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Summary.—Stability and flutter derivatives are obtained for rectangular wings describing plunging and pitching
oscillations in subsonic flow. These are evaluated by applying the simple approximate ‘equivalent’ wing theory
(R. & M. 2855) with the vortex-lattice method of downwash calculation. The derivatives for the wing of aspect ratio
4 at Mach number 0-866 are compared with values calculated by a method based on exact theory; at this high Mach
number it is found that the present method is sufficiently accurate for only a very limited range of the frequency
parameter. At very low values, the pitching-moment derivatives for this wing are in reasonable agreement with
those calculated by the Multhopp-Garner method and with results from wind-tunnel tests at high subsonic Mach number.

1. Introduction.—The theory for a finite wing oscillating at any frequency in compressible
subsonic flow is considered in Ref. 1 (W. P. Jones, 1951). Itisshown that under certain conditions
the problem is related to one of determining the lift distribution over a ¢ reduced wing ’ of lower
aspect ratio, oscillating in incompressible flow. The problem is thus simplified by making an
approximation to the integral equation which is theoretically only valid if the frequency-Mach-
number parameter M»/(1 — M?) is small. In application, however', a similar approximation in
the solution of the two-dimensional problem gives values for the plunging and pitching derivatives
which are in good agreement with exact two-dimensional values, when the frequency parameter
v = fe/U < 0-4 and M = 0-7. This suggests that the approximate form of the theory might
give sufficiently accurate results in the three-dimensional case for a similar range of the
frequency-Mach-number parameter.

In the present note this approximate method is applied to rectangular wings of aspect ratio 3,
4 and 6 describing simple harmonic plunging and pitching motion. Stability and flutter deriva-
tives are evaluated by using, for the reduced-wing calculations, the vortex-lattice method for
wings oscillating in incompressible flow*® (1953, 1954). The computation is relatively simple and
routine, and the method can be used for wings of general plan-form. The accuracy of derivatives
obtained by the present scheme is therefore of considerable practical interest. At present, there
is very limited information relating to the effects of frequency at subsonic Mach number. A
general treatment of the problem is given by Acum?® (1955), who has derived expressions for the
downwash in terms of influence functions. This method involves very laborious computation
which cannot readily be reduced to a routine, but it has been used to evaluate flutter derivatives
for rectangular wings at high subsonic Mach number*. The effect of aspect ratio on the theoretical
stability. derivatives for rectangular wings in subsonic flow has been estimated by Multhopp’s
low-frequency method® (Garner, 1952). :

* Published with permission of the Director, National Physical Laboratory.



Comparison of the results of the present method with those obtained in Refs. 4 and 5 indicates
the accuracy within the limitations of linearised theory. The usefulness of results in which
thickness and boundary-layer effects are neglected must be judged by comparison with experi-
mental values. The only measured values available at present for rectangular wings at high

Mach number are the pitching-moment derivatives for low frequencies which are reported
in Ref. 7.

2. Theory of the Reduced Wing—The linearised theory for a thin wing of finite span which
oscillates with small amplitude in inviscid subsonic flow is considered by W. P. Jones in Ref. 1*.
In that paper, the problem of a wing of aspect ratio 4, describing simple harmonic oscillations of
frequency f/2x in a stream of Mach number M, is transformed to that of a reduced wing of aspect
ratio 4, =fA which oscillates in a different mode at a frequency $/2r = f/2xf® where
p = +/(1 — M?. The lift distribution /e"* over the wing A is related to the lift distribution
pUTI" e over the reduced wing A4, such that :

zszrexp(H%U—]‘;{:)... e )

Here the point (x, ', 2" = 0) on the wing 4 is transformed to a point (%,v,2=0) on the
reduced wing 4, by :
x = x, By =y . . .. ce .. (2)

For plunging and pitching oscillations of respective amplitudes ¢# and «, the motion of a
rectangular wing defined in terms of the normal downward displacement z’, is

2= (cZ + x'a) e, .. . .. .. .. . (3)
where ¢ is the chord of the wing and %’ is measured downstream from the leading edge. Then
if w e is the downwash at the point (%', 3’, 0), the tangential flow condition

; 02’ 0z’
ift __ 7% -~
well =+ Uz
becomes '

I4

w:U[aA,—z‘m(z'Jr”gaﬂ, T )

where the frequency parameter » = fc/U. Equation (4) is related to the downwash W e at
the point (, v, 0) on the reduced wing 4, by the equation

fauM®
w:/a’Wexp('LfUW» .. .. . .. .. . (5)
Therefore I has to satisly the boundary condition defined by (2), (4) and (5), that is
2
I/(jV:%[a—l—iv(é—l—%mﬂexp(—i%%). .. .. .. (6)

The downwash W is given by the complicated integral of Ref. 1, equation (16)*. In the present
note, this integral is taken to first-order accuracy in the parameter M»/4?, by assuming that the
integral I, of Ref. 1, equation (18), is zero. This simplifying approximation is made for all
frequencies and Mach numbers so that in the reduced-wing problem W becomes W,. Asshown in
Ref. 1, W, is readily identified with the downwash on a wing oscillating in incompressible flow.
Thus the lift distribution pUI" €' over the reduced wing A4, in incompressible flow is determined
so that W, satisfies equation (6). Then by (1) the actual lift distribution on the wing 4 is

2 —
le’* = pUI e exp [z i ﬁWMz (x 2 Ut)] . .. .. - (7)

* The basic equations of Ref. 1 are given in the Appendix.
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3. Method of Calculation.—The results given in this note are evaluated by using the vortex-
lattice method of calculating the downwash on the reduced wing oscillating in incompressible
flow®®. The lift distribution pUI" e?* over the reduced wing 4, is assumed to be represented
by the finite series

F=UY (I'Co+ MCu)A,, - .. o . . (8
where
I'y=2cot 16 ' _ \
I'y= — 2sin 6 + cot 40 - %ﬂ (sin o 4+ §m229) ©)
CAm _ Snm_l,\/(l . 772) » « . .. . s
m = 1, 8, 5 for symmetrical motion
and
% = $c¢(1 — cos 0) 0<i<n
Yy = sy 1<y} .. . .. (10)
w = pc|U
The downwash W e?* corresponding to (8) is given by
Ws - Uz (W(]mCOM + Wlmclm) m = 1: 3: 5: . e - . (11)

213

where W,, is a complex quantity dependent on the frequency parameter o and W, is a real
quantity independent of ». By using the 21 x 6 lattice as outlined in Refs. 2 and 3, the values
of W,, and W, are calculated for the six collocation points positioned at 4 and § chord of the
spanwise sections 7 = 0-2, 0-6 and 0-8. The six arbitrary coefficients C,,, are determined in
terms of Z and « so that W, satisfies the boundary condition (6) at each collocation point. The
lift distribution pUI is then given by (8), so that the actual lift distribution / " over the wing 4
can be determined from (7) for the particular values of the frequency parameter » and Mach
number M.

If the leading edge of the rectangular wing 4 is taken as pitching axis, the lift L ¢* and moment

A et are given by
L= szx' 2y’

= -—Hm'dx'dy'

, .. ce .. o (12)

where
S = wing area.

By (2) and (10), these are transformed into integrals with respect to # and . The integrations
in 5 are simple but those in 6 lead to the following relations

fﬂ I'yexp (— 44" cos 0) sin 0 d8 = 2xr[ [, — 1/],]
0

i ) : 1 — M? :
f I'exp(— A" cos0)sin 6 db == (——Mz—) [J.+ 2]4]

. ' . , (13)
f I'yexp (— 74" cos 8)(1 — cos 0) sin 8 d§ = Z,Jl

Q
- pE —_ 2
f I'yexp (— 44" cos 0)(1 — cos 0) sin 0 d6 = — % []1 — 1 (B—MZZ%)]J

0
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where J, = J,(1') are Bessel functions of the first kind and 2’ — (vM?/28%). Equations (1), (8),
(9), (12) and (13) lead to final expressions for the lift and moment for the rectangular wing 4,

g = T [ — D+ (Lggl) U+ 479D

(14)

M 24 B et (3 — oM
pUzsC:nlgﬂ.' [_JID”‘ %lz*l—z( IR )]2§D1]

Dn = Cnl _i“ %Cnis _,_ %C115 .

where

In the case of the solution »-— 0, only first-order terms in frequency are retained throughout
the reduced-wing calculation, as is described in Ref. 2. The lift L and moment .# are then
obtained generally by retaining only first-order terms in frequency in the lift distribution Z.

The derivatives referred to the pitching axis #” = 0 are defined by

L : -
e = (L, v1)E + (I, + vl
pUS (15)
Sty = o 1 G

The usual transformation formulae, which are given in the list of symbols in Ref. 3, are used to
calculate the derivatives referred to an axis at 1’ = Jc.

4. Results—For the rectangular wing of aspect ratio 4, the derivatives are evaluated by the
method outlined in sections 2 and 3, for a range of values of the frequency parameter » and Mach
numbers M = 4/(1 — p*), # = 1, 2and 4. The derivatives for plunging and pitching oscillations,
referred to axis positions at the leading edge and at 0-445 chord, are tabulated in Table 1.

The above results are obtained by considering reduced wings of aspect ratio A4, = 4, 8/3 and 2
in incompressible flow. When the downwash matrix corresponding to a frequency parameter o
is known for the reduced wing, then it is relatively simple, by solving for a different boundary
condition (6), to obtain the lift distribution and hence the derivatives for a wing of aspect ratio
A = A,/B oscillating at a frequency » = wp* in subsonic flow M. Thus, plunging and pitching
derivatives are calculated for the rectangular wings 4 = 2 and 8/3 at M = 0, A = 3 and 6 at
M = 0-745 for several values of », and in the particular case » — 0 for the wings 4 = 16/3 and
8at M = 0-866. The values for an axis positioned at 0-445 chord are given in Table 2.

5. Results Used for Comparison.—The difficulty of investigating the problem of a wing oscillating
in subsonic flow, is reflected in the limited information available even for rectangular wings.
For so simple a plan-form there is no routine method that is general in aspect ratio, Mach number
and frequency. The special case of infinite aspect ratio has been solved ; values of the derivatives
are given in Ref. 8 for arbitrary Mach number and frequency (Jordan, 1953). In incompressible
flow, wings of moderately low aspect ratio are considered by Lawrence and Gerber® (1952), and
the calculations cover a wide range of ». For low frequencies, derivatives may be calculated by the
Multhopp-Garner® subsonic lifting-surface theory, as indicated in section 5.1.

So far as the author is aware, the only method applicable to arbitrary aspect ratio, subsonic
Mach number and frequency for which computations have been carried out* is that proposed
by Acum®. The calculation of the downwash involves a complex influence function of four
variables for each term of the chordwise loading. Whea the necessary functions are programmed

* Richardson’s method has recently been used by D. E. Williams and P. C. Birchall, R.A.E., to calculate derivatives
for a rectangular wing of aspect ratio 2.
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for a high-speed computing machine, the method of Ref. 4 can be reduced to a practical routine.
Meanwhile, although the computation on desk-machines is very laborious, derivatives have been
calculated for rectangular wings at M = 0-866. '

At present, experimental results are only available for low-frequency parameters. Values of
the pitching-moment derivatives m, and m, have been measured for the wing 4 = 4 oscillating
about an axis at 0-445 chord, in tests made at the National Physical Laboratory” for a range of
subsonic Mach number.

5.1. Low-Frequency Theory.—Values of the stability derivatives are calculated by using the
Multhopp-Garner lifting-surface theory® for low-frequency pitching oscillations in subsonic flow.
The derivatives for a wing A at Mach number M are expressed in section 5 of Ref. 5 in terms
of the seven coefficients

(IL)].J (IL)Z s (IL)3 ; IL* - - (IM)l ) — (ID[)Z T (IM)3 s IM* s

which arise from the solution for a reduced wing of aspect ratio 4, = g4 in incompressible flow.
Values of these coefficients for rectangular wings A, = 2-13 and 4-138 have been obtained by
 Garner, using an ‘improved’t solution with m = 15, N = 2. This unpublished work is used
here to obtain the pitching derivatives referred to an axis at 0-445 chord for the following cases:

TABLE A

A M la ZO'{ — My — W
2-13 0 1-289 +4-0-781 —0-299 0-167
3-195 0-745 1-934 | +0-410 —0-451 0-554
4 0-846 2-421 ~0-459 —0-562 1-083
4-26 0-866 2-579 —0-873 —0:599 1-307
4-13 0 1-838 +0-394 —0-395 0-287
6-285 0-745 2-757 —1-620 —0-592 1-102
8:26 0-866 3-676 —6-288 —0-789 2-722

These values correlate satisfactorily with the results obtained for » — 0 by the present method
which are given in Tables 1 and 2.

5.2. General Frequency Theory.—Acum has applied linearised theory to the case of a finite wing
oscillating at any frequency in compressible subsonic flow*. He has derived general expressions
for the influence functions analogous to those used in the Multhopp lifting-surface theory by
using the exact integral equation in a form suggested by Watkins, Runyan and Woolston® (1954)
The method has been used with m = 7 spanwise and N = 2 chordwise variables to calculatethe
plunging and pitching derivatives for the wing 4 = 4 at M = 0-866; the following solutions
were evaluated on desk machines and involved about six months’ computation. Values ofthe
derivatives referred to the pitching axis at 0-445 chord are given in the following Table.

TABLE B
v 1 . I Ly Iy — m, — my — g — g
=0 0 -2-479 2479 —0-556 0 - —0-589 —0-589 1-213
0-3 0-077 2-310 2398 —0-136 —0-075 —0-479 —0-505 1-034
0-6 0-180 2-098 2-333 —+0-027 —0-201 —0-314 —0-350 0-798

+ See footnote on page 13 of Ref. 15.



By comparing these values with the results given in Table 1, it can be seen that there is consider-
able error in the present method when it is used for high values of both » and M. This error is
not unexpected, in view of the difference between the values at the centre point of the wing

| == 4when v = 0-6and M = 0-866, of the downwash w, obtained by the general theory and the
simplified downwash w, as computed by the present method (Ref. 4).

3.3. Correction to the Present Method.—To improve accuracy, a correction factor is now applied
to the present results for the wing 4 = 4 at M = 0-866, when » = 0-3 and 0-6. It is assumed
that the lift and moment are to a first approximation only dependent on the first term of the lift
distribution /¢! defined by equations (1) and (8), that is, on the loading I' = UI'y4,C,,. For
a particular value of », the arbitrary coefficient C,, may be determined by satisfying the boundary
condition w = w, at the centre point of the wing. Values of the simplified downwash w, and the -
downwash w,, which correspond to the loading UI'\A,, are given in Ref. 4. Then, analogous
to the present method, I"c Cy; = w,/w, whilst a more exact solution is I'oc Cy, = w,/w,. It fol-
lows that the ratio w,/w, can be regarded as a simple correction to the lift distribution of the
present method. Hence, the values of the lift L and moment .# for » = 0-3 and 0-8, as defined
by equation (15) and the results given in Table 1, are corrected by multiplying by the complex
factor w,/w,. Corrected values of the derivatives, referred to an axis at 0-445 chord, are then
obtained for the wing 4 = 4 at M = 0-866 as follows: '

TABLE C
v ‘ L, ' ls ’ Lo l L, . — my } — ’ — M, 1 — My
0-3 0-074 2155 2-218 —0-101 —0-080 —0-464 —0-464 1-070
0:6 0-122 1-963 2-138 4+0-209 —0-249 —0-336 —0-286 0-910

Comparison of these results with the values given in Table B shows that the accuracy of the
derivatives is greatly improved by this simple correction.

6. Discussion.—The derivatives obtained by the present method for the wing 4 = 4 are
compared in Figs. 1 to 5 with the wind-tunnel results and with the values calculated by other
theories, as described in section 5. The effects of aspect ratio on the derivatives 7, and m, are
shown in Figs. 6 and 7. Comparison of the results for » — 0 indicates that the present method is

satisfactory for the calculation of stability derivatives for values of the Mach number as high as
M = 0-866.

6.1. Derwvatives for A = 4 Wing.—In Fig. 1, the pitching-moment derivatives m, and m, are
plotted against the frequency parameter » for several Mach numbers. For low frequencies the
calculated derivatives for M = 0-866 are seen to be in reasonable agreement with the wind-tunmnel
values, but for M = 0-745 there is a marked difference between the calculated and measured
values of the derivative m,. The values show a similar variation due to frequency over the small
range of v considered in the tests. '

The plunging and pitching derivatives for M = 0-8686, referred to an axis positioned at 0-445
chord, are shown in Figs. 2 and 3 respectively. The values of Table B which are obtained by
Acum’s method?, are also plotted against the frequency parameter ». It is evident that the
present method gives values for certain of the derivatives, for this particular case, which are
- considerably in error even for small values of ». The derivative most in error is /, and it is
suggested that only for values of » less than 0-05 is the error on /, likely to be small enough to
be acceptable. It therefore seems that the present method gives sufficiently accurate values of
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all the derivatives when M = 0-866, if the parameter Mv»/(1 — M?) does not exceed a value
of 0-175. The values of Table C are shown as ¢ present method X correction ’ in Figs. 2 and 3,
comparison of these results with the values of Table B shows that the simple correction described
in section 5.3 greatly improves the accuracy of the derivatives for M = 0-866.

It is difficult to assess the accuracy of the present method at M = 0-745 without having
values based on the exact theory*, but some indication is given by the graphs of Fig. 4. The values
of the derivatives /, and m, which are plotted against Mach number, for different values of v,
are obtained by cross-plotting with respect to » the results given in Table 1. The graph of /,
indicates again the rapid increase of the error in this derivative at M = 0-866 as the parameter »
increases. The value for » =0-6 at M = 0 and the value from Table B for » =0-6 at
M = 0-866 suggest that the accurate curve for » = 0-6 should follow the shape of the » — 0
curve and it seems likely that accurate curves for lower values of » would be similar. If this is
so, then even for M = 0-745 the present method will only give sufficiently accurate values of
I, for a very limited range of ». The graph of m, indicates that there is not such a large error
in this derivative for the particular axis position of 0-445 chord.

The variation of m, with axis position and Mach number is considered in Fig. 5 for the frequency
parameter values »— 0, 0-3 and 0-6. The present method gives values of the right order for
axis positions forward of the 0-35 chord for » = 0-8 and 0-6 when M = 0-866, but becomes
considerably in error as the axis position moves towards the trailing edge. The values of m;,
obtained by correcting the results of the present method, as in section 5.3, are in surprisingly
good agreement with the general theory values of Table B for all axis positions. It seems likely,
from an inspection of the variation of m, with frequency when M = 0 and M = 0-866, that
the error in the present method at M = 0-745 will be qualitatively similar to the error at
M = 0-866.

8.2. Effects of Aspect Ratio.—Values of the derivatives /, and m, referred to the 0-445 chord
axis, are plotted against the reciprocal of aspect ratio in Figs. 6 and 7 for different values of the
Mach number, M = 0, 0-745 and 0-866, and the frequency parameter, »— 0 and » = 0-6.
The values obtained by the present method for » —> 0 are in good agreement for all Mach numbers
with the values of Table A calculated by the Multhopp-Garner method®. For incompressible flow,
the present results for » = 0-6 correlate satisfactorily with the values obtained for infinite aspect
ratio® and low aspect ratio®. The effect of aspect ratio at high frequency appears to be similar
for M = 0 and M = 0-866. This is suggested in Figs. 6 and 7, by the dotted curves for » = 0-6
which join the reliable theoretical points for 4 = 4 and 4 = . The values obtained by the
present method when M = 0-745 and » = 0-6, indicate the correct variation with aspect ratio,
- although the numerical values of the derivative /, in Fig. 6 show the wrong trend with change in
Mach number, as already noted in the /, curves of Fig. 4.

7. Concluding Remarks—The present method gives satisfactory wvalues of the stability
derivatives for rectangular wings at high subsonic Mach number. Values of the flutter derivatives
are only likely to be of sufficient accuracy for a very limited range of the parameter
Mv|(1 — M?). For the wing of aspect ratio 4, the results based on exact theory* indicate that
the present method considerably overestimates the frequency effect at high Mach number. In
view of the large error apparent in the values of the derivative /, it is suggested that the upper
limit of the frequency parameter » may be about 0-175(1 — M 2) /M for this particular wing.

Although frequency effects may not be so marked for wings of swept and tapered plan-form,
the results of this note suggest that the present method will be reliable only for low-frequency
parameters at high Mach number. The importance of developing a routine method for the
frequency-Mach-number problem therefore remains. The method of Ref. 4 deals with the exact
problem, but will be extremely laborious to apply to a wing of general plan-form unless extensive
use is made of a high-speed computing machine.
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APPENDIX
The Basic Equations of R. & M. 2855

A wing of aspect ratio A describing simple harmonic oscillations of frequency f/2x is introduced
into a steady air stream of uniform density p and uniform velocity U. The oscillating wing gives
rise to a disturbance of velocity potential ¢ superimposed on the steady flow. The linearised
equations for this problem are transformed in Ref. 1 to the plane of a wing of reduced aspect
ratio A, = fA. In the notation of the present note the co-ordinates (x’, ¥", z’) of the original
problem are related to those of the reduced wing problem as follows

!

x=x', y=py, zv:ﬂz’, .. .. .. .. .. .. (16)

where the Mach number M = 4/(1 — p%. If ¢, and ¢, are the values of ¢ above and
below the plane 2’ = 0 of the wing 4 and its wake, the discontinuity in velocity potential
¢, — ¢, = R(x’, v’) e*, and this is expressed as

2
', y') = K(, ) exp(ifé—f%z). € )
‘ B
The lift distribution / e”* over the wing A is denoted by

l(x,y):pUF(x,y)eXp(z]%C—[;z—). O 1)
8



Furthermore, the tangential flow condition at a point on the wing 4, that is

Y
ift . T 1
we - azl 3
transforms into a boundary condition at the surface of the reduced wing A4, such that
w(x’, y' fx' M*
W(x,y)=%exp(—1%—ﬁ—2). )
It is shown in Ref. 1 that over the reduced wing and wake
/K oK ' ’ ‘
UF—/LF+U796 .. . . -.. .. | .. .. (20)
with the condition I" = 0 everywhere in the wake. Also, at any point (x,, y;, 0) on the wing
0? .M fr
4nW(x1,y1)=ffKéz—lé[exp (~z/—3«2%)/7} dx dy, .. e o2
51->0 .

where? = 1/{(¥ — %) + (y — 1)* + z°} and the integral is taken over the wing and wake.
~ Equation (21) may be written as _

W=Ww,—1I,

wo=2([g2 (Y axa L 22

S_@J‘f ‘@(1—/) xay . .. .. . .. . . ( )
210

It is shown in Ref. 1 that the integral I, for a wing of finite aspect ratio, is of order

where

2
( /3—: ) log, (MTv ) where the parameter » = f¢/U. Hence to first order accuracy in the parameter
My|p?

W=Ww,. (23)

Then equations (20), (22), and (23) are identical to those which have to be satisfied in the problem
of a wing of aspect ratio 4, which is oscillating at a frequency f/2x #* in incompressible flow.




TABLE 1

Derivatives for a Rectangular Wing of Aspect Ratio 4 describing Plunging and Pitching Oscillations

h \ M \ 4 ‘ L, lz Lo Za — M, — My — My — Mg
0 0 >0 0 1-791 1-791 4-1-218 0 +0-417 | +0-417 | 0-648
0-2 —0-001 1-740 1-747 1-357 | —0-007 0-406 0-403 | 0-680

0-6 —0-106 | 1-579 1-563 1-507 | —0-091 0-370 0-325} 0-718

1-2 —0-671 | 1-421 1-166 1-558 | —0-424 0-340 | +0-112 | 0-737

2-4 —2-958 1-371 0-142 1-567 | —1-815 0-352 | —0-652 | 0-768

0-745 -0 0 2-193 2-193 0-855 0 0-492 | +0-492 | 0-870

0-2 -+0-009 | 2-047 2-066 1-358 | —0-014 0-462 0-457 | 0-974

0-6 —0-156 | 1-696 1-677 1-740 | —0-170 0-387 0-312 | 1-034

1-2 —0-878 | 1-353 1-049 1-608 | —0-674 0-316 0-011 | 0-963

0-866 -0 0 2-445 2-445 0-403 0 0:526 0526 | 1-142

0-05 0-003 | 2-411 2-414 0-725 | —0-001 0-520 0-519 | 1-215

0-3 —0-017 | 2-004 2-026 1-763 | —0-062 0-433 0-411 1-357

0-6 —0-256 | 1-580 1-503 1-925 | —0-247 | +0-320 | +0-226 | 1-249

0-445 0 -0 0 1-791 1-791 0-421 0 —0-380 | —0-380 | 0-275
0-2 —0-001 1-740 1-747 0-582  —0-007 | —0-369 | —0-371 | 0-240

0-6 —0-106 | 1-579 1-610 0-804 | —0-044 | —0-332 | —0:351 | 0-196

1-2 —0-671 1-421 .1-465 0-926 | —0-125 | —0-292 | —0-351 0-174

2-4 —2-958 | 1-371 1-458 | 40-958 | —0-499 | —0-258 | —0-493 | 0-185

0-745 =0 0 2-193 2-193 | —0-121 0 —0-484 | —0-484 | 0-705

0-2 +0-009 | 2-047 2-062 | +0-448 | —0-018 | —0-449 | —0-454 | 0-570

0-6 —0-156 | 1-696 1-747 0-986 | —0-101 | —0-367 | —0-389 | 0-423

1-2 —0-878 | 1-353 1-440 | +1-005 | —0-284 | —0-286 | —0-330 | 0-375

(- 866 -0 0 2-445 2-445 | —0-685 0 —0-562 | —0-562 | 1-213

0-05 | +0-003 | 2-411 2-413 | —0-348 | —0-002 | —0-553 | —0-554 | 1-138

0-3 —0-017 | 2-004 2-033 | +0-872°| —0-054 | —0-459 | —0-467 | 0-776

0-6 —0-256 | 1-580 1-617 | +1-222 | —0-133 [ —0-383 | —0-384 | 0-562

The derivatives are referred to an axis at a position % on the chord.
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TABLE 2

Derivatives for Rectangular ngslof Asfect Ratio A describing Plunging and
Pitching Oscillations, referved to an Axis at 0-445 Chord

A M ‘ v ’ lz Zz lm lo'c — W, — My — W — Wy
2 0 -0 0 1-223 1-223 | 40-762 0 —0-281 | —0-281 | 0-160
0-2 —0-015 1-211 1-212 0-795 | —0-003 | —0-278 | —0-279 | 0-154

1-2 —0-682 1-102 1-106 0-857 | —0-089 | —0-247 | —0-295 | 0-144

2-4 —2-718 | 1-102 1-123 0-854 | —0-407 | —0-231 | —0-441 | 0-158

8/3 0 all 0 1-462 1-462 0-688 0 —0-323 | —0-323 | 0-198
0-45 | —0-072 | 1-387 1-398 0-819 | —0-020 | —0-305 | —0-314 | 0-170
1-35 | —0-887 | 1-238 1-257 0-902 | —0-131 | —-0-263 | —0-329 | 0-158°

270 | —8-536 | 1-279 1-362 0-915 | —0-610 | —0-249 | —0-543 | 0-175

3 0-745 -0 0 1-834 1-834 0-453 0 —0-421 | —0-421 | 0-519
0-53 | —0-131 | 1-549 -581 0-986 | —0-070 | —0-353 | —0-369 | 0-377

1-06 | —0-681 1-290 1-843 | +1:004 | —0-205 | —0-292 | —0-328 | 0-339

6 0-745 >0, 0 2-686 2-686 | —1-460 0 —0-569 | —0-569 1-052
0-53 | —0-065 | 1-952 2-019 | 40-845 | —0-104 | —0-404 | —0-427 | 0510

1-06 | —0-703 | 1-552 1.652 | +1-070 | —0-267 | —0-317 | —0-358 | 0-416

16/3 0-866 =0 0 2924 2-924 | —2-313 0 —0-645 | —0-645 | 1-701
8 0-866 =0 0 | 8-581 3-581 —5-852 0 —0-759 | —0-759 | 2-597
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