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Summary.—Direct-shadow and schlieren photographs and pressure distributions of the flow past a two-dimensional
4 per cent thick biconvex aerofoil for a limited range of incidences at Mach numbers of 1-40 and 1-63 are presented.

Shock-induced boundary-layer separation at the trailing edge of the aerofoil was present at M, = 1-68 with transition-
free boundary layers but was absent up to 5 deg incidence at M; = 1-63 with transition-fixed boundary layers and up
to 6 deg incidence at M, = 1-40 with transition-free boundary layers.

1. Introduction.—In previous reports™® investigations of the flow past a two-dimensional
4 per cent thick biconvex aerofoil at subsonic speeds have been made. Recently tests on the
same aerofoil at two supersonic speeds, namely free-stream Mach numbers of 1-40 and 1-63, have |
been completed and the results are presented. In a subsequent paper a description will be given
of the testing of this biconvex aerofoil in slotted-wall transonic liners and thus results will be
available from low subsonic (M, = 0-40) to moderate supersonic speeds for.wide ranges of
incidence.

The Reynolds numbers of the current tests, based on the aerofoil chord of 9 in., were approxi-
mately 3-4 x 10° and 3-5 x 10° at M, = 1-63 and 1-40 respectively. Throughout this
investigation, particular attention was given to the presence (or otherwise) of shock-induced
boundary-layer separation at the trailing edge of the aerofoil®.

2. Experimental Data.—2.1. Results at M, = 1-63.—Previous experiments on this 4 per cent
biconvex aerofoil in the 36-in. X 14-in. High-Speed Wind Tunnel at subsonic speeds™? had shown
that only minute differences existed between tests made with natural (or transition-free) boundary
layers and those with transition-fixed boundary layers produced artificially by 5 per cent chord
bands of carborundum at the leading edge of the aerofoil. Hence the first series of tests at
My, = 1-63 were made using transition-free boundary layers. When shock-induced boundary-
layer separation at the trailing edge of the aerofoil was found to be present, a further series of
tests were made with transition-fixed boundary layers and in these results no regions of separated
flow were observed. Figs. 1 and 2 present the variation of normal-force coefficient C, and
pitching-moment coefficient C,, with incidence at M, = 1-63. Whilst distinct differences exist
between the transition-free and the transition-fixed results, the pressure distributions given in
Figs. 3 and 4 show that these differences are confined to the trailing-edge region. Schlieren
photographs such as Fig. 5 confirm these remarks but the two distinct flow patterns are most
clearly illustrated by the direct-shadow photographs presented in Fig. 6. With transition-fixed

* Published with permission of the Director, National Physical Laboratory. "



boundary layers there is no separation at the trailing edge but with transition-free boundary
layers separation is present at « = 3 deg and increases in chordwise extent as the incidence is
increased. At e« = 5 deg the separated region extends from 0-95 chord to the trailing edge.

It is of interest to determine the flow deflection which will just cause flow separation. For a
.circular-arc biconvex aerofoil the trailing-edge semi-angle g is approximately given by

-tan 5 -~ 2 X aerofoil thickness

agrofoil chord °

Hence for this 4 per cent biconvex aerofoil

B = tan“ll—go = 4°36’,

Thus the flow deflection angle 8 and the incidence of the aerofoil « are conmected by the relation
0 == o + 4°36" ==« + 41°.

Ref. 3 reports an investigation of the interaction between shock waves and boundary layers
at the trailing edge of a double-wedge aerofoil at M, = 1-60. For the transition-free case, where
the boundary layer was laminar at separation but turbulent at reattachment to wake, laminar
separation was present when ¢ = 5§ deg. For the transition-fixed or turbulent case, turbulent
separation was present when 0 = 12% deg. Hence, in the present investigation, shock-induced
boundary-layer separation might be expected to be observed at « = 1 deg in the transition-free
case and « — 8 deg in the transition-fixed case. However, at M, = 1-63 the tunnel became
choked above o = 5 deg and investigation of the turbulent case was impossible. The transition-
free results show separated regions present from « = 3 deg onwards, that is, § = 74 deg onwards.

The direct determination of the occurrence of separation by divergence of the trailing-edge
pressure® was attempted in Fig. 7, but more consistent results were obtained in Fig. 8 where the
divergence of the pressure at 0-97 chord was considered (this may be attributed to the diffuse
nature of the trailing-edge shock wave in the supersonic case). From these figures it may be
deduced that laminar separation is present at 6 = 7 deg. The upstream influence of the shock-
wave boundary-layer interaction was calculated using the methods of Refs. 3 and 4. When
« = 5 deg, the extent of this influence is given by d/6,* = 32, where

d = distance from trailing edge of beginning of separated region
8,* = calculated boundary-layer displacement thickness at beginning of separated region.

This result is not inconsistent with the findings of Refs. 3 and 4. However, it should be noted

that the Reynolds numbers of the present tests are an order of magnitude greater than for the
previous tests®*.

2.2. Results at M, = 1-40.—The variation of pitching-moment coefficient and normal-force
coefficient with incidence at M, = 1-40 is given in Figs. 1 and 2, and specimen pressure distri-
butions are presented in Fig. 9.

Schlieren and direct-shadow photographs of the flow appear as Figs. 10 and 11 respectively.

These tests were made with transition-free boundary layers and no trace of shock-induced
boundary-layer separation was observed in the photographs or could be deduced from the pressure
distributions (incidences above « = 8 deg were not obtainable since the tunnel became choked).
It is concluded that at M, = 1-40 the boundary layers are of a naturally transitional type and
are not strictly laminar at the beginning of the shock-wave boundary-layer interaction region.

3. Conclusions.—Shock-induced boundary-layer separation at the trailing edge of a 4 per cent
thick biconvex aerofoil was present at M, = 163 with transition-free boundary layers but was
absent at M, = 1:-63 with transition-fixed boundary layers and at M, = 1-40 with transition-
free boundary layers. The extent of the separated region confirmed the results given in Ref. 3.
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NOTATION

M, Tunnel free-stream Mach number
M Local Mach number
(] Flow deflection angle
o Incidence of aerofoil
I Trailing-edge semi-angle of aerofoil
c Aerofoil chord
a Length of separated flow region
do* Calculated boundary-layer displacement thickness at beginning of separated
region ‘
Cy Normal-force coefficient
Ch Pitching-moment coefficient (about 0-25 chord)
P Local static pressure
H, Stagnation pressure
X Distance measured from leading edge of aerofoil.
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F1G. 5. Schlieren photographs of the flow past a F1c. 6. Direct-shadow photographs of the flow past a 4 per
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