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Summary.--Exact theories are used to examine tile validity of certain methods of wing stressing when they are 
applied to thin wings of low aspect ratio. Attention is confined to thetwo spar multi-rib wing having rectangular cross- 
section and rectangular plan-form. 

1. Introduction.--In certain methods of wing stressing 1, 2, hereafter referred to as conventional, 
no account is taken of:  

(a) the chcrdwise distribution of loading 

(b) the cross-sectional distortion of the ribs (apart from pure shear) 

(c) the exact elastic b-ehaviour of the top and bottom skins 

and these effects become important  as the  wing thickness and aspect ratio decrease. 

in this paper, at tention is confined to the two-spar multi-rib wing having rectangular cross- 
section and rectangular plan-form. The exact equations of elasticity are derived and solved, 
and numerical examples are given for a thin wing of low aspect ratio. These results are compared 
with those obtained from the conventional methods 1, 

The loading on s~ch wings can always be separated into loadings symmetrical and anti- 
symmetrical about tile spanwise centre-line of the wing box. The problems associated with 
each type of loading are respectively examined under the general headings of the ' Flexural ' 
and ' Torsional ' cases. For the ' Torsional ' case a simplified analysis is also given and this yields 
a better approximation than the conventional method s. Tile important  case of loading along one 
spar is also discussed. 

2. Description of Structure and Assumptions.--The top and bottom surfaces of the two-spar 
multi-rib wing of rectangular cross-section and rectangular plan-form, shown in Fig. 1, are 
constructed from thin flat skins reinforced by  closely spaced stringers and rib booms. Tile spar 
and rib webs are reinforced by closely spaced inextensional members parallel to the z-axis. 
The wing is supported mid-way along each spar and these supports supply z-wise constraint only. 

*R.A.E. Report Structures 171, received 14th July, 1955. 
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following assumptions are made in the analysis : 
The stress-strain relationships are linear 
Buckling does not occur 
The stringers and booms resist only direct load 
The stringers and ribs are so closely spaced that  they may be considered uniformly 

distributed 

The spar and rib webs resist only shear, account being taken of their • contribution to the 
direct stiffnesses by corresponding increases in the spar-boom and rib-boom cross- 
sections. 

3. The Flexural Case.--The flexural case corresponds to a loading symmetrically distributed 
about the spanwise centre-line of the wing box. For such loadings the spar and rib web shears 
are statically determinate and so the three-dimensional problem is reduced to a plane problem 
where all the boundary conditions are known. 

The equations of compatibility for the reinforced skins at z = 4- b are derived in terms of 
the displacements u and v in Appendix I. 

+ 2 ~ 2 ~ ~ 

.. (1) 

~2 2 a~ 2 2 ~ + Et a2S 

where 0~* and ~ are non-dimensional structural constants and S is the known surface force applied 
by the rib webs. The remainder of the notation is defined in Fig. 1. Equations (1) are solved 
in Appendix II for the particular loading cases of 

(a) uniformly distributed load over the whole surface, i.e., Z(C ~) = Z = a constant 
(b) uniformly distributed load along the two spars, i.e., ZR(~) = ZR a constant. 

The solutions are" 

1 ~ E sin a l ,  , 
Et ,-- 2 -  

cosh ~/]'2"/;/~ 1 -- 1 / 2~ 

2 
-1/2~} 

+ A 2,, cosh ~=/~2 

1 - -  a 2 m ~  ( 

Et ,.=~ COS~2- IBI" I  sinh m~fl~/~$ m~f122~/2~ } 2 " + B2,.sinh 

v - -  E ~  (2aLZ) ~aa -- ~ -- Et ,,=~ } cos 2 

• 2 + ,~2A2, sinh 2 

. .  (2 )  

Et ,,--E sin ~ lilB,,,, cosh 2 ~- &B,,,~ cosh 
f 

where 5~,/32, A1, & are non-dimensional structural constants, ~, m are odd integers and AI~, A2,, 
BI,~, B~,,, are arbitrary constants to be determined from the boundary conditions. The determina- 
tion of the arbitrary constants involves the solution of four sets of infinite simultaneous equations 
but the form of equations (2) has been chosen so that  these equations readily reduce to a s!ngle 
set of infinite simultaneous equations where the leading diagonal terms are predominant, 
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When the arbitrary constants have been determined, the stress distribution throughout the 
wing is evaluated, using the well-known stress-strain relationships, and the distortion of the 
wing is evaluated from the expression 

= -- E~ a S d~7 + ~ v d~ + ErR L SR de 

b de . . . . . . . . . . . . . .  (3) 
t 0 

where @(~, ~) is the z-wise displacement. 

If the ribs are assumed rigid in their own plane there is a considerable simplification in the 
analysis and computation. This simplification is considered in Appendix III and corresponds 
to the conventional method 1 of stressing for the flexural case. The equation of compatibility for 
the reinforced skins at z = -1- b is then 

3~u D2~ 
fl ~ + DV . -- 0 . . . . . . . . . . . . . . . .  (4) 

and the solution is simply 

} ~  - -  E ?  ,,----~1 A , ,  sin y cosh 2 (5) 
~ • • • • . . • ° 

vm-~0 

where/~ is a non-dimensional structural constant, n is an odd integer and the A,, are arbitrary 
constants to be determined from a boundary condition. 

A numerical illustrative example is given in Appendix V and is based on a wing whose structural 
box has an aspect ratio 2 and a thickness/chord ratio 7.5 per cent. The stress distributions for 
this wing are shown in Figs. 6 to 15 and the distorted shape is shown in Figs. 16 and 17. For the 
purpose of ready comparison the salient values are reproduced in the table. 

The additional effects due to the chordwise distribution of loading may be approximated by 
the simplified method given in Appendix VI. Appendix VII deals briefly with the anti-clastic 
effects due to pure bending. 

4. The Torsional Case . - -The  torsional case corresponds to a loading anti-symmetrically distri- 
buted about the spanwise centre-line of the wing box. Unlike the flexural case, the spar and 
rib web shears are no longer statically determinate and so the problem is three-dimensional. 
The analysis could proceed in a similar manner as for the flexural case, but as the algebra and 
computation would be more intricate a different approach has been favoured (Appendix viii). 

The equations of equilibrium for the reinforced skins at z = ~: b are 

j 

l 1 1 d Sd~ 

0 
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Unifor in ly  
d i s t r ibu ted  load 

over whole 
surface 

2 a L Z  = l .O lb 

U n i f o r m l y  
d i s t r i b u t e d  load  
a long  the  spars,  
2LZR = 1 .0  lb 

Rigid  ribs, 
2LZR = 1 .0  lb. 

Conven t iona l  
m e t h o d  

E n g i n e e r ' s  
b e n d i n g  theory  
2LZR = 1 . 0 1 b  

Sta t ica l ly  zero 
d i s t r ibu ted  load 
2 a L Z -  2LZR 

Sta t i ca l ly  zero 
d i s t r i b u t e d  load 

2 a L Z  - -  2LZ1/  
ac t ing  on  a w i n g  
of in f in i te  span  

Ant i -e las t i c  
effects due  to 
a t ip  m o m e n t  

L2Z~ = L /2  i n .  lb 

Max. spar  boom stress 
(i.e., at  ~ = 0, 17 = 1) 0 .2036 lb/in.  2 0 -1999  lb/ in .  2 0. 1955 lb/ in .  2 0" 1111 lb/ in.  2 0 .0037 lb/in."- 0 -0047  lb/ in .  ~ 0. 1111 lb/ in."  

Max.  spanwise  skin stress 
(i.e., at  ~ =- 0, ~ = 1) 0-2067 lb/ in.  2 0 .2032  tb/ in.  2 0-1955 lb/ in .  2 0-1111 lb/ in .  2 0" 1111 lb/ in."  

Max. r i b -boom stress a t  t ip  
(i.e., at  ~ = 1, ~/ ~-- 0) - - 0 . 0 9 5 3  lb/ in .  ~ - - 0 . 0 5 7 3  lb/ in .  2 0 0 - - 0 . 0 3 8 0  lb/ in .  2 - - 0 . 0 4 4 0  lb/ in .  2 

Max. chordwise skin stress 
a t  t ip  (i.e., a t  ~ = 1, ~ = 0) - - 0 " 0 9 7 4  lb/in.  ~ - - 0 - 0 5 8 6  lb/ in .  2 0 0 

: ~  z-wise deflection of spar  at  
t ip  - - 2 - 7 1 6  × 10 .5  in.  

- - 3 . 0 4 7  × 10-Sin .  

0 -105  × 10-Sin .  

z-wise deflect ion a t  centre  of 
t ip  r ib 

- - 2 " 622  × 10 -5 in. 

- - 2 . 6 2 2  × 10-a in .  

0 
z-wise deflect ion a t  cent re  of 

root  r ib  

- -1 -481  × 10 -S in .  

- - 1 -481  × 10-Sin .  

- - 2 - 7 9 5  × 10 .5 in. 

- - 0 . 3 1 3  X lO-Sin .  

- - 0 - 2 7 9  × 10 - s in .  

--3.360 × 10 -2 in. - - 0 - 2 7 3  x 10 -5 in.  

- - 0 . 2 7 3  × 10 -5 in. - -0"  174 × 10 -5 in. - - 0 .  186 X 10 -5 in.  

The  va lues  of the  s t ruc tu r a l  cons t an t s  a r e :  tp. 

a = 100 in. Semi-chord  d imens ion  t* 

A = 10 in. 2 Cross-sectional area  of the  f ron t  a n d  rear  spar  
booms y 

b = 7"5 in. Semi-spar  dep th  

L = 200 in. Semi-span  d imens ion  

t = 0"15 in. Nomina l  th ickness  of top  a n d  b o t t o m  skins 

0 .15  in. 

= O- 20 in.  

= 0"18 in. 

= 0 .008  

N o m i n a l  th ickness  of the  f ron t  a n d  rear  spar  webs  

Effect ive th ickness  of the  sk in - s t r i nge r  com- 
b ina t ion  for res is t ing  load in  the  d i rec t ion  of 
the  s t r ingers  

Effect ive th ickness  of the  sk in - r ib  b o o m  com-  
b i n a t i o n  for res is t ing  load in  the  d i rec t ion  of 
the  r i b s  

Thickness  of r ib webs  per  u n i t  l eng th  of span  



wl~ere T, T' and S are stress resultants. A consistent system of stress resultants satisfying these 
equations is then 

r = ~: ~,,r,,(~) 
n . = l  

T'= - - (LY ~ d2 ,,.=i ~ (n)~(l+ 1)(n--,~]n+l)@ 2) Fn(ff) 

(L)d-~f 7]n+l } s = - F(~) + } f,~(~) 
,,=in + 1 

= - Z 2-? f(~) + ,,=~ } (~ + 1)(n + 2) f"(¢) 

(7) 

where n is an odd integer and F(8), F,~(#) are functions to be determined from the condition 
that  the total strain energy is a minimmn.  This procedure yields (n -f- 3)/2 simultaneous differen- 
tial equations of fourth order involving only the even differentials. The arbitrary constants in 
the complementary functions are determined from the boundary conditions at # = 0 and ~ -- 1, 
which yield two sets of n + 3 simultaneous equations. 

When these functions have been determined, the stress distribution throughout the wing is 
evaluated by substitution into equations (7) and Others, and the distortion of the wing is evaluated 
from the expression 

= E~ a S d n - - D  vdn . . . . . . . . . . .  (8) 0 
It  should be noted that  the above procedure corresponds to the conventionaP method when the 
F~(~) are put equal to zero. 

Since the effect of the chordwise distribution of loading will, in general, be smaller than for 
the flexural case, the equations have been solved only for a uniformly distributed load along each 
spar, viz., 2LZR = 1.0 lb. Numerical illustrative examples are given in Appendix X for the 
same wing examined for the flexural case. 

The determination of the cross-sectional distortion is unlikely to be of such importance as for 
the flexural case since the distortion will be of a smaller order due t o  the presence of a point of 
inflexion along the spanwise centre-line..This suggests that  the rib booms might he considered 
inextensional, thereby simplifying the analysis. This simplification is considered in Appendix IX 
where the equations of compatibility are found to be 

a~u + a2u 0 

-~ 2 ? -  + ~  u~ - :~  5?/ .=~ 

2(I +a) (2LZR) I ( L )  

5 

(9) 



The solution of these equations is 

~ ~ ~/31/2~ 7 
1 ~ A,~ sin sinh - - - - -  

u --  Et,,=~ 2 -  2 ' 

d~ -- Et C1 sinh yl/2~ + C~ cosh y~/"~ 

(25Z.) + 

(10) 

where 7 and v,, are non-dimensional structural constants,, n is an odd integer and C1, C2 and A,~ 
are arbitrary constants to be determined from the boundary conditions. A numerical illustrative 
example is given in Appendix X. 

The stress distributions obtained from the various numerical examples are shown in  Figs. 18 
to 22 and the spar deflections are shown in Fig. 23. For the purpose of ready com. parison, the 
salient values are reproduced in the table, where the loading for all cases is uniformly 
distributed along each spar  and of magnitude 2LZR = 1.0 lb., 

5. Loading Along one Spar . - -For  an aircraft in subsonic flight the lift distribution is usually 
such that  the centre of pressure is in the neighbourhood of the front spar. An important design 
case therefore occurs where the structural box is loaded along one spar only. The stress and 
distorted shape for this loading can be easily obtained by addition of the results of the flexural 
and torsional cases ; the results of this addition are shown in Figl 24 for the spar boom stresses. 

The increase in maximum spar boom stress over that  given by the conventional methods is 
approximate!y 10 per cent for the wing investigated. It  is to be  expected that  this difference 
will increase as the thickness and aspect ratio of the structural box decrease. 

6. Comlusio~,s.--The validity of the conventional methods of wing stressing1,2 has been 
examined when they are applied to thin wings of low aspect ratio. Attention has been confined 
to the two-spar multi-rib wing having rectangular cross-section and rectangular plan-form. 

For loadings symmetrical about the spanwise centre-line of the wing box {the flexural case) 
it has been found from a numerical comparison that  the conventional method 1 is satisfactory in 
all respects excepting that  it does not reveal 

(a) the cross-sectional distortion of the ribs (i.e., the change in camber) 

(b) the chordwise stresses in the reinforced skins. 

The conventional method 2 of wing stressing for loadings anti-symmetrical about the spanwise 
centre-line (the torsional case) is not satisfactory and yields optimistic results. The use 
of an 'effective' boom area including I/6 of the cross-sectional area of the reinforced skin 
is less accurate than using the nominal boom area for these thin wings. An exact and a simplified 
analysis are given in the Appendices. 
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Uniformly distributed Load 2LZR = 1 .0  lb. along each Spar  

Max. spar-boom stress 
(i.e., at  ~ = 0, ~/ = 1) 

Max. skin shear stress . .  

--d Max. spar-web shear stress 

z-wise deflection of spar at tip . .  

Appendix VI I I  
First  two terms 

0" 1275 lb/in. ~ 

O. 0582 lbfin. 2 

--0" 222 lb/in. 2 

--1".324 × 10 ~ in. 

Appendix  V I I I  
Firs t  t e rm wi th  

nomi na l  spat  
boom area 

O" 1424 lb/in. 2 

0" 0418 lb/in.  °" 

--0" 222 lb/in,  e 

- -1 -402  x 10 - a i n .  

Appendix  V I I I  
Firs t  t e rm with 
effectivet spar 

boom area. 
Convent ional  

method  

0" 1000 lb/ind- 

O" 0360 lb/in. "2 

--0" 222 lb/in. 2 

- -1 .271  × 10 -5 in. 

Appendix VI I I  
First  te rm with 
effective t spar 
boom area and 

rigid ribs 

0.0953 lb/in. 2 

O" 0351 lb/in. 2 

--0" 207 lb/in. 2 

- -1-222 × 10 - a i n .  

Appendix  I X  
Inextens ional  

rib booms 

O" 1232 lb/in. 2 

0" 0520 lb/in. -° 

--0" 222 lb/in. 2 

- -1 .279  X 10 -5 in. 

t Effective spar bcom area = A + at*/3 

The values of the s t ructural  constants  are : 

a = '  100 in. 

A = 10 in. ~- 

b = 7 .5  in. 

L = 200 in. 

t = 0-15 in. 

Semi-chord dimension 

Cross-sectional area of the front and rear 
spar booms 

Semi-spar depth 

Semi-span dimension 

Nominal  thickness of top and bot tom skins 

ta ----- 0 - 1 5 i n .  

t* = 0 . 2 0 i n .  

= 0"18 in. 

O. 008 

Nominal  thickness of the front and rear spar webs 

Effective thickness of the skin-stringer com- 
binat ion for resisting load in the direction of 
the stringers 

Effective thickness of the skin-rib boom com- 
binat ion for resisting load in the direction of 
the ribs 

Thickness of rib webs per un i t  length of spap_ 



LIST 

1. General.--1.1. Structural Properties 

2a 

A 

2b 

2L 

l 

[ze ' 

f-* 

OF SYMBOLS 

Chord of the wing structure 

Cross-sectional area of the front and rear spar booms 

Thickness of the wing structure 

Span of the wing structure 

Nominal thickness of the top and bottom skins 

Nominal thickness of the front and rear spar webs 

Effective thickness of the skin-stringer combination for resisting load 
in the direction of the stringers 

[ Effective thickness of the skin-rib-boom combination for resisting load 
in the direction Of the ribs 

T Thickness of rib webs per unit length of span 

1.2. Co-ordinate Systems 

x, y, z Rectangular co-ordinate System with origin at centre of wing 

~ = x/L Non-dimensional.co-ordinate 

*1 = y/a  Non-dimensional co-ordinate 

1.3. Loads and Stresses 

12) R 

S 

S~ 

T 

T' 

z(~, ,~)- 
Z 

ZR 
1.4. Displacements 

qA 

CA R 

U 

~7 

• 7.UR 

End load in the rear spar boom 

Shear-stress resultant in the reinforced skin 

Shear-stress resultant in the rear spar web 

Surface force acting on the skin 

Direct-stress resultant in the reinforced skin along a stringer 

Direct-stress resultant in the reinforced skin along a rib boom 

Distributed load acting over the whole wing 

Uniformly distributed load acting on the whole wing 

Distributed load acting on the rear spar 

Uniformly distributed load acting on the 'rear spar 

, Displacement along a stringer 

Displacement along a spar boom 

x-wise displacement in a spar web 

Displaceme ~t along a rib boom 

y-wise displacement 

z-wise displacement 

z-wise displacement 

z-wise displacement 

in a rib web 

in a rib 

of the centre of a rib 

of a spar 

8 



LIST OF SYMBOLS~conlinued 

E 

0- 

2. Symbols Peculiar 

AI,,, A2,,, BI,,,, B2., 

~t, m 

1.5. Elastic Constants 

Young's modulus of elasticity for the structure 

Poisson's ratio for the structure 

O~ ~ 

= 

2~ 

to Appendices I, I I  and V. 

Arbitrary constants 

Odd integers 

- - - -  O -2 - -  1 

t 

(17 ' ~X ~ 

}. non-dimensional, structural parameters 

i 
J 

~*(1 - 0-) 

1 - -  a / L \  -1/2 

2~ * (a'~/31/~ 1 - - ~  
I + ~ , , L J  1+0- 

L\ _~/~ 

non-dimensional structural 
parameters 

3. Symbols Peculiar 

A~, 

CI, C~ 

n 

= 

0 . ,  v , .  p , .  ~o,. Vo,~ = 

to Appendices I V  and IX .  

Arbitrary constant 

Arbitrary constants 

Odd integer 

2(~ + ~) 7 

F non-dimensional structural parameters 

J 
/ 

constants defined in Appendix IX 

4. Symbols Peculiar 

A, 

n 

to Appendix VI I I .  

Effective cross-sectional area of the front and rear spar booms 

A + at*/3 

Functions of ~ defining the stress distribution 

Odd integer 

Infinitesimal variation 
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No. A uthor 

1 D. Williams, R. D. Starkey and .. 
A. H. Taylor 

2 H. L. Cox . . . . . . . .  

R E F E R E N C E S  

Title, etc. 

Distribution of stress between spar flanges and stringers for a wing 
under distributed loading. R. & M. 2098. June, 1939. 

On the stressing of polygonal tubes with particular reference to the 
torsion of tapered tubes of trapezoidal section. R. & M. 1908, 
December, 1942. 

A P P E N D I X  I 

The Flexural Case 

Derivation of Fundamental Equations 

The  flexural  case corresponds  to a loading symmet r i ca l l y  d i s t r ibu ted  abou t  tile spanwise  
centre- l ine of the  wing  box. For  such loadings the  spar  and  r ib-web shears are s ta t ica l ly  de te r -  
m i n a t e  and  so the  th ree-d imens iona l  p rob lem is r educed  to a p lane  p rob lem where  all t he  
b o u n d a r y  condi t ions  are known.  In  w h a t  follows, a t t e n t i o n  is confined to cases where  the  dis- 
p l acemen t s  u and  v at z = :J: b are equal  and  opposi te  to one another .  

1. Fundamental Equations for the Reinforced Skins z = ~ & - - F o r  equi l ib r ium of an e lementa l  
por t ion  of the  re inforced skin at  z = b, Fig. 2, it  is necessary  t h a t  

~ + ~ = o  

a~ + 1 7  - a S  = 0 I 
J 

The  stress r esu l t an t s  in t e rms  of the  d i sp lacements  are 

T--l_,= a~+a / 

S - - 2 ( 1 + a ) .  ~ + Z ~ -  

where  ~* and  a are non-d imens iona l  s t ruc tu ra l  cons tan t s  given by  

0 ¢  ~ - -  0 "2  - -  1 " 

t 

(11) 

. . . . . .  (12) 

a - - - j -  - 1  . 

10 



The equations of equilibrium in terms of the displacements are then found to be 

. ~ . ( L )  ~ u  1 - - ~ u  I + ~ ( L  ) 82v ] 
O~ ~ + 2 ~2 -- 2 ~ 8~ 

• ° 

or (1) bis. 
J 

(13) 

2. Fundamental Equations for the Spar Booms.~The spar booms are additional end-load 
carrying members attached along the outer edges of the reinforced skin. The forces acting on an 
elemental portion of the rear spar boom are shown in Fig. 3. For equilibrium of this element 
it is necessary that  

1 dPR 
- -  S,~ + S/,,=~, 

L d~ 

which on integration yields 

P~ = -- L (S~ + S/,,=d d6 . . . . . . . . . . . .  (14) 

where it is assumed that  PR = 0 at the tip. 

The condition of compatibility between the rear spar boom and adjacent reinforced skin is 
that  

duR ~u / 
- -  j 

d~ ~ I ,~=~ 

where the boom strain is 

duR L ~ 
d~ EA 

(is) 

f 4- (16) 

3. Fundamental Equations for the Ribs and Spar Webs.--The forces acting on a rib are shown 
in Fig. 4. The ribs are continuously distributed in the ~ direction and the thickness of rib webs 
within an element L~ ~ will be denoted ~L $ ~. The shear stress resultant acting on a rib is denoted 
by SL d~ where the stress S is, in general, a function of ~ and *l. For equilibrium of a rib it is 
necessary that  

O3 aZ(L ,~) . . . . . . .  (17) 
• - -  , o • ° , * • ° ° 

07 2b ' 
where Z(~, ~1) is the distributed load over the wing surface. The relation between S and" the 
rib displacements is 

2(1+ )S 
a ~7 0z Ez 

Now, the ribs are reinforced by inextensional z-wise members and so it follows that  ~ is inde- 
pendent of z. Differentiation of this equation with respect to z then shows that  

Z 

since at z = 4- b the rib displacements must conform with those of the reinforced skin. 
follows that  

z~ 2 ( 1 - / ~ ) f l  al l '  - -  E~ a £ d ~ - - D  v d ~ + z ~ o  . . . . . . . .  

I t  now 

(18) 

11 



where "~0 = z~/o=0 and is a function only of $. 

The forces acting on the rear spar web are shown in Fig. 5. For equilibrium at the intersection 
of the rib and spar webs it is necessary that  

Z d~ - -  2b . . . . . . . . . . . . . . . . .  (19) 

where ZR(e) is the distributed load along the rear spar. T h e  relation between SR and t h e sp a r  
displacements is 

1 2(1 + 
L ~e ~-~-= ErR $1~. 

Differentiation of this equation with respect to z then shows that  

Z 
Ule I ~-- ~ U / , j =  1 

since at z = 4- b the spar-web displacements must agree with those of the spar boom, and 
because agreement of the z-wise displacement wR with the displacement z~ shows that  the former 
are also independent of the z co-ordinate. This and the strain equation then yield 

wR -- ErR L SR de --  ~ u/,~=~de . . . . . . . . .  (20) 

since at the root wR/e=o = O. 

Noting that  wR = z~/,,=, it is easily shown from equations (18) and (20) that  

The equation for the rib displacements may now be rewritten 

; ; fl = 2(1 + ~) a 2(1 + a) 
- -  ~ E-c a g d~ -[- ~ v d~ + ErR L S~ d~ 

b u/,,=l d~ or (3) bis . . . . . . . . .  (21) 

4. Equation of Overall Equi l ibr ium.- -To  complete the formulation i t  now remains o n l y  to 
determine theequa t ion  of overall equilibrium for the wing box. This is determined from resolu- 
tion of the z-wise forces at a chordwise section, viz., 

; fx SR = a L I  Z(e,  ~) de d~ -- L -- 47 ~ ZR(e) de . . . . . . .  (22) 
d - - 1  ~ ~: 
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A P P E N D I X  II  

The Flexural Case - -  Solution of Equations 

I t  is now proposed to solve the equations of Appendix  I for the part icular  loading cases of 

Z(~, n) = Z = a cons tant  l 

Z~(#) = Z~ = a constant  

The equations of equil ibrium in terms of the  displacements are 

~-~+ 2 an"-- 2 a~:an 

~ - -  ~ ~ ~ \ 2 2 ~ - 2 ~-i-~-~ + 

where, from equation (17), the surface force is found to be 

$ _ aZn ' 

2b . . . . . . . . . . . . .  

1 - -  G 2 

Et 
- -  a ' . S  

A solution to equations (13) m a y  be wri t ten  

! - -  a2 n~z~ { 
u = - E ~  ~ sin ~ -  AI,, cosh n~/~l 1/2~] 

l '1=1 ' 2 '  -1/'.~?t + A ~,, cosh n~/~ 2 

+ 1 - -  a ~ m=~ { 
Et .,=1~ cos ~ -  BI,,, s inh m~fl2~/'.~ + B2,,, sinh m=5~*/2~ ; 

2 3 

. . . .  (23) 

l 
I 

, (13)bis  

J 

. . . .  (24) 

P 
1 - -  G 2 

7 . ) - -  
Et 

1 

Et E n ~  nz~ -~/2 v c o s ~  21A sinh n~fi1-1/2~ + ~2A2,, sinh 2 ,,=1 1. 2 

1 - -  ~= m = ~ f  _ 
Et  ,,~1 sin - ~ - ~ 1 / 3 . , ,  

where n, m are odd integers and 

f L ' ~  ~ 2(~*a --  ~) 
8 1 + f 1 2 = ~ . a f l  c J ( 1 - - a )  ' 

cosh m~fllw2~ + '~2 B,,,'. cosn 
2 ~ j j 

~" ,(2) or bis (25) 

13 

21--  l + a  i - t - ~  

~2__1+a2~* (L)/321/2__I--~(L)f12_l/21+a ' 

and AI,. A'.,,, B1 .... B2,,, are constants  to be determined from the bounda ry  condit ions at ~: = 1 
and ~ = 1, 



The boundary conditions are • 

T' = 0 a t ~  = 1 

T = 0 a t f = l  

S = 0 a t  # = 1 } . i I I I I I 

8u _ duR at ~ =:2  
8~ d~ 

From equations (12) the first boundary condition requires that  

1 - - ~ '  ~ + L  = 0 a t e = l ,  

and substituting from equations (25) it is found that  

,,=1 2-  a/31-1/=21 -- ° A., cosh n~/~1-1/2 
2 

+ 

and this can only be satisfied if 

5¢7t/~1-1/2 

+ { ( f )  ,,,--1/',2 -- O'}A 2n Gosh ~2~' 2-1/9" 2 - - 0 .  

The second boundary condition requires that  

Et ( ~ u  ~ ) = 0 a t , =  1 
1 - - a  2 a~ + a  

and substituting from equations (25) it is found that  

;71=i 

- - 0 ,  

cosh m~f1111~ 
2 

(27) 

whence 

{ ( L )  ~']6/~ll/'- ~IG} Blm COStl_ ~2"[~ 11/2 

dr o" 

The third boundary condition requires that  

_ ( _ ) ,  .... s- 
~]/~ 4:7.t: 4 " (28) 

2 ( 1 ~ )  ~VV - t - ~ -  = 0 a t e = l ,  

14 



and subs t i tu t ing  from equations (25) it is found tha t  

t 
X L y  "=~ 2 

/3~ -1/~ + ~ A l . s inh  2 

sinh - -  sin - -  
m ~ n  

2 

f/ 'L,  1/2 2~} A2,~ sinh n~/32~/~ 1 

whence 

~:7~ f{ 1 +(L) l~ll/2,~l}BlmSinh'J4/!~2g~11/2 .. ~ +{1 +(L)'~/2 22} B2," sinh - -  

=4(L)~(_)(,,+,~_2,1~I'I(L)fl~-u2?I) t~-l/2"Ax'' 
cosh 'J~75~1-- 1/2 

2 

cosh 
(29) 

The final boundary  condit ion requires tha t  ~ u / ~  : duR/d~ at v = 1, and subs t i tu t ing  from 
equations (16), (22), (23) and (25) it is found tha t  

Et ~ = ~ c ° s ~ -  A~,,cosb- 2 + A 2 , , c o s h  

_ (2aLZ + 2LZR) L2(1 _ ~)2 
- -  8EAb 

1 --  ~ L ~ cos /3~ -~/2 + , ~  A~.sinhn~/~-~/2 
2(1 + ~) E A  ,,=~ 2 -  2 

1 - -  ~2 L ~ (_)(  . . . .  l>/e [ ~ ( ~  $l-1/2 @ ,~l; B~., (cosh m~fllt/2 
+ 2(1 + ~) E A  ~=~ [ _ [ \ u /  3 \ 2 

cosh m~ lj~-) 

+ ~2 -1/2 + i2 B~,,, cosh 2 

!5 



whence 

A In I n~ cosh n~/~1-1/2 (~__L) 1 {(L) } ~ al I n~/~2-1/2 2 + i--+--~ fl,-*i= + ~1 S inh n= -1/ -4- As,, n= cosh 2 

1 ~  (Q#)./3~ -*/~ + aa} sinhn°z3~ 1" 1 

' { - 1 <,5 (2aZ:Z  + 2LZ.) -- ~4agga J 

[ ( (L /a )~<  "~ k- z~}/~B,,,, ~'J~ 
(n/m) ~ + B~ cosh 2a 

+ {(L/a)t~-*1=+ 2=}t~2B~,,,coshm~l/21 
(~/r~) ~ + ~ z j" . .  (3o) 

The constants A 1~, A ~,~, BI,,, and B~,~ may now be determined from the infinite sets of simultaneous 
equations provided by equations (27), (28), (29) and (30). These equations may be solved 
numerically by the method of segments and it is then possible to evaluate the distorted shape 
and stress distribution throughout the entire wing structure. 

APPENDIX II I  

The Flexural Case 
Specialisation of Equations for Rigid Ribs 

When tile ribs may be assumed rigid in their own plane there is a considerable simplification 
of the analysis and computation. This simplification corresponds to the conventional solution 1, 
but the equations will be derived here for the sake of completeness. 

For equilibrium of an elemental portion of the reinforced skin at z = b (Fig. 2), it is now only 
necessary for 

1 ~T 1 ~S 
~-~ + a ~ - 0 . . . . . . . . . . . . . . .  (.31) 

The stress resultants in terms of the displacements are 

T -- Et* ~u 
L ~ 

. . . . . . . . . . . . . . . .  (32) 
S -- Et ~u 

2(1 + ~)a ~ _j 

since the displacement v is zero by virtue of the rigid ribs and symmetry. The equation of 
equilibrium in terms of the displacement u is then found to be 

~2U ~2 u 
- -  . .  . .  . . . . . . . . . . . .  ( 3 3 )  

f l ~  + a~ ~ 0, '(or (4)bis) 
where fl is a non-dimensional structural constant such that  

16 



This equation has the solution 

1 E A,, sin cosh - -  . . . . (34) 
u - -  E t  ,=1 2 2 ' " . . . .  (or (5) bis) 

where n is an odd integer and the A ,  are constants  to be determined.  From equations (15) and 
(16) it is found for compat ib i l i ty  of strain between the rear spar boom and the adjacent  reinforced 
skin it is necessary tha t  

a~l ~=1 = - -  E A  (SR + S/.=1) d~.  

Subst i tut ing_equations (22), (32) and (34) into this  last, the coefficients A,, are found to be 

An : 2 2;(,-,$-~f a ~ fl_1/2 ~,2.~fil/2 1 ( L , )  jz/~ 1/2} "" (3S) 
n ~ l~x ~ - / ] ~ x z j  ' sinh ~ -P ~ n ,  cosh - - -  

where ZR(*) has been assumed constant  along each spar. 

The z-wise displacement is given by  equation (20), viz., 

wR = z ~  2 ( l + ~ ) L  fls d, L flu/,,_lde 
- -  ErR - - -  b . - ' "" 

ttmre being no var ia t ion of z~ along a chord because the ribs are rigid. 

(36) 

A P P E N D I X  IV 

The Flexural  Case 

Convergence of the Series Solutions at the Spar  Booms 

Before proceeding with  a numerical  calculation it is advisable to examine the convergence of 
the series solution. For  example, when the ribs are considered rigid and the loading is uniform 
along the spar booms, the  direct stress along the stringers is given by  

I1 (--)("-'/~ 2] cos n ~ :  cosh r~Jz/~1/277 
E 0u _ (2LZR) ~ nz~ 2 2 (37) 

L a ~  bt ,,=1 n~ { ( t * ) ( a ) / 3 - t / 2 s i n h  n = f l I / 2 7  Z * ~ -~- 21(A) $qATg Gosh ng~ 1/2}-- 

from equations (32), (34) and (35). Now, at ~ = 0, ~ = 1 this series for the stress converges 
as l / n  2 which is unsat i s fac tory  from the numerical  calculation s tandpoint .  However,  for equili- 
br ium across a chordwise section it is necessary tha t  

1 au E A  au L 

Et* ~ d~ + 2 ~ -  ~ ,,=1 = b (~' - -  *) ZR(~') d~' 
- 1  

,and so stress along the rear spar boom, i.e., at ~ = 1, is now given by  

Z 5~ rl=l - -  2-Ab (~1 - -  ~) Z R ( ; t )  d~ '  - -  2 ~ - '  ~-~ dg] . . . . .  (as) 

17 



Subst i tut ing equat ion (37) into this last and assuming Z~(Q to be constant  along the spars, it 
~s found tha t  

Ou / = (2LZ~) L(1 -- #)~ 
E L  ~-- ,~=~ 8Ab 

- -  (2LZ~) 2at* 
bAtfl~/~ ~=~ 

1 (--)0'--1)/2 21 "J~ $$7C/~ 1/2 
cos sinh 

~ 2 -  2 
(39) 

so the series for the stress along the rear spar boom now converges as 1/n ~. 

It  is difficult to examine analytically the convergence of the  solution in Appendix  II, but  it 
is to be expected that  the  series will behave similarly t o  the above. Proceeding in a similar 
manner ,  it is necessary for equilibrium across a chordwise section for 

If{ } v 2EA  8u / 

1 

fl;1 ; aL L 
- -  2b (~' - -  ~) Z(~ ' ,  ~) d~ d~' + ~ (~' - -  ~) Z~ (~') d~' 

and so the  stress along the rear spar boom is now given by 

L ~/,,:, - 4 A b  (~'  - -  ~) Z (U ,  v) d~ d~" -I- 2Ab (~:' -- ~)ZR (~') d~' 

Et ~u ~v 
2A(1 --  ~),~ _~ ~* ~ + ~ d~ " "" 

Subst i tut ing equations (23) and (25) into this last and integrat ing yields 

E ~u / = (2aLZ + 2LZR) L(1 -- ~)2 ~a ~ 
L ~ /  ,7=~ 8Ab + (2aLZ) 12AbLa 

(40) 

-- - cos - ~ -  ~,  fl,/2 _ ~a, A,,, sinh n=fi~-*/~ 
A~=I . 2 

1 } 
- )1 ~" (_)c,,,-1);~ ~ ,  f i l / ,  _ ~& B~,,, cosh m~fl~l/,~ 

m=l 2 

+ ((;)    2}B2 cosh ] 
2 J . . . . . . .  (41) 

so tha t  the convergence of the series for the stress along the rear spar has been improved by 1/n, 

! s  



T h e  order  of convergence  for the  stress in the  rib booms  at ~ = 1 is t h e  same as for t he  stress 
a long the  spar  booms.  However ,  the  rib b o o m  stress at  ~7 = 1 can be ca lcula ted  f rom the  
b o u n d a r y  condi t ion  T' = 0 a long ~ = 1, i.e., 

E ~v / E ~  ~u / 
/ / (42) 

E a u /  obta ined  f rom equa t ion  (41). and  using the  va lue  o f ~ - ~ -  ,,=, 

T he  convergence  of the  series for the  shear  stress in the  re inforced skins along the  spar  booms  
is no t  sa t i s fac tory  a n d  it  is no t  possible to improve  the  convergence  in a s imilar  m a n n e r  to t h e  
above.  However ,  the  shear  stresses in the  re inforced skins are small  a n d  therefore  are no t  of 
such  great  impor t ance .  

A P P E N D I X  V 

The Flexural Case 
Numerical Illustrative Example 

1. General.--The numer i ca l  i l lus t ra t ive  example  is based  on a wing  whose s t ruc tu ra l  box has 
an  aspect  rat io  2 a nd  th i ckness / chord  rat io 7 . 5  per  cent.  The  values  of the  s t ruc tu ra l  cons tan t s  
are • 

a = 100 in. 

A = 10 in. ~ 

b = 7"5 in. 

L = 200 in. 

t = 0 .15  in. 

tR = 0 . 1 5 i n .  

t* = 0 . 2 0 i n .  

[ = 0-18  in. 

= 0. 008 

E = 1071b/in. 2 

= 0 . 3  

Semi-chord  d imens ion  

Cross-sect ional  area of the  f ront  and  rear  spar  booms  

Semi-spar  d e p t h  

Semi-span  d imens ion  

Nomina l  th ickness  of t o p  and  b o t t o m  skins 

Nomina l  th ickness  of t he  f ront  and  rear  spar  webs 

Effect ive th ickness  of the  sk in-s t r inger  comb ina t i on  for 
resist ing load in the  di rect ion of the  s tr ingers  

Effect ive th ickness  of t he  sk in - r i b -boom combina t ion  for 
resist ing load in the  di rect ion of the  ribs 

Thickness  of rib webs per  un i t  l eng th  of span  

Young ' s  m o d u l u s  of e las t ic i ty  for the  s t ruc tu re  

Poisson 's  rat io  for the  s t ruc ture .  

2. Numerical Example for Appendix / / . - - T h e  above  give the  following values  of the  non-  
d imens iona l  s t ruc tu ra l  p a r a m e t e r s  for the  exact  solut ion • 

~ * = 1 " 3 0 3 3 3 3  

a = 1 " 1 8 2 0 0 0  

f i 1 = 1 " 5 5 6 7 1 2  

p 2 = 9 " 3 2 1 2 4 2  

~ = 0 " 3 8 7 7 4 2 9  

~ a : 2 " 7 0 8 1 6 5 .  
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For the purpose of these calculations the par t icular  loading cases of 

2 a L Z ( , , ~ )  = 2 a L Z  = 1.0 lb. 

2LZR(~) = 2 L Z R  = 1.0 lb 

have been chosen. 

The values of the constants  AI,, A2,,, BI, , ,  B2,,, are de te rmined  f rom equations' (27) to (30) by  
the me thod  of segments,  i .e. ,  it is assumed tha t  AI,~ = A2 ,  = BI,,, = B2,,, = O, when n, m > 9 say. 
This then yields t w e n t y  s imultaneous equations for the de te rmina t ion  of t w e n t y  constants .  
The general scheme of these equat ions is depicted below, 

A 11 A 13 A 1~ A 17 A 19 Bll  B13 B15 B17 B19 A ~1 A 23 A ~ A 27 A ~ B21 B23 B25 B27 B29 
X X 

X X 
X X 

X X 
X X 

X 

X 
X 

X 

X 
X 

X 
X 

X 
X 

X X X X X X  X X X X X X  
X X X X X  X X X X X X  X 
X X X X X  X X X X X X .  X 
X X X X X  X X X X  X X X 
X X  X X X  X X X X X X  X 
X X X X X X X  X X X X X  

X X X X X X X X X X , X X  
X X X X X X  X X X X X X  

X X X X X X  X X X X X X  
X X X X X X  X X X X X X  

: c o n s t a n t  
= 0  

= 0  

= 0  
= 0  
= 0  
= X  
= X  
= X  
= X  
= X  
= 0  
= 0  
= 0  
= 0  
= 0  
= X  
= X  
= X  
= X  
= X  

An = 1"40111, 

A13 = 0"20252 X 

A15 = 0"34523 × 

A17 : "  0"11321 X 

A 1 9  : 0"43504 × 

Bn = --  0"61064 × 

Bla : 0"5i276 X 

BI~ = --  0" 12043 × 

B ,  = 0.84497 × 

B~9 = --  0" 91497 × 

10-~ 

lO-a 

1 0 - 4  

10-" 

10-1 

10-~ 

10-" 

10-~ 

10 -11 ' 

20 

A21 : --  0" 56807, 

A~3 = -  0'43741 × 10 -1 

A25 = - -  0.34341 

A~7 = =- 0"50168 

A . 9  = - -  0.85506 

B21 = 0.41136 

B~3 = --  0 .77737  

B25 = 0.64103 

B27 = -- 0.14,552 

B29 = 0 "  51053 

× 1 0  . 2  

× 1 0  . 3  

x 1 0  . 4  

× 10 -~ 

× 10 -s 

× 10-13, 

N 10 -17, 

× 10 -2a 

and  t h e y  readi ly reduce to a set of five s imultaneous equations where the leading diagonal t e rms  
are predominant .  These equations were then rapidly solved by  an i tera t ive  me thod  and yielded 
the following values for the constants  • 



for t h e  load ing  case 2aLZ. = i .  0, a n d  

A u = 1.34792, 

Ala = 0 .20195 × 10 -~, 

A~5 = 0"34800 × 10 -3, 

A17 ---- 0" 11236 × 10-L 

A~9 = 0"43799 × 10 -~, 

Bll ---= - -  0 '  14491, 

BI~ = 0"66823 × 10 -~, 

B15 = - -  0 .  15034 × 10-", 

B ,  = 0" 95873 × 10-", 

B~, = --  0"97057 × 10 -~ ,  

for t he  loading  case 2LZR = 1.0. S u b s t i t u t i n g  these  

I a n d  I I  it is possible to  ob ta in  t h e  d i s to r t ed  shape  

s t ruc tu re .  The  s t ress  d i s t r ibu t ions  are  shown  in Figs. 6 

E~v/  
were  o b t a i n e d  b y  t h e  m e t h o d  of A p p e n d i x  a ~ / ~=~ 

s t r u c t u r e  is shown in Figs. 16 a n d  17. 

A ~  = - 0 .54649,  

A23 = - -  0 .43618  × 10- ' ,  

A2a = - -  0 .34616  × 10 -2, 

A~7 = - -  0 .49791  × 1 0  -3, 

A 2, 0. 86086 × 10-~, 

Bat = 0 .51316  x 10 -~, 

B2~ = - -  0. 79862 × 10 -~, 

B2£ = 0"61839 X 1 0  - l a ,  

B27 ---- - -  0" 13572 X 10 -17 , 

B2, = 0"47288 X 10 -2~, 

values  in to  t he  equa t ions  of A ppend i ce s  

a n d  the  stress  d i s t r i bu t ion  for t he  wing 

E Ou / a n d  to 15 whe re  t he  va lues  of y. 
O~ / 

IV. T h e  d i s t o r t e d  shape  of t he  wing  

I t  n o w  on ly  r ema ins  to show t h a t  a sufficient  n u m b e r  of t e rms  h a v e  been  t a k e n  for s a t i s f ac to ry  
conve rgence  of t h e  spar  b o o m  stress a t  the  root .  T h e  above  ca lcu la t ions  were  the re fo re  r e p e a t e d  
for A , ,  = A2, ---- B1,,, = B2,,, = 0 ,  w h e n  n, m > 7 a n d  t h e  resul ts  are  c o m p a r e d  wi th  t he  m o r e  
a c c u r a t e  ca lcu la t ion  in t he  tab le  be low : - -  

Uni fo rm ly  d i s t r i bu t ed  
load over  whole 

surface, 2aLZ = 1 .0  ib 

U n i f o r m l y  d i s t r i bu t ed  
load a long the  

spars, 2LZR = 1 .0  lb 

Max. spa r -boom stress (i.e., at  ~ = 0, ~? = 1) n, m = 1, 3, 5, 7 0 .2043 lb/ in.  2 0 .2006  lb/in.  2 

Max. spa r -boom stress (i.e., at  ~ = 0, ~:= 1) n, m = 1, 3, 5, 7, 9 0 .2036 Ib/in.  2 0" 1999 Ib/in.  2 

F r o m  the  above  table  it  appears  s a t i s f ac to ry  to t e r m i n a t e  t he  series a f t e r  u, m = 1, 3, 5, 7, 9. 

3. Numerical Example for Appendix /_ , r f . - -When  the  ribs m a y  be a s sum ed  r ig id  the re  is a 
cons iderab le  s impl i f ica t ion  in t he  c o m p u t a t i o n .  T h e  va lue  of t h e  non -d imens iona l  p a r a m e t e r  
fl is f o u n d  to be/3 = 0. 866667, a n d  the  va lues  of t he  cons t an t s  A,~ w h e n  e v a l u a t e d  f r o m  equa t i on  
(35) are  f o u n d  to be " 

A1 = 0" 7 4 0 1 6  

A3 = 0 .7917  × 10 -2 

A5 = 0 .7555  × 10 -4 

A7 = 0 .1969  × 10 .5 

A9 = 0 .4395  × 10 .7 . I ,  
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Using these values t he  stress distribution and distorted shape have been calculated and are 
compared with the exact results in Figs. 6 to 17. 

The spar-boom stress at the root, calculated from the method of Appendix IV, is 0. 1955 
1b/in. ~ using the above values, and is 0. 1963 lb/in. ~ using only the terms for ~¢ = 1, 3, 5, 7. Hence 
it appears satisfactory to terminate the series after n = 1, 3, 5, 7, 9 t. 

APPENDIX VI 

The Flexural Case 

Simplified Method for the Determinatiol¢ of the A dditioTcal 
Effects Due to the Chordwise Distribution of Loading 

The additional effects due to the chordwise distribution of loading, i.e., due to the statically 
zero loading 2aLZ -- 2LZ~, can be approximately assessed by assuming tl~at the wing span is 
infinite. 

When 2aLZ = 2LZR = 1.0 lb, the surface force S is found from equation (17) to be 

S -  ~ lb/in. 2 (43) 
4bL . . . . . . . . . . . . . . . .  

which is self-equilibriating. When the wing span is infinite, the solution to equation (13) becomes 

1-- 

. . . . . . . .  (44) 

V - -  

where C1 and C~ are constants to be determined from the boundary conditions. 
resultants in the reinforced skins are found to be 

The stress 

cO* 1 (a2) (7 
T = - - ¢ 1 +  - -  

a S 

T'=8 ~ al(a~)l(~72-t-C2)- -]-aC~-a 
S = 0  

from equation (12). Now, the boundary conditions are 

T'----Oat~----- 1 1 

a 1 T d',] -~ L ~ ~ / l,=l J 

(45) 

. . . . . . . . . .  (46) 

Substitution of equations (45} into these last yield the following values for the constants 

(47) 

C 1 =  ~ 12~ -}- 
(Y (7 

J . .  
C . = - -  1 - -  2(7/3a at (7 + - - ' -  

(7 

~ If  the series is t e rmina ted  after ~ = 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, the spar-boom stress at the root is O. 1942 lb/in.L 
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Substitution of the values of the structural constants used in Appendix V for the numerical 
example yields 

C1 = 0. 0007689 

C2 = -- 1.0277. 

Using these values and the results of Appendix V it is found that • 

S t a t i c a l l y  zero  d i s t r i b u t e d  
l o a d  2 a L Z  - -  2 L Z I ~  

• a c t i n g  on  a w i n g  of 
in f in i t e  s p a n  

S t a t i c a l l y  zero  d i s t r i b u t e d  
l oad  2 a L Z  - -  2 L Z I ~  

a c t i n g  on  t h e  w i n g  
i n v e s t i g a t e d  in  A p p e n d i x  V 

S p a r - b o o m  s t r e s s  a t  ~ = 0, ~1 = 1 . . . . . .  0 . 0 0 4 7  lb / in .  2 0.  0037 lb / in .  2 

R i b - b o o m  s t r e s s  a t  ~ = 0, ~ = 0 . . . . . . .  - - 0 . 0 4 4 0  lb / in .  2 - - 0 - 0 4 5 3  lb / in .  2 

R i b - b o o m  s t ress  a t  ~ = 1, ~ = 0 . . . . . . .  - - 0 . 0 4 4 0  lb / in .  ~ - - 0 . 0 3 8 0  lb / in .  2 

z-wise de f l ec t ion  a t  c e n t r e  of t ip  r ib  . . . . . . . .  - - 0 . 2 7 3  × 10 .5  i n .  - - 0 . 3 1 3  × 10-S in .  

z-wise de f l ec t ion  a t  c e n t r e  of r oo t  r i b  . . . . . . . .  - - 0 . 2 7 3  × 10 -5 in. - - 0 - 2 7 9  × 10 .5  in.  

From the above table it is seen that the additional effects due to the chordwise distribution of 
loading on a wing may be approximately assessed by the simplified method developed in this 
Appendix. 

APPENDIX VII 

The FlexuraI Case 
A nti-clastic Effects in Pure Bending 

In considering the chordwise distortion of the wing it is of interest to compare the actual 
distortion with the anti-clastic effect produced by pure bending. 

If the bending moment is M, then the stress resultants in the reinforced skin are 

Mr* 1 T = 2b(A + at*) 
• • • • 4 ° • • o . 

T ' - - 0  I 

S = 0  

Now, fronl equation (12) it 'is seen for T' to be zero it is necessary that 

18v a l  8u 
a ~  aLS~ 

whence 

lOv 1 -- ~ 
- -  T - -  ) 

(4s) 

23 



and, on integrating, 

1 - -  (7 2 (7 

V ~ - - T  - a~7 . . . . . . .  " .  . . . .  (49) 

The chordwise distortion is given by 

from equation (21), and subst i tut ing equat ion (49) into this last it is found tha t  

1 - -  0 -2 0- a 2 

= - T (1 - ( 5 0 )  ( . . . . . . . . . . .  

E t oC*" -- 

Subst i tut ion of the values: of the s t ructural  constants  used in Appendix  V for the numerical  
.example yields an anti-clastic deflection of --  0. 186 × 10 -5 in. for a tip moment  of L~ZR = L/2 
In. lb. 

A P P E N D I X  VI I I  

The Torsional Case 
Derivation of Fundamental Equations Using a 

Variational Procedure 

The torsional case corresponds to a loading ant i -symmetr ica l ly  dis tr ibuted about the spanwlse 
centre-line of the  wing box. Unlike the flexural case, the spar and rib web shears are no loriger 
statically de terminate  and so the  problem is three-dimensional.  The analysis could, however, 
proceed in a similar manner  as Appendix  I but  the algebra and computa t ion  would be corres- 
pondingly more intricate and so a ra ther  different approach has been favoured. In what  follows, 
a t tent ion is confined to cases where the  displacements  u, v at z = -t- b are equal and opposite 
to one another.  

1. Fundamental Equations.--For equilibrium of an elemental  portion of the reinforced skin 
at z = b (Fig. 2), it is necessary tha t  

( L )  OS ~T' aS = 0  + 
. .  ( S l )  

or (6) bis 

S - - L d  ~ 

where the last equa t ion  is obtained from consideration of the equi l ibr ium of a strip Lb~ across 
the chord of the box and where it is assumed tha t  there is no dis tr ibuted load along the chord 
(equation (17)). 
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A consistent system of stress resultants satisfying equation (51) is then 

S = - -  ~-~ n=1¢¢ + 1 

(52) 
or (7) bis 

where n is an odd integer and F(~), F,~(~) are functions to be determined from the condition tha t  
the strain energy is made a minimum. 

Since the effect of the chordwise "distribution of loading will, in general, be smaller than for 
the flexural case, it will be assumed that  there is only an equal and opposite distribution of 
loading along the two spars. In particular, it is assumed for the remainder of this analysis that  
this loading is uniform, i.e., 

ZR(.#) = ZR = a constant . . . . . . . . . . . . . . .  (53) 

For this loading, the equation of overall equilibrium is 

51~ = s d~ (2L&) (1 -- ~)  . . . . . .  (54) 
o 4 b  . . . . . .  

obtained from resolution of the torque at a chordwise section. Substituting equations (52) into 
t h i s  last, the spar-web shear-stress resultant is found to be 

s . -  (2LZ.) (1 --  ~) ~ d { f ( e )  + ~: 1 "l (55) 
--  --  4 ~  L d~ .=1 (~ + 1)(~ + 2)~"(~) f 

Finally, substitution of equations (52) and (55) into equation (14) yields the spar-boom load" 

1 ( ~ _ )  { r t + 3  F,o(}) . .  (56) P R = ( 2 L Z R ) ~  ( 1 - - # ) 2 - - a  2F(~) +,,=1 ~ (~-1- 1 ) ( n + 2 )  

provided that  F(1) and F,,(1) are all zero, and the stress distribution throughout the whole wing 
box has now been defined in terms of the unknown functions F(~) and F,~(~). 
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The t0tal strain energy stored in the wing box is, apart from an irrelevant factor ' 

S . E .  = o o [ 0  # a  - a' ( d T '  - -  2 ~ T T '  - /  c~*T") q - 2 ( 1  +~):S '  d~d~ 

P R  = a b  
+ 2(1 + ~) & '  + 7 + 2(1 + a) - S, d~ . . . . .  (S7) 

0 l r  

For the strain energy to be a minimum, each arbitrary variation 6F or dF,,, must be made zero so 
tha t  

o o k~*~ - a~ ( a T  - -  a T ' )  ~ , , a F , , ,  ÷ (~*T '  - -  a T )  dF,,,-~Tw6F"/' 

+ 9,(1 + a)s dF,,,'dSS aF,,,']d, & 

,-~-., aF,,/ + aF,,, 2(1 a) aF,,," d F ,,, A dF~,,, + -+- .~ d F,,,~ , d ~ = O,  

where F,,/ ,  F, , / '  denote differentiations with respect to ~. Using the usual arguments of the 
Calculus of Variations it is found that  

[o~*a - -  ~' ( a T -  aT ' )  dFT(,, q- ~-~ (o~*T' - -  aT)  d F  .... J 2(1 q- a) d,? 

--2(1 + a) ( ~ - )  
dSR Ple dPR ab d~$ dS 

+ 2(1 + ~) - 0, . (s8) 
7: d ~  ~" d F , , / '  . . . .  

with the boundary conditions 

I( )f:i 1 - -  a 2 d (c~*T' - -  aT)  " d T '  d S  ; 
~*a - a ~ d~ ~F,,-~' + 2(1 + ~) s ~ j  ~F,,o & 

and 

+ 2(1 + ~) & ~ ~F,,, - 2(t + ~) ab d~ dS oF,,~ (S9) 
dF,,, * d* dF,, / '  o . . . . . . .  

1 - -  a ~ d T  _ , a b  d £  1 
a 1 ~*'a - -  a ~ (~*T'  - -  aT)  ~ ~/*,,~ d~ + 2 (1 + a) - -  S - -  O F , , / . .  .. 

r dF,;," o 
0 

It  is more convenient to express the first boundary condition, equation (59), in the form 

(~o) 

I( )Ifl f 11 1 - -  a 2 d T  1 dPR 6F,,, d~ = o, ~-*.~ - a~ (~T - aT') ~..~ ~,,~ & d~ + ~ PR ~ o 

where the constants of integration are determined from equation (59). 
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Substituting equations (52) into equation (58), the differential equations in terms of F and F. 
are found to be 

2(1 + z)~Z~);  Ida' +,7=, (n -}- 1)(n + 2) d~'J 

- - 2 ( l + a )  +tRJkLJ [d#~- t - , , : t (n+l - ) (n- t -2)d~J  

2a2{ n + 3  } 
+ ~-  2 ~ + ,~ (~ + a)(~ + 2)F,~ 

4-~ + 4b (1 -- #)~, 

and the ruth equation 

•/aSb'x 1 1 f d~F 1 d4F,~\ 

a)  1 -- cA 
+ t ~ * a -  ~ ~* 3 ( m + 2 ) ( m + 4 ) . = l  ~ (n + 2) (n + 4) (n + m + 5) d~ :4 

- 2 ( 1 + . )  2 ~ + 1  + 2 d ~  2 + . :1  } ( z + 1 ) ( ~ + . ¢ + 3 )  de Sj 

--2(1 + a) L I_. (m -+- 1)(m -1- 2).LdS ~ + ,~ (n + 1)(n + 2) d$2J 

-- . m + 2 . = ~ ( n + 2 ) ( n + m + 3 )  d~ :~ 

a 2 m + 3  { n + 3  
-t-~-(m.+ 1)(m+2) 2F+.=zE I n +  1)(n+2)F"  

0¢~c7.  - -  (7 2 

= -- 2(1 + ~) (m -Jr- 1)(m + 2) 4b 

(2LZ±~) (_~_) m + 3  
+ Sb (m + 1)(~ + 2) (1. -- ~)~ 

(~2) 

J 
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There are thus (m ~ 3)/2 simultaneous differential equations of fourth order involvlng only the 
even differentials. The arbitrary constants contained in the complementary functions are 
determined from the boundary conditions given in equations (60) and (61), viz., 

d F _ _ d F m _ _ o  at ~ = 0 a n d ~ =  1 1 

<~ <~e I 
F = F , , , =  0 a t  ~ = 1 I 

I . .  (63) 

o # a - - ~ = ( a T - - ~ T ' )  d-~,,, drld~ + X P R d F , , , d e = 0 a t e = 0  I 
J 

where the constant  of integration for this last equation is determined from equation i59). If the 
complementary functions are expressed in terms of sinh, cosh, sin and cos functions, equations 
(63) then yield two sets of m + 3 simultaneous equations. 

When the functions F, F ,  have been determined, the stress distribution throughout the w!ng 
can be evaluated by substitution into equations (52), (55) and (56). 

The z-wise displacements of the wing are determined from 

2(1 + ~) a 
- -  E z  a S d~7 - -  ~ v d ~ 7 ,  . . . . . . . . . . . . .  ( 6 4 )  

or (8) bis 

(cf. equation (18)), where the displacement v is determined from the stress-strain relationships 
given in equation (12). The z-wise displacement wR of the spar booms is given by equation (20) 
where, of course 

w= = ~/,,=~ . . . . . . . . . . . . . . . . . . .  (65) 

2. The Conventio~¢al Solution.--The conventional solution 2 is derived from the aforegoing by 
putting all the F,, equal to zero. 
then become 

Equations (52) for the stress resultants in the reinforced skins 

T = ~ ' = 0  fl 

s - - -  

i 
, . . . . . . . . . . . . . .  (66) 

S =  - s2 d~'- j . 

and the differential equation for F is 

a=b l d~F / _ _  b ~ f a \  ~ 
2(1 + ~ ) ( a  + 

~Ri \ / 

d~F 4a 2 ~ + Z  F 

= - 2 ( 1 +  ~) ~ ~ 4b + 4b ~ ( 1 -  ~)~, . .  

where At is the effective area of the spar booms and is usually taken to be 

at* 
A ~ = A +  3 . . . . . . . . . . . . . . .  

(67) 

(6s)  
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3. The Conventional Solution where the Ribs are Assumed Rigid . - -When the ribs are assumed 
rigid the thickness of r ibs ,  per unit run becomes infinite and the differential equation for F is then 

- - 2 ( 1 + ~ )  +t-R ~ + Z F = - 2 ( I +  \tR/\L) 4b 

(2LZ, )(aL h 
~- 4b k , A ~ ) ( 1 - -  ~)~ . . . . . . . . . . . . .  (69) 

APPENDIX IX 

The Torsional Case 
Derivation of Equalions when the Rib Booms may 

be Considered Inextensional 

The determination of the cross-sectional distortion is unlikely to be of such importance as 
for the flexural case since the distortion will be of a smaller order due to the point of inflexion 
along the spanwise centre-line. This suggests that  a simplified analysis would be suitable whereby 
the rib booms are considered inextensional (cf. Appendix III). 

The stress resultants in terms of the displacements are now 

Et* ~u 
T - -  

L ~ 

S -  9,(1 + ~) ~ + L 

. . . . . . . .  (70) 

where the chordwise displacement v is independent of the ~ co-ordinate because the rib booms 
are inextensional. The equation of equilibrium in terms of the displacement u is therefore as 
given in equation (33) which now has the solution .. 

1 ~ A,, sin stun ~ (71) 
u - -  E t  . = 1  2 -  ' " . . . . . . . . .  

where n is an odd integer and the A,, are constants to be determined. The displacement v is 
determined by substituting equations (20) and (64) into (65) giving 

2(IE~-~ a)fl all 2(1 + a ) f :  L f: a S d~ -- -~ v d~ -- ErR L SR dff - -  ~ ¢/~/q=1 dE. 

Substituting equations (70) into the last of equations (51) and into equation (54) and then into 
the above, it is found that  

2(1 + 
ErR 4 ' 

(72) 
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where it is assumed tha t  the loading is constant  along the spars. This equation has the solution 

dv _ 1 C~ sinh ~/2~ + C2 cosh ~ / ~  + E ~,,,A, sin ~ -  sinh - -  
d~. Et  , , : ~  

ErR (2LZR) 

where C~ and C2 are a rb i t ra ry  constants  and 

,(:+5 
(73) 

y =  ~ + , 

'p  n = " ("bh ( '+=F 
(;+ D + 

Now, at  the  root the shear-stress resul tant  S must  be zero, i.e., dv/d~ = 0 at ~ = 0, and so 

( a )  1 
C~ = -- 2(1 + ~)(2LZR! ~ . . . . . . . .  (74) 

Fur thermore ,  at  the  tip 

i 1 S d ~  = 0  at ~ = 1 
d0 

and  subs t i tu t ing  equations (70), (71) and (73) into this last  yields 

C1 = -- C2 coth y 1 / 2  u cosec y1/2 
GTcfll/2 

(_)(,-1)/~ (v,, + 1) A,  sinh 
n=l  2 

.. (75) 

The A,, are determined from the condition Of compat ib i l i ty  between the rear spar boom and 
the adjacent  reinforced sldn. From equations (15) and (16) this  is found to be 

Subst i tu t ing  equations (54), (70), (71) and (73) into this last, it is found tha t  

~ n~/J~i ~ ( ~ )  7-v~ 
p,, A,, cos ~ -  sinh 2 --  2 2(1 + ~) {C~ (cosh.~, ~t~ 

-- cosh ~,~i2~) + C2(sinh ~/~ _ sinh yi /~)} 
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where p,, = ~ n~ q 2(1 + a) k , A - J \ ~  + coth 2 qL n , / "  

Expanding the right hand side of this equation in terms of the cosine series, it is found that  

p.A,, sinh n~tF'12 ( L t )  1 8y '/2 ~ -  (__)(n--1)12 "2(1-t~ G)~q~ff'/7 { ( ~ ) 2  '-~ "~} (C1 cosh~'I/2 "-~ C2 siniq- '~1/2) 

1 4C~. (~ }R) (--)("-'"~ 2 

and substituting from equation (75), the above becomes 

~ , , A , , -  £ W,,,A,,, = (2LZR)O . . . .  (76) 

where m is an odd integer and 

= p~ sinh ns~/~ 
2 

V',,, = (_)(,,,-1)/2 2(1 + ~i 87,u2 (v,,, + 1) coth y~/2 sinh m~t~u22 

(OC + (_)/,,-1~/2 7 

Finally, the solution to equations (76) is I 

-. ~ 

A , , _  (2LzR) o,, + .... , ~o,,, ~ . .  

~" ~ ~ - ~ v-'": I 
m=l ~0 m J 

2 3 

. . . . . . . .  (77) 

and with these values of A.,~ the stress distribution may be evaluated throughout the entire 
wing structure. The z-wise displacement may be evaluated from equations (20) or (64). 

The convergence of the series for the stress in the spar booms is of the order 1/n 2 (@ Appendix 
IV) if calculated direct from equation (71). The convergence is, however, improved by 1/n if 
the spar boom stress is evaluated from the expression 

P E au / L (&e + S/v=,) d~ ,, (78) 
A - ~. ~ !  ,,~., = - ~- . . . . . . . .  

. 
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A P P E N D I X  X 

The Torsional Case 
Numerical Illustrative Example 

1. General.--The numerical illustrative example is based on the same wing as in Appendix V. 
The calculations are for a uniformly distributed load 2LZ~ = 1.0 lb along each spar, the loading 
being anti-symmetrical about the centre line of the wing box. 

2. Numerical Example for Appendix VIII.--2.1. Solution Using Only the Functions F(Q and 
F~(Q.--Substi tuting the numerical values into the differential equations (62) it is found tha t  
F(Q and F~(~) are determined from 

d2F d~F 465.8333 + 4,000F -t- 0.2539062 d~F1 1. 523438 d~ ~- -- ~ d}~ 

d2F~ 
- -  77.63889 - ~  + 1,333. 333F~ = -- 2. 166667 + 66. 66667(1 -- ,)2, 

d2F 
and 0,2539063 #F  77.63889 + 1,333.333F + 0" 1144208 d~F~ 

d~- ~ -- ~ d~ ~ 

The solution to 

F(~) = C~ 

+ 

+ 

= - 

+ 

+ 

+ 

+ 

where 

d2F1 21.17533 ~ + 609-2291Fl = -- 0.3611111 q- 22.22222(1 -- Q2. 

these equations may be written 

cosh )/1~ + C2 sinh rl~ + C3 cosh ~2t + C~ sinh ),2t + C~ cosh ~ cos fl~ 

C6 sinh c~t cos f i t +  C~ sinh c~t sin fl~ + C8 cosh ~ sin fl~ 

0" 0166667(1 -- t) 2 + 0. 00784485, 

1. 90397(CI cosh ~,~ + C2 sinh ~,1~) -- 0" 154776(C3 cosh ~2t + C~ sinh ~2~) 

C~(-- 7. 20628 cosh ~ Cos fi~ -- 0" 644458 sinh c~t sin fiQ 

C6(-- 7.20628 sinh c~ Cos fit -- 0. 644458 cosh c~t' sin flQ 

C~(-- 7.20628 sinh s t  sin fl~ + 0.644458 cosh ~ cos fl~) 

C8(-- 7.20628 cosh c~t sin fl~ + 0.644458 sinh ~* cos fit) 

0.00135137 

~1=2 .16022 ,  

~2=17 .2388 ,  

~ =  7.90116, 

f i =  1.83074. 
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The arbitrary constants C1, C £, . . .  CB are determined from the boundary conditions given in 
equation (63) and this results in the following systems Of simultaneous equations, 

2.16022 

4.11300 

676-491 
L 80 2598 

which has the solution 

C , =  0.17435 × 10 - ' ,  

C 4 =  0.23384 X 10 -a, 

C 6 =  - -0 .15261X 10 -~, 

17.2388 7.90116 1"83074 ] 

2.66815 58.1178 8"10086 

220.064 --649.736 259"301 

71.8750 --356.258 132.239 

C2 

C~ 

C~ 

C~ 

0.0333333 

0 

13.3611 

2.22685 

C8 = 0.20195 x 10 -2, 

and 

4. 39419 15,335,200 --347. 037 1,304.84 

9. 24336 264,360;000 --5,130.82 9,674.41 

--8.  36641 --2,373,510 1,659.93 9,626.69 

-- 17. 5991 --40,916,500 30,739.4 --73,023.1 

which has the solution 

Ca + C~ = 

Ca + C, = 

C~ -t-C~ = 

c ] i 0082 4  
Ca ,-}- C~ --0"165498 1 

C5 + C~ O" 155552 J 

C7 + C~ " 0"315103 

0. 18945 X 10 -~, 

0'28826 X 10 -~°, 

0.25939 ×' 10- ~, 

0.34373 × 10 -6. 

Substi tut ing.the above values into the equations of Appendix VIII  it is possible to obtain 
the distorted shape and the stress distribution for the wing structure. The stress distributions 
are shown in Figs. 18 to 22 and the z-wise displacements of the spar booms are shown in Fig. 23, 
The rib-web shear stresses are negligibly small and have not been plotted. 

2.2. The Colwentio~al Solution.--The conventional solution is derived by putt ing a!! the 
F,,(.~) equal to zero and using an effective boom area Ae where 

at* 
A~ = A -+- -- 16"6667 in.L 

3 

Substituting the numerical values-into equation (67) it is found that  F(Q is determined from 

d2F 
1.523438 d~F 465.8333 -¢- 2,400F -- 2. 166667 -~ 40(1 ~)'~ - 

The solution to this equation may be wr i t t en  

F = C1 cosh yl~ + C, sinh yl* + Ca cosh y2* + C~ sinh ~'2~ 

-l-O" 0166667(1 -- ~)~ ~ O. 00556713, 

where 71 = 2.28952 

y2 : 17" 3360. 
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The arb i t ra ry  constants  C~, C~, C~, Ca are de te rmined  from the bounda ry  conditions given in 
equat ion  (63) and this results in the following systems of s imul taneous equations,  

1 1,048' 25 138' 440 Ca 13 "3611 

which has the  sotution 

C2 = 0"12714 × 10 -1 

Ca = 0"24369 × 10 -3 , 

• 06766771 
"985781 I 16'900'0001 C i c 4 ]  = [---;  1 4 2 1 8 0 _ ]  

which has the solution 

C1 = --  0. 13661 × 10 -1 

C~ + Ca = 0.26066 × 10 -1° . 

The stress dis tr ibut ions and displacements  for this solution are compared  with  some of those 
obta ined  from the  first solution in Figs. 18 to 23. 

2.3. The Convenlional Solution where the Ribs are Ass,tmed Rigid.--When the  ribs are assumed 
rigid the thickness of ribs ~ per uni t  run  becomes infinite and F(~) is then  de termined  from 
equat ion (69), i.e., 

3 d2F - - 4 6 5 . 8 3 3  ~ + 2 , 4 0 0 F = - - 2 " 1 6 6 6 7 + 4 0 ( 1 - - ~ ) 2 .  

The solution to this equat ion m a y  be wri t ten  

17 = ClCOShy} -}- C~s inhy*  + 0.0166667 (1 --  ~)" + 0.00556713 

where y = 2.26981 . 
The arb i t ra ry  constants  C1, C2 are de te rmined  from the bounda ry  condit ions given in equat ion  
(63), whence 

C1 = --  O" 13508 × 10 -1 

C2 = 0" 12636 × 10 -1. 

The stress distr ibutions and displacements  for this solution are compared  wi th  some of those 
obta ined from the first solution in Figs. 18 to 23. 

3. NumericaZ Example for APlSe~dix I X . - - T h e  value of the non-dimensional  pa ramete r  ~ is 
= 0.866667, as for the flexural case. The constants  A,  are de termined  from equat ion "(77) 

and are found to be 

A1 z 

A 3 ~  

A ~ z  
A g z  

A13 

0 29720, 

0 59772 

0 54139 

0 17154 

0 30885 

0 13004 

0"30727 

0"14806 

× 10 -i, 

× 10 -a, 

× i0 -s, 
× 1 0  7 , 

X 10 -8, 

× 10 -1°, 

× 10 -11. 

Using these values, the stress dis t r ibut ion and dis tor ted shape have  been calculated and are 
compared  wi th  the results obta ined from the me thod  of Appendix  V I I I  in Figs. 18 to 23. 
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