazier . . . . . .  

8 S. Timoshenko . . . . . .  

9 H. and B. S. Jeffreys . . . .  

10 J. Kaye . . . . . . . .  

11 S. Timosbenko . . . .  

R E F E R E N C E S  

Title, etc. 

Aero-elastic effects of aerodynamic heating. Paper presented to 5th 
General Assembly A.G.A.R.D. June, 1955. 

Behaviour of a cantilever plate under rapid-heating conditions. N.A.C.A. 
Research Memo. L.55E20e. July, 1955. 

Some structural and aero-elastic considerations of high-speed flight. 
"J.Ae.Sci. April, 1956. 

Approximate analysis of the reduction in torsional rigidity and torsional 
buclding of solid wings under thermal stresses. J.Ae.Sci. June, 1956. 

Influence of aerodynamic heating on the effective torsional stiffness of 
thin wings. J.Ae.Sci. December, 1956. 

The aircraft under stress and strain. Inaugural lecture at Imperial  
College. London. May, 1956. 

Proc. Roy. Soc. Series A. Vol. 116, p. 104. 1927. 

Theory of Plates a~td Shells. McGraw-Hill. 1940. 

Methods of Mathematical Physics. 2nd edition. Cambridge. 1950. 

The transient temperature distribution in a wing flying at supersonic 
speeds. J.Ae.Sci. December, 1950. 

Theory of Elastic Stability. 1st edition. McGraw-Hill. 1936. 

12 



APPENDIX I 

T e m p e r a t u r e s  d u e  to A e r o d y n a m i c  H e a t i n g  

1. A detailed method for determining the temperature distribution in a wing is given in 
Ref. 10. A simpler approximate method, similar to that  of Ref. 5, is available if the following 
simplifications are made" 

(a) The temperature does not vary acr6ss the wing thickness 

(b) There is no heat flow in the plane of the wing _ 

(c) The variation of the heat-transfer coefficient is the same for the top and bottom surfade. 

With these simplifications we may write for each element of.the wing " .. 

d q  2h(T~ -- T) . . . . .  

q p ~ t T  i . . . . . . . .  " . .  • • 

where the following additional symbols have been introduced " 

= time 

h = heat-transfer coefficient 

T~ = adiabatic wall temperature 

q = heat stored per unit area of wing 

p = density of wing material . . . .  

= specific heat of wing material. .. 

If at time ~ = 0 the temperature of the wing is T '  and T~; is constant fo r ,  > 0, corresponding 
to a sudden change of velocity, the solution of equations (29) and (30) is given by 

{ ( -  . .  . .  (31) T - -  T'----(T~=-- T') 1 - - e x p \  t* ] } '  "" 

where 
h, ! 

T 

p ~t0  " 

. .  (29)  

. .  (30) 

Some typical chordwise temperature distributions at various values of , '  are shown in Fig. 7 
for solid wings of diamond and lenticular parabolic section, assuming h constant. These 
temperature distributions may be converted to stress distributions by using equation (12). 
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A P P E N D I X  II  

End Effects in a wing of Finite Aspect Ratio 

1. Influence of End Effects on the Middle-Surface Stresses.--The analysis given in the main body 
of the report is strictly applicable to a wing of infinite aspect ratio. In a wing of finite aspect 
ratio the spanwise middle-surface stresses necessarily fall to zero at the wing tips. In the 
neighbourhood of the wing tips there will therefore be a region where the stress pat tern is 
changing. The magnitude of this 'end effect' may be readily estimated b y  assuming that  

(a) the chordwise variation of spanwise stresses remains unaltered 

(b) the magnitude of the 'end effect' stresses decays exponentially from the  tip 

(c) chordwise strains may be ignored. 

With these assumptions the problem reduces to the determination of the exponent of the 
stress decay, which may be found from energy considerations. We shall apply a longitudinal 
displacement v0 = ae to one end of a semi-infinite strip and determine the strain energy of the 
strip. From assumption (b) we have 

v = ag exp 

where ~ is a decay length parameter. 

and 

(7y = E  Ov 
Oy 

(--5) . . . . . . . . . . .  
On differentiating to obtain the stresses we find 

E ~v 
* ' Y -  2(1 + v) 0x 

. .  (32) 

Ea dg / 
m 

The strain energy of the strip is given by 

V 0 ~ - ~ / 2  2 E  a'~ -[- 2(1  + v )~ , ,  ~ dx dy 

- 

In terms of non-dimensional functions it is found, after integrating with respect to y, tha t  

v ~  _1 ( ~ * ? d ~ + l + ~  _1 ~d~!  d~ . . . . . . . .  (33) 

and/~ is found from the condition that  this is a minimum with respect to fl, whence 

f (1 + ~,) t*(~*) ~ d~ 
--1 

f12 = . . . . . . . . . .  (34)  
2 t* d~  
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Values of $ for examples (i) to (iv) of Section 4 are g ivenbelow assuming v -- 0 . 3 :  

Example Number (i) (ii) . (iii) (iv) 

fl 0" 190 0" 195 0- 193 0" 140 

The magniLude of the spanwise middle-surface stresses varies as 

11 
in the region of the wing tip, y being zero at the tip. For a wing of rectangular plan-form 
measuring 2l × a, there are two end effects and th.e magnitude of the spanwise middle-surtace 
stresses varies as 

cosh (y/a~) 
1 cosh ~ ] ' 

where y is zero at the centre-line. 

The end effects are Confined roughly to a distance of /~a from a tip and it follows from the 
Table above tha t  the tip end effect is only important  for wings of aspect ratio less than about 2, 
though it may be readily determined from the present analysis. 

There is a further 'end effect' in a wing as shown in Fig. 8, in which the central region is at a 
uniform temperature. This central region acts in the nature of a buffer between the outer regions, 
and if sufficiently long it can reduce the middle-surface stresses at the junction sections by  
50 per cent. I t  can be readily verified that  the magnitude of the spanwise middle surface stresses 
in the outer regions is now given by 

Z(y) _ 1 -- [sinh (lo/afl) sinh {(/1 -- y)/afi} + cosh {(/o + Y)/afl} 1 .. (35) 
Z cosh {(/o -t- ll)lafl} ' 

where y is measured from the junction section. 

In the central region 

z ( y ) _  ( eos h  1} c o s h  (yla ) (36) 
Z c o s h  {(Z0 + ' "" " . . . . . . .  

where y is measured from file centre section. 

Some examples of equations (35) and (36) are shown in Fig. 9, assuming ~ = 0.19 and 
l~ = 1.53 for values of lo/a = O, 0.25, 0 . 5 .  

The flexural or torsional rigidity at any section may be determined from the analysis in the 
main body of the report, using Z(y) instead of 2:. 

2. End Effect due to Bui ld ing- ln . - -where  a wing is built-in, its cross-section is prevented from 
distorting and the flexural rigidity at that  section will be unaffected by middle-surface stresses. 
In the vicinity of a built-in section there will therefore be a region of varying flexural rigidity. 
This end effect .may be estimated in a manner similar to tha t  used for the tip end effect. The 
following assumptions are made : 

(a) The chordwise variation of the distortion is constant 
(b) The spanwise variation of the distortion varies as 

+ exp (-- 2 ) '  
the linear term ensuring tha t  ~w/Oy vanishes at the built-in section. 

25 
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The parameter ~ is to be chosen so that the strain energy of the strip is a minimum. It is found 
that the strain energy V is proportional to 

8o, ; ÷ 8 _ 
_~ \ d~ ~ / ~ _~ \ d~ ! - ~w* d~ ~ t d~ 

; l D * ( w * )  ~ d~ 
+ 7  3 -1 

and the condition that  this is a minimum with respect to y yields the following equation for y 

8 0 y 4 f  I D * (d2w*~2 d~ - -  8~ 2 f l  D ,  l ( l  __ v) [dw,,i2 __ vw* d2w*t, " 
-1 \ d~ ~ ] -1 \ d~ ] d~ 2 j d~ 

f - -  3 D*(w*)  2 d ~ =  0 . . . . . . . . .  (37) 
- - 1  

The chordwise distortion w* is given by equation (24) ; but some improvement in accuracy 
may be achieved by choosing the constant A'  (or B') differently. 

If we confine attention to the case when B '  is zero and regard A'  as unknown, we can minimise 
V with respect to A '  and determine the following equation for A'  

D ' w *  d~ = 4vy ~ D* d~ (38) 
- - 1  - - 1  d ~ -  " ° " " ° " ° " • 

In view of the complexity of equations (24) and (37), an approximate value for y may be obtained 
by writing 

w *  < A '  - -  { ~ 2  . . . . . . . . . . .  ( 3 9 )  

After eliminating A'  by using equation (38) and substituting in equation (37), the following 
equation for y results : 

64V~Io~(5 -- v ~) -- 32r21012(1 -- v) + 3(I22 -- I0[4) = O, "1 

where l . . (40) 

f 
l . . . . .  

I~ = ~D*  d~ 
- - 1  

Values of ~, for a diamond-section wing and for a lenticular-parabolic-section wing, obtained 
from equation (40), are given below 

D i a m o n d  s e c t i o n  . .  y = 0-  111 

P a r a b o l i c  s e c t i o n  . .  y = 0 .  133 

It should be noted that the value of 0. 133 for y is strictly correct (within the framework of the 
above assumptions) for example (iii) of the main text. This is because the true variation of w* 
in example (iii) is the same as that of equation (39). 

This end effect is confined roughly to a distance of 2ya from the builtdn section. The influence 
oi this end effect is confined to the flexural rigidity; the torsional rigidity is unaffected. 

The spanwise variation of the flexural rigidity is given approximately by 

B (1 Y 

where y is measured from the built-in section and (SM)~/y/ is the value of S~ appropriate to the 
local value of 22(y). 
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APPENDIX IIl 

Analysis for a Built-up Wing 

1. In considering a built-up wing, it is necessary to introduce the following symbols : 

t (overall) thickness of wing 

[ total thickness of spanwise stress-bearing material 

Ef  [ ,  - -  
(E )0 

~, % values of Poisson's ratio in x a n d y  directions (see Ref. 11, p. 381) 

E!,, EIy flexural rigidities/unit length in the absence of middle-surface stresses (see 
Ref. 11, p. 381) 

EL 
D :¢ ~¢ (EL)o 

E5 
D y *  - -  (EI,)o 

f°t°~ , which tends to unity as the solidity of the wing increases. Z --  121,,0 

The differential equation governing the chordwise distortion of the wing (@ equation (5)) is now 

- -  . R - -  o • • • • o . 

Confining attention to the small deflection regime, in which w/R may be neglected in comparison 
with ~, equation (42) may be written non-dimensionally in the form 

d t [d w * \1 I D , * \ d ~  + % / l = / ~  3ZZ(1--vg , ) [*e*  . . . . . . . . . . .  (43) 

This equation may be integrated in a similar manner to that  described in Section 3 to give 

D *kde . . . . . . . . .  (44) 

The moment due to flexure about the middle surface of the wing is given by 

F" E L  l y) + 

and the moment due to the middle surface forces is given by 

. ~ _ _  ~ a / 2  

O - - a l  2 

by virtue of equation (42) .... 

~w(x'Y) I dx (45) v x 3 X ~  . . . .  

Edw dx 

d ~ EI~ (R d~w 
W d - ~ l ( 1 - - v ~ % ) .  ~ - /  %)I dx 

17 
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The total moment acting on the cross-section of the wing is the sum of these two and may 
be expressed non-dimensionally, after integrating by parts as in Appendix V, in the form 

2MR(1 - -  ~'~,~,) 1 (1 d2w*~ 
2(E~: = f_l n,* + ~'-dg) a~ 

- -  ~ 0 - 1 D ' *  d~ ~ d~ 2 , d~ . . . . . . .  (47) 

The initial flexural rigidity of the wing S~ is equal to the initial value of MR and if we write 

f 
l 

B ---- ½a(EI,)o n,* d~, 
- - 1  

we find from equations (44) and (47) that  

SM== 1 ÷  
B 

1 { D &  I, ' ° a~] a~ 
azzf-l[l~',D,*] ÷ %(L)ol flfl '***ae 

if-1 Dy* d~ 

f l  Dy* d~ 
- - 1  

(48) 

Some simplification of equation (48) is possible for a wing consisting simply of a top and 
bottom skin (which may be relatively thick) and a stabilising filling. For such a wing 

I ,  = Iy ] 

D , * = D / *  ) ,  . .  

7 J x :  7 J y :  

so that  equation (48) becomes 

Su 
B - - 1 ÷  

fff° 6~2Z f 'e* d~ d~ d~ 
- - I  1 . 1 

f l  D~* d8 
- - 1  

I 
fl  Dy* d8 

- - 1  

. . . . . .  (49) 

. . . .  (5o) 

When the wing is solid, {---- t, so that  i = 1, and equation (50) reduces to equation (23) of the 
main text. For purposes of comparison with the solid wing it is convenient to consider the 
limiting case of a wing with a thin skin of constant thickness (½{). For such a wing 

I .  = (½t) ~ x ~, 
so that  

~. ~ ~ . . . ( s l )  

18 



Two examples are now given. 

(a) Hollow Wing of Diamond Section and Parabolic Variation of Strain. 

For such a wing 
i * = 1 ,  

if the  skin thickness does not  vary,  so tha t  

and 
8" 1 ~2 

D y *  = (1 - I ~ 1 )  ~ 

and from equat ion (50) 

S z a  1 4vZ 11273(1 --  v~) 
B 15 560 ' 

while from Refs. 3, 4 and 5 (bearing in mind the fact that ,  because of the  stabilising filling, the  
wing acts as a ' plate  ' ins tead of a hollow tube) • 

s =l 227(1+ ) 
C 15 

(b) Hollow Wing of Lenticular Parabolic Section and Parabolic Variation of Strain. 

For such a wing 

so t h a t  
SM (1 27(1 -¢- v) 27(1 --  ~) 

while from Refs. 3, 4 and 5 

S _l 
C 12 

2. Discussion.--The variat ions of the  flexural and torsional rigidities wi th  E for examples 
(a) and (b) above are shown in Fig. 10. 

I t  should be noted tha t  in the  above examples the  skin thickness was constant  and, if the  heat  
capaci ty  of the  stabilising filling could be ignored, there would be no chordwise tempera ture  
gradients  due to aerodynamic heat ing unless the  heat- t ransfer  coefficient varies in the  chordwise 
direction. 
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A P P E N D I X  IV 

Large-Deflection Solution for a Solid Strip of Constant Thickness 

1. We consider here the  behaviour  of a strip of constant  thickness wi th  a parabolic chordwise 
variat ion of tempera ture  and a constant  value of E. For such a simple case the differential 
equat ion (7) may  be readily formulated and solved. 

We have 

T(x) ---- To + (T1 - -  To) , . . . . . . . . . . . .  (52) 

so tha t  

e - - - - ~ ( T 1 -  To) , . . . . . . . . . .  (53) 

by  vir tue of equations (12) and (13). Further,  

t * =  D * =  1,  . . . . . .  . . . . . . . . . .  (54) 

so tha t  equat ion  (7) reduces to 

d ~  ~ + 4 ~ w  * = 3 r ( 1  - -  ~2) _ ~ 

where . ~ . . . . . . . . . . . . .  (55) 

The solution of equat ion (55) subject to the  boundary  conditions (8) and (9) is given by  

~,  = z(1 ,,~)(1 - 3~ ~) [3z(_1_- ~2) ,, (~:c: -+  :,~ ~ 4.~ + ~  4.0 2;~) c,)cosh cos 

+ \ ~  + cs / s inh  #~ sin ~ ~ . . . . . . .  (56) 

where ~, ~ ,  c, s s tand for cosh :,, s inh ~, cos :,, sin ~ respectively. 

2. Bending-Moment-Curvature Relat ionship.--The bend ing-moment -curva tu re  relationship is 
obtained by  subst i tut ing equat ion (56) in equat ion (19), whence 

M R  1 --  v~¢1 
B - -  1 - -  ~ ~ z ¢ ~ -  x ~ ( 1  - -  ~'~)¢~ . . . . . . . . . . .  ( 5 7 )  

where 
3 ( ~  ~ + s ~) ¢ : c s  

¢~ = 4~(~5: + cs) + ( ~  + cs) ~ 

3 t :~ + s~ ~ : c s  l 
42 t* -~ f4#(~5: q:ics) - - ( , 5 :  - /cs)~,  .. . . . . . .  (58) 

9 I 5(5:~ + s~) ~ c s  
¢~ = ~ ,  1 - 4 # ( ~ :  + cs) + ( ~ :  + cs) ~ 

The variat ion of M R / B  against a~/(Rt), i.e., against 2.42:, 2, is p lot ted in Fig. 3 for various 
values of 2. The variat ion of (Ma2)/Bt with a2/(Rt) (i.e., the  bend ing-moment -cu rva tu re  relation- 
ship) is p lot ted in Fig. 4 for various values of X. 

The initial flexural r igidity vanishes when X ---- 5" 07. For values of 2 greater than  this critical 
value the  strip assumes a spanwise curvature  wi thout  the  application of a bending moment .  
For example, if 2 = 7, it is seen from Figs. 3 or 4 tha t  a~/(Rt) ---- 3 .64 when the strip is unloaded. 
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APPENDIX V 

Total Moment Acting on Cross-Section of Strip 

1. The total moment acting on a cross-section of the strip is obtained from equations (17) and 
18). In non-dimensional form these equations.reduce to 

MR 
d~w*~ w*t*{3~'~* (1 7 

_ ~ )  _ 4 ~ , ~ , } !  d~ 
d 

f l  B (1 -- ~') D* d~ 
--1 

The numerator of this expression simplifies considerably. 
may be written as 

. . . .  ( s g )  

From equation (7) the numerator 

f _ l D *  (1 + v de~ ] d~ -- f _l [w* -d~-~ l D* \ de ~ + !I1 de 

=f~1 D * ( l + v  d~2 ] d~ -- Iw* ~-~ D* \ d~ ~ + )!]-1 

\ d~ ~ + I d~ 

on integrating by parts. Further, by virtue of the boundary condition (9), the middle term above 
vanishes. Integration by parts again gives 

f ~ ~, ( , ÷  ~ ~ , ~ , ~ +  E ~ * ~  ~ * ~ ,  ~ ,  ~ ÷~)1 ~ ~ - f ~, ~ * ~  , ~ + ~)~*~ ~ 

by virtue of the boundary condition (8).  

Equation (19) follows from these results. 
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FIG. 1. Cross-section of wing. 

R 

FIG. 9,. The distorted wing. 
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