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P A R T  I 

Summary.--A general method (requiring the aid of a digital computer) is described for deriving the influence co- 
efficients of any type of wing, and hence for evaluating its strength and stiffness characteristics. The method allows for 
shear deflections, and hence implicitly takes account of effects like shear lag and warping of wing cross-sections. A rapid 
method accurate enough to serve as a basis for dynamical calculations is first described, and secondly a more rigorous 
method on which to base final stressing of the structure. 

1. Introduct ion.--In a recent lecture 1 the writer discussed the profound in,pact of the electronic 
digital computer on the problem of computing the strength and dynamical characteristics of 
aeroplane structures. In the same lecture he put  forward a method of deriving the influence 
coefficients of thin wings of any shape by exploiting three simplifying factors: plate theory, the 
matrix notation and the digital computer. It  will be appreciated that, once a comprehensive 
enough set of influence coefficients are obtained for a structure, its stiffness and strength under 
any kind of external loading can at once be deduced. The same set also constitutes the essential 
data for computing the natural  frequencies and modes of the structure. By seeking to establish 
a sound and rapid method of deriving a comprehensive set of influence coefficients for the complete 
aeroplane, one is in effect seeking a royal road to the solution of all strength, stiffness and vibration 
problems of an aeroplane structure. With regard to wing structures, to the consideration of 
which the present report is confined, a general method of derivation, once established, has the 
great advantage of making the most unorthodox type of wing amenable to what may be described 
as a stereotyped approach. 

A major assumption made in the method above alluded to was that  shear deflections could be 
neglected in the expression for the curvature of the wing. This is a legitimate assumption when 
treating thin near-solid wings, but  open to question for more orthodox designs. The main 
purpose of the present report is therefore to modify the original method so as to be applicable 
to any kind of wing. At the same time the opportunity is taken to put on record the original 
method, which up to the present appears only as all appendix to a lecture embracing a much 
wider thesis. 

* R.A.E. Report Struct. 168, received 7th March, 1955. 
R.A.E. Report Struct. 209, received 8th November, 1956. 



2. Description of Original Method--Shear Deflections Neglected.~The essence of the original 
method above referred to is to use elementary plate theory for calculating, by  means of a digital 
computer, the stiffness coefficients associated with a comprehensive set of discrete stations well 
distributed over the wing. A further essential factor in the method is the inversion, again by 
the help. of the digital computer, of the stiffness matrix thus obtained to form the flexibility 
matrix, whose elements consist of the influence coefficients finally required. 

Now elementary plate theory cannot be legitimately applied to a wing unless two major 
conditions are satisfied. These are: 

(a) tha t  curvatures produced by  shear deflections are negligible compared with bending 
curvatures 

(b) tha t  deflections (as calculated by ' small deflections theory ') relative to a developable 
surface are small compared with the thickness of the wing. 

The thinner the wing the more nearly is condition (a) satisfied, but  the more doubtful is the 
satisfaction of condition (b). 

For nearly solid wings with thickness/chord ratio of 5 per cent or less condition (a) is approxi- 
mately enough satisfied, and may even be satisfied for considerably thicker wings. 

The satisfaction of condition (b) natural ly depends on the severity of the load applied. For a 
light-alloy wing with a spanwise curvature corresponding to a bending stress of 40,000 lb/in. 2, the 
deflections due to anti-elastic curvature are still approximately within the limitations of the 
' e lementary '  or ' small deflections ' theory when the thickness/chord ratio is only 5 per cent. 
When part  of the chord is taken up by ailerons or flaps this figure could drop to 4 per cent, or 
even 3 per cent, without violating the conditions under which elementary plate theory is applicable. 
For a steel wing, of course, the figure of 40,000 lb/in. ~ goes up in the ratio of the Young's Modulus 
to 120,000 lb/in. 2. 

2.1. Basis of Method.--It is hardly necessary perhaps to point out that,  in expressing the 
deformation of a highly redundant structure under load by means of influence coefficients, good 
accuracy requires that  all adequate number of stations should be used. For, the greater the 
mlmber, the more nearly can the discontinuous station deflections represent the essentially 
continuous true deflection shape. Since, however, the amount of computational work goes up 
somewhat faster than the cube of the number of stations, a digital computer is an indispensable 
adjunct to the proposed method. 

As shown in ReI. 1, it is now accepted that  it is much easier to derive the influence coefficients 
of a highly redundant structure indirectly, by first deriving the stiffness coefficients, rather than 
directly. By using the machine (i.e., the digital computer), the stiffness ma t r ix  so obtained 
can then be inverted to give the corresponding flexibility (or influence) matrix, from which the 
deflections and stresses in the structure can be obtained for any applied load. 

To look at ~he matter  in a slightly different way, we may consider the differential equation 
(or set of equations) tha t  relates the deflections of a structure to the loads applied to it. Always 
on the left-hand side of the equation is a function of the deflection and its derivatives with respect 
to the co-ordinates of the system, and on the right-hand side appears the arbitrary external 
loading. What  the engineer is asked to do is to find, from a given external loading, the consequent 
deformation. He is never given the deformation of the structure and requested to determine the 
loading tha t  produced it, because such a problem has no interest. I t  is only since the advent of 
the digital computer tha t  the facility with which this inverse problem can be solved has become 
open to exploitation. For, after the loading associated with a given set of hypothetical deflections 
has been determined i~ general terms, the machine is capable of solving with great facility the 
set of linear equations by  which the loads are thus expressed in terms of the deflections. In other 
words the machine solves the real problem whereas we solve only the easy inverse problem. 

2.2. Derivation of Stiffness Coefficients.--The problem of finding the stiffness coefficients of a 
wing is tha t  of evaluating the reaction at each station necessary to maintain an arbitrary set 
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of wing deflections. For this purpose, the wing cannot be regarded as isolated, but  must be 
considered as an integral part of the complete aircraft. This means tha t  the influence coefficients 
must relate all wing deflections to some convenient three-point datum as described in Ref. 1. 

One of the advantages of dealing with stiffness, rather than influence, coefficients is that  the 
number of coefficients is greatly reduced. This is readily seen from the fact that,  taking a simple 
example, the force at a wing-tip station due to a unit displacement at a root station (the 
displacements at all other stations being zero) is vanishingly small, but  the displacement at a 
tip station due to a unit force at the root station (with all other forces zero) is not. That  is why 
the reaction (and hence stiffness coefficients) for a wing station can be expressed in terms of the 
deflections of only. those stations immediately adjacent to it. As a consequence, in illustrating 
the application of plate theory to the wing, we can confine attention to a restricted area of wing. 

2.2.1. Choice of stations.--Since the shear stiffness of ribs and shear webs is, in this preliminary 
approach, assumed infinite, the choice of location for the stations need have no relation to the 
disposition of the shear-carrying members inside the wing. If, in addition, reliance is placed on a 
thick skin alone to resist bending stresses, location of the stations becomes a matter  of choice, 
to be decided largely by computational convenience. 

In order to demonstrate the essential character of the method without introducing unwieldy 
formukCe, the wing is assumed to be of the thick-skin type, so that,  in any particular station, the 
I of the wing section per unit  width is the same for a chordwise as for a spauwise section. On 
this basis it is legitimate to distribute the stations over the wing surface in a regular pat tern;  
for choice a chess-board pat tern with a station at the corner of each square. Fig. 1 shows such 
a square mesh of stations suitably numbered from 0 to 12. 
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2.2.2. Adaptation of plate theory.- -We can now show that  the reaction R0 at the central station 
0 can be expressed in terms of the 13 deflections w0, w~, w2, . . ,  w~ and the I per unit width of the 
spanwise and chordwise cross-sections, i.e., per unit length along x and y in the figure. This I 
will vary with the skin thickness and the depth of the wing section, and there is no difficulty in 
taking account of its different values at different stations. It is only for convenience of writing 
therefore that  the ! ' s  at stations 1, 2, 3 and 4 are assumed equal. 

Following the standard notation for plate theory, let: 

M, ---= bending moment  per unit section parallel to the y-axis 

My ---- bending moment  per unit section parallel to the x-axis 

M~y -= -- My, =: twisting moment  per unit section parallel to the y-axis 

Q~ = shear per unit section parallel to the y-axis 

@ = shear per unit section parallel to the x-axis. 

The positive directions of these moments and shehrs are shown in Figs. 2a and 2b. 

My Ox 

~ r / / / / / / x ~ / / - / / / / / / , ~  I ~// 

/ 
O) 00 

Fins.  2a and 2b. 

From standard formulae a,4- 

M ~ - -  (1 _ ~,) ~ + ~ ~-~2 . . . . . . . .  

M , -  (l - -  ~)  ~ - U  + ~ ~-~I  . . . . . . . .  

~w E I  ~2w 
M~.y = 2 G I -  = • o o  * *  . . . .  Ox ~y (l + ,,) ~x ~y" 

where w is the deflection normal to the plane x, y, reckoned positive upward. 

For equilibrium" 
0M, y ~My 

~x + - @ -  + Q, = 0 . . . . . . . .  

~y + ~ U  + Q ~ = °  . . . . . . . . .  

4 

(1) 

(2) 

(3) 

(4) 

(5) 



The subst i tu t ion of (1), (2) and (3) in (4) and (5) gives" 

8 (8~w 8~w~ 

a {8~w a~w'~ 
?, . . . .  D ~ t ~ + ~ / ,  

where 

(6) 

(7) 

E I  
D -- (1 --  ~=/ . . . . . . . . . . . . . . .  (8) 

F rom the last two equations we can write down the  average shear between any  two adjacent  
s tat ions by  rep!acing the  differentials by  finite differences. Thus" 

t a T / o  ~ - 

where l is the pi tch of the stat ions in bo th  the x and y directions. 

" /~= [½S T ~)]/' 

= 7 

a - ~ - / ,  - z 

(w~_ --  } 
, 

. . . . . . . .  (9)  

In  the same way" 

. . . . . . . .  ( l O )  

. . . . . . . .  (11) 

and 

Denot ing the sum of the  curvatures in the x and y directions by  H, so t ha t  at  s ta t ion 0, for 
example" 



Similarly : 
(Ry)o = D(H~ ÷ H ~ -  2H0)ff . . . . . . . . . . .  (16) 

The total  reaction at station 0 is therefore : 

R0 = { (R.)0 + (R )0}l 
= D(H1 + H~ + H~ + H , - -  4H0) . . . . . . . . .  (17) 

Expanding the H's  in ternls of the w's by using (9), (10) and (11) to obtain Ho, H3 and H~ and 
similar equations to obtain H2 and _r/~, we finally write" 

RO = D / l  2 Wl0 ÷ W0 --/ W5 ÷ ~)6 - -  4Wl 

+ 

+ 

+ 

L-- 

wo + w,, + Wo + w~l -- 4w~ 

w~ ÷ w~ + w~ + Wo - -4w,  

4(wi + w~ + w~ + w~ -- 4w0) 

) 

+ 2(wo + w0 + w7 + ws) + (w~ + Wlo + Wll + w~) f 
# 

= S 20Wo--8 w ~ + 2  w ~ +  wr • . . . . . .  
r=l r~5 ~'=9 

The bracketed quant i ty  in (18) represents a s tandard pattern of station deflections that  can 
immediately be applied to write down the reaction at ally other station within two pitches of the 
wing-plan boundary. 

I t  will be noted from (17) tha t  the I of the wing section comes in only for the central station 0 
and the fore- inner stations 1, 2, 3 and 4. At each of these stations (if the bending resistance is 
provided by  a thick skin alone, thus making the [ in the x and y directions the same) the change 
in I with change in wing-section depth must normally be taken into account. This merely means 
tha t  the appropriate constants have to be taken inside the bracket in (18) instead of being 
included in the stiffness D outside the bracket, as they can be when the I ' s  are equal. The case 
where the I ' s  in the x a n d y  directions are different presents no real difficulty and is treated later. 

The coefficients of the thirteen station deflections in (18) are, of course, the stiffness coefficients 
tha t  give the force (or reaction) at station 0 due to any possible deformation of the wing structure. 
If the whole wing is represented by (say) 50 stations it means tha t  all but  13 of them have zero 
stiffness coefficients. 

The fact that  these coefficients can be written down in such a systematic fashion, at least for 
the interior stations, suggests that  there should be little difficulty in  programming the machine 
to do the job. 

2.2.3. Boundary conditions.--A main advantage of the approach via stiffness coefficients is 
tha t  the problem of satisfying boundary conditions ceases to be a problem. This follows from the 
fact that  the wing boundary conditions can all be expressed ill terms of wing deflections or their 
derivatives, in terms, in other words, of a set of given quantities or quantities easily deduced 
from their boundary conditions. 

A few typ ica l  boundary conditions are discussed in the following paragraphs but a detailed 
discussion is relegated to Part  II  of the report. 

Boundary conditions at free edge.--As an indication of how to deal with boundary conditions, 
suppose the line AA ~ passing through station 10 in Fig. 1 to be a free edge. As the whole cluster 
of stations is unbroken, equation (18) is still applicable for writing down the  reaction at station 0. 
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If BB ~ became a free edge, however, the x curvature at station 1 can no longer be expressed in 
terms of the wing deflections, since there is now no station 10 to give the slope between 1 and 10. 
But as the y curvature at 1 is still fully defined, we can use the fact that  : 

( r e x )  1 = D \ ~ - ' ~  "-~ ~ ) - @ ) 1  = 0 . . . . . . . . . . . .  ( 1 9 )  

to give a2w/Ox 2 as (-- ~,a2w/~y"). The same procedure can obviously be applied directly to any 
other straight boundary. 

Suppose the boundary is the stepped shape defined by the stations 11, 2, 6, 1, 10 shown dotted 
in Fig. 1. To obtain the x and y curvatures at a re-entrant corner such as station 1, we use the 
standard formula, but for a projecting corner such as station 6 one needs only to use the two 
conditions : 

(M,)0  = D + = 0 

o . ° . . • . . . .  

(M,)0  = D + = 0 

to show tha t :  

~-U)~ = \~-1~----- 0 . . . . . . . . . . .  (21) 

Any shape of boundary can in this way be approximately represented by  a suitably stepped 
outline: 

Boundary conditions at wing root.--The conditions at the wing root are just as straightforward. 
They are different however for the symmetrical and the anti-symmetrical displacements. 

For the symmetrical case, ~ the x slope, by symmetry,  is reversed as the plane of symmetry is 
crossed, a fact that,  for a wing passing straight through the fuselage, enables the wing x curvature 
at the intersection with the plane of symmetry  to be at once written down. For wing spars that  
bridge the fuselage by some kind of frame, the root slope at the side of such a frame is given by 
the deflections of the frame itself. But  if the wing spar is pin-jointed to the fuselage side, the 
same condition as for a free edge applies, i.e., zero spanwise bending moment. 

For the anti-symmetrical case, straight-through spars have zero bending moment at the plane 
of symmetry. A spar fixed to the fuselage has its root slope defined as in the symmetrical case, 
while a pin-jointed root gives as before zero bending moment. 

Along the y direction the curvature is, by  definition, completely defined. 

2.2.4. Conversion of stiffness into influence coefficients.--The conversion of the stiffness co- 
efficients found by the above method into influence coefficients by  matrix inversion has been 
fully covered in Ref. 1, and will not be discussed here. 

2.2.5. Use of machine fo~, computing stiffness coefficients.--When a fairly large number of stations 
are used on each side of the plane of symmetry  of an aeroplane structure, it is essential that  the 
procedure of deriving the stiffness coefficients should be systematised to the last degree. F o r  this 
enables the machine to be programmed thoroughly enough to require feeding only with such 
basic wing-design quantities as: 

(a) the spacing of the stations 
(b) the wing-section properties at each station 
(c) the wing plan-form. 

3. Approximate Method for Taking Account of Shear Deflections.--Shear flexibility in bending 
complicates the issue because, by  introducing a curvature of its own, it impairs the otherwise 
simple relation between resultant curvature and bending moment. Since shear flexibility is also 
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a governing factor in such secondary effects as shear lag and warping of wing cross-sections, no 
structural analysis can lay claim to accuracy without taking it into account. Only in the case of 
solid, or nearly solid, thin wings can it be legitimately neglected, when the method already 
described may be used without modification. 

The effect of shear flexibility is two-fold; in the first place it reduces the wing stiffness and in 
consequence affects the frequencies and modes, and in the second place it modifies the stress 
distribution in the wing. So far as the first, or dynamic, effect is concerned, an approximate 
method is here put forward tha t  appears to be quite adequate. The approximation used 
may not however be good enough in all cases for the purpose of the static stressing of a wing, 
where it is desired to take full account of such secondary effects as shear lag and the warping of 
wing cross-sections. F o r  this, if the utmost accuracy is required, it is necessary to increase the 
number of degrees of freedom three-fold in order to allow for x and y displacements in the plane 
of the wing in addition to the z displacement normal to tha t  plane*. 

What  makes it possible, in the rigid shear method already described, to completely define the 
deformation of the wing in terms only of the deflections normal to the plane of the wing, is the 
fact tha t  the normal deflections, in defining the slopes of the neutral plane of the wing in the 
x and y directions, thereby also define the displacement of the skin in those directions. This 
follows from the fact that,  with infinite shear stiffness (of ribs and spar webs) a point on the skin 
cut by  a normal to the neutral plane before deformation remains on the same normal after 
deformation. Any method of defining the deformation of a wing by the normal displacements 
w alone of a number of stations distributed over it must therefore specify how the dependent 
displacements u and v in the x and y directions are related to the independent deflections w. 

In the approximate method now to be described this is done in the following way. The wing 
is imagined to be rigid in shear to begin with so that  the method already described is immediately 
applicable. In this way the flexibility matrix for bending is derived, which gives the deflection 
at every station in terms of any arbitrary system of applied loads. Suppose the wing to have 
taken up its appropriate contonr of displacements under a particular external load distribution. 
If now, while the u and v displacements are constrained by some external agency to remain the 
same, full shear flexibility is restored to the ribs and webs, the deflections w will generally increase. 
The amount of this increase under the external load applied, since we are dealing with linear 
conditions, is independent of the bending displacements ah'eady in existence and these may ~ 
therefore be disregarded for the purpose of obtaining the extra shear deflections. In fact we can 
consider the unloaded wing subjected to a system of displacements w of a kind that  allows no 
accompanying u or v displacement for any station, and that  therefore allows only the components 
of shear displacement represented by  aw/ax and aw/ay (au/az and av/az being both zero). 

The set of reactions R necessary to hold the wing in its deflected position are easily written 
down, because the shear in the shear-carrying internal structure can, under the special conditions 
visualised, be expressed in terms of the first derivatives of the station deflections and not in terms 
of their third derivatives as in the rigid-shear case above treated. In Fig. 1 the shears in the shear 
webs tha t  meet at station 0 are given by : 

So,1---- (K)o,l (w~ -- wo) Gh~ t)°'--~ ) 

(22) . . . .  

* See  section 4. 
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where h is the thickness of the wing, (t) .... the thickness of the shear web between stations n and m, 
and the K's  are theappropr ia te  shear constants for the several panels. The external upward 
reaction necessary to equilibrate this system of vertical shears at station 0 is then" 

(Ro)s = ($3,0-  So,1) + (S~.o- S0,4) . . . . . . . . .  (23) 

In this case every station, whether on the boundary or not, can be treated in the same way, so 
tha t  the stiffness matr ix is obtained very easily. On inverting this matr ix  we obtain the flexibility 
matr ix for shear, i.e., the shear deflection (of the particular kind concerned--Sw/Sx or 3w/Sy) at each 
station under any arbitrary external loading. The complete flexibility matr ix  is now at once 
written down since it merely requires the straightforward addition of the two matrices, the one 
of bending and the other of shear. 

3.1. Remarks on the Approximation.--Certain points regarding the above approximation may be 
noticed. A minor but interesting point is tha t  it would not have been feasible to superpose the 
shear and bending reactions at each station in turn, so as to combine bending and shear reactions 
in the same stiffness matrix, the inversion of which would then give the resultant flexibility 
matr ix ill one operation. Any at tempt  to do so introduces the reciprocals of the deflections. 
The situation may be summarised by saying that,  whereas the bending and shear stiffness matrices 
cannot be directly added together, the corresponding flexibility matrices can. Since it is generally 
expedient to derive the flexibility matrix via the stiffness matrix, the only approach here is to 
derive the bending and shear stiffness matrices separately, to invert them separately so as to 
obtain the corresponding two flexibility matrices, and finally to add these together to give the 
resultant flexibility matrix. 

A major point is the fact that  the deflections obtained are c6rrect only so long as the constraints 
needed to prevent u and v displacements during the shear deformation are maintained. Their 
final removal will produce not only u and v displacements additive to those induced by the 
initial bending deflections but also further w deflections, with of course an at tendant  modification 
of the stresses. 

I t  will be noticed that  the problem remaining to be solved, i.e., the effect of removing the 
constraints, no longer involves forces normal to the wing plane but only forces i n tha t  plane. This 
is equivalent to saying tha t  the resultant of the shears in the four shear-carrying panels that  meet 
at each station vanishes. 

3.2. Approximate Method Applied to Single Box Cell.--Obviously, the greater the shear flexi- 
bility, of a structure in rel~ttion to its bending flexibility, the more important become the con- 
straining forces. I t  was therefore thought desirable to see how the method works under 
extremely unfavourable conditions, where the shear deflections constitute the major part  of the 
total. For this purpose a single-cell torsion box was chosen and assumed fixed along one side 
ADA'D'  and loaded by a couple consisting of two vertical forces P as shown in Fig. 3. 

_•,J,t 
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Bending stiffness is introduced by edge booms, which are connected by panels capable only of 
resisting shear. The box is square in plan and has a length n times greater than its depth h. 

The equal and opposite deflections at B and C were calculated: 
(a) correctly by any of the various methods available 
(b) assuming the sides and end infinitely stiff in shear 
(c) assuming the four end corners t o  be constrained to move only vertically, in other words' 

assuming infinite stiffness for the booms and the two horizontal panels 

(d) under forces equal and opposite to the resultanL constraints required by (b) and (c). 

Deflections (b) and (c) are the constrained bending and shear deflections above discussed. 

Deflections (d) arise from the unbalanced forces brought into action by removal of the con- 
straints and must always take the form, shown in Fig. 4, of tractive forces along the horizontal 

o s c edges of constant amount S per unit length. The structural 
, , ~ . analysis of this box is given in Appendix I to this Part, where 

D' it is shown that  if" 

J 
/,}" - -  c ~ 

,g' / / 
/ 

FIG. 4. 

tl = thickness of side panels 

t2 = thickness of top and bottom panels 

t~ = thickness of end panel 

A = cross-sectional area of edge booms, 

the unbalanced residual edge force S per unit length has the value : 

S -= p [2g + 1.067 tl/t~ 7 . . .  (24) 
Y + 2 1 3 3  - 1 4 :  ' " . . . .  

where 
g = 2 A / ( t . n h )  . . . . . . . . . . . . . .  (25) 

and the ratio G / E  o f  the elastic moduli has been taken to be equal to 0.4. This shows that  for 
certain values of A and of the ratio (tilts) the edge force S vanishes and the approximation is 
exact. 

Perhaps the best way of showing how effectively the approximation takes account of the shear 
flexibility of the vertical panels is to quote numerical values for various combinations of relative 
panel thicknesses and boom cross-sections. This is done in Table 1 in which the approximate 
deflection (wb + w,) is shown against the true deflection. 

In looking at the figures in Table 1, 

TABLE 1 

1 
1 
1 
1 
0"5 
0 .5  
0"5 
1.0 
1"0 

f l ,  tl/t~ ~:~/t~ 

2 
2 
2 
2 
2 
2 
4 
4 
4 

1 
1 
1 
1 
0.1 
0.05 
1 
1 
1 

0.2 
0"0 
I 

I0 
0"05 
0"I 
0"2 
0.2 
0"0 

Wb 

0.517 
O" 517 
0"517 
0"517 
0"7 
0"7 
2" 73 
2.07 
2"07 

By approximation 

l w~ l (w~ + w~) 

1- 43 1" 947 
2-0  2"517 
O" 67 1.18 
1.67 2- 18 

10 10"7 
8 8"7 
2 .86 5-59 
2" 86 4" 93 
4 6.07 

Wfrue 

1 "95 
3"07 
1"55 
2"22 

10"9 
10"78 
5"63 
4"93 
8"37 

10 



one must remember that  the box structure here considered and the kind of loading assumed 
represent an extreme case, in tha t  the shear deflection accounts for much the greater part  of the 
total deflection. Even in this highly unfavourable example the addition of the shear deflection w, 
to the bending deflection % brings the total (zv, + w~) well into line with the true value, whereas 
the neglect of Ws gives a hopelessly inaccurate result. 

If, instead of the two forces P being applied in opposite directions, they are applied in the 
same direction, thus changing the torque into a transverse load, the approximation becomes 
exact. I t  follows that,  since any two upward forces at the outer corners B and C of the box 
can be represented by  a transverse force and a couple, the approximation approaches closer 
to the t ruth the more nearly equal the two forces become. I t  is to be expected therefore that  in 
most practical cases this approximate method should be satisfactory. 

A final point to notice is that,  if the deflections obtained by the approximate method are used 
for stressing the wing, the stresses in the skin and its reinforcements (including spar flanges, etc.) 
are obtained directly from the bending deflections (i.e., wz,) since the superposed shear deflections 
(ws), by virtue of the constraints, have no effect on the skin stresses. This means that,  although 
the allowance made for shear flexibility makes a valuable adjustment to tile deflections, it has 
no effect on the skin stresses. To obtain the latter with sufficient accuracy a more rigorous 
method, now to be described, is needed in some cases. 

4. More Rigorous Method--Suitable for Both Wing Stressing a~d Dynamic Calculations.---The 
above approximate method depends essentially on assuming an implicit and arbitrary relation 
between the normal displacement zv and the displacements u and v in the plane of the wing. 
This means that  the u and v displacements are subject to an external constraint that  has later 
to be liquidated. To remove this source of inaccuracy it is proposed to use the rigorous method 
of regarding the three displacements u, v and w at each station as independent variables. The 
disadvantage of this course is the three-fold increase in the number of variables it entails, since 
three independent displacements are now associated with each station. 

There are compensations, however, that  mitigate this disadvantage. One of these is the fact 
that,  consequent on the relevant difference equations being only of the second order, the reaction 
at any station can now be expressed in terms of only eight of the adjoining station deflections 
instead of the 12 previously necessary. I t  is also to be noted that,  once the influence coefficients 
connecting normal loads and displacements are found, the dynamical matrix is of the same order 
as before, the number of elements being unaltered. I t  follows that  the task of matrix iteration 
for the natural  frequencies and modes and all aero-elastic calculations can proceed just as if the 
u and v displacements never entered the problem. 

4.1. Derivation of Stiffmss Coe2ycie~ts i~ Terms of Statio~ Displacements u, v and w. - -  

7 2 " 

11 
3 0 

8 4 

IV,-+-,-- 
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r 
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+ 
l 

J 

, XIU 

~IO. 5. 

The reactions X, Y and Z in directions x, y and z at any interior station 0 (Fig. 5) can be 
completely expressed in terms of the u, v and w displacements at the eight surrounding stations 
1 , 2 , . . . 8 .  
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Releva~ct  e q u a t i o n s  i n  d i f f e r e n t i a l  f o r m - - I n  order to facilitate the writing down of the appro- 
priate difference equations, the three equations of equilibrium that  govern the relation between 
the three displacements u, v, w and the applied forces are first expressed ill differential form. 

A / G ~ B ..---~-~ ~ 
~'x~, ~ / q~, . ~ ' ! -  . 

/ T - -  ,-7, TZA~ 
n . /  i .C')" l i / / J "  [, 

/ "  g / t /  

Y 

FIGS. 6a and 6b. 

A 

V i l l i  " I I I I / I  

G I 
/i  

/ /  I - -  - - - [ - - - - - -  

I 
I 

,ty i / 2  

I 

/ - -  __ 7 - -  

/ / 
H 

B 

JT 
\ t x  h/2 

® 

In Figs. 6a and 6b let ABCD represent a square element of area of the top skin of unit side. 
Assuming that  there is an identical bottom skin symmetrically situated relative to the. neutral 
plane F F 'HH ' ,  we need only consider the equilibrium of the top skin element. The stress symbols 
used in Fig. 6 follow standard practice and need not be defined here, except to note that  the 
direct stresses in the booms or stringers are distinguished from those in the adjacent skin by 
hav ing  the symbol ¢' as against ¢ for the skin. We assume here that  stringers and ribs are 
parallel to the co-ordinate axes. When they are not the method described in Part II must be used. 

Let 

A~ = 

A, ---- 

As 

~s 

t ,  = 

l = 

h = 

X = 

Y = 

Z = 

average or equivalent flange area pe r unit width of y due to booms and stringers 
in direction x at station 0 

average or equivalent flange area per unit width of x due to booms and stringers 
in direction y at station 0 

equivalent flange area of skin in x and y direction at station 0 per unit width 

thickness of skin 

equivalent web thickness in direction x per unit width along y 

equivalent web thickness in direction y per unit width along x 

pitch of stations 

depth of wing section 

applied force in direction x per unit area of skin 

applied force in direction y per unit area of skin 

applied force in direction z per unit area of skin. 

The three equations of equilibrium of forces in the x, y and z directions may now be written 
down at once. 
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In the x direction • 

A ,  ~ '  ~ ~,~ - ~ - x . .  ( 2 6 )  + t ~ \ a x  + a y /  ' " . . . . .  8x 

where the stress a~' in the boom (not being subject to Poisson's Ratio) is different from a~ in the 
adjacent skin. 

In the y direction, similarly" 

A ~ 7 .  + t ,  + - t j , , , =  - y .  
\ ~y ax ] %v 

In the z direction" 

~ * ~  ~Y~ = - -  Z ~h 7 ~  + t~h ay 

In a wing the forces X and Y are always zero. 

(27) 

(28) 

Putt ing : 

o~:' = E Ocz 
~x 

, E  ov 

~ x , =  G au +_$~ 

we write (26), (27) and (28) in the form" 

~ ~ - 1 ~  ~ + ~' -Ux 

t, 
1 

( )  I E ~[a*' 

EAy~ ~ -]-t~ l_v2 ay ~y+ 

~ + ey ~ + ~  -t~G ~ + ~  = - x ,  (30) 

= - •, (31) 

= - z .  (32) 

Since, in all practical cases of wing loading, both forces X and Y disappear, it is theoretically 
possible, to eliminate u and v and so express the displacement w in terms of the loads Z applied 
normal to the surface. This, however, would introduce differential equations of the sixth order, 
as well as the necessity of subsequently evaluating u and v in order to obtain the stresses. Such 
raising of the order of the differential equations appears to be regarded by Benscoter and MacNeaP 
as unavoidable if a digital computer is used for their solution, in contrast with their own method 
of solution by ' analog computer ' ,  in which first-order difference equations are alone used. The 
method presented here of taking the three displacements at each station as independent variables 
shows tha t  this difficulty need not arise. 
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Nevertheless, the method of eliminating u and v by means of equations (30) and (31) (after 
putting X -- Y = 0) and so obtaining a sixth-order equation in w has its attractions ; for it allows 
each of the displacements u, v and w to be found without involving more variables than the 
number ~ (say) of stations. I t  has the disadvantage, however, of introducing derivatives of the 
loading Z, and therefore of requiring the machine not only to invert 3n-sided matrices but  also 
to perform 3 operations of matrix-multiplications. This is to be compared with the single 
inversion of a 3n-sided matrix required by taking the equations (30) (31) and (32) as they stand 
(after conversion to difference equations). Whichever method is used, the final result, by  which 
the u, v and w displacements at each station are expressed in terms of the applied normal loading, 
must of course be the same. 

In converting (30), (31) and (32) into difference equations applicable to the typical station 0 of 
Fig. 5, one notes that,  if 0 is taken to represent u, v or w : 

(oo/~x)o = (o~-  o,)/2z, (eo/~y)o = ( o , -  o,)/zz, ] 

) (~O/~x~)o = (o~ + o~ - 2Oo)/Z ~ , (~o/~S)o = (o ,  + o~ - 2Oo)/Z ~ , 

(O~O/3x ~y)o = {(05 -4- 07) -- (0~ + 08)}/4P, 

(~o1~)o = ol(h12) 

(33) 

In addition, 



4.2. Boundary Condit ions.--The boundary conditions in this method of approach are similar 
to those discussed in section 2.2.3 in so far as the direct stresses are concerned. For example, in 
Fig. 1, if CC' is a free edge, the direct edge load must be zero, i.e., 

o r  

IA Ou A ,  (Ou Ov)l 
E Z f ,Vk + ~ -- ~ Vx + ~ 

Ou --  vA~ Ov 

= 0  

(3s) 

since the shears ,,~ and ~, must each be zero. 

As regards boundary shear displacements, for a free edge the shear stress, as iust noted, is 
zero, so that  at a free edge parallel to the y-axis, 

3v Ou 3w u 
Ox -- ~y ' Ox --  h/2 . . . . . . . . . . .  (39) 

At a fixed edge, such as the wing intersection with the plane of symmetry, the boundary 
conditions, both for direct and shear displacements, are even more simple, in that  the wing may 

b e  imagined joined on to its symmetrical, or antisymrnetrical, image as already discussed in 
section 2.2.3. 

4.3. Form Taken by Stiffness and Flexibility M a t r i c e s . ~ W h e n  the X, Y and Z reactions have 
been obtained for each of the stations concerned in terms of the displacements, we call write 
down tile complete set of 3n equations as follows, where, for example, 

x--~, denotes the reaction in direction x at station r due to unit displacement in direction x 
at station s 

y-~, denotes the reaction in direction y at station r due to  unit displacement in direction x 
at station s 

~yy~ denotes the reaction in direction z at station r due to unit displacement in direction y 
at station s, 

etc. 

{~ ~ = (~,,u~ + ~ , u ,  + . . .  + ~l,~U,,) 

If'= n 

{i 1-- " 2 2  

~ b  

(Txllul + Tx12u2 

+ ( ~ v ~  + ~l~v~ 
+ ( ~ v ~  + ~ v ~  

+ (~.~vl + ~,,~v~ 

( ~ u ~  + y-~u~ + . . .  + y~,,u,,) + (yy~v~ + yy~v~ 

(y~lUl + y~u~ ~,- + y~,,u,,) + (yy~lv~ + ~ v ~  
. . . . . . . .  o • , , , . . . . . . . . . . . . . . . . .  , ° 

+ .. .  + ~,,u,,) + (~l~v~ + ~ v ~  
+ + ~,,u,,) + ( ~ v ~  + ~ v ~  

. . . . . . . . . . . . .  o . . . . .  

+ . . .  + ~,,v,,) + 
+ + ~,,v,) + 

+ + ~,,,~v,~) + 

( ~ 1 ~  + . . . )  1 
( ~w~  + .) 

(~,~w~ + .) 

+ . . .  + yy1,,v,~) + (y~llw~ + . . . )  

+ +yy~,v,,) + (y~w~ + .) 

+ +yy,,,,v,,) + (~,,~wl + .) 
! 

+ . . .  + ~, ,v,)  + (-~w~ + . . . )  1 

J 
+ + ~,,v,) + (~1wl + .) 

, , . o  • • • , . . . . .  

+ + Ty,,,,v,,) + (~,,lw~ + .) 

(40) 
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or, in par t i t ioned mat r ix  form" 

where, for example 

X xx xy 

= y2 y~ y5 . . . . . . . . . .  (40a) 

7-yy 55 

. . . . . . . . . . .  (41) 

. . . .  , . . . .  

LN-N,~I 3-'x,~2 • • • x-'-x,.,J 

By vir tue of the Reciprocal Theorem, the  n-sided square sub-matrices xx, yy  and ~ are 
symmetrical ,  and the  square sub-matrices yx, zx and ~y are respectively the  t ransposed forms 
of xy, xz and yS. 

Inversion of the  3n-sided square s t i f fnessmat r ix  of (40a) gives the  corresponding flexibility 
matrix,  which allows the  displacements to be expressed in terms of the  appl ied  loads in a set of 
3n equations similar in form to (40). The par t i t ioned-matr ix  form of this set may  be wri t ten as" 

where, for example  

u -~ ~~ 
(42) 

. . .  ] ~- -~11  . ~ - '~12  • - • ~ " ~ 1 , * ]  

(.43) 

Here ~'--~rs = displacement in direcrion x at s tat ion r due to uni t  load in direction .x at s tat ion s 

~--~r, = displacement  in direction x at s tat ion r due to uni t  load in direction y at s tat ion s, 
etc. 

The consequences of the  Reciprocal Theorem noted  above for the  stiffness coefficients are equally 
applicable to the  flexibility (or influence) coefficients. 

4.3.1. Consequence of external loads in wing plane being zero.--In practi.ce there are no X and 
Y external  loadings at the wing stations, and therefore the first two columns of the square mat r ix  
of ( 4 2 ) d i s a p p e a r .  That  equat ion then  takes the  form" 

= ~-T . . . . . . . . . . . .  (44) 
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which gives u, v and w at each station in terms of the applied loads 
better, we may expand the three component parts of (44) to give 
as follows : 

Z. To visualise the final result 
the u's, v's and w's separately 

¢t2 ~:C21 

~C,I 

~¢~= • . . ~'=,~ 

1 t 
• . . "  . . . 

W z  

W 2  

II 

CC12 

i . . . . . .  ¢C.1 ¢¢,,= 

• " • ~ " ~ l n  - 

. . .  CC .... 

Z1 

Z~ 

_ Zll_ 

Z1 

Z~ 

• ° 

I.Zn_ 

F • (45) 

With all the displacements found, the direct and shear stresses everywhere can at once be 
evaluated. 

4.4. Shear-lag Problem Implicitly Solved.--The shear-lag problem is automatically solved in 
this method of approach, as may be seen by considering the simple structure of Fig. 7. 

M•/t0 
R I . R' 

M Di-_-_--- - - - -2_ _ _ - _  _ _ _ -  - -  - 

.~/_: ~_/ ~_,:" 
/ 7  / /  / /  

J / ~,V / ~J ,' 
~,/ T/ "r/ 
~t,' V V 

F I G .  7 .  

c 

- i C '  

p 'i 
B}p 

This represents a closed box having two internal ribs RIRI', R2R(, but no spanwise webs other 
than the sides of the box. If, further, the box has no corner flanges and the skin is heavily re- 
inforced with stringers, we have a structure in which, under transverse loads P, shear-lag effects 
must dominate the picture• However, the fact that  the surface has a number of stations, such 
as those marked in the figure with a cross, distributed over it ensures that full account of shear 
lag and section-warping is automatically taken by the above ' three variable per s tat ion '  method. 
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5. Concl~ding Remar~s.--Three methods are described in Part  I of this report for deriving 
the influence coefficients of wing structures on the supposition that  a digital computing machine 
is available. 

The first (described in section 2) applies to heavy-skinned thin wings for which the shear 
flexibility of the vertical shear-carrying ribs and spar webs can be legitimately neglected. This 
involves a straightforward adaptation of elementary plate theory as originally described in the 
appendix to Ref. 1, and needs no particular-comment. 

In the second method (described in section 3) shear flexibility is taken account of in an approxi- 
mate way, in accordance with which shear deflections are allowed to take place under a certain 
amount of external constraint. The deflections of the wing normal to its plane obtained by this 
method are accurate enough for use in all dynamic and aero-elastic calculations whatever  the 
type of wing construction. They are also probably accurate enough for stressing purposes in 
the case of thin wings, and certainly good enough for the preliminary stressing of any kind of 
wing. 

For the meticulous Stressing of any kind of wing structure the more rigorous method of Section 4 
can be brought in. This unfortunatelT¢ does mean a threefold increase in the number of degrees 
of freedom if every station is given three instead of one independent displacement. I t  can well 
happen, however, that  in many wing structures only those stations that  are situated in parts of the 
structure that  are ordinarily difficult to stress, need be given the added two degrees of freedom. 
Moreover, it is to be remembered that  the machine is supposed to do the work, a fact that  makes 
a substantial increase in the number of degrees of freedom not a very serious matter. The 
important  point is that  this method of deriving influence coefficients does not require a stressman 
to possess a profound knowledge of structural theory to enable him to deal satisfactorily with 
wings of any type. 

No. A¢~thor 

I D. Williaxns . . . . . .  

2 Murray and Niles . . . . . .  

3 R . V .  Southwell . . . . . .  

4 S. Timoshenko • . , . . 

° 5 S.U. Benscoter and R. H. MacNeal 
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Equivalent plate theory ~or a straight multi-cell wing. N.A.C.A. Tech. 
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A P P E N D I X  TO PART I 

Let 1 = 

n l  = 

A = 

E 1 = 

t 2 = 

E3 = 

$ 1  : 

$ 2  = 

S s  = 

X, y ,  Z = 

U, V~ W 

W b 

Ws 7__ 

# : 

P = 

Deflectious of a Simple Box under Various Couditions 

T i 

n?, " C 

- . . . .  [ cs 

B P 

FIG. 1A. 

depth of box 

length and breadth of box 

cross-sectional area of booms 

thickness of side panels 

thickness of top and bottom panels 

thickness of end panel (or rib) 

shear per unit  length in side panels 

shear per unit  length in top and bottom panels 

shear per unit length in end panel 

co-ordinates as shown 

displacements as shown 

bending deflection 

shear deflection 

G/E, the ratio of the elastic moduli 

applied loads. 

Equilibrium requires tha t  

$3 = S~ . . . . . . . . . . . .  
and 

z(s l  + s3) = l ( s l  + & )  = P . . . . . . . . .  

Z 

. .  ( ~ A )  

. .  ( 2 A )  

SO 

8 u  8wb  

8z ~- 8x 

Neglecting s.hear deflection, we have for side AB'" 

- - 0  

giving for x = nl" 
8x l/2 = --  F 

Z O b  ____ , fb b 2 . (SA) 
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The corresponding shear deflection" 

S ~ n l  
w ~ - -  t l G  ' "" "" . . . . . .  

and the total  deflection" 

In similar fashion for the top (and bottom) panel" 

(v)Ac = vb + v , -  t~G ~ n b 

Shear strain in end panel (or rib) • 

$2 
Y - -  t a g  

and for compatibility of displacement" 

(4A) 

(SA) 

(6A) 

(7A) 

S~ 2 {(w)Aw (V)Ac} . . . . . . . . . . . . . . .  (8A) 
t ag  - -  l n 

Substituting for w and v from (5A) and (6A) gives 

$2 =. 1 2n 

Using (2A) and (5A), we obtain the upward deflection at B in the form" 

, (9A) 

/1 2n 2\ n 1 2n)]  

T . . . .  \ t~ t~ t l /  
where 

~ - -  3A . . . . . . . . . . . . . . . . . . .  

What  is called the bending deflection wb is at once obtained by putt ing ta -- tl -- 0o in (10A) 
whence • 

P ( 4n~c~ 
w~ = ~ 2n ~ 1-6t~c~ ] . . . . . . . . . . . . . . .  (12A) 

The shear deflection. Ws is similarly obtained by making t~ = A = o% whence" 

( ° )  P tl w s - - ~  -}-2ta " • o . .  (13A) 
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It follows that  under the conditions of bending deflection" 

= T  ~ -  . . . . . .  
(14A) 

and under the conditions of shear deflection" 

(s,), P t, ) 
= 7 (t~ + " 

In either case, from (2A)" 

P 

0 

A' S 

s c 
~ ~ t 

z 

B' 

FIG. 2A. 

( lSA) 

The out-of-balance forces induced by the removal of the constraints are now seen to be a 
constant tractive force per unit length of edge of amount" 

s ,  = ( s , ) ~ -  (s,), .. .. 

along the longitudinal edges, and: 

s ,  = - (s2)~ + (s~), . .  

along the cross edges. 

It  follows at once from (2A) that :  

S, -- S, = S (say), .. 

the distribution of which is shown in Fig. 2A. 

. . . . . . . . . .  (16A) 

. . . . . .  . .  . .  ( 1 7 A )  

. . . . . . . . . .  lSA) 
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P A R T  I I  

Notes on the practical application of the method described in Part I 

Summary.--In Part I a method for deriving the influence coefficients of any type of wing, and hence of deriving the 
deflection and stresses, was described in outline. The practical application of the method, however, raises a number of 
minor problems (mostly concerned with boundary values), which have all to be overcome if the method is to become 
popular among stressmen. Some of the more important of these problems are treated in this part. 

1. I~#roduction.--In Part  I of this report  a general me thod  of calculating the deflections and 
stresses in any type of wing has been outlined. Only a brief reference was made  to the  boundary  
problems involved and to the  problem of adequate ly  taking account of such reinforcing members  
as stringers, spar and rib booms. These problems are now discussed here in detail. 

Bo~,~ndary conditions.--A more convenient  me thod  of t reat ing the  boundary  conditions at flee 
edges and corners than  tha t  normal ly  used is described in the  first few paragraphs. This me thod  
has two advantages  ; it derives the  relevant  reactions more directly than  does the classical method,  
and is at  the same t ime a physically more obvious approach in terms of finite differences than  the  
s tandard  approach associated with the  name of Kirchhoff. Applied to the  problem of the  plate 
of constant  thickness, this suggested al ternat ive approach is shown to give identical  formulae for 
the  reactions as those derived by  the  more familiar s tandard  method.  This may  be taken as 
inferential  proof tha t  the boundary  formulae derived for reactions in terms of displacements for 
more complicated cases, such as wings wi th  oblique stringers and shear webs, are equally sound. 

The boundary  conditions discussed here, ostensibly applicable to wing structures, are in fact 
applicable to any flat or plane structure under  transverse loading. Such a structure, if held all 
round  its periphery, ei ther encastr6 or simply supported, offers lit t le difficulty in the  ma t t e r  of 
boundary  conditions. If, however,  it is held cantilever-like along one edge only, as an aeroplane 
wing is held, the  rest of the boundary  consti tutes a free edge, frequently of irregular plan-form. 

In  the  case of the wing the supported edge may  be encastr6 at the  plane of symmetry ,  or it 
may  be simply supported where it meets  the  fuselage sides. In  ei ther case the  boundary  condi- 
t ions are s traightforward and do not  require the careful consideration they  do over the  free edges. 

A main  difficulty in dealing with the free edges of a wing arises from the  often irregular plan- 
form. The view has been taken  tha t  the most  convenient  way of approximate ly  representing the  
t rue plan-form is to mark  off the boundary  in a series of steps as described in para. 3 and 
indicated in Fig. 5. In this way every free edge is parallel either to the  x or y co-ordinate axis, 
so tha t  every s tat ion located on the  boundary  must  lie ei ther on one or other of these free edges 
or on a corner  common to both.  I t  follows that ,  in deriving s tandard  formulae for the  stat ion 
reactions, it becomes necessary to consider four distinct types of boundary  stations : 

(a) A stat ion located on a free edge parallel to the x-axis 
(b) A stat ion located on a free edge parallel to the  y-axis 
(c) A s ta t ion located on a free projecting corner 
(d) A stat ion located on a re-entrant  corner. 

In  point  of fact, the  boundary  conditions appropriate to a s tat ion of type  (a) can easily be applied 
to derive those appropriate  to the  other three types. 

The boundary  conditions for each type of s t ructure are discussed in the main text,  but  it was 
considered be t te r  to relegate the  derivat ion of the formulae appropriate to the  varous types 
(a) . . . (d) of boundary  stations to a series of appendices. These not  only give the  formulae, but  
also their  derivation. 

22 



Particular cases co~sidered.--The first part  of Par t  I I  of this report  describes the alternative 
method advocated for deriving the reactions at boundary stations, a n d  applies it to the case of 
the constant-thickness flat plate, in which it is legitimate to neglect transverse shear deflections. 

The second part  considers the case of the hollow wing reinforced by one or more sets of parallel 
stringers. Shear deflections are again neglected. 

The third part  describes an approximate method of deriving shear deflections when the shear is 
carried by  one or more sets of shear webs. 

For thin wings a combination of the above two methods should give resultant deflections, the 
one due to bending and the other due to shear, tha t  are satisfactorily accurate for the purpose 
of aero-elastic calculations. The bending stresses should also be accurate enough, although they 
are unaffected by the shear deflections obtained by  the approximate method. 

The fourth part  describes a more accurate method of deriving the stresses and deflections of a 
wing. This method may be necessary for obtaining the wing stresses for the thicker type of wing 
though not for obtaining the wing deflections required for aero-elastic calculations. Neither for 
deriving stresses nor deflections is it necessary to use this more refined approach in dealing with 
thick-skinned wings of low thickness-chord ratio. 

Appendices A, t3, and C follow and are concerned with the detailed derivation of various 
formulae. Appendix D describes the application of the method to the practical problem of 
deriving the influence coefficients of a thin cantilever plate of constant thickness and square 
plan-form. Although the plan-form is simple and the thickness constant, it seems a fair assump- 
tion tha t  the degree of accuracy obtained should be representative of what is attainable in a thin 
wing of variable thickness. 

Relative accuracy of stresses a~¢d deflections derived by the present method.--In discussing the 
relative accuracy of stresses and deflections, it may be well to summarise briefly the basis of the 
present method of approach. In essence, the method consists in  defining the deflected shape of 
a wing by  the deflections of a fairly large number of stations uniformly distributed over its surface. 
Under a hypothetical  set of displacements these stations are held in their displaced positions by 
reactions that  can at once be written down. The set of linear equations connecting displacements 
and reactions can now be solved to give the displacements in terms of any  set of reactions or 
applied load. The method has been criticised on the grounds that,  whereas the displacements 
are obtained directly, the stresses are derived only indirectly by  differentiation of the displace- 
ments. At first sight this seems a valid criticism but  an examination of the special factors 
involved has demonstrated (Ref. 1) that  in the present case it is not valid, and tha t  stresses are 
unlikely to be less accurate in general than displacements; indeed in many practical examples 
they are found to be more accurate. 

2. An  Alternative and more Convenient way of Expressing the Boundary Condit~ons at a Free 
Edge or Corner.--At t he  end of this Part  II  of the report (Appendix D) a numerical example is 
worked out to illustrate the kind of accuracy obtained by the method of the report. The problem 
considered is tha t  of the square plate mounted along one edge as a cantilever. The boundary 
conditions assumed for the other three edges express the fact tha t  tile bending moment across a 
free edge must be zero and tha t  the resultant shear, as first expressed by Kirchhoff, must also be 
zero. In addition, special consideration has to be given to the conditions at the two free corners. 

Tile method here put forward short-circuits the Kirchhoff condition and, instead of the 
conditions at a free-corner station being more complicated, they become even simpler than for 
an internal station. Moreover, the whole procedure becomes straightforward and no subtle 
reasoning of any kind is required. All tha t  is done is to discard the notion of a free edge and, 
instead, to imagine the plate (or wing) to extend beyond the free edge in the form of a real plate 
of zero stiffness. 

To appreciate the simplicity of this method of approach, we may consider the case of a free- 
corner station in the square plate of Appendix II  (Case (d)) of Ref. 1. 
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2.1. Reaction at Free-corner Station by New Method.--We first write equation (1) of Appendix II  2 
in the form: 

~2M~ ~2My a2Mxy 
a x 2 - +  ay ~ + 2  - q o ,  . . . . . . . . . .  (1) ~x ~y 

Which gives the reaction qo per unit area at the corner station 0 in terms of the moments per unit 
width of plate. The usual 12 stations, surrounding the station for which the reaction is required, 
are marked in Fig. 1. Supplementary stations a, b, c, d, are also introduced, later to disappear. 
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FIG. 1. 

3x 2 - - ( M , ) I  + ( M . ) ~ -  2(M.)o . . . . . . . . . . . .  (2) 

12 ~2M, Oy 2 = (M,)~ q- ( M , ) , -  2(M,)o . . . . . . . .  . . . . .  (3) 

21 = a~M.y ax 32 = 2{(M,,)~ + ( M , , ) . -  (M. , )~ -  (M.,).z} . . . . . . . . .  (4) 

In equation (2), (M,)0 is zero and (M,)I drops out because the plate stiffness is zero leaving 
therefore only (M,)3. Similarly (M,)2 and (M~,)o disappear from equation (3), and in (4) only (M,y)d 
has a value. Thus 

q0 = {(M,)a + ( M , ) ~ -  2(M,y)e}/l 2 . . . . . . . . . . .  (5) 

I t  is noted tha t  here only the second differentials of the deflection have to be considered, 
whereas in equation (1) the fourth differentials are involved. A direct result is tha t  deflections 
w10 and wll do not now enter. 

Now a line of stations along a free edge represents a strip of plate half of whose width has the 
I of the plate proper and the other half the zero I of the infinitely flexible plate beyond the 
boundary. 

The average I per unit width at a free edge station is therefore only half the actual I of the 
plate. 

and 

Since 

(M~).  - -  ~ _ ~ ~-~ + ~ ~ - 7 , q  = 0 
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we can write" 

( M . ) ~ - -  1 - -  : \ ~ :  + " - ~ ) ~  . f ~ ] . /  

and E(I,)~ (~2w ~2w\ (~w~ } | . . . . . . .  (7) 

Using equation (7) in (5) we have! 

qo=  [ E ( I . ~ . ) a \ ~ ) a +  E ( I ~ , ) , \ ~ ) ,  (1 + ~) \~-g~-g/aJ/ " . .  (8) 

For a plate of constant thickness, we have, by  the above argument:  
= _ ~ . . .  (9)  Id Io and (I,)3 (Iy)~ = ~Io, • . . . . . .  

where ~/0 is the constant I per unit width of plate. For such a plate the reaction per unit area 
at the Corner station, after substituting B for hi~(1  - -  : )  : 

q0 = ~ (1 - ~) (w0 + Wl~ - 

+ + + . .  
m 

(10) 

To obtain the total reaction at station 0, we now multiply the reaction q0 per unit area by P in 
order to take account of the complete square of side 1 surrounding station 0. The fact that  
three-quarters of that  square is taken up by a plate of zero stiffness has already been allowed 
for by making.the I over that  area equal to zero. The total reaction is therefore : 

Ro = qoP = p (3 +. v)(wo -- w3 -- w~) + 2w~ -}- (w9 + w12) . .  (11) 

which is identical with that  given by equation (15) of ReI. 1, Appendix II, after the substitution 
of the solid plate bending stiffness D for B. 

2.2. Reaction at Free-Edge Station by N e w  M e t h o d . - - F o r  the free edge shown in Fig. 2, the 
corresponding procedure is as follows: 
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FIG. 2. 

The basic equations (2), (3) and (4) again apply. Using the fact tha t  (M~)2, (M,)0, (M~)~ are 
each zero by virtue of the free edge, and that  (M~)I, (M,y)~, (M,y)b are each zero because of zero 
plate stiffness, we have: 

1 [(M~)3 + (My)2 + (My)~-  2(My)o + 2{(M,y)c- (M~y)d}l . . . . .  (12) qo ---- H 

25 



Since, at stations (2), (0) and (4), 
~W ~2W 

~x 2 ~y2 • 

and since the  average (Iy) at  these stations is only half tha t  for interior stations, (12) becomes" 

q° = V 1 - ~ {(w0 + wl~ - 2w0) + ~(w, + w~ - 2w~)} 

I I 
+ (1 --  v~)2 {(1 --  v2)(Wo + w~ --  2w2)} + ~ {(1 --  ~,2)(Wo + w9 -- 2w,)} 

2 I  
(1 - ~ ) 2  {(~ - ~ ) ( ~  + ~ - 2~0)}  

+ (1 + ~) {(w0 + ~ , -  w ~ -  ~ )  - (~~ + ~ -  ~ o -  ~ )}  . . . . .  ' 03)  

The total  reaction is therefore, after pu t t ing  B foi- EI/ (1  --  ~,2) . 

= qol"= ~ [(8 --  4v --  3~ ,~) Wo -- (4 --  2~, --  2v")(w~ + w~) --  (6 --  2,,)w3 Ro 

+ (2 - ~) (~  + ~ )  + ~ - ~ 1 2 (w9 + wa~) + w12 , . . . . . .  (14)  

which is identical  with tha t  given by  equat ion (6) of Ref. 1, Appendix  II,  derived by using the  
Kirchhoff condit ion for shear. 

Free edge parallel to x -ax is . - -The  corresponding formula for a s tat ion 0 located on a free edge 
parallel to the  x-axis is at once wri t ten down by  turning the  pat tern  of stations through a right 
angle. Thus : 

---- ~ [(8 --  4~ --  3 ~ ) W o -  (4 --  2~ -- 2 ~ ) ( w ~ -  w~) --  (6 --  2~)w~ Ro 

v)(w5 + w s ) +  ( ~ - ~ ) ( w l 0  + wl~)+  w~ t . . . . . . .  (14a) + (2 

To obtain the  corresponding formula for the other free edge parallel to the  x-axis, it is only 
necessary to tu rn  the  pa t te rn  of stations round through  180 deg, and then  re-number  the  stations. 

2 .3 .  Reaetio~ at Re-entrant Cormr. 
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In equations (2), (3) and (4) (which are universally applicable) we have this time 

(Note: 
between 0 and 2 and smaller than the full (I~)o that  is its value between 4 and 0. 
~(/,)0 seems therefore the best average value to take). 

(M,)~ E (~i 
= ~- (Lh ta-VL 

( i . ) o  - -  4(1  - -  e )  ~ - ~  + ~ ~ ] o  

The proper I at station 0 along the line of stations 4, 0, 2 is greater than its value ½(I~)o 
The value 

(M~)~ = ½E(L). ~ / 5 ,  

1 - ~ ~-~-~ -4- ~ ~--V/o ' 

(M~y)b = 0 

. . . . . . . . . . . . .  (15) 

Using these values in equations (2), (3) and (4) and expressing the second derivatives of w in 
finite difference form, we obtain from (1) the reaction at station 0 for a plate of constant thickness : 

Ro = qol ~ = ~ [ (15  - -  ~)Wo - -  (4½ - -  ½v - -  r2)(w~ + W2) - -  (7½ - -  ~/2)(w~ + w,) 

-4- (2 - -  v)(ws + w,) + (w9 -- w~2) q- 2ws + (W~o + wn) . (16) 

If the plate is not of constant thickness the appropriate I ' s  at the various stations must be 
used as shown in (15). 

o r  

2.4. Re-entrant Corner in Stepped Boundary.--If the re-entrant corner is situated on a '  stepped ' 
boundary as station 0 would be in Fig. 2 if the free boundary were marked by the station sequence 
7, 2, 0, 1, 5, we should have (M,)I, (M~)~ and (M~r) ~ dropping out of equations (2), (3) and (4), and 
the reaction (with local variation of I neglected) given by:  

R0 = (M~)8-  2(M,)0 + (My)4-  2(M~)0 + 2{(M~y)~ + (M~y)c- (M~,y)~} 

C EI  ,, 3 (1 + v)(w~" + wy")o - 1 - ~,~ w~" + ~w~")~ + (w,  + ~ w / ) ,  - '2 

t! tl It }1 + 2(1 - ~){(w~ )o + (w,~)c-  (w,~)~ 
. . d  

Ro B [ = V 14w0 - ½(7 + ~ ) (wl  + w~) - ½(15 - ~)(w~ + w~) 

+ (2 - -  v)(ws + wT) + 2w8 + (wo + w ~ ) ]  . . . . . . . . . . .  (17) 
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9 , 5 .  S t a n d a r d  F o r m  o f  R e a c t i o r a  a t  a ~ .  I ra t . e rna l  S t a t ~ o n . - - ~ - ~ W h e n  the plate .(or. Wing)moment of  
inertia of cross-section I is constant the formula quoted in equation (17) of Ref. 1 is applicable. 

If the I varies appreciably within a single pitch length of s*a~ion 0 the appropriate I for each 
station may need to be taken. In practical cases this will rarely be necessary. The procedure 
(Fig. 4) is briefly as follows : . . . . . .  

~12 

l 

7 L2 

ec ob  

3 0 . 

Od eo 

"LI° )--x 

Fro. 4. 

Using equations (1), (2), (3) and (4) above we have: 

q0z'= {(M~)I + ( M . / ~ -  2(M.)0} + {(M~)2 + (My),- 2(a~)0} 
+ 2{(M,,)~ + ( M , y ) , -  (M**)~- (M,~),}. 

On putt ing w,'.' for a ' w / a x ' ,  etc., we obtain" ' -:-~ 

_ .  R o  q ° l ' =  , (w~"  + " B < w "  " - -  " " " 
. v l_  

I t  I1 I t  t l  - -  I I  I t  

I I  11 II  B ' I1 L,.  • q- 2(1 -- v){B~(w~.y )~ + B ~ ( w , y  ) , -  B b ( w , y  )b - -  , ( w , y  ) ,  . . (18) 

All tha t  now remains is to write down the second differentials in finite difference form. The 
first term in the square bracket for example becomes" 

B~{(w0 + w~0 - 2w~) + ~(w~ + w0 - 2w,)}/L' 

and the first element in the last term B , ( w , / ' ) ,  becomes" 

B~{w~ + w ,  - -  Wo - -  w o } / l ' .  

The reactioli qol ~ at Station 0 is thus obtained in terms of the deflections at the  12 surrounding 
stations and the I at stations a,  b, c, d,  1, 2 ,  3 ,  4 .  

I t  is to be noted that,  in the above, it is assumed that  Is and Iy are equal at each station. If 
they are unequal due to stringer reinforcement of the skin of a wing, for example, the effect of 
such stringers on the required reaction i s  best determined separately from the s-kin. This is 
discussed in section 6. 

When, as in most practical cases, the I Can be regarded as constant over t t~  area included 
by the square enclosed by stations 1, 2, 8, 4, the reaction reduces to tha t  given-by equation (17) 
of Ref. 1, i . e . ,  . : - -  ' .... - : .  -. - . - . . . . . . . . .  . ' :-: ----- .. 

r = l  . " r = 5  " - -  . - "  ." -, ' ~ ' " b "  

9& 



3. Representation of Wings with Edges Oblique to the Co-ordinate Axes . - - In  most practical cases 
the wing plan-form will entail leading and trailing edges oblique to the co-ordinate axes. 

TI~e easiest way of allowing for such boundary conditions is to replace the actual boundary 
by a stepped-b0undary. Take for example the 45-deg delta wing of Fig. 5a and the 26½-deg swept 
leading edge of Fig. 5b. 

i11 

i 

FIGS. 5 a  a n d  5b.  

The square grid is here easily arranged so that in both cases the straight leading edge is replaced 
by a stepped edge. The projecting and re-entrant corners of the successive steps are arranged 
so that the actual edge lies midway between them, i.e., the true edge lies midway between the 
straight lines a, b, c, and a', b', c' . . . .  

To appreciate the degree of approximation introduced by this, we need only to imagine how 
the behaviour of the wing (the deflections and stresses) would change if the edge were physically 
cut up into steps in tile way suggested. 

One expects, by the St. Venant's Principle, that  whereas the stresses and deflections very near 
to the edge may depart somewhat from the correct values those not adjacent to the edge should 
have satisfactory accuracy. 

An important point to n6te is that the loss of accuracy at the stepped edge is likely to be of 
much less significance for a wing, and particularly for a thin wing, than for a plate of uniform 
thickness. This is because the imaginary modification to the wing plan-form, i.e., the steps cut 
in the oMique edge, is made only at the leading (and trailing) edges where, owing to the tapered 
cross-section of the aerofoil, the wing section is very shallow, and where, therefore, any slight 
deviation from the true plan-form does not matter. One is confirmed in this view when one 
remembers that  the aerodynamic loading also drops to zero at the leading and trailing edges. 

I t  is seen that this method of represen±ing oblique edges by a series of steps enables all boundary 
stations to be regarded as situated either on a free edge, a free corner or a re-entrant corner. 
The expressions for the reactions at such stations have been given by the above formulae. 

It  is to be remembered that bending moments M, for a station located on a free edge parallel 
to the x-axis and moments My along a free edge parallel to the y-axis are associated respectively 
with moments of inertia I~ and I~ per unit width that have only half the corresponding values 
for all interior station. This, as already explained, is because all edge station is associated with 
half a pitch of real plate and half a pitch of the infinitely flexible plate we imagine to extend 
beyond the free edge. At a re-entrant-corner station the appropriate I along bothx andy directions 
is three-quarters of what it would be for an interior station. 

4. Hinge Moments Due to Ailerons, Flaps or Wing-tip F i m . - - T h e  moments that  areapplied 
to what would otherwise be a free edge by ailerons, flaps or wing-tip fins would seem at first sight 
to .Vitia±e :the condition of-zero bending momentalong such an edge. This difficulty is readily 
overcome by imagir~ing the couple introduced by such control surfaces to  be applied as up:and 
down forces at the appropriate set of edge stations and the set immediately inboard parallel 
to the edge. 
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5. Connection of Wing and Fuselage.~The root rib of the wing may be regarded just as much 
a part of the fuselage as of the wing itself and any deformation of the rib in its own plane is 
resisted part ly by  the chordwise bending stiffness of the wing and par t ly  by  the bending stiffness 
of the fuselage. A reasonable practical procedure is to consider two stations on the wing-root 
chord as being fixed in space. The reactions at these two stations and at the other stations on 
the root chord-line can then be derived on the basis of the wing and fuselage bending stiffnesses. 

6. Treatment of Oblique Stringers and Shear Webs.--In a straight  wing the stringers and Shear 
webs are usually parallel to the co-ordinate axes (x being normal and y parallel to the plane of 
symmetry of the aircraft), and then the method described in Part  I, section 4, can be  applied. 
For swept wings and deltas the stringers and webs are usually oblique to the axes and need 
special consideration. 

When considering thin wings, and other cases where flexibility in shear can be neglected, the 
problem of oblique shear webs natural ly does not arise and only the problem of oblique stringers, 
spanwlse and chordwise, need be treated. 

7. Wings, Infinitely Stiff  in Shear, Reinforced by Oblique Stringers.--It is clear tha t  a set of 
hypothetical  deflections determines the curvatures not only of the wing skin but  also of the 
stringers attached to it. At an internal station, therefore, the reaction necessary to hold the 
wing contour is made up of two independent parts:  tha t  due to the ~ n g  minus stringers, and 
that  due to the stringers themselves. 

At a station located on a flee edge the reactions due to skin and stringers can still be expressed 
separately but the boundary condition for each depends on the interaction between the two 
brought about by  the free edge. Subject to taking account of this interaction it is possible to 
form the stiffness matrix for skin and stringers independently and the two matrices then added 
before inversion. Alternatively, the two reactions (the one due to the skin and the other to the 
stringers) can be added together at each station as they are obtained. 

7.1. Reaction Forces due to Stringers Aione.--Given the contour of the transverse displacement 
of the wing, one can express the curvature of the stringers along their own direction. This gives 
the bending moments and hence the reactions at the several stations due to the stringers. 

Let n = direction of stringers 

= angle between the n and x directions 

I,, = I of stringers (about wing neutral  axis) per unit width normal to n 

w,/' = second differential of w with respect to n. 

Then 
M,, = EI,,w,/' . . . . . . . . . . . . . . . . . . . .  ('19) 

and, using the standard formula for curvature in the n direction, we have: 

= E T " =  EI~(G2w/'+ s~wy -1- 2s~Gw, ) (20) M ~  l , ~ w , ~  " " , . . . . . . . . . .  

where c~ and s~ are written for cos ine ,  and sine ~. 

Having obtained M,~ in terms of curvatures and twists along the x and y axis, we can resolve 
it into its components Ms, My and M~. Thus" 

M~ = G2M,,, My = s~2M,~ , M~y = s~GM,~. . . . . . . . .  (21) 
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We can now write down the reaction per unit  area at an 5 , point  of the  wing in the s tandard  form" 

~M. ~"M~ + 2~M+~ 
q - -  ~x ~ + ~y2 ~x~y 

= c= ~ s ~ - -  M,~ . .  (22) 

9 I 

7 2 

e C  

. d  

8 4 
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2 4  
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7.1.1. Typical internal station.--For the  internal  s tat ion 0 of Fig. 6 we write (22) in finite 
difference form to give the  reaction (Ro)~t~ as" 

(Ro)+t~---- l~(qo)+t~ = c~?{(M,~)l  -~- ( M . ) ~ -  2(M,,)o} -]- s=2{(M,+)2 + (M;~)4-- 2(M+~)o} 

+ ½c~s~{(M.)5 + ( M . ) 7 -  (M,,)8 (M,,)+} . .  

2 " I/ I It It = ~o E{(_r.)~(~,+ )~ + ( °)~(~. )~ - -  2 ( L ) o ( ~ , +  )o} 

(23) 

2 /t It /t + s~E{(I~)~(w, )~ -+-([,)+(w, ) + -  2(I+)0(w, )0} 

+ ½C~SE{(I.)5(W.")+ + (l+)7(w+"),- (l,,)6(w.")~- (I~)8(w.")8}. . .  (23a)  

Since w," ---- c=2w, " + s=~wy It + 2c~s~w~y;', equat ion (23a) in f inite-difference form gives the 
reaction Ro in terms of the deflections of the group of stations 0, 1, 2, . . . 24, shown in Fig. 6. 

If, as in practical cases, the  / of the stringers can be regarded as constant  over the  inner square 
defined by  stations 5, 6, 7, 8, the  quan t i ty  Iv in (23a) becomes a common factor and we can 
write" 

04 w + ~4w I~%, 
(R0)+,r ---- l~(qo)st~ --  l~EI,, c~ 4 UZ + s~ - ~  + 6c~2s~ ~ ~x ~ ~y~ 

+ 4c'3s= ~x ~ ay + 4c~s~* ~x ~Y~ f . . . . . . . . . .  (24) 
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with the result tha t  the deflections at stations 21, 22, 23, and 24 no longer enter  the  expression 
for R0, which now takes the  form 

EI , ,  I (Ro)~t~- 12 (6 -I- 12c~s~)Wo - -  4c~2(1 + 2 S ~ 2 ) ( W l  -[- Wa] - -  4s~2(1 + 2c~2)(w2 -I- w~] 

- -  2c.s~(1 -- 3c~s.)(w5 + WT) -}- 2c~s.(1 + 3c.s .)(w8 + ws) 

c . s . ' (w , ,  + w , ~ _ .  w, ,  - w,, ) ]  . . . . .  . . . .  (25) + 

To obtain the total  reaction we need to add to this the  reaction due to the  skin alone given by 
equat ion (18a). 

7.2. B o u n d a r y  C o n d i t i o n s  at a Free  E d g e . - - T h e  first boundary  condit ion at a free edge requires 
tha t  the resul tant  bending moment ,  of skin and stringers, normal  to the  free edge must  be zero. 

Free  edge paral le l  to the x - a x i s . - - T h e  bending momen t  in the  skin is" 

E I  
( M , ) , k ~ -  1 - -  ~,2 (w/ '  + vwx") . . . . . . . . . . . . . .  (26) 

(where I s tands for the I of the  skin per uni t  width),  and that  in the stringers is" 
2 2 t t  R 5 7 0 )  t t  . . . . . . . . .  . • • (M,)~tr = s~ EI,,(c~ w~ + ~ _ ,  + 2c~s~w,,") (27) 

Thus 
• (M,)~kj, -1- (M,)~t~---- 0 . . . . . .  (28) 

o r  

1 - -  v2 -/I , ,s~2c~ ~ w,"  + 1 - -  ~,2 - / s ~ I , ,  w ,  + (2c~s~ f,,)w,, = 0 . . . . . . .  (29) 

The second condit ion requires tha t  the  resul tant  twisting momen t  M,y should be zero, i .e.,  

(M~,)~k~,~ + (M~,)~t~ = 0 . . . . . . .  (30) 
o r  

E I ,, ~ ~7~ " 
1 + ~, w,y + ELs~.c~(c~2w, " -}- .,~ _y + 2c~s~wff') --  O, 

or v 

I,,c~s~(c~ w~ ÷ + ~ + ~, . . .  s~ wy ) + 2c~2s~I,~ w.y = 0 . . . .  (30a) 

It l/ I t  By means of (29) and (30a) we can express wy and w,y in terms of the known value of w, . 

Thus : 
" = HIw~" ] W y  • . 

J 
oo . . . . . . . . . . . . . . . .  

" = H w " (31) 

where : ' 

- 1 _ _  . . . . . . . .  ( 3 2 )  

* (9 ~ 2  • . ;-. 

(9( C~2S~ 2] S~C~ 3 @ S~ ~ c~s'~ 1 - ~2 + 7 -2 1 - - , , 2  I !  
H2 

5')( 9 % ) ' '  . . . .  \1  + ~, + 2 c ~ s ~  1 - -  ~2 + S ,4 - -  2c~2s~" 

both quanti t ies  depending only on the  ratio I~ / I .  
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Free edge parallel to the y-axis.--For a station located on a free edge parallel to  the @-~Xis. the 
corresponding formulae (obtained by merely substituting s= and c= respectively for c= and s~) are • 

where 

w,. = H3w~, I (34) 
W~y : Hawy 

2c252(L)' -(1_ + 1 
H ~ =  ~,{1 1 L ~ [  1 L,'~ (L~ ' "" 

(35) D ~ 

H, = T c~% i---- ~ + c~s~ -- c~s~ 1 - ~ + c~ 7 .. . .  (36) 

both again depending only on the ratio: In/I.: 

7.3. Boundary Condition at Free Cormr.--At a free corner conditions (31) and (34) are both 
applicable, which means that" 

" " 0 . . ( 3 7 )  W x  tt = '~Jy = W x y  ~ . . . . . . . . . . .  

7.4. Boundary Condition at Emastrd Edge.--At an encastr6 edge the Curv'ature along the edge 
is zero and that  across the edge is obtained by imagining the structure to extend beyond the edge 
a s  a mirror image of itself in the plane that  passes through the edge and is normal to the plane 
of the wing. 

7.5. Formulae for Reactions at Typical Stations.--The above boundary conditions are used to 
derive the formulae for the reactions at typical boundary stat ions in Appendix A. 

8. Approximate Method of Taking Account of Shear Deflections (as described in Ref. 1) with 
Oblique Shear Webs.--For most wings, and particularly for thin wings, the approximate method 
of taking shear deflections into account, as described in Ref. i should be accurate enough for all 
practical purposes. The essence of the method consists in ignoring the shear strains represented 
by  ~u/~z and ~v/~z and takii/g account only of ~w/~x and ~w/~y. I t  allows the shear deflections to 
be derived independently of the bending deflections, which therefore are those obtained on the 
basis of infinite stiffness in shear. This means that  the bending stresses derived on the latter 
basis remainunaltered.  -. For thin :wingsthey are~considered to be accurate enotigh, aiid' t~ile .main 
purpose of bringing in the shear deflections is. to provide more accurate data for aeroelastic 
calculations. Since the approximate shear deflections as above defined can be derived 
independently of the bending deflections, we here consider the transverse displacements due to 
shear alone. 

On deriving all the shear reactions the next step is to invert the stiffness mat r ix  so formed 
in order to derive the corresponding flexibility matrix, which then gives the shear deflections at 
all.stations in terms of any given, applied-load. :. The tot-al deflection (that due to shear and bending) 
is finally obtained by mere addition of the two flexibility matrices, the one for bending and the 
other for shear. " . . . . . .  . . :  . :  
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Referring 

s 

P 
ta, t, 

"r a 

Ca, S# 

W 

to Fig. 7, let 

= direction of oblique shear webs 

= angle between directions of s and x axes for two separate sets of webs 

= displacement of skin in direction s 

= thickness of shear webs normal  to s per uni t  wid th  for webs at angles /~ and 7 
to the  x-axis 

----- shear stress in webs /~ 

= symbols for cos $ and sin/~ 

= displacement normal  to wing plane (positive upward). 

~ Y  

FIG. 7. 
For the fl webs, the upward  shear per unit  wid th  normal  to the  direction s can be expressed in 

the  form" 
aw 

ht~G - ~  = T~ say ,  . . . . . . . . . . . . . .  (38) 

since we are now neglecting the  shear strain ap/az. 

Resolving aw/as along the  co-ordinate axes, we have" 

aw aw ax aw ay 
as --  ax ~s -~ ay as 

~w ~w 
- -  ca~ + sa~, . .  

so tha t  

(39) 

aw aw) (40) Ta = h t a G  Ca ~ -  + sa ~ -  . . . . . . . . . . .  

8.1. Typica l  In ternal  S t a t i o n . - - T h e  normal  reaction per uni t  area of wing is given b y "  

aT a ( a T  a ax aT a ay) 
q a = - -  as --  ~,b~ as  + ay a-~ 

= - -  (c aaTa s aTa~ 
- ~ - +  a T -  ] . . . . . .  . . . . . .  (41) 

Subst i tut ing for T a from (40), we have" 
t t  q~ ---- - -  ht~G(c~2w~ " + s~wy" + 2c~s~w~y ) ,  . .  . . . .  (42) 

(where second derivatives of w are indicated by double primes). 
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In  finite difference form, the  reaction (R)0 at s tat ion 0 (Fig. 1 ) d u e t o  shear flexibility alone is 
therefore given, for any internal  station, by :  

l c / (w~ + w~l ~ - 2w0) + s /  (w~, + w~l ~ --  2w0) (Ro)~ qpP 12htaG 
X 

+ 2c~s~(W~ + w~ 4l ~- w~ -- w~)} 

htaG l2wo --ca~(w~ + w~) -- sa2(w~ -+ w4) 

c~s~ 1 + ~ -  (w, + ws -- w, - -  w~) . . . . . . . . . . .  (43) 

(Ro)v is given by  the same expression but  with 7 subst i tu ted for ft. The tota l  shear reaction is 
then  : 

(R0)~ho~ = (Ro)~ + (R0)~ . . . . . . . . . . . . . . . . .  (44) 

8.2. Boundam Condition at a Free Edge.--The boundary  condit ion tha t  mus t  be satisfied at  a 
s tat ion located on a free edge is tha t  the  resul tant  shear across the edge for the  two sets of shear 
webs must  be zero. Where  only one set of shear webs is present  the  shear carried by  it at the  
free edge mus t  be zero by itself. 

For a free edge parallel to the x axis therefore we mus t  have" 

or, from (40), 

This gives the derivat ive aw/Oy in terms of the  known derivat ive ~w/Ox. 

s aTa + svT, = 0 . . . . . . . . . .  (45) 

aw ~w (tacfia + t~c~s~) ~ + (santa + s~2tv) ~ = 0 . . . . . . . . . . .  (46) 

Thus 

where 

~w _ k, Ow 
vy 0x 

(case + c~s/dt 4 
k,= \ s /+  ~ ]" 

.. (46a) 

..  (47) 

For a free edge parallel to the  y-axis the  corresponding equations are" 

from which 
cat a + c~Tv = 0 . . . . . . . . . .  (48) 

aw _ k~ aw . . . . . . . .  (49) 
ax a y '  . . . . . . . .  

(c~s~ + c~s~t~/t~ . . . .  (50) 
k~ = \ ~ + c~%/ta ] . . . . . . . . . . .  

8.3. Boundary Conditions at a Free Corner.---At a free corner conditions (46a) and (49) mus t  
bo th  be satisfied, which can 0nly mean  tha t"  

~_w_w = ~w = 0 . . . . . . . . . . . . . . . . .  (51) 
~x ~y 

The formulae for the reactions at stat ions located on the  free edges, on free and re-entrant  
corners, etc., are derived and given in Appendix  B. 
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9. Procedure for Taking Account Q[ Oblique Stringers and Shear Webs by the More Exact Method 
of Ref. 1.--To take account of oblique stringers and webs by the  more exact method described 
in Part  I, it is necessary to define the resultant displacement of each station on the wing surface 
by three independent variables! the displacements u and v in the plane of the surface (assumed 
equal but opposite in sign to corresponding displacements on the opposite surface, or underskin) 
and a displacement w of the neutral  plane normal to itself. The number of variables is thus 
multiplied by three, as are the sides of the relevant matrices. 

For thin wings, which are necessarily covered by heavy-gauge skin, the refinement introduced 
b y  the present method is not, in the writer's view, worth seeking, the approximate approach 
above described being considered adequate. 

For completeness, however, the method of taking account of oblique stringers and webs by the 
more accurate procedure is  given here in detail. 

9.1. Oblique Stringers. 
Let n ---- 

p = 

U, U, W ~ -  

A~ = 

h = 

T~ ---- 

S~, C~ 

other symbols = 

direction-of stringers 

angle between n and x directions 

displacement in direction n 

displacements in x, y and z directions 

tensile stresses in stringers 

area of stringers per unit width across direction n 

depth of wing 

A~a~ = tensile load in stringers per unit width across n 

shear stress in ¢~ webs 

symbols for sin ~ and cos 

those defined in section 7. 

The displacement p of the stringers in their own direction ~ is given by : 

p = c~u + s~v. . .  .. . . . . . . . . . .  
The strain" 

( a as) (c~u + s~v ) a p _  a ax - - ~  
, a--n-- ax an + ay 

c a s a .. = ( ,~-~ - /  ,~-y)(c,u+s,v) 

= c~ ~ + s~' Y f  + c~s~ + Vx " . . . .  

Since the Poisson's ratio effect on the skin does not affect the stringers " 

. - , . , -  Eap . 

a ~  ~ n  " . . . . .  

. . . .  ( s 2 )  

. . . .  ( s 3 )  

: .  . .  i t54/  

36 

and the traction along n per unit width normal to n for stringers at angle ~ to the x-axis is" 

_ EA~lc2OU 2av +c~s~(a~ av)l : - + + . . . . . . . . . .  / ! 5 s /  



.:_ ! t follows t h a t  the. t ract ion per uni t  wid th  normal  to the x direction is given by  : 

(T,)~---- G2T~, . . . . . . . . . . . .  :.. . . . .  ( 5 6 )  

and tha t  normal  to the y-direct ion by" 

( T , ) ~  = s ~ T ~  . . . . . . . . . . . . . . . . . . . . . .  . (57) 
The shear t ract ion by  the  same convention is" 

( T,y)~ - - - -  Gs~T~, . . . . . . . . . . . . . . . . . . . . .  (58) 

The resul tant  forces per unit  area of wing skin in the  x and y directions e x e r t e d b y  the stringel"s 
can now be wri t ten  in 3he form : " 

a(T,~), 
8x 

~(T~). 
, , - ~ y  

a ( T . ) ,  _ y ~  

Subst i tu t ing for T,, etc., f rom equations (55) et seq. we have finally" 

(X~¢)str ~- EA~ (G 2 8~ + GG ~ )  

(Y~)~tr - EA~ \ ~ ay + Gs~ a-x 

. . . . . .  (59) 

l 1 . .  (60) 

Subst i tu t ing in (63) the value of Sa given-by (62) and (61), we  have,-.in the  x and y directions" 

I ( 1 ( (S G = - t ~ G  c d au aw av ~w , 

and '- . . . . . . .  

. . . .  ( 6 2 )  

. .  .. (63) 
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(64) 

skin is" T-'. / . . . . .  . .. . 
. . . .  " i z _ _  - ~  . . . . . . . . . . .  

This force has components  along x and y of ~ 

(S~), ---- case,, and / ~ " 

:(S,G sBSa J 

Second set of s t r ingers . - - I f  there is a second set of stringers or skin reinforcements,  such as rib 
flanges, a t  angle.~ wi th- the  x-axis, tractions X~, Y~ are given by the  .same equat ion  (60) wi th  
A~, c~, s~ merely  subst i tu ted for A ~, G, s~. We continue, however, on the basis of onese t  of stringers 
a l though clearly a second set can.be brought  in wi th  no extra  complication. 

9.2. Oblique Webs.--Dealing next  with the  oblique webs, we write down the upwal;d s~earT~ 
in the webs per unit  wid th  normal  to .their direction s as" . • 

: S W  " " (~u 8w 

The tract ive force in the  plane of the  skin_ exer ted by  the 'webs  in :i:he direction s per uni t  area of 



Considering the corresponding vertical forces, we see that  the upward force Pe exerted by the 
webs per unit area of skin is given by:  

P~ = =- h ~ (s~)~ + ~ (s~), . . . . . . . . . . . . .  (6s) 

Parallel equations to (65), with ~ substituted for ~, give the shears for a second set of shear webs 
at angle ~ to the x-axis, and hence P~. 

We can now write equations (26), (27) and (28) of Part  I (which, as they stand, apply only to 
webs and stringers lying along the co-ordinate axes) in the form (assuming that  there are no 
terms X~ and Ya) : 

+ + + + (s,/,l ou 

P a + P ,  

= --q~l 
-- qz 

(66) 

To put equation (66) in terms of the three independent variables u, v and w, we note that, for 
the skill itself: 

E (Ov + Ou) 

P 

f 
. .  (67) 

Substituting these values, and expanding the other quantities bY means of the previous equations, 
we have finally the following set of three equations. 

9.13. General Formulae for x, y and z Reactions (per unit area). 
In direction x: 

+ Ea~[(c~. ~ O)l au 2av 

In direction y: 

t, 1 - , '  ~y g ~ + ~  + ~x ~ + - ~  

-- ',G [s¢ (~z + ]~-j) -t- c,s, (-~ + ~ )  1 

+ EA~ I(s 2 ~ 2)1 ~u ~v -@ + c~s~ c2 ~ + s2-@ + 

38 

c~s~ ~ + ~ = - q, . (6sa) 

c,s~ Vy + ~  = - q , .  (68b) 



In direction z." 

hGta Lk ~ Vx ÷ o w ~ ~- sa~ 

Here 

L k , ox + C,S,-@ ~ ÷ ~ + c,s, ~ + s,~-@ ~ + -@ 

~u u Ov v 
Oz --  h/2" 3z --  [~/2 . . . . . . . . .  

= - q . .  ( 6 s c )  

(69~ 

In finite difference form the above equations (.68) can be written in terms of tile displacements 
of the nine stations 0, 1, 2, . . . 8 of Fig. 6. 

9.4. Boundary Conditions.--Free edge.--At  a free edge the resultant direct stress normal to 
the edge, the resultant shear stress along the edge in the plane of the skin, and the resultant web 
shear stress must all be zero. 

Resultant (skin and stringers) direct traction across a free edge parallel to direction X.--For stringers 
the traction per unit length of edge is given by (57)" 

For skin it is" 
t ( T , ) ~ , , ~  = s~EA~ cd ~ + sd ~ + c~s~ ~ + ~ . . . . . . .  

E ( ~-b-~ Ou) (71) (T,)~k,, = t, 1 -- ,3 + ~ -g~ . . . . . . . . .  

Therefore we must have" 

o r  

(T,)~t~ + (Ty)~. = 0,  

s~A~c~ + 1 --  ~ !  ~ + s 2 A ,  + 1 --  ~ -@ + c~sdA~ 
(~ or) 

O u + ~  = 0 .  .. (72) 

(Note: If there is a second set of stringers another expression like (70) appears in (72) but with 
the difference only that a direction ). replaces direction ~). 

Resultant shear along edge in  plane of sk in . - -For  stringers, per unit length of edge, by (55) and 
(58)" 

I 2au ~v (au ~ ) I  
(r~.,)~tr --  Gs~A~E ca -g-x + sd g-~ + c~s, -@ + . . .  (73) 

For skin: (~_ ~v) ( T,v)~ ~ = t,G Ou + ~ . (74) 

E .)). 
Therefore we must have (putting G -- 2(1 + 

~ +  cdsdA~ + 2(1 + .) ~ +-~ 
3 9  
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Equat ions  (72) and (75) enable us to express the two y derivat ives Oul~y and: OvTOy in:-terms 
of the  known der ivat ive  bulOx. Thus : 

~ )  = U I ~ - "  ~ ~ y  

_ _  

where  

" ° ° 

, ,  , . .  

a i + t I % • • 

i ,  

. .  (76) 

c~% ~ ( ~ )  -- ( c~2s~  -F 1 ~  ~,~) ( c~2s~2A~-q:-: - I v)) . .  (77) 
U1 = t; 2(1 q- 

(s,A~ 1 A, 1 {A~] ~ . 
\ 

[ 2 .  ~ ) 

A,. A~ v a '/1~1 ~A~ ~ 1 

: !  ' 1 . .  ( 7 8 )  

both  quant i t ies  depending therefore only on the  ratio A~/ts of str inger to skin area. 

Free edge parallel io y-axisi--The corresponding f,6rmulae for a free edge  parallel to t h e  y-axis 
are now at once* given by" 

. . . .  , :  : + : ~ 7  ~ ' } ,  7 " , , . .  ( 7 9 )  

where 

~°%~ t~i 1 ~ + ~ )  1 +  
= ~ _ _ _ 1  A~.. 1 ,,). _ c~6s= ~ (A~)~ . . . .  ( 80 )  

U4= [ 4A~ 1 ~ 1:. " (A~.t~ "" " " (8!) 

t t s  1 - -  2 1 " 7 - 7  :7  . ' t t ~ 7  

tn  pract ice UI, ,Us, Ua,-U~, being constants;  are represented  by  a single . n u m b e r . . ,  . 

Web-shear at .free edge.~-In addi t ion to the b o u n d a r y  conditions for direct stress and  shear iv/ 
the  "plane of the  skin,-we mus t  also:have zero resul tant  ..transverse shear in the  shear webs. 

F r o m  (48) therefore,  for a free edge parallel to x" 

saT e + s,T, = 0 . .  . .  . ; . . . . . . . .  (82) 

and; f rom (46), bu t  subst i tu t ing the  full shear  strains {(Ov/Oz) + (Ow/Oy)} and {(Ou/Oz) + (Ow/Ox)} 
for the  approximate  strains Owlay and  OwlOx t h e r e u s e d "  . ! , : , . ,  . .  p . ;  . ,  . ' : 

(!~s~ ~,  , + t,s, ~),:, ~ + ~ + (tpc~sp + t,c,s,) ~7 + ~ = 0 . . . . .  (8a) 
, - . , , , , 

* Requiring only the stlbstituti0n 0t"c by s and vice versa. 
J 
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This gives the derivative ~W/~y in terms of known derivatives: l~ore Conc{sely, 

~vq ~ w _  VI (  ~ ~w\ ,  +-~-~)..._ .:. . . . . . .  - .-. .. (84)  
3 2  : 

where 
• : . V1 = --  (casa + c,svt~/ta)/(sa 2 + sr~t,/t,) . . .  .. . (85) 

Correspondingly, for a free edge parallel to the y direction, we have, from (48), after subs t i t u t ing  
the full shear strain for the approximate strain" - 

from Which" ~ : -  _ . . . . .  5 
" ' i 

(87) : ,  -72 . .  . . . . . . . .  

where 

+ / . . . . . . . . . . .  (88) 

Boundary condition at free Corner.--Since a free corner is the meeting point Of the two free edges 
above considered, equations (76) and (79) must both be satisfied, as must equations (84) and (87). 
I t  follows that"  

~ x  ay +~-~ = ~ - +  ~ -  = - ~ +  = 0  . . . .  (89)  

at a corner station. 

Tile free-edge conditions expressed by equations (76), (79), (84), (87) and (89) enable us to 
write down the reactions at any station located either on a free edge or a free corner, and this is 
done in Appendix C. 

10. Gaps or Breaks in Sk in  Co.ntinuity.--There are two ways of dealing with gaps or breaks in 
skin continuity. If the gap is small, i.e., of the order of the pitch of the stations, the most con- 
venient method is to neglect the discontinuity while setting up the stiffness matr ix and deal with 
tile local modification in the stress distribution as a separate problem after the general distribution 
has been computed. If, on the other hand, the discont inui ty extends over several pitches the 
most convenient method is probably to take account of it by  regarding the edges of the break 
as iree edges and applying the appropriate edge conditions. 

11. A _Few Concluding Remarks . - -Many  of the formulae derived here appear undesirably 
cumbrous. What  should be remembered is that  in applying them they reduce to a single number 
which in many cases, once calculated, is common to all stations with only slight modification. 
Typical cases are the formulae for H1, H2, H~ and H4 in section 7.2. Since tile angle ~ of the 
stringers is usually constant the quantities H vary only with the ratio L/I of stringer to.skin 
moment Of inertia. To the extent that  this tends to be constant the  H's  vary but  little ~rom 
station to station. Similar remarks apply to the formulae for k in parai 8.2, for U in para. 9.4, 
and for V also in section 9.4 ..... .. 

That  the stiffness coefficients required for setting up the stiffness matrix are well adapted to 
computation by digital  computer will be gathered fifom equation (25) for example. This gives 
ther,eaction at any internal  station due to the stringers and  i t is seen tha t  with the angle ~ usually 
consta.nt only the factor I,~ varies fr0m station to station. 
,..,,: . : .  _ .,. :i2-, ' . . . . . . . .  " .. . . : .  

R E F E R E N C E S  ::- .-; :  " : : : - . ' . : "  ~Z- 
N o .  A u t h o r  T i t l e ,  etc. ~ • - 

1 D. Wil l iams . . . .  R e ! a t i v e  accuracy  of --deflections. and- :bend ing  momen t s  . ( o r  stresses) 
der ived  b y  the me thod  descr ibed in P a r t  I of this  R. & M. C.P. 254. 
March, !956 .  

2.1 R .  I-I. MacNea!., .- . ,  ~'  . . . . . .  The  solut ion of e l a s t i c p l a t e  problems b y  electr ical  analogies. J .  A p p .  
M e c h .  Vol. 18. No. 1. March, 1951. 
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APPENDIX A (Supplement to Section 7 of Main Text) 

Stringer-Reinforced Wing of Infinite Shear Stiffness--Station Reactions 
at Free Edges, Free Corners, etc. 

For an internal station tile reaction due to the stringers alone is given by equation (25) and 
that due to the skin alone by (18a). In this appendix the reactions at stations variously situated 
on (or near) the boundary of the wing are derived by means of the boundary conditions expressed 
by equations (31), (34) and (37). 

l .  
plate (or wing) ABCD which is held along the edge AD of Fig. 1A. 

II : : '4 19 I I  

Free Edge Parallel to x-Axis.--Suppose the station 0 to be located on the edge AB of the 

A . ) l  

/ 
/ 
f 
t 
/ 
t 
/ 
/ 
/ 

J 
/ 

~ - - - , ' - - - T ~ - - F  - - i  
: I I I ~ -  ?--~-_ ~, 

I t , ¢  , b l  I 
I1~ 13 0 It IO 
I I I 
I "I ~td I aal I 
~__~__,_4 _ ~s_ 2,, 6 
I I I I l 

~L_ ~ _ I~ _ J,a_ J~ 

F I G .  1A .  

18 23 B 
I---'-I---- T =--',---q 

' i l ¢ t I , 
L2_QO _ Z_ 22__% _jL7 

I i I l 

11,2 13 lo il 1,O 
B I . I 

li3 8_ _ 
I - - - t -  

~ ' L _ I ~ _  9 ~ _ J ~  

C 

The resultant reaction at station 0: 

Ro = (Ro)~,~ + (R&~. . . . .  (1A) 

1.1. Reaction from Skin . - -From the general equation (1) we have" 

(R0)s~i~ ---- qol ~ = l~ t ~ M ~  
~My 

+ ~y---v + 2 ax ~y I . . . . . . . . . . . . .  (2A) 

Referring to Fig. 1A and using the supplementary stations a, b, c, d, we write equation (2A) in 
finite-difference form as" 

(R0)sk,n = {(M~)I + (M,)3-  2(M,)o} + {(My)~ + (M~), -  2(My)0) 

+ 2{(M,y)~ + (M,~)o- (M,y)b- (M,y)a} . . . . . . . . . . .  (3A) 

Moments (My)e, (M,)b and (M,y)c drop out because stations 2, b and c are outside the boundary. 
We can also leave out (M~)0 because, when (R0),~ is later added to (R0)~,~ the resultant (My)o for 
skin and stringers is, by (28), equal to zero. In terms of twists and curvatures, (3A) as modified 
by (31) takes the form" 

E(I/2) (1 + vH~){(w,")~ + ~ , j~ Iw  "~ - 2 ( w . " ) o )  

E I  ,,), E1 (1 v){(va%")~- (wff')a) .. (4A) 
+ 1 - -  vz { (w + ~,(w,,"),t} + 2 1 - -  v----~ - -  
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Converting second differentials to second differences, we have : 

(Ro) sk in  - -  [ 2 ( 1  _ _  ?22) ( 8  -~- 3 " p g  1 - -  4~')7.~ 0 - -  ( 4  @ 2vH~ - -  2 , v ) ( w ~  + w~)  

1.2. Reaction from Str@¢gers.--In the general equation (23), wher e incidentally it is not feasible 
to use supplementary stations, (M,,)~, (M,,)~ and (M,,)~ drop out, together with the term 
{--  2s~(M,,)o}, which, in combination with the term {-- 2(M,)0} of (3A), has a zero resultant. 

Thus 

(Ro)s, = c~{(M,,)l + (M,~)2 -- 2(M,,)o} + s~(Mn)~ + ½c~s~{(M,~)5 --  (M,,)8}. ;. (6A) 

Since, by (20), 
2 / t  S 2 tt O u 

conditions (31) enable us to write, for stations 1, 0 and 3" 

M,, = EI,,(c~ 2 + H~s~ ~ + 2H~c~s~)w/' 

= E I ; F ~ w / ' ,  . . . . . . . . . . . . . . . . . .  (7A) 
where 

F~ - (c~ 2 + H~s~ ~ -/2H2c~s~) . . . . . . . . . . . . . . .  (SA) 
Using (TA) ill the first term of (6A), which alone requires the application of the boundary 
conditions (31), we have 

@ (Ro)s~ = E . ~c~ {(~, )~ + (~/ ' )~-  2(~/')o} 

2 2 t !  2 ;  ' t t \  t t  + EI~s~ {c~ (w~) + s~ l wy ) + 2c~s~w~y }~ 

EI,~c~s~ 2 ,, 9 " 
+ 2 {c2(~/') + s~ ( ~ )  + ~c~s~ ,  } r~ ,  . . . . . . . .  (gA) 

or, in terms of the deflections w" 

EI,~ [ 
(Ro)~ = Z~ (3F~c£ + s4 + ½c~SSWo --  2F~c£ (w~ + w~) --  (2s£)w~ 

- (c,s.  - c,%~)w, + (c~s. + c .%~)~,  + ( s 4 -  ½c,%~)w~ 

+ (½F~c~ ~ --  ~-c~2s~)(W~o + wl~) + ½cfls~(w~6 --  w~,) + c~sfl(w~5 --w,,) 

~c~ s~ (w~l + w~) . . . . . . . . . . . . .  (10A) 

The resultant Ro is now obtained by adding together (SA) and (10A), to obtain" 

Ro---- (Ro)~k,,~ + (Ro)~t~. . . . . . . . . . . . . .  . . . .  (11A) 

2. Opposite Free Edge . - - I f  the station lies on the opposite free edge DC, the above formulae, 
(5A) and (10A), are directly applicable so long as the pattern of stations is swung round through 
180 deg and then renumbered so as to face the right way. 

3. Free Edge Parallel to y -ax i s . - - I f  the station lies on the edge BC of Fig. 8, formulae parallel 
to (5A) and (10A) are derived by the simple expedient of turning the pattern of Stations round 
through a right angle. On the basis of this pattern c~ and s~ are interchanged, H~ is substituted 
for H1 in (5A) and J~ is substituted for F~ in (10A), where: 

]~ --= (c~H~ + s~ ~ + 2c~s~H4 . . . . . . . . . .  ~. .. ~(12A) 
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Finally the stations are renumbered to face the usual way. 

E I  1(8 + 3~H3 -- 4Jwo -- (4 + 2,H~ -- 2~)(w2 + w~) (jT~o)skin - -  Z2(1 - -  ~2) 

- (6 - 2~)w~ + (2 - ~,)(w~ + w~) + 1 + ~H~ I 
2 (m + w,,) + w~ . 

- (c~s~ - c~%2)~ + (~s~ + c?sZ)w, + (c2 - ~c~%2)w~ 

The resulting formulae are as follows : 

. .  (13A) 

+ ( 1 J ~ s ~ 2  - -  lC  2 S 2~(72 ) 

I 2 2 , 1 + c~%(~z~ - W2o) + ~c~ s~ (w~ + z~,) t " "" . .  (14A) 

4. Station on Free Corner.---If the station stands on a free corner (corner B, say, in Fig. 1A), 
the boundary conditions are given by (37). In the general equation (3A) for lhe skin reaction, 
moments (M,)I, (M~)0, (My)2, (My)0, (M~,)~, (M,y)~ and (M,y)c all drop out, so that :  

(Ro)sl, i~ = (M,)a + ( M , ) 4 -  2(M~,,)d . . . . . . . . . . . . . . .  (15A) 

Using (31) and (34), we write (15A) in the form: 

l I ( E I  ) ( 1 - j ( w x / %  

or, in terms of deflections w: 

E l  3 (H~ + H~--  I) Wo-- + ~(H~--½) w~ 

/ 

+ 1(1 + ~H~)w,2] . . . . . . . . . . . . . . . . .  (16A) 

Correspondingly 

(Ro)s~ = c~(M,,)~ + s~2(M,~)¢- ½c~s~(M,~)8. 

L F ~ ,,, ( I )  ,, = c~?E~ ~,~ ~ j~ + s~?E .L(w~ )~ 

1 2 tt R 2701 tt --- ~c~s~EI,,{c~ ~e~ + ~ ._~, -- 2c~s~w~,"}~ 

or, in terms of the deflections w: 

EI~ [ 

- ( 2 s Z ] ~  + s~Z)w~ + (2~s~)w~ + (sZJ~ c~?  2 ) -  ~o 

(17A) 

The resultant reaction is now expressed by the sum of (Ro)~k~ and (R0)~t,- as in (11A). 
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5. Station Located at a Re-entrant Corner.--For a station 0 located at a re-entrant corner of the 
type shown in Fig. 2A, equation (37) loses the terms (M,)~, (My)= and (M,y)~. 

4 - - - - - 4  . . . . .  k" 
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FIG. 2A. 

For the skin reaction, we then have" 

(Ro)~t~. = { (M. )a -  2(M.)o} + {(M.)~-  2(M.)o} q- 2{(M.). + (M.,,)~- (M.)d} .. (18A) 
o r  

+ 2 ~-v2EI (1 -- v) (Wv"), .4- (w,y")~- (w+y")a , . . . . . .  (19A) 

where, in the second term of the R.H.S. of (19A), a I  has replaced I as a better average value 
of I at station 0. 

In finite-difference form" 

E_f [ 2 8 w 0 -  ( 7 -  v)(w~ + w=) --  (15 -- 5v)(w~ q- zeh) 

qr 2(1 - ~)(w~ + w~ + w~) + 2(w~ + w~)] . . . . . .  ( 2 0 A )  

For the stringer reaction we have, on substituting G2M,,, s~M,, and Gs~M,, for Mx, M, and M. v 
respectively by (21)" 

(~0)str "~= (G~(M,,)a + G2(M.)4}- 2{G2(M,~)o + G2(M,,)o} 

Co:So: 
+-~-{ (M. )5  + (M,,)7- (M,~)a} . .  ( 2 1 A )  

or, using equation (20)" 

EI,, I (Ro)+,r- l~ cd(c2w/' + s2w,," + 2c~s~w+")+ 
2 It .~ 270 ] II . tl 

2 It .~ 9 It It -- 2(c~ zeJ. + += % + 2c~s~w. )o 

C ~S c~ S ccgWy tt 1 + - ~  (c2w/' + + 2c.s.w+")wr~ . 
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The appropriate fraction of I,,, is associated with each station located on the edge. Also, in 
writing down the finite difference form of (Uw/ax ~y) for s ta t ion 0, for example, use is made of 
the fact ttiat at station 1, by (37), this derivative has the value zero. This means that  (aw/Oy), 
can be taken equal to (aw/~2)o, i.e., equal to (w4 -- w~)/2L The same argument applies to station 5. 

In terms of deflections w, (22A) becomes" 

El,, 3c~?s ~) Wo + (Gsd 3 _ lc~.~s ~) wl (Ro)~t~= [2 [ ( 4 - - ~  .. - -~c~ ~ 

H 3 3 3\ 
+ ( l c 2 s d  + c~s~ + ~ c~s~ - ~c2s~ - ~s~ ) z~ 

- (3½cd)w~ - (3½s~ ~ + c~s~ - ~cds~lw~ + (cds2  - ~c~s~)w~ 

+ ( s 2 -  c~s~)w.  + ( ~ d -  ~ s ~ ) w ~ -  (~c2s~)w~ - (c~sd)w~, 

1 2 2 

1 2 2 "{ lc  2S ~\ZO ~ 

Addition of equations (20A) and (23A) gives the resultant reaction (R0). 

.. (23A) 

If, in Fig. 2A, the free edge is defined by 5; 16,22 instead of by a continuation of the edge 5--16, 
the above formula is unaffected. I t  is affected, however, if the edge turns up at station 7 to 
station 19 instead of extending to station 20. Formula (23A) is then modified to the form" 

.EI,~ 3 ~ ~, (c~sd 3 2 lc~?s2) w~ (Ro)~ l~ I ( 4 -  ~c~ s~ .}Wo + -- ~c~ -- 

+ (c~s~ -- 3s~, -- ~cds~) w~ -- (3½c~2 -- -~c~s~ -- -~c~s~2)w3 

- (31sd + c~s~ - - ~ % ) w ,  + (~ds2 - ~ c ~ ) w ~  

+ (s¢ - cds2)wo + (cd - ~c~sd  - wl~ - (-~cdso)wl. 

- ~ds~)w~ + (~cds~)w~o + (~Z%~)w~, 1 + (24A) 

(Ro)skl, is still given by formula (20A), so that  the resultant reaction at station 0 for the slightly 
changed geometry is obtained by adding (20A) and (24A). I t  may be noted that  the coefficients 
of  the w's inside the square bracket of equation (24A) are constant for all similarly situated 
stations, only the factor I,~ outside the bracket varying from station to station. 
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A P P E N D I X  B (Supplement to Section 8 of Main Text) 

Bou~dary-statio~ Formulae for Approximate Method of Derivi~cg Shear Deflections 

The boundary conditions expressed by equations (46a) and (49) are here used to derive the 
appropriate formulae for the reactions at typical boundary stations. 

1. Free Edge Parallel to x-axis.--Suppose station 0 to be located on the free edge AB of Fig. lB. 
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I j,g f l 

I '  I 
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From equation (42), we have" 

C 2~/0~ l! ' I f  (qo)~ = - h t~G(c~w/ '  + o8 wy + 2c~s~w~y ) 

which, by using the supplementary stations j, g, jl, gl we can write in the form : 

(q0)~ = --  ht~G I ~ { ( w ~ ' ) j -  (w~')g} + ~ { ( w , ' ) j - ~ -  (w,')g~} 
m 

2C~S~ f , , }~ 
+ 7 7  ~(Wy )j --- ( W , ) g j  . . . . . . . . . . .  . .  ( I B )  

Since ( W y / ) g l  drops out, and since (w~.')g and (w,')j are equal respectively to (w,')~(-- k,~) and 
(w~')/-- ks), we have:  

= l (qo), . . . .  + 2 o) + 

- -  2c~s~k,(wl + w~ -- 2w)l J 

where the first term in the square bracket is divided by 2 to take account of the reduced average t a 
in the x-direction. Rearranging the w's we have:  

(Ro)~: ht~G l(1--  4c,s,k~)wo-- (c-~-ff -- 2c,s~k.) (w~ + w3) -- s~w~ I . . . . .  (2B) 

The corresponding reaction for webs at an angle ), to the x-axis is given by the same expression 
with ) ,substi tuted for p throughout. The resultant shear reaction is then: 

(Ro)~o~ = (Ro)~ + (Ro), . . . . . . . . . . . . . . . . . . .  (3B)  
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2. Free Edge Parallel to y-axis . - - I f  the station is located on the free edge BC (Fig. 1B), the 
reaction is at once obtained by rotating the station pattern through 90 deg, interchanging c~ and 
s~, and finally renumbering the pattern to make it face the right way. This gives" 

. .  ( 4 B )  

and  similarly for (R0)7 • 

3. Free Cormr.-.-If the station is situated at the corner B in Fig. 1B, the terms in (w.~')j, 
(w/)g~ and (w,')j drop out of equation (1B) so that" 

(Ro)~ = z~(qo)~ - 2 - %~"')~  + s ? ( ~ , ' ) ~  - 2 c ~ ( ~ , ' ) ~  

ht~G ( ) 
(5B) 

( ) 

4. Re-entrant Cormr.--For the re-entrant corner shown in Fig. 2B, we use equation (1B) 

• I 

I I r 

I 
I [ I 
~- . . . .  - 6  . . . .  -6 
B 4 5 

1, 

~g  

F I G .  2 1 3 .  

but do not use the supplementacy stations j and g for the cas e term. 

Thus 
ht~G 

I ( 6 B )  

Noting that,  by (51), (w~')~ is zero, we write" 

(Ro)~ = (q0/; ' =  ht,G [3Wo-  }c~ 'w, -  }s~'w, + c,'w, + spwo + }c ,s , (w5--w,)] .  
k J 

( 7 B )  
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A P P E N D I X  C (Supplement To Section 9 of Main Text) 

Boundary-Station Formulae Appropriate to the More Exact Method 
The boundary conditions approwiate to the more exact method have been deduced in section 9 

and what is done here is to use those conditions to derive the formulae for the reactions at stations 
situated on various free edges and corners. 

l. Free Edge Parallel to the x-axis.--As before, let the free edge be represented in Fig. 6 by  the 
line of stations 12, 3, 0, 1, 10, which separates tile real structure below that  line from the 
infinitely flexible structure above it. As before, the average I of skin and stringers in the 
direction of the free edge is taken to be half that  for an interior station, in order to take account 
of the half-pitch width of the strip associated with the free-edge stations. 

I t  is to be noted that,  in using equation (68) to write the down x, y and z reactions for a free-edge 
station, we do not need, in the case of some of the terms, to introduce the boundary conditions. 
For example, in (68a) there are two such terms. The first is : 

and the second is: 
~ [  ~u ~v (~u ~v)/ 

For station 0, the first may be written in the form: 

2l ~ + ~  ~ -  ~ + ~ '  • . . . . . . .  
and the second in the form: 

EA~c~s~ [l ~ ~u ~v (~u~ + ~_~v) l 
21 c~ g-x + s£ ~y + c~s~ 

- -  I ~ ~u .i I ~u 
Since station 2 is located on the infinitely flexible extension of the real plate, expression (a') 

and (b') reduce respectively to:  

t,G(~u21 \ ~  + g-xgV)~ and EA~c's~ 1 2 1  c~ ~ + s ~  ~ + c ~ s ~ ~ U  ~v  (~u_@+~Ov) l~, 

and since station 4 is an interior station all the first derivatives in these expressions can be written 
down without reference to the boundary conditions. 

The result is that  equations (68) may be written in the following form, for a free edge parallel 
to the x axis : 

2 \ ~  + ~£ o + c;~ + ~f o 
~W 

E &  c 21 ~ ~v (~ ~)I 
~ x  " ~ . ~ 7=; 

+ - - y  --  + s£ + c~s~ + 

+ 21 " c£g-x + s£~__ . ~ ~x , 
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Ow 

2z c~" ~-~ + s~ u -+ c~s~ ~ + g? 

EA~s~ l Ou Ov (~u Ov) l ] 21 c~ ~ + s~-@ + c~s~ ~ + Vx ~ = - q, 

{ 3u 0 w Ow 

~nhG 

~ ~ w  - Ov Ow 
+ (~ ~)~ l ~,~ (~ + ~),.-_< +. ~,'~ ( ~ + ~)~I 

. . . .  ( ! c ) b  

The above equations contain only the first derivatives of u, v and w with respect to the co- 
ordinates. Of the four stations involved, station 4 is an interior station for which, as already 

• stated~ .the derivatives can be written down in finite-difference form without reference to the 
edge conditions. The remaining three stations (0, 1 and 3) are located on the edge and here the 
boundary conditions (76), (79), (84) and (87) apply in conjunction with (69). On this basis 
equations (68) take the form: 

G 
2 t(t~c~ q-t~,c~,~) q -- Vl(6c~s,~+ '~,q,s,)l l2@°+ ( ~ ) o l  

EA~'c~2 (c~ ~ + U~s~ ~ -k U~c~s~) dx [- 21 

~ 1 ~ : ~  ~v (~ ~v)t 1 t- 2Z ~ -¢- s~) ~ -k c~s~ ~ - /  ~ 4 = - -  q" "" .. (2C)a 

tsG ~u 

+~s~ (~) 

j_ EA~s~ l 2 ~u , Ov (~u ~v) l 1 
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,~G l (~o ~ (~v ~)I + W  c~s~ ~ + O x i  +s~ ~ ~ q - ~ ,  = - q  . . . . .  (lc)c 

where the suffix ~ signifies the value of the relevant expression at supplementary station 
j minus its value at supplementary station g, and where 



[ ~  l (taca~ + t~c~) + Vi(t~casa + t~c~s~) l l 2 (U1-2 U~) + (-~ 

hG (t~c~s~ + 12-~ ' + ~[  t,c~s~) + , , x , , ,  

+ - ~  = --  q , .  . .  (2C)c 

In finite differences form this becomes" 

[ t t ,  E ( ~  + ~u1)  

G 2I(t,c~+t~c,~)+ Vl(t~c~s~+t~c,s,)ll 2~ u0 + "ll (wl --  w~), 

~ 41 ~ 

+ t 41 ~ + 4 l ~ / ( u ~  - Uo + v~ - v~) l ~ = - (q,)ol ~ = - ( R , ) o . .  ( 3C)a  

[t t~G EA~s~c~ l 
(-if# Us + 2l ~ (c~ ~ + U~s~ ~ + U~c~s~) (u~ + u~ - 2uo) 

_ ~ + (uo - us) + _ ~ + (v~ - Vo) 

EA~c~s~ ] 
+ 41~ (uo - uo + v~ - v,,) l ~ = - (q~,)ol ~ = - (R~,)o . .  ( 3 c ) b  

h - 2w0)} 

G G 
(t~s~ ~ + ~,~?)~, + ~ c  l 

+ 7 (t~c~s~ + t~c~s~)u~ + 7 ~ (t~c~s~ + - w~) 

(q , )W = (RA0 (~c )~  
L-I 

2. Free Edge Parallel to y-axis.--The corresponding formulae for a stat ion s i tuated on a free 
edge parallel to the y-axis are as follows: 

1 -- G l V2(t~c~2 + t,c~ ~) + (t~c~s~ + t~c,s~) l l2Vo + ~ (w~ -- w2) I 

E A~c~s~ ) 4l~ l (1 t, A~c4) vt, _ ~ + (Uo - u l ~ )  + (1 - ~ + (v8 - vT) 

+ A ~c ~3 s ~ ( us 
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ts 

G 
. . . .  2 ~ v 0 +  ½(w~- 

4121 + (v0 - -  vl2 - -  

G 
- ~ i (t~c? + #c~ ~) (Wo - 

+ (~;~ + , ~ , ~ / ( ~ -  ~)I] ~ =  -(~)°~ = - ( R , / 0 . . .  

(4C)b 

wl~) 

.. (4C)c 

3. Reactions at a Free-corner Station.--The boundary conditions for this case are given by 
equations (89). Taking the free corner to be defined as the meeting point of the lines 12, 3, 0 
and 9, 4, 0 ill Fig. 6, we can now write equations (68) as follows : 

I t~ E (1 t~ 

EA ~cd 
212 (c£ + Uls~ ~ + U~c~s~)(Uo - u~). 

EA~Gs~ 
(God + sd + Gc~sJ(v,, v0)] + 2z~ - , z ~ = - ( q J o Z 2 =  - ( R . ) o  (SC)a 

I t, GU~(uo - u~) t, E (~ + , ,G)(v,~- Vo)-  

E A  ~s~6~ 
2l ~ (c£ + Ulsd + U2c~sS(Uo - u~) 

EA~ s~ 2 1 + 2 l ~ ( G c d +  ~ + Gc~sj(v~ - Vo) z ~ = - ( q ~ ) o l ~ =  - ( G ) o  ( S C ) b  

E l ~ 2 ~ u~ + wo - -  

"/)4 
\ ) q  
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4. Reaction at Re-e~tra~¢t Cormr.--For a re -en t ran t  corner of the  type  shown at s ta t ion 0 of 
Fig. 1C, we expand  equat ions (68) in the  usual  way.  
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FIG. 1C. 

Tha t  is, the  expansion is done in two steps only, in the  second of which  the  reduced  areas and 
moment s  of iner t ia  of section are t aken  into account.  This is because only at  t ha t  stage do the  
appropriate amounts of reduction become obvious. 

Thus,  for the reactions (per uni t  area of surface) in the  x, y and z directions we have  : 

tsE (~¢,~ ~v + Gts ~u 

~ + s ~  -@+c~s~ ~ + ~  

( sou ~v (0u Ov) l . . . .  (6C)a 
+ EA~so t~ ~ + ~Z U + c~s~ U + ~ ~ " 

tsE ~v ~u ~u ~v 

(eu 

l ~u ~v (~u ~v)l 

+ EA~Gs~IG~u Ov (Ou Ov)l . . . .  (6C)b  ~ + s £ # + c ~ ,  ~ + ~ x  r~ "" 

(qDo = hGt~ [cd (~u + ~w ~w tg~ ~-) q - c ~ s ~ ( ~ + ~ - ) ~  
3w 

q-. c~s~ t ~ ~ ) ~  + sd 

(where, as before the suffix ~ stands for the value of the expression concerned at station m 
minus its value at n). 
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have : 

(q2o = N (U~o 

Gt, 
+ ~-{(u5 

Expressing the above in finite-difference form and using conditions (76), (79), (84) and (87), we 

t ,E 1 
- -  Uo) + 1 - -  v ~ 2 1 { ( u °  - -  u l~)  + v(v8  - -  vT)} 

- Uo) + ( v o -  vs)} 

- / ~ ( ~ ° +  ~ -  (~, ~ -  ~ ) - / ~ / ~ ; ~  + ~ )  

/~)~:~(~ + ~ -  (~ ~ -  

EA~c~ 2 
~- 21 [~{F~(~o --  ~o)} 

- 1~2(~o - ~ )  + ~2(~ - ~) + ~ ( ~  - ~ + ~o - vi~) l] 

EA,~c~s~ I c 2 ( %  __ us) -]- s~2(v9 - -  %) -¢- c~s~(u9 - -  Uo. + v5 - -  
+ 2Z 

t ,E E 

+ G g i  (Ulo - Uo) - g i - ( u s  - u7 + Vo - v~)  

~ ~)  - ( ~ 1 ~  + ~ ~)  

(q,)o = hG 

~")I . .  (7c)~ 

+ 2---7- 

E c~s~ 1 Uo)l +~(~) ~l~o- 
~i~:loo-o~l~ +~:l~-v~l -~lo~-.o~ +~o-v~ll 
E~/~; + ~ / l ~ ( ~ o +  ~ o -  + ~ ~ ~o)_(~ ~o- ~) 

21 ws) 

+ (~ + ~ I ~ ( ~  +~° -  - ~ ° )  (~ + ~ - ~ ) I  

+ / ~  + ~) ( ~  + ~-~ ~°)l . . . . . . . . . . . . .  (7~)c 

(7C)b 

It remains now only to regroup the various deflection terms so as to associate each particular 
displacement such as ¢40 with a single coefficient. 

• If the free boundary of Fig. IC is slightly modified so that from station I it drops to station 5 
instead of continuing to station I0, station I becomes another free corner. The effect on equations 
(6C) is that all expressions having I as a suffix disappears as well as those with suffix 2, with a 
consequent simplification of equations (7C). 
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A P P E N D I X  D 

Sol~#ion of the Problem of the Cantilever Square Plate by the use of Influence 
Coefficients and a High-speed Digital Computer 

1. Choice of Example.--The methods described in this report enable us to derive the stresses 
and deflections of wings (or of any flat structure transversely loaded) by  the use of influence 
coefficients in conjunction with a digital computer. The methods vary  according as the shear 
deflections of the structure are, or are not, negligible compared with the bending deflections. The 
approach is simplest natural ly when shear deflections can be neglected, and an initial practical 
trial of the method is perhaps best made under tha t  condition. 

A suitable example seemed to be the problem of the square plate of constant thickness fixed 
along one edge so as to behave as a cantilever under transverse loads. Thisproblem has not so 
far been solved in finite terms, and therefore a check on the accuracy of the method by comparing 
it with the theoretical solution is impracticable. As it happens, however, this same example 
was recently taken by R. H. MacNeaP for checking the accuracy of the ' electric analogue '  
method of approach. In the absence of a theoretical solution he compared his results with those 
obtained from experiment. I t  is therefore possible to compare results obtained by  the present 
method with his experimental results and also, if desired, with those given by the ' electric 
analogue ' m e t h o d  (both for a particular load distribution). 

2. The square plate was divided chess-board fashion into small squares, the corners of the 
squares locating the stations whose deflections determine the contour of the plate. Fig. 1D shows 
the plate DABC (eaCh side of which is divided into six equal lengths to accommodate six stations) 
encastr6 along the edge DA which coincides with the 3/axis. 
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I Z~W X 

/ 
Y 

i~ 12 L6 
.12 IO II .'0 

I [ 4 I  
T 19 r 

FIG. 1D. 

The plate is supposed deflected into an arbitrary contour, by assigning an arbitrary deflection 
wr to each station r, except of course the stations along the fixed edge DA, which by definition 
have no deflection. I t  is then possible to write down the vertical reaction tha t  must be applied 
at each of the thirty-six mobile stations to hold the plate to the chosen contour. The system of 
loads necessary to hold any given contour is thus obtained, and can be expressed in terms of a 
set of simultaneous linear equations, each of which gives the reaction at a particular station 
in terms of the displacements of the others and of itself. By inverting the corresponding matrix, 
the machine (the digital computer, i.e.) converts this into a set of equations giving the deflections 
in terms of the reactions, or applied loads. Once the deflections are known the corresponding 
stresses are readily derived. 

3. The reaction at any station 0 in a pat tern of stations numbered as in the figure can be writ ten 
down at once by using the formulae derived in section 2 of the m a i n t e x t  (Part II). 
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3.1. For all Stations not Nearer than Two Pitch-lengths I from an Edge we have  the Formula  
(18a), i.e., 

Ro = 20We -- 8 w~ + 2 w~ + w~ . . . . . . . . .  (1 D) 
r=l r=5 r=9 

Eh ~ 
where  D --  12(1 --  v ~) --  stiffness of plate . . . . . . . . . . .  (2D) 

3.2. For Stations on a Free Edge, such as BC, not  nearer  than  two pi tch lengths to the corner 
C or B, the react ion is given by  formula (14) i.e., 

Re D [ = F (8 --  4~ --  3 ~ ) W o -  (4 --  2~ --  2,2)(w~ + w4) --  (6 --  2v)w~ 

+ (2 - ~)(w~ + w~) + 1 - ~ ] 2 (w9 + w.) + zo~ . . . . . . .  (3D) 

The corresponding formula  for a s ta t ion on the edge DC parallel to the  x-axis is obta ined  by  
s imply tu rn ing  the  pa t t e rn  of stat ions th rough  90 deg to give:  

Ro = D [(8 --  4v --  3v~)Wo- (4 --  2v --  2v2)(w~ + w~),-- (6 --  2~,)w~ 

+ (2 - ~)(w~ + w~) + 1 - ,,~ 1 2 (Wlo -+- w12) + w9 . . . . . . .  (3D)a 

Similarly for stat ions on the edge AB : 

Ro D [ = ~- (8 --  4~ --  3~)Wo --  (4 --  2~ --  22)(w~ + w~) --  (6 --  2,)w2 

+ (2 - ~)(we + w~) + 1 - -  ~ 2 (w~o + w12) + wn_j . . . . . . .  (3D)b 

3.3. For Stations on a _Free Corner, such as C, the  react ion 

R0 D I = ~ (3 + ~ ) ( ~ 0 -  

Similarly, for corner B" 

is given by  formula  (11), i.e., 

W3- ~)'t)--~ 2~8 "@ (~@2 ~) (Ze]9 @-W12)~j . . . . .  (4D) 

. .  (4D)a 

3.4. For Stations Distant one Pitch Length from a Free Edge, such as s tat ion E in relat ion to the 
free edge CB, we see that ,  on superposing the s tandard  pa t t e rn  wi th  s tat ion 0 coinciding wi th  E, 
s ta t ion 10 is the  only s ta t ion outside the  edge of the  plate. Thus, in the  s t anda rd  formula (1D) 
above for an in te r io r  station, all the  w's are known except Wl0. Using the  fact t ha t  

a w / ~ x 2 =  _ ~ a w l ~ y  ~ 

for the  edge s ta t ion 1, we find: 

wl0 = (2(1 + ~)wl --  v(w5 + we) --w0} . . . . . . . . . . .  (SD) 

The s t anda rd  formula  for an interior s tat ion m a y  therefore be used wi th  wle replaced by  expression 
(5D). 

The same procedure is followed for stations one pitch length from either of the other two free 
edges. 
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3.5. For a Diagonal Statio~,~ such as F one Pitch Length from each of Two Free Edges, if we 
identify the central station 0 of the regular pat tern with F, stations 10 and 11 are both outside 
the plate edge. However, by  using formula (53) above for w~0 and the parallel formula: 

w~ = (2(1 + v )w~-  v(w~ + w,) -- w0} . . . . . . . . . .  (63) 

for w~, we can again use the standard formula (13) above for an interior station. 

3.6. For Stations at or Within om Pitch Le~gth of the Fixed Edge AD, we need only imagine 
ally stations that  spill out to the left of AD to be the mirror image of those on the right of tha t  
line as explained in the text. The standard formula, as modified by proximity to a free edge, 
then applies. 
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FIG. 23.  

4. Comparison of Results Obtained by Present Method with Those Obtained by Experiment.-- 
In Ref. 2 MacNeal compares the deflections he obtained by the electric analogue method with 
measured deflections. He does this for the particular case in which the transverse load takes the 
form of a concentrated load at one of tile two free corners--a stiff test because the plate is thereby 
subjected to bending and twisting at the same time. He makes the comparison by drawing the 
relevant two sets of contours for the deflected plate,  each contour line being marked with its 
appropriate deflection. Apart from these contours no figures are quoted for the experimental 
values with the exception of the deflection at the loaded corner. One would have expected the 
present method to give better results than MacNeal's if only because of tile finer mesh (25 sub- 
squares to his 9). This expectation is amply confirmed, as a glance at Fig. 23  shows. 

This figure shows the contours obtained by the present method as full lines and the experimental 
values as dotted lines. The agreement is satisfactory on the whole; the deflection at the loaded 
corner works out to be 0.49Pa2/D as against 0.46 by experiment and 0.52 by  the analogue 
method. To give an indication of the kind of accuracy obtained by tile analogue method the 
contour line for 0 .2Pa /D ~ is included as a chain-dotted line; the discrepancy shown by this is 
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typical of the other contours obtained by  the analogue method. No doubt a better result would 
have been obtained if a finer mesh had been used, but the increase in the number of stations 
entailed by this would have meant a corresponding increase in the amount of electrical apparatus. 

5. Further Work.--The method shown here to be practicable for a plate of uniform thickness 
should be equally satisfactory for plates in which the thickness is not constant and in which the 
plan-form is not regular. Work on these lines is proceeding. 

6. Achnowledgments.--The writer is indebted to Mr. P. C..Birchall for his work in setting out 
and programming the various formulae for the R.A.E.D.E.U.C.E.  machine and for obtaining the 
numerical values here recorded. 
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