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Summary.--Direct-shadow and schlieren photographs and pressure distributions of the flow past a two-dimensional 
4 per cent thick biconvex aeroIoil for a limited range of incidences at Mach numbers of 1.40 and 1.6a are presented. 

Shock-induced boundary-layer separation at the trailing edge of the aerofoil was present at M 0 = 1.6a with transition- 
free boundary layers but was absent up to 5 deg incidence at M 0 = 1.68 with transition-fixed boundary layers and up 
to 6 deg incidence at M 0 = 1.40 with transition-free boundary layers. 

1. I~ t roduc t io~ . - - In  previous reports 1'" investigations of the flow past a two-dimensional 
4 per cent thick biconvex aerofoil at subsonic speeds have been made. Recently tests on the 
same aerofoil at two supersonic speeds, namely kee-stream Mach numbers of 1.40 and 1.63, have 
been completed and the results are presented. In a subsequent paper a description will be given 
of the testing of this biconvex aerofoil in slotted-wall transonic liners and thus results ~dll be 
available from low subsonic (M0 = 0.40) to moderate supersonic speeds for wide ranges of 
incidence. 

The Reynolds numbers of the current tests, based on the aerofoil chord of 9 in., were approxi- 
mately 3.4 × 106 and 3.5 × 106 at M0 = 1.63 and 1-40 respectively. Throughout th is  
investigation, particular attention was given to the presence (or otherwise) of shock-induced 
boundary-layer separation at the trailing edge of ,the aerofoiP. 

2. Experimental  Data . - -2 .1 .  Results at Mo = 1 . 6 3 . - - P r e v i o u s  experiments on this 4 per cent 
biconvex aerofoil in the 36-in. × 14-in. High-Speed Wind Tunnel at subsonic speeds 1, 2 had shown 
that  only minute differences existed between tests made with natural (or transition-free) boundary 
layers and those with transition-fixed boundary layers produced artificially by 5 per cent chord 
bands of carborundum at the leading edge of the aerofoil. Hence the first series of tests at 
21//0 = 1.63 were made using transition-free boundary layers. When shock-induced boundary- 
layer separation at the trailing edge of the aerofoil was found to be present, a further series of 
tests were made with transition-fixed boundary layers and in these results no regions of separated 
flow were observed. Figs. 1 and 2 present the variation of normal-force coefficient C~ and 
pitching-moment coefficient C,. with incidence at M0 = 1.63. Whilst distinct differences exist 
between the transition-free and the transition-fixed results, the pressure distributions given in 
Figs. 3 and 4 show that  these differences are confined to the trailing-edge region. Schlieren 
photographs such as Fig. 5 confirm these remarks but the two distinct flow patterns are most 
clearly illustrated by the direct-shadow photographs presented in Fig. 6. With transition-fixed 
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b o u n d a r y  layers there  is no separat ion at  the trai l ing edge but  wi th  transi t ion-free b o u n d a r y  
layers separat ion is present  at ~ = 3 deg and  increases in chordwise extent  as the  incidence is 
increased. At  ~ = 5 deg the  separa ted  region extends f rom 0.95 chord to the  trai l ing edge. 

I t  is of interest  to de termine  the  flow deflection which  will just  cause flow separation.  For  a 
circular-arc biconvex aerofoil the  trai l ing-edge semi-angle ~ is approximate ly  given by  

t an  /3 ~ 2 × .... foil thickness 
aerofoil chord 

Hence  for this 4 per cent b iconvex aerofoil 
8 

/3 ~ t an  -1 100 4°36'" 

Thus the flow deflection angle 0 and the  incidence of the  aerofoil ~ are connected by  the  relat ion 

0 -----~, + 4 ° 3 6  ' ~ + 4} ° . 

Ref. 3 reports an invest igat ion of the  in teract ion be tween shock waves and b o u n d a r y  layers 
at  the  trai l ing edge of a double-wedge aerofoil at M0 = 1.60. For  the  transi t ion-free case, where  
the b o u n d a r y  layer  was laminar  at  separat ion b~t  tu rbu len t  at r ea t t achmen t  to wake,  l aminar  
separat ion was present  when  0 = 5 deg. For  the  transi t ion-fixed or tu rbu len t  case, tu rbu len t  
separat ion was present  when  0 = 12½- deg. Hence,  in the  present  investigation,  shock- induced 
boundary- laye r  separat ion migh t  be expected to be observed at  ~ = 1 deg in the  transi t ion-free 
case and ~ = 8 deg in the  transi t ion-fixed case. However ,  at  M0 = 1.63 the  tunne l  became 
choked above ~ = 5 deg and invest igat ion of the  tu rbu len t  case was impossible. The t ransi t ion-  
free results show separa ted  regions present  f rom ~ = 3 deg onwards,  t ha t  is, 0 = 7} deg onwards.  

The direct de te rmina t ion  of the  occurrence of separat ion by  divergence of the  trai l ing-edge 
pressure 5 was a t t e m p t e d  in Fig. 7, bu t  more  consistent results were obta ined  in Fig. 8 where the  
divergence of the  pressure at  0 .97  chord was considered (this m a y  be a t t r ibu ted  to t h e  diffuse 
na tu re  of the  trai l ing-edge shock wave in the  supersonic case). F r o m  these figures it  m a y  be 
deduced tha t  l aminar  separat ion is present  at 0 = 7 deg. The ups t r eam influence of the  shock- 
wave bonndary- layer  in terac t ion  was calculated using the  methods  of Refs. 3 and 4. W h e n  
c~ = 5 deg, the  extent  of this influence is given by  d/do* = 32, where  

d = distance from trai l ing edge of beginning of separa ted  region 

do* = calculated boundary- layer  displacement  thickness at beginning of separa ted  region. 

This result  is not  inconsistent  wi th  the  findings of Refs. 3 and 4. However ,  it should be no ted  
t ha t  the  Reynolds  numbers  of the  present  tests are an order  of magn i tude  greater  t han  for the  
previous tests ~,~. 

2.2. Results at Mo = 1 . 4 0 . - - T h e  var ia t ion of p i t ch ing-moment  coefficient and normal-force 
coefficient wi th  incidence at Mo = 1.40 is given in Figs. 1 and  2, and specimen pressure distri- 
but ions are presented  in Fig. 9. 

Schlieren and  direct-shadow photographs  of the  flow appear  as Figs. 10 and 11 respectively.  

These tests were made  wi th  transi t ion-free b o u n d a r y  layers and no t race of shock- induced 
boundary - l aye r  separat ion was observed in the  photographs  or could be deduced from the  pressure 
distr ibutions (incidences above ~ = 6 deg were not  obtainable  since the  tunne l  became choked). 
I t  is concluded t ha t  at  M0 = 1.40 the  b o u n d a r y  layers are of a na tura l ly  t ransi t ional  t ype  and  
are not  s tr ict ly laminar  at the  beginning of the  shock-wave boundary- layer  in teract ion region. 

3. Conclusions:--Shock-induced boundary- layer  separat ion at the  trailing edge of a 4 per cent  
th ick  biconvex aerofoil was present  at  Mo = 1.63 wi th  transi t ion-free b o u n d a r y  layers bu t  was 
absent  at  M0 = 1.63 wi th  transi t ion-fixed bounda ry  layers and  at Mo = 1.40 wi th  t ransi t ion-  
free bounda ry  layers. The ex ten t  of the  separa ted  region confirmed the  results given in Ref. 3. 

Acknowledgements.'---Mr. P. J. Peggs assisted in the  exper imenta l  work and  Mrs. N. A. Nor th  
in the  da ta  reduct ion.  
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NOTATION 

Tunnel free-stream Mach number 

Local Mach number 

Flow deflection angle 

Incidence of aerofoil 

Trailing-edge semi-angle of aerofoil 

Aerofoil chord 

Length of separated flow region 

Calculated boundary-layer displacement thickness 
region 

Normal-force coefficient 

Pitching-moment coefficient (about 0.25 chord) 

Local static pressure 

Stagnation pressure 

Distance measured from leading edge of aerofoil. 

at beginning of separated 
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