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1. Introduction.--1.1. A i m . - - T h e  number of available exact solutions of the full equations 
of motion of an incompressible viscous fluid is remarkably few. Those that  exist are mostly 
limited to steady flows. Where a steady state solution does exist, one may be able to obtain a 
little information about the corresponding unsteady flow by the method of small perturbations. 
However, in the interesting case of instability, this only shows how a small disturbance behaves 
initially. The subsequent stages of chaotic motion, as the laminar flow 'breaks  up ' ,  have 
at tracted the at tention of many but still largely remain a source of fascination rather than a field 
for fruitful research. Only when the flow becomes completely turbulent can the theories of 
turbulence be applied. These theories do not discuss the origin of turbulence, still leaving tile 
gap in the present state of knowledge between small perturbation theory and turbulence. 

There is, therefore, a great need for a method of attacking directly the full equations of motion 
of an unsteady viscous flow. Recent advances in high speed electronic computers make available 
a powerful device for performing the computations. The lack of some such calculating robot has 
no doubt discouraged earlier at tempts to adopt this approach. 

Since with any electronic computer one has available only a finite storage space, the possibility 
of solving a completely three-dimensional problem is perhaps a little ambitious at present. 
Further, from turbulence theory it is known that  large eddies have a tendency to break into 
smaller eddies limited only by v~scosity. Hence, in order to follow numerically a turbulent flow, 
a large number of closely spaced mesh points would be required to include both the large scale 
and small scale effects. I t  is therefore necessary to confine the range of eddy sizes, so tha t  a 
suitably low Reynolds number must be chosen. 

Of two-dimensional problems, the two most suitable viscous flows appeared to be: 
(a) the flow past a cylinder 
(b) the plane jet. 

The latter was chosen because of tile simplicity of the image vortex system required to satisfy 
the boundary condition. The method could also be applied to the flow past a circular cylinder 
and the formation of the Kgrmgn vortex street. 

The following is a finite-difference method of solving the equations of motion of an unsteady, 
viscous (and consequently rotational) flow, with particular reference to the starting and pertur- 
bation of a plane jet, for which results were obtained. 
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1.2. Numerical Methods.--It was proposed to use Helmhol tz ' s  vor t ic i ty  equat ion:  

0co 0o 0co /'0%0 02~o~ 
a--i + u g-~ + v -@ = ~k-g~ + ay2/' 

where ~o = vorticity,  to de termine  the  vor t ic i ty  at successive small intervals of t ime. The 
earliest a t t emp t  to solve parabolic part ial  differential equat ions is due to L. F. Richardson in 
1910. Al though later writers have  adversely criticised this treatise, Richardson 's  work is the  
basis of m a n y  subsequent  investigations.  A notable modern  deve lopment  is tha t  due to P. D. 
Lax who overcomes the  instabi l i ty difficulties (see section 4.2) by  in t roducing an 'ar t i f ic ial  
viscosity '. I t  was impossible to use the  Lax me thod  here since the  artificial viscosity would be 
about  20 t imes as large as the  viscosity it was desired to use. However,  in Lax's  paper  is shown 
the  desirabili ty of using equat ions in ' conservat ion form ', so tha t  the  vor t ic i ty  equat ion in the  
form: . 

was used here to advantage.  

Similar equat ions occur in meteorological  problems (but it is not  usual to include viscosity). 
The solution is obta ined after making  suitable simplifying approximat ions  which are valid for 
the  atmosphere.  

1.3. The Plane Jet.--The presence of vor t ic i ty  makes  it desirable to be able to use HelmhoRz 's  
equat ions for the  velocity due to a point  vor tex  to de termine  the  veloci ty (Lamb, p. 219). 
By  considering a flow in a half-plane, the  condit ion tha t  no fluid crosses a solid boundary  is easily 
satisfied by  the  me thod  of images. 

Now for a plane jet  the  bounda ry  is as shown in Fig. 1. To obtain the  veloci ty due to a point  
vor tex  at P by  in t roducing an image vor tex  at P ' ,  is equivalent  to replacing the  boundary  by  
the  half-plane Y Y '  (without the orifice). This approximat ion is valid if the  effect of the  vor tex  
at P does not  reach far into the  ent ry  channel. Now the s t ream function, ~o, for an i rr0tat ional  
flow satisfies: 

ax 2 - ~  : 0 .  

Therefore, in the  en t ry  channel:  

~0 = ~ A, cos (2n + 1)~y/d exp {(2n + 1)=x/d} 
n = 0  

+ ~ B~ sin 2n~y/d exp {2n~x/d} 
n = l  

(~0 = constant  when y = ± d/2 and ~o -+ 0 as x -+ --  oo). 

The predominat ing  te rm in ~0 is A0 cos (~y/d) exp (=x/d), which at  --  x = d/2 is exp (-- ~/2) = 
1/4.8 of its value at x = 0; at  --  x = d is 1/28 of its value at x = 0; at  --  x = 2d is 1/535 of its 
value at x = 0. 

Further ,  the  condi t ion tha t  in a viscous flew there is zero velocity at a solid boundary  (relative 
to the  boundary)  is satisfied by  the  generat ion of addi t ional  vor t ic i ty  at the  boundary.  

In  his invest igat ion of edge-tones, Curie found the  vor t ic i ty  generated at the orifice was 
impor tant .  His a rgument  was tha t  if the  jet  is deflected (Fig. 2), the  flow turns through a greater  
angle at A than  at B. Hence the  veloci ty near  A is greater  than  the velocity near  B, which gives 
greater  shear and therefore more vor t ic i ty  at A. To obtain a quant i t a t ive  est imate of this vor- 
t ic i ty  the boundary  condi t ion tha t  the  velocity component ,  v, = 0 at the  orifice was taken,  it 
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being assumed that  the fluid in the entry channel continues in undisturbed uniform flow. Just  
as at the solid wall, this condition was satisfied by the generation of additional vorticity (Fig. 3). 
This gives vorticity of the same sign as does Curle's argument. 

A steady state solution for a plane laminar jet has been obtained by Bickley by finding an 
exact similarity solution of the boundary-layer equations. Savic has applied small perturbations 
to Bickley's solution. 

1.4. Method.--The half-plane is covered by a lattice of mesh points. The space derivatives 
in the vorticity equation (1) are approximated by the difference in the vorticity at the appropriate 
neighbouring points of the mesh divided by the distance between them. The time derivative is 
also approximated by the difference in vortici ty at two different times divided by the small 
increment of t i m e .  Hence we have an equation which gives explicitly the vorticity at successive 
small intervals of time. 

At each time step it  is necessary to find the velocity at the lattice points. There are two factors 
which determine the velocity: the rate of inflow of fluid at the boundary and the distribution of 
vorticity, the two effects being additive. The effect of the flow at the orifice may be expressed 
as an integral along the boundary,  YOY' ,  of a simple source flow (Lamb, chapters 3 and 7). 
This integral is calculated by taking the sum of the effects of small elements of the boundary. 
The effect of the vorticity is calculated by replacing the continuous distribution of vorticity by a 
series of point vortices at the mesh points and adding the effects of these point vor t i ces .  
Helmholtz's equations are used to find the effect of each point vortex. 

1.5. First  Attempts and Improvements.--At the outset it was felt tha t  starting the jet 
impulsively from rest would severely tax a numerical method. As a compromise, in the first runs 
the velocity at the orifice was increased linearly with time to its maximum value (Fig. 4). 

I t  was found that  after the velocity stopped increasing (at A) the vorticity continued to increase 
until  it reached a maximum and then decreased, symmetrical oscillations being set up (see Graph 
14). Increasing tA merely reduced the size of the oscillations. Also using a smaller time interval 
did not  eliminate these oscillations. A slight improvement was affected by smoothing off the 
corners at 0 and A (Fig. 10). The Size of these oscillations increased with Reynolds number. 

A more stable finite-difference scheme was sought and the one chosen (section 2.7) .is similar 
to tha t  used by Bushby and to a scheme which Call be used for ordinary differential equations. 
I t  Consists, essentially, of using a forward time difference to get a first approximation to the 
vortici ty and then getting a second approximation using a central time difference. Stabili ty of 
the finite-difference equation is discussed in section 4.2 where a critical time interval (depending 
on the Reynolds number) is obtained above which the difference equation is unstable (Graph 20). 

Further  improvements which were incorporated in the course of'these preliminary tries were:- 
(a) The use of t h e '  conservation fo rm '  of the vorticity equation (cf. Lax, and see section 4.6 

on the conservation of vorticity) 
(b) The use of a more accurate finite difference approximation for the space derivative in 

the direction perpendicular to the jet. In general, changes were more rapid in this 
direction than in the direction of the jet (section 2.7). 

Also it was convenient to have eleven points across the jet (section 6.5). I t  was necessary to 
experiment with various values of the ratio of the diameter of. the orifice to the width of the 
extreme mesh lines before the value 0.4 was chosen. 

1.6. The Curved Mesh. - - I t  was decided to use a curved mesh, consisting of ellipses and hyper- 
bolae, rather than a rectangular mesh. This had the advantage tha t  fewer mesh points were 
required at the expense of dealing with more complicated equations. The method will be 
described for a rectangular mesh and the curvilinear co-ordinates introduced in section 6. Near 
the orifice there is little difference between the rectangular and curved meshes, 



1.7. Results.---The starting of a symmetrical jet is displayed in Graphs 1 to 5 which show the 
vorticity distribution and the streamlines at successive times. At first the fluid moves radially 
from the orifice but, as vorticity spreads into the half,plane, the flow soon takes the characteristic 
mushroom shape. As t increases the mushroom grows, the front whMs leaving behind them a 
steady flow. This steady flow is similar to Bickley's steady state solution (Graph 6). Andrade's 
correction to Bickley's solution does not improve the agreement. 

At higher Reynolds numbers, numerical instabil i ty began to appear in the results as is seen 
from Graph 14 where the vortici ty at particular points is plotted against time for Reynolds 
numbers 150 (see section 7.4). 

Unsymmetry  was produced by introducing a small perturbation at the orifice. Three frequencies 
of sinusoidal oscillations were used and it was found tha t  the lowest frequency produced the 
greatest oscillation of the jet (see section 7.5). This lowest frequency (f  ---- 5) was greater than the 
frequency of edge-tones (Wood's formula for the  frequency of edge tones gives f = 0.055 U/d = 
0 : 8 9 ) .  

A more detailed description of results is given in section 7. 

Tables of vorticity, etc., are not included in this paper but  are obtainable in the author's Ph.D. 
Thesis at the Universi ty of Manchester. 

2. Complete Statement of the Problem.12.1. Differential Equation of Motion.--The flow of 'an 
incompressible viscous fluid in a half-plane is considered. The boundary of the half-plane is an 
infinite solid wall Oil either side of an orifice of width d. 

Take rectangular axes, OX along the line of symmetry  and O Y along the boundary, and let 
u(x,y,t), v(x,y,t) be the components of velocity (Fig. 1). Let oJ -- the vorticity = (Ov/Ox) -- 
(Ou/Oy). We have (Lamb, p. 578): 

o-7 + u ~ + v 7 = " t -g~ + OyV ' (1) 

where ~ = the coefficient of viscosity. Since the fluid is incompressible: 

Ou Ov 
o~ + ~ = o . . . . . . . . . . .  (2) 

Adding equation (2) multiplied by co to equation (1): 

0-~ + ~ ~ ~ \ 0 - ~  ÷ ~ / -  . .  . .  (3) 

2.2. Boundary Conditions.---The boundary was taken as the plane YOY '  consisting of: 

(a) the solid wall, x - .  0, lyl >~ d/2, 
(b) the orifice, x = 0, lyl ~< d/2, 

where d is the width of the orifice. The conditions to be satisfied at the boundary (x = 0) were: 

u(O,y,t) = uo(y,t) . . . . . . . . . .  (4) 

v(o,y,t) = 0 . . . . . . . . . .  (s)  

for all y and t, where Uo(y,t) is prescribed for all t and is zero for all y such tha t  ]y  [ >/d/2, 
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These boundary conditions imply tha t  the effect of the flow in the half-plane, x > 0, on the 
flow in the entry channel has been neglected. In section 1.3 this effect was shown to be small. 

As was shown in section 1.4 condition (4) implies that  the velocity at ally point may be found 
by adding: 

(i) the effect of the vorticity distribution (including the image vorticity) 
(ii) the effect of the source flow (see section 2.4). 

Condition (5) implies the generation of additional vorticity at the boundary, both at the solid 
wall and at the orifice (see sections 1.3 and 2.5). 

2.3. M e s h  P o i n t s . - - C o n s i d e r  a set of mesh points, x = k A x, y --- j Ay ,  t = n A t, where k, j ,  
and n are integers and where A x  = A y  = constant, At  = constant. Replacing the derivatives 
in equation (3) by  finite differences such as: 

= a_{co( ,y,t + co(x,y,t)}, 
~t A t  

O~ _ 1 {a(x  + A x , y , t )  - -  a (x  - -  Ax , y , t ) }  where a = uco, 
Ox 2 A x  

Ob _ 1 ( b ( x , v  + Av, t )  - -  b (x ,y  - -  Ay , t ) }  where b ---- vco, 
- -  2 A y  ~ - 

0% _ 1 {co(x + Ax ,y , t )  - -  2co(x,v,t) + co(x - -  Ax ,y , t ) } ,  
OX 2 A X 2 

. - .  (6) 

a2co = 1 {co(x#  + Ay, t )  - -  2o,(x ,y , t )  + co(x,y - -  Av , t ) ) ,  
ay ~ A y  ~ 

one obtains an equation of the form: 

co(x,y,t  + At)  = co(x,y,t) + f { u ( X , Y , t ) ,  v ( X , Y , t ) ,  c o ( X , Y , t ) }  . . . . . . .  (7) 

in which X takes the values x 4- A x, x, and Y takes the values y 4- Ay ,  y .  

Or, using the notation: 

~(n) k,S = ~ (k A x, j Ay ,  n A t), 

equation (7) can be written: 

co("+')k,j = wk, s"'(") + f { u ~ I s ,  ~K,J"'(') , co(")K,s, ~ , . . . . . . . . . .  • . (7a) 

in which K takes the values k + 1, k, and J takes the values j 4-  1, j ,  and where: 

At  
f (U(n)  - -  co(n)  _~_ q,(n) co(n~. 1 _ _  ~,(n) t,~(n) ~l(n) 

~ h , j - - 1  , -- V k , j + l  W k , j + 1 ]  

A ¢ (CO(n) ,.,(n) co(n) ~.,(n) Aco(n) + ~ ~ ~ k+ , , j  + ~ k - l , s  + k, i+l  + ~ , j - ~  - ~ ~,jj • 
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Hence, if co and u, v are known at time, t, at all points of the space mesh k ~ 0 and 
-- oo < 3." < 0% then equation (7) gives co at time t + A t at all points such tha t  k / >  1 and 
- - o o < j < ~ .  

2.4. Determination of Veloci ty . - - In  order to be able to proceed with the numerical integration 
by repeated use of the difference equation (7), it is necessaryto be able to determine the velocity 
when the vorticity distribution is given. The velocity u, v due to the vorticfty is given by: 

5f 1 co(X,Y,t) ( Y - -  Y) d X  d Y  u(x,y,t) - 2~ _~ ( x -  x )  ~ + ( y -  Y)~ 

v(x,y,t) = ~ o~ ( ~ -  x )  ~ + ( y -  Y)~ 

(Lamb, p. 219) in which o~ (X, Y,t) for X negative (the image vorticity) is defined as -- ~o ( - - X ,  Y,t).  
These integrals are evaluated by  replacing the continuous distribution of vorticity in the square: 

m ~ x - -  ~x /2  < X < m a x  + Ax/2 

l Ay --  Ay/2 < Y < l Ay + Ay/2 

by  a point vortex at the point P (m Ax, 1 Ay) of strength ~o~)~ Ax Ay (Fig. 5). 

Hence the velocity at the point Q(k Ax, j Ay) due to the vorticity is given by: 

h,] = -~ ? ) ~ A k - m ' j - I  O)~!l =-- oo } 

~i~ = 1 l= -- m , l Wk,l 

(s) 

Ax b 
where A,.b -- 2~ " a ~' + b ~ if a ~ + b ~ ~ 0, 

A x  a 
Da,b = + 2z~ " a s + b e if a s + b 2 =# 0, 

and Ao,0 = D0.0 = 0. 

Because of the inclusion of the image vortices in equations (8) the first of  the two equations 
gives u = 0 on the boundary (k ---- 0). 

The effect on the velocity at the point Q due to the inflow at the boundary is given by: 

f X 2 co uo(Y,t) x~ d Y  u(x,y,t) =-- ~ Y=_ ~ + (y _ y)~ 

f (y-  Y) 2 ~o uo(Y,t) x~ d Y  v(x,y,t) = ~ v = - ~  + ( Y - -  Y)~ 

(Lamb, p. 64). These integrals are similarly evaluated by replacing the inflow through the 
element of the boundary, l A y -  Ay/2 ~ Y ~ l Ay + Ay/2, by  a point source of strength 
2~0(l Ay, n At) (Fig. 6). Ay at the point S(o, l Ay) where ~2o(l Ay, n At) is the average value of 
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uo(Y, n At) for this element of the boundary. Hence the velocity at the point Q due to the source 
flow at the boundary is given by:- 

u(~) ~ c~,j,, e0(z dy, n at) } k j  = 

~k,j~'(~) : ~ Fk,g,~ ~o(l Ay, n At) 
l = - - o o  

1 k 
where Ckjl,, = . -  k~ . +  ( j _ l )  = i lk  2 +  ( j - - l )  8:/=0 

(10) 

1 
Fk,i,t = - 

7 ~  

(j - z) if k 2 + (j - z) ~ ¢ 0 • k ,~ + (j - z)~ 

and C0,i,z = 1 if j = l 

Fo,s,z = 0 if j = l. 

The complete velocity at the point Q is given by the sum of the vort ici ty terms (8) and the 
source flow terms (10). I t  is unnecessary to include in the source flow points where ~2o(y,t) = 0 
(we have Uo(y,t) = 0 for [y] ~> d/2) so that  the sums (10) are over a finite number of points only. 
Similarly in the vortici ty terms(8) ,  points where the vortici ty is zero make zero contribution. 
Hence the complete velocity is: 

( ~1 mo)10 11 
= = _ oo + . ,  E= , , =E_ ,o A k _ , . , , _ ,  o;:?, + , =E_ ,1 Ck,,,, ao(Z n dr)  

} • • 

~k.,"(~) ------ m mo + ,,,~1 , =E-- 'o D k -  ~,.,-, ~o~} + , =E- '* Fk.,,, eo ( l / l y ,  n At) 

where the effect of Vorticity at points such tha t  m > m0 or 1 > l0 has been neglected. 

. .  (11) 

2.5. Vorticity Generated at the Boundary. - - I f  the method of section 2.4 is used to evaluate the 
velocity at points Q on the boundary (k --= 0), the vortices give zero contribution to u (since the 
image vortex has an equal and opposite effect) but  a non-zero contribution t o  v. (The contribu- 
tion from the image vortices is equal to the contribution from the vortices themselves, so it is 
sufficient only to find the effect of the vortices themselves and mult iply the result by  two). The 
point sources also give a zero contribution to u but  a non-zero contribution to v, except when 

S -- Q in which case (9) is replaced by  a contribution, ~2o(l Jy ,  n At), to u and zero to v. Hence 
the boundary condition, u(O,y,t) = Uo(y,t), is satisfied but  the condition, v(O,y,t) = 0, would 
appear to be violated in general. The condition, v(O,y,t) = 0, is enforced by  considering the 
velocity component, v, to generate additional vortici ty at the boundary. Suppose v(0~. is the 
velocity component obtained from equation (11) at the point P (0,j Ay). 

Let A be the point (O,j Ay -- Ay/2) 

B be the point (e,j Ay -- Ay/2) 

A '  be the point (O,j Ay + Zy/2) 

B; be the point (~,j Ay -+- Ay/2) 

where 0 < e << Ay. 
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Consider a cons tant  veloci ty  along B B '  of magn i tude  ~o,j,*'(') and let the  veloci ty  componen t  v 
be zero on the  b o u n d a r y  A A '  (Fig. 7). The circulat ion round  A B B'  A '  is ~o,j~'('° Ay (neglecting 
the  contr ibut ions  from A B  and  B'  A '  which are 0(e) ). Fur ther ,  the circulat ion round  a square 
of side, Ay, is Ay%, where  co is the  average vor t ic i ty  in the  square. Hence  the vor t ic i ty  at  P is 
increased by:  

vCn) z l y _ _  ~,(u) 
0,2 . __  vo,_ d 
Ay 2 Ay" 

Therefore ~,,(,)-- ~,(,o ~0,~-- ~0(2. Ay, nat)  @ ~0.3" . . . .  (12) 
Ay . . . . .  , 

where  ~)o(y,t) is the average of mo(Y,t) for y -- Ay/2 ~ Y <~ y 4- Ay/2, and  where ~o(y,t) = 
- ( 

2.6. Method.- -Suppose  co and  u,v are known  at t ime, t, at all points k ) 0, --  oo < j < oo. 
Using equat ion  (7) we can find o, at  t ime t + A t at all points  k .>f 1, --  oQ < j < oe. The veloci ty  
components  u,v at t ime t + At m a y  then  be found from equat ion  (11) at  all points k ~> 0, 
--  oo < 2" < oo, and  finally from equat ion  (12) we obta in  the  vort ic i ty ,  co, at  the  b o u n d a r y  at 
points  k = 0 ,  - - o o < j < o g .  

Hence  if co and  u,v are given at  t = 0 for all x,y (the fluid was assumed to be ini t ial ly at  rest: 
o) = u = v = 0 at  t = 0) and Uo(y,t) is given for all y and  for t ~> 0, then  o~ and  u,v can be calcu- 
la ted for all X,y and  all t > 0. 

2.7. Improved Finite-Difference Approximations.--(a)  I t  was found tha t  the  use of the  above 
finite-difference scheme gave sat is factory results only at  ve ry  low Reynolds  number ,  wi th  the  
crit ical  Reynolds  n u m b e r  be tween  10 and 100. This was due to the  ins tabi l i ty  of the  finite 
difference equat ions  which will be discussed in section 4.2. In  order  to get results for a higher  
Reynolds  n u m b e r  the following modif icat ion was in t roduced.  

In  equat ion  (7), u(Yls and  vl~!j are functions of c°("),,e given by  equat ions  (11), 

i . e . ,  (") = q/['K,J(CA)p,q), 

v(n) " ,(n)'~ 
K , J  = VK,  J(t't~p,q/, 

where  p, q t ake  all values such t ha t  ~p.ql,~(u) # 0 and  p ..>~ 1. 
Equa t ion  (7) is replaced by:  

2o~(n+I)  o)(n) f2 (n+  1) k , j  = k , j  4 -  k , j  4 -  f { U K ,  j { Q ( . + O ~  ((~(n+l)~ O(n+l))~ \ P,q / , VK,  J \ p,q 1, ~ K , J  ) • • . .  (13) 

where  D(n+~) ...(n) K, dt. p,q/,  K, JJ" • • k,j = ~k,j + f{UK,/S2b(~,~), V /~(-)~ co(~) ~ . . . .  (14) 

~Q('*~)k,j is a first approx imat ion  to ~o ("+~)k,j (and is usual ly  also a good approximat ion) .  

(b) For  a symmet r ica l  jet  wo is an even funct ion of y and  since v = co ----= 0 when  y = 0, 
wo = 0(y 2) for small y. Hence  at  points  such tha t  2" = 1, possible approximat ions  for 
-- At{ O(wo)/ Oy} are: 

and  

At ..(,,) ~c-) o,(') o/")~ . . . .  (15) A - - - - -  2AxWk'2 k,2--~k,O k,0/ . . . . . . . .  

B 2At (v(.) co(")~ ..  (16) 
= - -  A X  ~ k,1 k.l] . . . . . . . . . . . .  

d t  /~ , ( . )  ~ (n) ~ , ( . )  o)(n)~ 
C --  6Ax wk,2 U~k,2 4- • (17) ~ k , 1  k.1] . . . . . . . . . .  
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Equa t ion  (15) is the  central  difference formula of equat ions (6). Equa t ion  (16) is obta ined by  
assuming vo) = ~y~ where ~ = constant.  Equa t ion  (17) is obta ined by  assuming wo = ~y~ + ~y4 
where ,, = constant,/~ = constant.  A, B and C were calculated at t = 0.45 for Reynolds  num- 
bers 50 and  100 (The variat ion of the  curved mesh  wid th  wi th  j was neglected and hk.j A = ~- 
was taken  (see section 6 )). Except  for k ~ 5 for Reynolds  number  50, A was much  smaller in 
magni tude  than  ei ther B or C, which bo th  use the  fact tha t  wo = a(w)/ay = 0 for y = 0. 
Since it was in tended  also to use the  me thod  for an unsymmetr ica l  jet, in which case approxi- 
mat ions  B and C would not  be valid, it  was decided to use instead: 

D j  - -  2 A ¢  /V(n ) ...(n) ~,(n) c°(~) 1) 
3 A X ~' k , j  -[- 1 t vk , y  + 1 - -  Uk.j  -- I k , j  -- 

A t  [,,(n) ..,(n) __ V(n) ..,(n) 
-J[- 1 - - ~ X  k ~ k ' j  + 2 t'~'k'j + 2 k , j - -  2 '~ 'k , j - -  2] (18) 

for all j .  For j = 1 this was also calculated. I t  was seen tha t  D~ was larger than  A but  smaller 
than  B or C (except for k <~ 5, R = 50, when all four expressions were of the  same order of 
magn i tude  anyway).  

Further ,  the  t runcat ion  errors in t roduced by  using the  central  difference for the  y der ivat ive 
and by  using Dj have been calculated neglect ing terms of order A x 4. Al though the  use of /)3. 
reduced the average size of the  calculated errors, the  values of B and C showed tha t  the  actual  
t runca t ion  errors for the  v t e rm at the points j = 1 are probably  larger than  the  values calculated. 

3. Practical Details.--3.1. ]Srocedure.--The calculation was done wi th  the  a i d  of the  
Manchester  Univers i ty  Mark I Electronic Computer.  The constant  coefficients A o,b, Ck,j,z, 
D,,b, Fk,j,~, (section 2.4) which were used repeatedly  in the calculations of velocities, were first 
eva lua ted  and kep t  pe rmanen t ly  in the slow-speed magnet ic  d rum store. They  were also obta ined  
on punched  paper  tape  and could be quickly ' wr i t ten  ' into the  store at the  beginning of a run. 

To simplify the programme of instruct ions for the  computer ,  it  was convenient  to consider a 
fixed number  of mesh points  across the  jet.  Because of the  size and  a r rangement  of the  stores 
(section 6.5), eleven points across the  jet  (10 = 5) were used throughout .  Vort ici ty  which spread 
beyond  the  outside points was neglected. 

3.2. Computing Time Involved.--The problem has now been reduced to a series of multiplica- 
tions and  addit ions only, involving no divisions at  all (The Manchester  Univers i ty  Computer  
has no single instruct ion for division, this operat ion being performed by  a series of mult ipl ica --~ 
tions and addit ions and several s tandard  ' l i b ra ry  rou t ines '  are available to do this). The 
compara t ive ly  long t ime taken  to do a division is thus avoided. 

Each  step in the  in tegrat ion ma y  be divided into 5 stages. These are the evaluat ion of: 

(a) 
(b) 

(c) 
(a) 

(e) 

~(,,+ 1) k ~ 1 (equation (14)) k,j 

veloci ty (equations (11)) 

~0,j + i) (equation (12) wi th  "'("vo,~. + i) = v0,~. /sg("~ p,q+ 1)) 

~(, + 1)k "* 1 (equation (13)) k , j  S -~ 

co<" + (equation (12) wi th  ~0,y = v0,i ,-~,q 0,j 1), ql(n + 1) (o)(n + I)) ). 

Most of the  t ime taken  by  the  computer  was spent  in stage (b); more precisely, in summing the 
series in the  velocities which involve the vor t ic i ty  (equations (8)). For a part icular  value of k, 
the  veloci ty was found s imultaneously for all eleven values  of j.  
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In the calculations of the velocity at any point, regions of the half-plane where co = 0 need 
not be included since they make zero contribution to the velocity. Moreover it is unnecessary to 
go through stages (a) and (d) for points in these regions, as these equations merely show that  o) 
remains zero at time t -}- Z t (except that  the region of non-zero vorticity may extend by at most 
two mesh lengths, one in stage (a) and one in stage (d)). Hence it is also unnecessary to calculate 
the velocity at points in a region of the half-plane where oJ -- 0. 

Now for a flow started from rest, the vorticity is everywhere zero at t = 0. Also vorticity 
cannot originate in the interior of the fluid but must be diffused or convected in from the boundary 
(Lamb, p. 578). Hence as t increases not only will more points be considered to calculate the 
velocity at any particular point, but also the velocity will be required at an incresing number of 
points. More precisely, the value of he0 in equations (11) increases each step by at most 2 (but 
usually by  1 or 0; in no case did m0 decrease) and the velocity is calculated only for points such 
tha t  k ~ m0 + 2. 

For each value of m, m}~} were multiplied by Ak.,,,.s-~, etc., which alone involved 484 
multiplications (using the curved mesh there was an additional series of terms in each of 
equations (8) (see section 6.3) ), to do which the computer obeyed 2598 instructions (the additional 
instructions involved counting 2' and l, adding the partial sums into the accumulator and 
depositing the partial sums in the high speed store: this was done in the high-speed electronic 
store without reference to tile magnetic drum store) and took 4 seconds. The time taken for a 
complete velocity was approximately 2.m0 (m0 + 2) times this which for m0 = 30 amounted to 
2 hours. 

3.3. TTrne-saving Aflproximatio~s.--I t  was therefore desirable tha t  the instructions involved 
in the multiplying of co(2} by Ak-m.s-z, etc., should be as few as possible. 

Most instructions involving the accumulator (certainly addition and multiplication instructions) 
are concerned with numbers in long lines of 40 b ina ry  digits. Since short line numbers were 
being used the 20 least significant digits of the corresponding long line were made zero before 
the number was used, in order to avoid large round-off errors (see section 4.3). The short lines 
had previously been rounded off to 20 digits. 

In this part  of the calculation this procedure was not followed, long lines being used for 
Aa,b, Ba, b, D~,b and Ea,b (see section 6.3) with the number in the 20 least significant digits 
unaltered (As well as being rounded off to 20 digits, 1 was subtracted from the 20th digit if the 
21st significant digit of the corresponding long line would be 1). In this way the time taken to 
evaluate the velocity was kept to a minimum. 

If the velocity changes by only a small amount in the time At of the step in the integration, 
it is possible to omit the velocity calculation, using the velocity of the previous step in stage (d) 
and also in stage (a) of the next step, without introducing a larger error. The velocity at the 
entry, Uo(y,t) was (for giveny) increased from zero at t = 0 to a maximum at which it was kept 
constant. Hence the velocity at any point will tend to a constant value as t increases (assuming 
tha t  a steady flow will be ult imately obtained in this way) so  that  this device can be used to 
shorten the calculation. 

In order to decide when the error involved was sufficiently small to make this simplification, 
the error was estimated as follows. When the velocity had been calculated at a set of points 
k = kl, -- 5 ~ 2" ~. 5, and before it was written into the magnetic drum store, an integration 
similar to stage (a) was carried out twice for these points: 

(i) using the velocity already in the magnetic drum store, which had been calculated in 
a previous step in the integration 

(if) using the velocity just calculated. 
• (To do this a difference equation corresponding to equation (1): 

of - -  u ~ + v ~ + ~k S p  + -g-7/ ' 
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was used. F o r  a particular point only one velocity is involved, the velocity at tha t  point.) The 
max imum  for all points of the field of tile difference between the two values of 0(,~+1) ~ k , j  SO 

obtained for each point is approximately the maximum error in the vortici ty tha t  would have 
been introduced if the velocity calculation had been omitted in that  step. Let this maximum 
difference be E, and suppose the velocity is being evaluated every sth step, having last been 
evaluated in the n0th step. Then E is the maximum error introduced in the (no + s)th step 
by using the n0th velocity instead of the (no + s)th velocity (Actually the error in stage (d) of 

1 the (no + s) step is rE  and in stage (a) of the (no + s + 1)th step is also ½E) Assuming the 
error to be proportional to the number of times the velocity calculation has been omitted, 
the maximum error introduced in the (no + p) th  step is (p/s)E. Therefore the inherited error in 
the (no + 2s)th step due to tile (2s) steps performed without evaluating the velocity is: 

-t5E = (2s + 1)E. 
p = l  S 

(This would also be obtained by assuming E to be the average error introduced in the n0th to the 
(no + 2s)th steps inclusive). If (2s + 1)E < 4 per cent of the average vorticity at the orifice 
( =  50), the velocity was evaluated only in every 2sth step from then on. In this way the error 
introduced in a number of consecutive steps in which the velocity is not calculated is below 4 per 
cent at every point. 

4. Stability and Errors.~4.1. Stability of Difference Equations.--Several investigations have 
been made of the accuracy of tile numerical integration of differential equations by  finite- 
difference methods. Because of inconsistency of nomenclature, I shall redefine the terms used. 
suppose D is the exact solution of the differential equation, together with the given initial and 
boundary conditions, and let E and N be the exact and numerical solutions of the difference 
equation, together with the given initial and boundary conditions. 

Definition 1 
I D -- N] is the ' total  er ror '  

Definition 2 
I E -- D I is the ' t runcation error '  

Definition 3 
]E -- N l is the ' numerical er ror '  

Definition 4" 
If ]E -- D]--~ 0 as the mesh widths -+ 0 in a suitable manner, the difference equation is 

' convergent ' 
Definition 5 

I f  I N  - -  El, the numerical error, is small throughout the entire region of integration, the finite 
difference equation is ' stable ' 
Definition 6 

If there exists a constant K > 0 such that  ]E[ < K throughout the entire region, the difference 
eauation is .' bounded ' 

The numerical error is usually considered to consist of the inherited aggregate of round-off 
errors .  The question of whether  the round-off errors introduced in a particular step will increase 
in subsequent steps is closely related to the question of whether the solution of the difference 
equation is bounded. F. J o h n  defines stabil i ty by  definition 6, which is here termed bounded- 
ness, a word which is not commonly used in the literature. 

Since with low viscosity (high Reynolds number) hydrodynamical  instability, leading to 
turbulence, quickly sets in, one can expect a numerical method to become unsatisfactory at 
high Reynolds number. In section 4.2 a condition necessary both for stabil i ty and boundedness 
is deduced. This condition relates the Reynolds number based on the mesh width to the time 
interval. 
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4.2. The von N e u m a n n - R i t c h m y e r  Technique . - -Consider  the differential equat ion (3)" 

a-7 + ax + a y  + a T /  
Suppose tha t  in a region .~, u = constant,  v = constant.  Let  L = u d t /2Ax,  N = v At/2zlx,  

M = v A tlA x 2. 

(a) Consider the  finite-difference equat ion (7) which can be writ ten:  

+ MIco(n) o~.~_ ..,(,) co(n) a,.,(,,)~ (19) \ k+~,a'@ ~,J'q- q- ka" ~ -'~'k,iJ. U " k , 1  + 1 - -  - -  . . . . . .  

Following yon N e u m a n n  and Ri tchmyer ,  let us seek a solution of (19) of the form: 

a/~.} = g(t) e i°~ e i*y . . . . . . . . . . . .  

where x = k Ax,  y = J A Y ,  t = n At, and where 0 and q' are constants.  This solution is: 

(20) 

~o (") = {1 q- f(O Ax,  4, Ay)} n e i°x e i¢y . . . . .  (21) k , j  . . . .  

where 
a/0) = d0x ei,~ . . . . . . . . .  (22) k ~ j  . . . . . .  

and where 
f(0,4,) = (L + M)  e - i °  - -  ( L  - -  M) d ° } 

+ ( N + M )  e-~° ( X - - M )  e i ~ - 4 M  . .. .. (23) 

= - - 4 M + 2 M c o s 0  + 2 M c o s 4 ,  

- -  2i (L  sin 0 + N sin 4,) 

Let  A t, A x, Ay  -+ O, k, j and n passing through integral  values. 

co (') -+ e -"(°~ + ¢% e -i(ou + Cv)t ei(Ox + Cy) 
k , ]  

= co (x,y,t), say, 

(24) 

which is easily seen to be the  solution of the differential equat ion (3), wi th  the initial condition, 
~ ( x , y , O )  = e i°x e ~ .  

Since any init ial  value of ~o, ¢o(~}, can be expressed as a l inear combinat ion of terms such as (22) 
by Harmanic  analysis (only a finite area of the x-y  plane is being considered here), the solution, 
~o(") of the  difference equat ion is a l inear combinat ion of terms such as (21) (Since u con- k , . i  , = 

stant,  v = constant ,  equat ion (19) is linear). Further ,  assuming the  double integrals involved 
are uniformly convergent  as Ax,  Ay,  A t - +  O, o¢"~-+ k,j ~o(x,y,t), where co(x,y,t) is the  solution of 
the  differential equat ion (3). Therefore the difference equat ion (19) is convergent.  

However,  the  difference equat ion (19) is not  bounded  for certain values of Ax,  A y  and At, as 
the  solution (21) of the  difference equat ion m a y  be such tha t  ~o (n) k,~" -+°o  as n - + o o  (The 
corresponding solution, (24), of the  differential equat ion tends to zero as t - +  0% except  when 
0 = 4, = 0 when it is a constant).  A necessary condit ion for boundedness  of the  difference 
equat ion is tha t  co~",} given by  (21) is bounded  as t -+ oo, which is so if: 

I 1 + f<O, 4,)1 ~< 1 . . . . . . . . . . .  (2S) 

,for all 0, 4, such tha t  ]0[ < =, 14,1 < ~ (This is the extension to two space co-ordinates of F. John ' s  
necessary condit ion for stabil i ty '). 
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..,~"~ (equation (19)), The numerical  error in t roduced for t ~ 0 will satisfy the  same equat ion as ~k,j' 
and analysing the  error at t = 0 into Fourier  components ,  we also obtain (25) as a necessary 
condi t ion for stability. 

Let  g(O, ¢) = !1 + f(O, ¢)12 

= ( 1 - - 4 M + 2 M c o s 0  + 2 M c o s ¢ ) ~ + 4 ( L s i n 0  + N s i n ¢ ) L  

Therefore when 0 = 6  = 0 ,  g =  1, Og/O0 = 0 ,  O~g/O0 ~ = - 4 M + 8 L L  

(26) 

Therefore, if condit ion (25) is to be satisfied: 

is necessary. 

Let  R., = 8 1 5 1  
M 

M ~> 2L ~ .. (27) 

41 ld  

= 4 × the Reynolds  number  based on the  mesh  Width. 

4 . . . . . .  (28) R,, IL [ . . . .  

is a necessary condit ion for s tabi l i ty and boundedness  (see Graph 203). 
be satisfied only if: 

I L l  . .  . .  

which is the  Courant-Friedrichs-Lewy condit ion for stabil i ty 
g ( ~ / 2 ,  a/2) ~< 1 can be satisfied only if: 

when 

Also g ( ~ / 2 ,  O) ~< 1 can 

. . . . . .  (29) 

M = N ~ - O ,  and 

M . . . . . . . . . .  (30) 

which is the  Courant-Friedrichs-Lewy condit ion for stabil i ty for a simple finite-difference 
approximat ion  to the  heat  equat ion (L = N = 0). (29) and (30) are fur ther  necessary condit ions 
for s tabi l i ty and boundedness.  

Using this finite-difference scheme the  results for Reynolds  number  100 showed oscillations, 
rapidly increasing in ampl i tude  as t increases, as Would be expected from this invest igat ion of 
s tabi l i ty  (For the curved mesh of Section 6 which was used to obtain  the  results, the  region N is 
such tha t  hk,j is almost constant  in ~ and 

U A t  V A t  v At .  
L = 2 ~ , N = 2 - - f f - ~ , M = ~ r j ~ ) .  

For  Reynolds  number  10, the  equat ion was stable and bounded,  no oscillations appearing in the  
results at  all. However,  vor t ic i ty  spread away from the  axis of s y m m e t r y  and  so the  curved 
mesh  did not  cover the  region of large vorticity.  

(b) Consider the  difference equat ion:  

co~ + 1 ,, - l (,) 1,j) -t- - -  c%,i + k,i = o)k,i + 2L(c% _ 1,~ -- co("~k + zlv-~"Vok,j ('') - 1 ~ (') 1) 

oa/reco<~> + ~"L + ~ + --  - - ~  ~..~.rJ. k k + 1,1 1 , j  J k , j  + ' n ' k , j  --  I . . . .  
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o b t a i n e d  b v  us ing  the  cen t r a l  t ime  difference,  %(" + ~) co("-*))/2At. k k,j  - -  k , j  
t h a t  e q u a t i o n  (31) is uns t ab l e  a n d  u n b o u n d e d  for a n y  va lues  of A x  a n d  At. 

No a t t e m p t  was  m a d e  to ob t a in  resul ts  us ing  this  difference equa t ion .  

(c) Consider  t he  difference equa t ion :  

A s imi lar  analys is  shows 

2W(n + I) .(n) ~Q(~I + 1) T[O( I1  + 1) __ ~(n  + 1)] N ( Q  (n + ~) - -  0 ( "  + ~)~ k,i : cuk, i @ k,j  @ - ' - ' ~ k -  ~,i k + ~,j] @ ~ k , i -  ~ ~-k, j  + ~] 

M ( ~ ( , ,  + 1) ~(~(n + 1 D(n -[- I) O(n + 1) a~v~(n + + ~ k + , . ; +  , - ~ , ; +  ~ , ; + ~ +  - -  . .  . .  "~k, j - -  1 ~c k,j 1)) (32) 
in which 

S?~k,j + ') - -  . . . .  ~'k,j") + k (co~"h ,,j . . . .  ~k(")+ ~,.) + ~r/-,'~"), ~k ,~-  ~ - -  ~-,,j'"¢") + ,) 

@" m((D(k n )  1,j @ O)(k n) 1,j "@ r"(n) @ (A)(n> At"(n}~ 
- -  t '< ' k~ j  -{- l k , j  - -  1 - -  n c t ' ~ ' k , j ]  

o b t a i n e d  b y  us ing  the  i m p r o v e d  f ini te-difference a p p r o x i m a t i o n  for the  t de r iva t ive  descr ibed  
in sec t ion  2.7. Aga in  let  us seek a so lu t ion  of the  form (20). W e  m u s t  have :  

a n d  

There fo re  

2CO(n + ~) ~,,(n) a,j = w<j -]- {1 + f(O Ax ,  4, d~,~}O ("+ ~ .y] kd  

o~,,+~.~ , - -  {1 + f(o Ax,  4, ~ y ) b ~ } .  

[1 + {1 q-f(O Ax, 4, Ay)}~l" 
°'(3 = 2 eiOx ei4,y. 

As before,  a neces sa ry  cond i t ion  for s t ab i l i ty  a n d  b o u n d e d n e s s  is: 

g~(O, 4,) == !1 + {1 @ f(O, 4,)}21~ ~ 4 . . . . . . . . . . . .  (33) 

for all O, 4' such  t h a t  101 < a,  ]4,1 < z- 

&(O, ¢) = {1 q- (1 - -  4 M  -? 2 M  cos 0 + 2 M  cos ¢)~ - -  4(L sin 0 + N sin ¢)~}2 

+ 16 (1 - -  4 M  -k 2 M  Cos 0 + 2 M  cos 4,)~ (L sin 0 q- N sin 4,)t 

g~ (0, 0) = {1 + (1 - r ) ~  - 4 x ~ }  '~ + m (1 - v )  ~ x "~ 

--: {~ + (~ - v )  ~ + 4x~} ~ - 1 6 x <  

X = ]L] sin 0 

Y = 2M(1 - -  cos 0). 

whe re  

If  gl (0, 0) ~< 4, then : .  

is necessary .  

There fo re  

L e t  

(1-- y)2~2~/(1 + 4 X  ~ ) - ( l + 4 X  ~) 

Y ~> 1 - -  {2~/(1 + 4 X  ~) - -  (1 + 4 2 2 ) }  1/2 is necessary .  

h(X)  = 16X[1 - -  {2W/(1 + 4 X  ~) - -  (1 q- 4X~)}1/~] -1 

minimum {I-- COS 0 
(Rm)cri~i°a~ = 101 < ~ ,  sin 0 

14 

h(lL I sin 0 ) } .  

a n d  let  

(34) 

(as) 

• (36) 



Then a necessary condi t ion for s tabi l i ty and boundedness  is: 

R,,, ~< (R,,,)o~o~. 

~ { 1 - c o s O  } 
d~ sin o , h(IL  [ sin o) 

= (-- cosec 0 cot 0 + cosec ~ o)h([LI sin O) 

~_ 1 --  cos 0 
sin 0 h'([ L] sin O) ILl cos 0 

1 -- cos 0 
sin 2 0 

(h(x) + cos o h'(x)}. 

For X > O, h(X) > 0 and from the  graph of h(X) (Graph 20c), we see tha t  h'(X) < O. 

Therefore: d /1 --  cos O h(X)t ~ 0 
dO [ sin 0 J 

for z~/2 < 0 < ~. 

Therefore: 1 --  cos 0 
sin 0 

h(X) is a m i n i m u m  for 0 such .that: 

c o s  o = h ( x )  
x ( -  h'(x) i 

h'(X) was obta ined  by  measuring the  slope of the graph of h(X) and hence the  value of 0 for the  
m i n i m u m  and the  graph of (R,,)c~i,io,t against L were obta ined  (Graph 20b). 

There is also a lower bound  to R,, necessary for stability. Such a condi t ion may  be ob ta ined  
from equat ion (34) for Y > 1. More simply; a necessary condit ion for s tabi l i ty and  boundedness  

, 

is gl (~, ~) ~ 4, i.e., {1 -4- (1 8M)2} ~ ~ 4. Therefore M ~ }. Therefore R,,, 32 ]L 1 is also 
necessary for s tabi l i ty and boundedness  (Graph 20d). 

4.3. Truncation Errors.--Consider a rectangular  mesh  wi th  A x = Ay. 

Let f(x,y,t) 
_ 1 f~+(.~xl2i ff+(Aymf(X,Y,t) dX dY  
- -  A x 2 . J  x _  (,~12) y -  (Ay/Z) 

= the  average of f (X,Y, t )  for 

Ax Ax 
x - 7 ~ X <~ x + - U 

• o 
(37) 

Let  ~o(x,y,t) be the  solution for t ~ n At of the  differential equat ions (2) and (3) such tha t  
co(x,y,n A t ) =  COo(X,y,n At) is given and wi th  the  boundary  condit ions u(o,y,t) = uo(y,t) and 
v(o,y,t) = 0. Taking the  average of each te rm in equat ion (3) and in terchanging the  orders of 
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differentiat ion and integration" 

(02 O~ ) 0 0 ( ~ )  + ~ ( ~ )  = v  (~) + (~) 
~-2 (~) + ~ ~ ~ @ " 

Let Zr("~)k,J be wri t ten  for f ( k  Ax, jAy ,  m At). Suppose Z ('~+~,~. ') is the value obtained for c5 ('+~,j ~) using 
the difference equat ion (7). 

k , j  ~ k,y T ~ - -1 ,y  

At 

At (c5(~) 
uak, j + I -iF- k , j - -  1 - -  ~x k,y]" 

Then E(~k,,- + ') ----- -~k,~-7(~+ ~) --  cs(~k,~- + ~) is the t runca t ion  error in t roduced in the (n q- 1)th step at  the 
point  (k,j). Further ,  let 

where 
E(n + 1) k,j - - - = E , + E ~ + E ~ + E d ,  

~_~ _ _  c~ (n  + I )  ~/k,j kj + At Ot /k,j k,j 

,,jk, j 2Ax ~ Jk- 

(E~( '+~)- -  At {[~(9~(.) [77c5~(n) } ( a - - )  (n) 
~jk,j 2/Ix ~ j~.j-, - -  ~ .~,j+~ + At ~ ( w )  k' 

JJ 

E ~ ( n +  ,)  _ ~ At 
d] k , j  Aft(, 2 t k + l , j  "@- 1,j k , j  + l ~ k , j - - 1  ~ k,j2 

Now in the  square (37), 



Also a (x  + A x , y , t ) ~ ( x  + Ax,y , t )  - -  a ( x  - -  Ax,y,t)Co(x - -  Ax,y , t )  

Ax" (aco)=~ + O(Jx ~) --= 2Ax(a~)~ q- --3- 

A x  ~ 

-t-- y u~x w + 3u.x ~o~ -F- 3u~ oJ.~ + u o ~  + O(Ax 5) 

Therefore: 

A~" [4(~,~)=~ + {(~= + ---- 2Ax  (uco)~ + - ~  

I E ~ ( " + ' ) -  AP ( a ~ )  (") 6 \--$Y-/+ o(~#) 

uy~)~ + u ( ~  + %~)L] + o ( ~ ) .  

1 ?¢o( n + 2) 
6 ~ ~,i - 3~:~. + 2~",z'~) + o(~#) 

E ~(":~ ~) - -  At  A x  ~ [ _  3(uco)~,~ + (u~O)xyy - -  
~,,/h,j 24 

+ u(o,= + %)L]  + o ( ~  ~) 

At A x  2 V 
E L-  3(w,)~y~ + (woL~.,, - {(Vxx + v~)~ ~ ( n +  1) 

~Jk,i 2--4- 

Since 

7 + V(fg xx -J[- (D yy) }yJ -+- O(Ax4). 

V x . -  q/ty ~ CO j 

we have 
u . + v y  = O, 

u ~  + %,y ---- - -  o&, 

Vxx + v , , - -  + ~ox. 
Therefore" 

(Eu + Eojk,j~°+l~ _ At~x~24 {-- 3(u~)=x -- 3(wL,yy. + (u~)xyy + (w)x~y 

- -  U((.Oxx -~- (.Oyy)x --  V(O)xx -Jr- (Dyy)y} -+" 0(Ax) ~. 

Since only E~ -¢- E~ is required, it will be sufficient to take: 

+ - +  yy)x} + °) At A x  2 ~(n+ 1) 
.jk, j 24 
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A t / I x  ~ 

- 2 4  {- + + + 

At { I --2t~ch~(') - - (" )  ~-- - - 2 ( ¢ ~ ( ° ) k  --loj - -  {dTOg~(n) q 48/[x --  3 u~o(~")+~,~ ~o ~+~,~ + ~ ~_~,~ j  

I-" 
+ 1 , j + l  - -  2(q~('O)(km)+ 1 , j - ~  (~(~)(n)1 , j - -1  

+ 2 (  L - , , j - ~  ~-~,j-~ 

n'j (n) F~(n) ,.7, (n) A,.7,(n) - - -  ' ~k  + . . . .  k + l , j  Jr- (D(n~- l , j  1 ~*'JL k+2,j + u+~ -- -- 

and  
E ~(~ + ~) v/ k , j  

- -~ (kn) - -1 , j+ l  "71-~x(-Oka-(n)-- 1 , j  _ _  ~_)(n)_ 1 , j - -  1 ] } - J U  O(Ax4)  

/ i t  { E 2 (7~(D ] (n)" "J-I "-~ 2 (7~(~)) (n)' -- 1 = 4 ~  - 3 ( ~ ) ~ : ~ + ~ -  . . . . .  \ / k , j  - 2_] 

(38) 

~, ] h - -  I , j  + 1 \ ~  / t o +  1 , j  1 

- - I  - -  k ] k - - l , j - - l J  

[-~(-) .7,(.) 4~,(.) ~(~) - v(;'}L k , j + 2  -J[- - -  + k--1,3"+1 '~'k + I , j +  1 k , j +  1 

• ]) ' ..7~(n) ..-.(n) -~- 46~¢ n} 1 60(n)-- I,.]-- 1 ~,~._~ - -  ~ , ~  + ~.--~ , - - -  + O ( A x  ' )  (39) 

E h(n + 1) - -  
dJk , j  

v A t / i x  2 

12 (~ .... + ~ )  + 0(~x 4) 

~ W k , j - -  1 k , j - -  2 ~ k - -  1,j -~- 2, j  + O ( /[ X4) . 
) 

Let  Et' and  Ev' be the  corresponding errors using the improved  approximat ions  for the 
t der ivat ive  and  y der ivat ive  (section 2.7) and  let E '  = E, '  + E ,  + Ev'  + Ea. Neglect ing the 
t runca t ion  errors in the  space der ivat ive  the  improved  approximat ion  for the  t der ivat ive  gives, 
approximate ly :  

and  

Therefore:  

k.s ~ k,~-¢- At  \ at/k,  

, - -  k,~ + At  Co + A t  8 t J / k , j  

k,j : ~'1,,~ + At \ 8t/k,~ + - 2  \-O-F/k,~" 
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Therefore: 

E ,x(n + 1) __  
~ t  l k , ]  6 \-T:&: + o(~:) 

= - -  ( ~ - t - 2 )  - -  ~'(~(n:l-k,ff 1) ÷ vQ(~(n)k,l - - "  (.0(knj 1) ÷ .  0 (z~ t~)  . 

The improved approximation for the y derivative is the approximation of -~ (~--~)/Oy by: 

Therefore: 

3Ax  (w°)~':+~ ' ~ 12Ax [w  :~,:+~ , 2 • 

~, V ]k,j = ~. v]k,j "~- ~ ~-~  [~v ]k , j - - I  - (V(D)k,j+I 

1 At [m~(.} :g.:,~(.) ) 
- - 2  - -  t t~' ] k , j  2 12Ax [ w :~,: + 2£J~ k~ / k , y - l - - - \ ' ~  /,~,:'+ 

(When the improved t derivative approximation is being used, the truncation error in the term, 
{~(~Tg)/~x}/it, is more accurately given-by ~ujk,:l:~ ~(,,+~) + ~:~ ~(,+2) However, since ~:E~,jk, j.~("+ ~ - -  ~ g [ ~ u l k , y  • 

and (E.)(k" + 2) will be of the same order of magnitude, it is sufficient to take the error as ~ .:k.i 
Similarly :E '~("+ ~) and :~ ~(" + ~) only are calculated). k v ] k , j  [ ' l ~ d ) k , j  

E l ,  E~, + E~', Ea and E'  (and also E,  ÷ E~) were calculated for Reynolds number 50 
at t = 0" 45. E' ,  the truncation error introduced in the 46th step, is everywhere less than 0.50 
which is 1 per cent of the average vorticity at the orifice. E / i s  negligible being nowhere greater 
than 0.02. Ea is positive at all points j = 1 and is also very large behind the front whirls. This 
truncation error is almost entirely due to the approximation of ~ / a y  2 by (1/Ax ~) ( ~ , } + , - -  
2c5(k~,{. + ~5(k~,}_ ~), so more accurate results could have been obtained for this Reynolds number by 
using a higher approximation for this derivative such as (1/12Ax ~) ( - -  ~5~,}+ 2 -- a~,}- 2 + 1~.=,(,,) ~" ~ ' ~  k , j  + 1 

w± .~-1~c5(")k,:- ~ --30c5~})i, For Reynolds number 100, the coeffÉcient of viscosity is half tha t  for 
Reynolds number 50, so that :  

maximum IE~f 
maximum [E,, + E~'I 

for Reynolds number 100 would be roughly half tha t  for Reynolds number 50. The reduction 
in the truncation error, E' ,  would be less significant and would be negligible for Reynolds 
number 300. 

The truncation errors have not been calculated for Reynolds number 100, 150, 300 since the 
large instabil i ty oscillations would far exceed the truncation errors. 

4.4. Other Sources of  Error . - - (a)  Errors in  the Vdoc i t y . - - ( i )  Error in the Velocity due to the 
source flow (equation 10). T h i s  will be greatest near the orifice. At the point (/ix, o) the velocity 
component u due to the source flow i s :  

1 f~ ~IX 
u = ~- -oou°(Y't) Ax~ + y~ dy . . . . . . . . . . . . .  (40) 

2:1/1 3 = -  u ( 1 - 4 : )  ff l + y~ dy 
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_ 3U (5 tan  -~ 2 - -  2) 

= 1 3 . 9 6 .  

If the  integral  (40) is calculated by  t h e ' p o i n t  s o u r c e s ' m e t h o d  (equation (10) one obtains:  

,{ 1} 
u = ~ - ~o(0,t) + 2~o(Ax,t). ½- + 2G(2dx,t).  3 

= 1 3 . 8 2  

which is small  by  0 .8  per cent  of the  average velocity,  a t  the orifice, U. 

(ii) The error in the  veloci ty  due to replacing the uniform vort ici ty,  co, in a square of side, A x, 
b y  a point  vor tex  of s t rength  coax 2 at  the  centre. 

Consider the veloci ty  component  v at the point  (Ax,O) due to a uniform dis t r ibut ion of 
vort ic i ty ,  co, in the  square: 

A x  
[xI ~< 2 -  

ZlX 
lyl ~ y .  

I t  is given by  
~x/2 ~ / 2  co dx dy Ax -- x 

-,,~12~-,J~12 2~ R R 

where R ~ = (dx -- x) 2 + y2. 

Therefore ~ log ~ - - 2 ] ~  T Y'~ Y --2 + y j + 3 A x t a n - 1  A x t a n -  ~ 

--Jy 0 

coAx 
= 0. 985 - -  

2a 

Therefore the  error is 0 .015 (co Ax/2n) which for co = 50 is 0.31 which is 0 .2  per cent of U. 

(iii) For  a non-uniform dis t r ibut ion of vor t ic i ty  the  error m a y  be greater.  Suppose: 

~(x,y,~ dr) = co(k:} + (x - k Ax) ( a @ ~ ,  + (y - j 
~/~co~ 

\ Ox /k,j \ oy/k,y 
for (x,y) in the  square: 

!x - k ~xl <~ ~x/2 I 
( o o 

lY - J AYl <~ Ay/2) 
(41) 

The veloci ty  at  the  point  (k A x, j Ay) due to this vor t ic i ty  is given approx imate ly  by  the sum 
of the  effects of four point  vortices, of s t rengths:  

( ?) col at the point kAx+ -~,jAx+ 
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0)3 at the point k A x  + -~- , j A x  - -  ' 

~o3at thepoin t  k A x  - -  - f  , j A x  + - -  

and ~o4 at the point (k 
~ x  - .  - f f  , j ~ x  - - -  

where ~o~-- 4 [ ~'~ \-g-X.'k,j+ 4 X \ a y / k , /  

z]X ~ { ,(n) 4 x _ _  __ _ _  
~o2 4 "k,i -b  - -  \ OX /k , i  4 kay  & , /  

~o~ 4 k,i 4 \ ax /k,i \ ay /k, iJ 

giving 
co~ - -  4 k,~ -4 \ Ox /k,i 4 \ a y / k , /  

1 ~;,~. - 
2~ 4 2 



This effect should be included in the vel0city calculation by using the approximations: 



which means that :  

co (~) is large by 1.3 per cent 0,I 

~(") is small by  0 .9  per cent 0,2 

co (~/is large by 4.2  per cent 0,3 

of the average vortici ty at the orifice. The large error in ~,,,(")0,a is of little consequence since 
the vorticity on the wall only moves into the half-plane, x > 0, by  viscous diffusion. 

(c) Errors due to ~¢elect,ing vorticity outside the area covered by the mesh. - -The  results for 
Reynolds number 100 showed that  the maximum vorticity on  the line j = 5 is at t = 1.00 
and k = 19. The variation of ~ along k = 19, 19.05, 22.28, 28.70, 22.07, 10.51, fory' = 1 to 5, 
shows tha t  the vorticity at the point (19, 6) would probably be about 5.00. The effect of this 
vorticity on the velocity at the point (19, 5) would be approximately 

5Ax 2 where Ax = 0.35 
U ( . )  _ _  

~o,s 2~ Ax (curved mesh) 

which is 2 per cent of U. The stagnation points in the front whirls would consequently be further 
from the axis of symmetry  than in the results given. 

The neglecting of the vorticity outside the mesh would also modify the vortici ty at the points 
j = 4 and j = 5 af each step in the integration. The error would be greater at j = 5 where the 
approximation to the velocity term, -- At{ O(vo~)/0y} would be too small if wo is positive and too 
large if wo is negative. The diffusion term, v At(a%/ay2), would also be decreased by a multip!e 
of the vortici ty neglected at j ---- 6. At points j = 5 behind the front whirls tile vortici ty will 
therefore be  too small. 

(d) Rou~¢d-off errors.--It  might be expected tha t  the use of numbers of the equivalent of 
6 decimal digits would give large round-off errors in the velocity since a large number of terms are 
added. That  this is not so is shown in the results by: 

(i) The symmetry . - -For a symmetrical jet, ~o<h~{. and o~k~,)_j, only differed occasionally b y  
uni ty  in the fourth significant decimal digit. In the calculation of~the velocity at points (k,j) 
and (k, --  j), the terms involving the vorticity are in pairs of equal magnitude but  the round-off 
errors in the factors Aa,b and Aa._b, etc., are different (see section 3.3). However, the corresponding 
round-off errors will in general be of the same order. 

(ii) The vortici ty for a particular point lies on a smooth curve when plotted against time, and 
at a particular time the graph of vorticity against k is also a smooth curve. 

(i) and (ii) are not consistent with the random round-off errors accumulating to a significance 
level. 

In the calculation of the velocity at the point (k,j) the error due to the round-off error in the 
vorticity at the point (l,m) is only of consequence if the vortici ty is multiplied by a large factor 
which is only so if tile points (k,j) and (l,m) are close together. Similarly the round-off errors 
in the multiplying factor (such as A~,~) only gives a large error in the velocity if the vortici ty 
at the point (l,m) is large. Hence for m0 = 30, when there are 1320 terms involving tile vortici ty 
in equations (l l) ,  the error in the velocity due to round-off errors in A~,b, etc., is only important  
for about } of these 1320 terms (since the vorticity is large only along the l ines j  = 4- 1, j = 4- 2). 

4.5. Choice of  Time I~¢terval.--The time interval used throughout was At = 0.01. A small 
time interval has the disadvantage of making tile calculation longer to reach a given t (length 
of calculation oc 1/At), but to compensate this one may expect increased stabili ty and therefore 
greater accuracy (provided the Reynolds number is sufficiently high for instabil i ty effects to 
appear). On the other hand, a large time interval, although shortening the calculation, may be 
expected to show increased instabil i ty (section 4.2). 
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For Reynolds number 100, various time intervals were tried and it was found that  increasing 
the time interval beyond 0.01 gave larger instabil i ty oscillations. However, reducing the time 
interval below 0.01 had little effect on the results. The vorticity for the starting of a symmetrical 
jet at Reynolds number 100 using the smaller time interval, A t - - - 0 . 0 0 5 ,  the velocity being 
calculated every step (@ section 3.3) was computed and compared with the vorticity for the 
same calculation using At = 0.01. The agreement in the first few steps was remarkable, the 
greatest difference being uni ty  in the fourth significant digit for t ~< 0.05. Even at t. = 0.30 
(which was as far as the calculation was carried) the maximum difference was 0.84 which is less 
than 2 per cent of the average vorticity at the orifice. 

This agreement of results dispels any suspicion that  the vortex sheet created at the boundary 
by  taking v = 0 might diffuse away in a time interval (In the method of satisfying the condition 
v = 0 at the boundary, the additional vorticity generated during a time interval is introduced 
at the end of that  time interval, thereby excluding the possibility of any significant diffusion or 
convection of this vorticity during the time interval). Perhaps the explanation lieg in the fact 
tha t  what  is referred to as additional vorticity generated at the boundary by the condition 
v ----- 0 ' is not entirely composed of vorticity which has appeared in the last time interval. As an 
extreme; consider the steady flow when there is a constant veiocity near a particular point on 
the boundary. A constant value of the additional vorticity is generated at tha t  point, the same 
at the beginning and end of a time interval, so that  the method gives the correct diffusion and 
convection away from the boundary. This boundary vorticity is ' additional ' in the sense that  
it is added to the vortici ty already present in the fluid coming down the entry channel (Equation 
(1.2)). 

4.6. Conservat ion o f  V o r t i c i t y . - - A p a r t  from the fact that  random errors arising from different 
sources may be expected to cancel out to some extent, the difference equations used also have the 
property that  the total  vorticity inside an area, S, is independent of time (except for the vorticity 
t ransmit ted across the boundary of S). Hence, if at a point (k,j) the vorticity at time, n A t, has 
an error E introduced in the next step, an error, -- E, will also be introduced at a neighbouring 
point, (k -¢- 1,2") or (k, j  -1- 1), (or spread over several of these neighbouring points). 

That  this is so may be seen by integrating the terms of equation (3) over the area S. 

of f f f{ co dx  dy = 
-g-t s s ax 

/ ay + + -@ j dx dy 

where C is the boundary of S, 

== the rate at which vorticity flows across the boundary of S. 
Similarly, by  adding equation (7) for points inside S: 

1 { ~ ?  ~,,+ 
A'-/ . ~,s 1~ A x ~ - ~s ~ ~(/~. A x ~ } 

~ k , j  k , j  k , j  4- 1 ~ ' k , j  ~ 1 

k k , j  .4- 1 
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where the sums on the right-hand side of the equation are over points (k,j) inside K such that:  

(k 4-1, j) lies outside S for ~,  
1 

(k, j  q: 1) lies outside S for ~.  
2 

Therefore, omitting the transfer of vorticity across the boundary of S, 

S S 

4.7. Computer Faults.--Present day electronic computers are not entirely reliable. Trouble- 
some errors occur due to interference with other nearby electrical equipment, and due to the 
spasmodic failure of perhaps one element of the vast electronic circuit. These errors occur at 
random and at intervals of time ranging from a few seconds to several hours. 

When an independent check is not possible it is usual to repeat a calculation until two agreeing 
results are obtained. Because of tile random nature of these errors, this result is assumed to be' 
correct. 

Because of the abnormal length of these calculations (section 3.2) it was desirable not to do 
the complete calculations twice. Since an error in the calculation at t = tl would cause all tile 
results to be wrong for t > tl, it was also desirable to be able to detect an error quickly, and the 
relevant portion of the calculation repeated. To facilitate repetition of part only of the calcu- 
lation, at the end of each step a copy of the variables, ~o and u, v, was taken out of the computer 
on punched paper tape in a form that  could later be written back into the computer. 

Tile vorticity was also printed out at the end of each step in decimal form and errors were 
detected as follows: 

(a) Symmetry.--Since, for a symmetrical jet, ~o(~{. and o)(k~)_j were calculated independent ly ,  
if ro(~. =/= -- co(~ j, for any point, a computer fault had occurred. 

(b) The graph of co against t .--This was a smooth curve. A sudden ' jump ' indicated an error 
(For this, the graph of a single point on the boundary was sufficient since the vorticity on the 
boundary depends on the entire vorticity distribution). 

(c) The velocity error, E, (section 3.3).--The majority of calculation was in the evaluation of 
the velocity so that  most computer errors also occurred here. E was a measure of the change 
of the velocity during a time interval and ° the maximum change in the velocities already calcu- 
lated in that  step was visible to the operator. The approximate value of E was known (e.g., the 
value for the previous step) so that  an abnormally large change in a velocity caused by a compu- 
ter fault was thus noticeable. Moreover, this gave a convenient method of checking a velocity 
whose correctness was suspected. On repeating the calculation of this velocity, obtaining the 
same values would be indicated by E = 0. 

In t h e  case of perturbed jets, method (a) of detecting computer faults was not available. 
When the harmonic analysis of the perturbations (section 5.2) was performed, two small errors 
were detected. This required several nights spent in repeating these solutions. 

5. Perturbations.--5.1. Method of Introducing Unsymmetry.--It was found that  with the 
initial and boundary conditions described above tile jet remained symmetrical about the x axis 
(At t = 1.20 the maximum of t~o~. + ½~o~,)_jl was 0.005 which is 0.01 per cent of the 
average vorticity at tile orifice). In c;rder to introduce unsymmetry,  the boundary condition, 
v(O,y,t) --- O, was modified to: 

v(o,y,t) = -- ,UF( t ) i f  ½- <~ ]Yi ~< ~ 

0 otherwise 
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where F(t) --- 0 if 0 ~ t ~ 0.25 

sin 2~f~ (t -- 0.25) + sin 2af2(t --  0.25) 

+ sin 2~f~ (t -- 0.25) 

if O. 25 ~ t. 

Hence the vorticity at the boundary is given by equation (12)" 

when j ~. -4- 1, and 

)(n) 
o,__. 2" ~o,,"'~"~ = C~o(j Ax, n At) + ~y  

1 q l(~) + ~ UF(n A t) i 

The value of e was taken to be 0-00236 so that  eU/Ax ----- 0.156, which is 0.3 per cent of the 
average vortici ty at the orifice. 

The values of the frequencies, f~, f,, f~, which could be chosen are bounded above by the use 
of a finite time interval, At = 0-01. Frequencies 100~ + f ,  where ~ is an integer, would all be 
indistinguishable so that  frequencies greater than 50 are not possible. Hartree (Ref. 14), suggests 
having at least  6 points per period, which would imply a maximum frequency of 16. 

The frequencies were also bounded below since the period of the oscillations, T = I/f, must 
not be so large that  the amount of calculation necessary to complete a period is prohibitive. 

The three frequencies used were 5, 10, 15, which have periods 0.20, 0.10, 0.07, units of time. 
Since the oscillations were commenced at t = 0.25 (F(t) -- O, 0 ~ t ~ O. 25) and the calculations 
were carried out up to t ---- 0.60, the number of periods completed were 1~, 3½, 5}. 

In the tables of results, it is convenient to separate the ' symmetrical ' and ' unsymmetr ica l '  
parts of the vorticity by putt ing co ~- co~ -/  co~ where: 

co X(~) ! . . , ( n )  !.-, ,(n) 
~]k, j  : 2 t ' t " k , j -  2 ~ k , - - ]  

CO '~(n) !~.,(n) !C0 (n) u / k , j  ~ 2 t S " k , j - J r -  2 k , - - j "  

Since the perturbation is small (the three frequencies of oscillation combining to give a maximum 
of 1 per cent when in phase), the individual frequencies of oscillation are independent. Also % 
is the vorticity for a symmetrical jet in the absence of the perturbation. For Reynolds number 
100, the symmetrical jet was also calculated and the results agree to the 4 decimal places given 
up to t = 0.36. Beyond this the velocity was calculated every second step (for the symmetrical 
jet) so that  differences then occur because of this. 

5.2. Harmonic Analysis of c%.--For the frequencies used (f, 2f and 3f where f ---- 5), F(t) is a 
periodic function of t of period 0.20 (section 5.1). To the values of (r., ~(,,) 41 ~< n ~ 60, were \ ~ u ] k . j  
fitted expressions: 

3 

¢(t) - -  ½A0 + Z Aq cos 2~qf(t - -  O. 25) + B,, sin 2 ~ q f ( t - -  O. 25) . . . . .  (43) 
q ~ l  

where the constants, Aq, Bq, were chosen so that :  

60 

I¢(~ ~t) - (~u)~,il 2 
n = 4 1  
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is .a minimum. The values oiAq,  B~ are given by: 

6o 2=qf (n --  25) 1 ~ (o~.)~ cos T66 A. = 1--0,~=41 

Let 

Then 

~o . . 2~qf  
1 ,,~4 (~o.)~, } sin-To-6 (n -- 25). B~ = 1-6 

½-Ao = Co ] 

Aq = - - C q s i n g ~ f q e ~  1 <~ q <~ 3 

B q =  +Cqcos2z~fqeql ~ q ~ 3  

3 

¢(t) = Co + ~ C~ sin 2aqf(t --  O. 25 -- %). 
q = l  

(44) 

6. Curved Mesh.--6.1.  Advantage Over Rectangular Mesh . - -Regions  of the half-plane where 
= 0 at time, t, need not be taken into account either in the integration equations, (13) and (14), 

or in the calculation of velocities (see section 3.1). Because of viscous diffusion the region of 
non-zero vortici ty may be expected to extend further in the y direction as x increases. If the 
calculation were done on a desk machine, allowance would be made for this by changingthe  size 
of the rectangular mesh whenever necessary. 

I t  was proposed to do the calculation wffh the aid of the Manchester Universi ty Mark I 
Computer. In order to simplify the programme of instructions, it was decided to use instead a 
curved mesh consisting of confocal ellipses and hyperbolae with common loci o n  the y axis. 

6.2. Vorticity Equation in Curvilinear Co-ordinates. The rectangular co-ordinates x, y were 
replaced by co-ordinates 8, v such tha t  x = c sinh ~ cos v, y = c cosh ~ sin v, where c = constant. 

O(x,y) _ c~(cosh~ ~ _ sin s v). Let h2--  a(8,~) 

Then 0% 0%~ 1 (a% ~%'~ 
ax ~ + ~ -  h ~ \ a ~  + ~ 2 /  

Since the fluid:is incompressible, there exists a stream function, % such tha t  u----- -- 8w/8y, 
v = + a~/~x. 

Therefore, the 8 component of velocity, 

and the vTcomponent of ve loci ty ,  

U - -  1 8w 
h 8~ 

1 8~ 
y = + f i ~ .  

u ~ + v  
8y ~(x,y) 

1 a(v),o,) 
h 2 a(~,~) 

= h U ~  + h V ~ .  
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Also a(hU) ) ( )  _ a~  8 81o 
~- a~ a~ - ~  + ~  ~ = °  

T h e r e f o r e  e q u a t i o n  (3) becomes :  

a - / + ~  a~ + a,~ = l ~  -~-~ + ~-~- j  (3)' 

6.3. Velocity Coefficients.--Consider a set  of m e s h  po in t s  (k,j) given  b y  x = c s inh kA cos jA,  
y = c coshkA sin jA,  in w h i c h  A~ = A~ = A - - c o n s t a n t  a n d  w h e r e  k a n d  j a re  in tegers .  
Le t  Q be t he  po in t  (k,j), _P be the  po in t  (re,l), PQ = r, 0 = angle  b e t w e e n  PQ a n d  t h e  x axis; a n d  
¢ - -  angle  a t  Q b e t w e e n  the  cu rve  ~ = c o n s t a n t  a n d  the  x axis (see Fig. 8). 

Consider  t h e  ve loc i t y  a t  Q due  to a po in t  v o r t e x  at  P of s t r e n g t h  co. L e t  rr(,) v(n) be ~ k , j ,  V k , j  

t h e  c o m p o n e n t s  of ve loc i ty  a t  Q paral le l  to t he  curves  ~ : cons t an t ,  ~ = cons t an t .  
Le t  hk,i = c (cosh ~ kA -- sin~ jA) 1/~ (hk,j ~ O) 

a = k - - m ,  

a ' = k + m ,  

b = j - - l ,  

T h e n  
b' = j + l .  

o) 

U(~} - -  2a r  sin (0 - -  6), 

V ( n )  _ _  r.o 
~,s -- 2Wr cos (0 - ~), 

w h e r e  sin 0 = c (cosh kA sin jA -- cosh mA sin lA), 

cos 0 = c (sinh kA cos jA -- s inh  mA cos 1A), 

C 
sin ¢ - -  ~Tk,s s inh kA sin jA,  

c 
cos ¢ = ~ s  cosh k~ cos jA. 

N o w ,  I/2 
c- ~ = (cosh kA sin jA --  cosh mA sin lA) 2 

+ (sinh kA cos jA  - -  s inh  mA cos 1A) ~ 

= (cosh aA --  cos bA) (cosh a'A + cos b'A). 
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Therefore: 

hk J TT(n) a)C2 , ~k,j = 2z~r 2 { --  (cosh kA sin jA  - -  cosh mA sin 1A) cosh kA cos jA  

and similarly 

Similar ly the  veloci ty  
point  P'  ( - -  re,l) is given 

+ (sinh kA cos jA  - -  sinh mA cos 1A) sinh kA sin jA } 

~ ( s inb;A sinbA } 
= ~ cos a'A + cos b'A - -  cos aA - -  cos bA ' 

hk j 1)_(. ) ~o{ sinh a'A sinh aA } 
, --k,s= 4~ cosha 'A + cosb'A + coshaA - - c o s b A  " 

at  the point  Q due to the  image vor tex  of s t rength  co' 
by:  

co'{ sin b'A sinbA } 
hk j TT(') = 

, "~k,i ~ coshaA + c o s b ' A  c o s h a ' A - - c o s b A  ' 

= --  co at the 

oJ' ) hk j v(-) f s inh aA sinh a'A 
, --k,j : ~ [cosh aA + cos b'A + cosh a'A - -  cos bA " 

Therefore the veloci ty  at  Q due to bo th  the vor tex  ~o at  P and the image vor tex  ~o' at P '  is given 
by:  

hkd rT(.) = co { sinbA sinb 'A ) 
~k,j ~ - - c o s h a A  - - c o s b A  - - c o s h a A  + c o s b ' A  

co' ~ sin bA 
+ ~ t - - c o s h a ' A  - -  cos bA 

sin b'A } 
cosh a'A + cos b'A 

v(~) ~o ~ sinh aA 
hkj 

, - - k , j = ~ [ c o s h a A  - - c o s b A  -- 
~o' f sinh a'A 

+ ~ / cosh a-~ - -  cos bA 

sinh aA } 
cosh aA -k cos b'A 

sinh a' A 
I 

cosh a'A + cos b'A ~" 

Now for a cont inuous dis t r ibut ion of vort ici ty,  the  vor t ic i ty  in the region, mA - -  ½A ~ ~ ~ mA 
+ ½A, lA - -  ½A ~ ~ ~ lA + ½A, is replaced b y  a point  vor tex  of s trength,  ~O(m")~ h~m,~ A s, at the 
point  (re,l). 

Let A sin bA 
Aa,b-- 4 = c o s h a A  - - c o s b A ' i f a & O ° r b = # O  

A sin bA 
Ba,b --  + ~ cosh aA + cos bA 

A sinh aA 
Da'b = -~- ~ cosh aA - -  cos bA ' if a :# 0 or b ~- 0, 

and  

A sinh aA 
Ea, b = -+ ~ cosh aA + cos bA 

Ao.o = Do,o = O. 
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T h e n  t he  v e l o c i t y  a t  t h e  p o i n t  (k,j) d u e  to  v o r t i c i t y  is g iven  by :  

hk y rr(~) ( - ~ o "° ) z° . ] 

(D,  ,,,~. _ i - -  E ,  _ m.j + ,) h~,,., o ~ } j  

in  w h i c h  

, 3  + 
m = m 0 m = 1 - l l 0 

• .  ( s ) '  

O)(mn)l : - -  03(n)m, l 

for  m n e g a t i v e  a n d  whe re  t he  effect  of o)±,,,~ has  b e e n  n e g l e c t e d  if m > m0 o r  l > lo. 

T h e  c o n t r i b u t i o n  to  t he  v e l o c i t y  a t  t h e  p o i n t  Q due  to  t h e  p o i n t  source  a t  S (Fig. 6) is g iven  by :  

U(.> ~o(1 Ay  n At) Ay - 
= ' c o s  ( 0  - ¢) 
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Therefore the  veloci ty  at O due to the  source flow is. given by :  

h TT(n) li 

k'Jvk'$---/1 l= ~ --l 1 Cks*~t°(l A y ' n  ' ] 

h IX(n) 
k,s-~,s _ Fks~ ~o(l Ay, n ~it) 

A l = - h ' ' 

(10)' 

Hence the resul tant  veloci ty  at  Q due to bo th  the vor t ic i ty  and  source flow is given by:  

h IF(n) . -mo ~ lo 

k,~_~k,j __ (m =~l-- mo -~-mEi)'l= :E-- lO (Ak-m'J-I - ~ k -  m'J + l)h2l'l (O~!l 

a - A A +l=~_ Ckd, lUo(1 y , n  t) 

Ty(n) - 1 m o \ l o 

ZJ i ( m =  --mo m =  1 l =  --lo 

11 

+ =~ F k,s,z ~o(l /1y, n ~it) 

. .  (11)" 

6.4. Finite-Difference Equa t ions . - -When  the finite difference approximat ions  corresponding 
to (6) are subs t i tu ted  in equat ion (3)', one obtains:  

(,o(n + 1) . . . .  (n) F ( U ( n )  V(n) (D(n)~ k,j t~'k,j "-~ K,J~ K,J~ K,J] • " 

in which K takes the  values k 4- 1, 1~, 

(7)' 

j takes  the  values j :g: 1, j ,  

and where 

TT(n) 
FlU(n) V(,) co(n ) ~ Af hk_ ~,s, ,-'k- ~,s ~o(#) 

\ .K, JJ .K,J~ K,J] = ~ A 1,j 

THn) ,~'k + x,i  "-" k + 1,y 

A 

V(n)  

/1 ¢ % j  - 1 - -  

h k  j + I I'r(n) } 
, ~k_,j + 1  co(ff,~ " + 1  

F hk,s A ~ t ~ + , , J  + 1,s ~ , s + ,  + ~ , s - ,  - ~ ~,jj  • 

Also, from equat ion (12), the  vor t ic i ty  at  points  on the  bounda ry  is given by:  

1 h0~. v~0'3 o/0~,} == ~o(C s in jA,  n At) + x~- ' ' 
h0,s A 

. .  (12) '  

6.5. Arrangement of Stores . - -The constant  coefficients, Aa,b, Ba,b, Ck, is, Da,b, Ea,b, Fk,j,u 
h~,s, 1/h~,i, which were used repeatedly  were first calculated and  kept  pe rmanen t ly  in the  
slow-speed magnet ic  store. They  were also obta ined on punched  paper  tape and  could be quickly  
' wr i t ten  ' into the  store at  the beginning of a run. 
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For each value of a, 410 + 1 values of each of Ao,b, Ba,b, Da.b, Ea,b, were required (Only 
2lo + 1 of these are independent because of the symmetry relations. 

X2Ja, - -  b . = '  - -  Aa,b, 

B a , -  b = - -  Ba,b, 

D a , - b  = @ Da,b, 

Ea, -b  = @ Ea, l,). 

For each value of k, (210 + 1) (11 + 1) independent values of Ck,s.~ and Fk,s,~ were required 
(We have 

Ck,-s,z + Ck,s,~, 

F ,-s,z = + 

Short lines, consisting of 20 binary digits (which is approximately equivalent to 6 decimal 
digits) were used throughout. Since the magnetic store is divided into tracks (These sections of 
the store are such that  transfers to and from the magnetic store can be carried out in complete 
tracks or in complete half-tracks) consisting of 128 short lines, the values l0 = 5, 11 = 4, were 
chosen. This enabled Aob, Bah, Da~, E~.~, for all necessary values of b to be stored on one 
half-track for each value' of a'. Also Ck,i,t, Fk,ia, for all necessary j and l were stored on one 
full track for each value of k. 

At each. step in the integration it was also desired to keep the variables, 

~Q(n + 1) 
e)(g}, k,j , 

]¢k,y TT(n) hk i IZ@ 
, ' J k ' i  , - - k , j  

A ' A ' 

in the magnetic store. 

For each value of k there were 11 of each of these, which together with the 6 independent 
values of h~,i and 6 independent values of 1/h~, s (We have hk,-i = hki) were also stored 
on one half-track. 

7. Results.--7.1. List of Computations Done: 
(a) The starting of a symmetrical jet at Reynolds number 100. 120 time steps; 
(b) The starting of a symmetrical jet at Reynolds numbers 50, 100, 150, 300. 60 l ime steps. 
(c) The perturbation at frequencies 5, 10, 15, of a jet at Reynolds numbers 50, 100, 150, 

300. 60 time steps. 
For each Reynolds number, the calculations (b) and (c) were done simultaneously, the sym- 

metrical jet being given by % and the perturbation by ~o u (see section 5.1). 

7.2. Numerical Values.--The equation of motion, (3), may be put  in non-dimensional form 
as follows. 

Let x == dx' where d = constant = width of orifice 

y = @ '  

u = Uu' where U = constant = average velocity at the orifice 
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v = Uv' 

t'. t---- U 

Then  ~o - -  (U/d)o/  where  ~'  ---- (0v'/ax')  - -  (3u'/Oy').  

Then (3) becomes: 

e(u'.') a(v%') 
+ 4-  - -  ct Ox' Oy' 

1 
- 4 -  Oy',  / ' 

where  R -~ Ud/v is the  Reynolds  n u m b e r  of the  flow. 

Throughout ,  the values d = 1, U ---- 16.54, were taken.  

Also uo(y,t) was given by:  

~to(y,t) = Uf(t) g(y), . . . . . .  

where  
g(y) = 1.5 --  6 9  if lY] 4 1 

(43) 

and  

0 if ]y] ~ 1 

f(t) = 32t 2 if 0 ~ t  ~< O. 125, 

l - -  32(0.25 --  t) ~ if O. 125 ~ t ~ O. 25, 

1 if 0 .25  ~ t .  

The parabolic dis t r ibut ion of velocity,  g(y), is wha t  is ob ta ined  for a s t eady  l aminar  viscous 
flow be tween  two infinite parallel  planes. 

The  m a x i m u m  veloci ty  is reached  in the  t ime t aken  for the  fluid in the e n t r y  channel  (moving 
wi th  velocity,  Uf(t) ) to t rave l  a dis tance 2 .07  diameters .  

The coefficient of viscosity,  v, = 0. 1641 so t ha t  R = 100.8. This will be referred to as 
' R = 100 '. Results  were  also ob ta ined  for ' R = 50 ', ' R = 150 ', ' R = 300 ' which  are for 
v = 2, 2/3, and  1/3 of this value respect ively  and  wi th  the  same b o u n d a r y  conditions. 

The  mesh  points  were t aken  as x = c sinh kA cos jA ,  y = c cosh kA sin jA ,  where  k, j are 
integers and  c = 5.319, A = 0. 4707. Hence  the  confocal ellipses and  hyperbolae ,  comprising 
the mesh lines, have  their  two common  loci on the  y axis at  a dis tance 5 .319d from the  origin. 

Also k = 0, j = 2 gives the  point  x = 0, y = d/2 at  the edge of the  orifice Ay = ~. 

The values of ~0(c s in jA,  t)/f(t) in equat ion  (12)' were t aken  as 4- 50.00 f o r j  = ± 1, ± 43.75 
for j = 4- 2, + 0 .00  otherwise. 

The values of Uo(j Ay, t)/f(t) were 24.29 for j = 0, 18.09 for j = 4- 1, 2 .84  for j ---- 4- 2, 
0 .00  otherwise. 

At = 0.01 was used th roughout .  

7.3. S tar t ing  of a Symmetr ical  J e t . - - A t  first the veloci ty  is approx ima te ly  radial,  being every-  
where  di rected along the  fine th rough  the  centre  of the  orifice. Since ve ry  li t t le vor t ic i ty  has 
spread into the  half-plane, the veloci ty  is almost  ent i re ly  given by  the  source flow. The ve loc i ty  
near  the  wall  is also di rected away  from the orifice and  qui te  a large value of the  vor t ic i ty  is 
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genera ted  at the  wall. Since this vort ic i ty  can only spread into the half-plane by  viscous diffusion 
(as the  velocity component  perpendicular  to the  wall is zero), it remains near  the wall and conse- 
quent ly  has litt le effect on the flow. Similarly the  velocity component  parallel to the  boundary  
generates  vort ic i ty  at the  orifice (at the points (0, ~ 1), (0, i~ 2) and for t ~< 0" 07 this amounts  
to approximate ly  half the  values given for the  vort ic i ty  at these points. The magni tude  of the 
contr ibut ion to the  v o r t i c i t y a t  the  boundary,  given by  enforcing the  condit ion v = 0, continues 
to increase with t ime and, for the  points considered (which are near  the  origin) reaches a m a x i m u m  
about  t = 0.15. The effect on the velocity at the  boundary  due to the  vor t ic i ty  which is 
spreading into the  half-plane is now increasing at the same rate as the  effect of the increasing 
flow at the en t ry  (Graph 1). 

At t ---- 0.25, when  Uo(y,t) has reached its final s teady value, the effects at  the  boundary  of the  
vor t ic i ty  in the  half-plane and of the  source flow are approx imate ly  equal and opposi te ,  the 
veloci ty along the wall having  changed to an inflow towards the. orifice at the  points (0, i 3) 
and (0, ± 4) (Graph.2). There is a s tagnat ion point  on the wall be tween the points (0, 4) and 
(0, 5). This s tagnat ion point  will always exist at  some point  on the  wall. The veloci ty com- 
ponent  v at any t ime at a point  (0, r) on the wall a dis tance r from the origin is given by: 

v _ 2 j0 J0 x + - 2 J0 J0  + , . .  . .  (45)  

2 f~ f  ~ ~xyrdx@ J 
= - J0  { x  + (r - {x  + (r + 

K 
r ' ~  75- a s  g - - +  0 0  ~ 

where K = constant ,  assuming the integral  (45) to be uniformly convergent  with respect to r. 

However,  the  velocity due to the  source flow ~-~ M/=r as r -+ oo where: 

( y ) d y  M = u0 ,t . 
- - o o  

For sufficiently large r the  la t ter  predominates  and since M is posit ive the  velocity is directed 
outwards  from the  orifice. 

At t ---- 0 .25 the  flow first begins to take  up the ' mushroom ' form which characterises it from 
then  on (Graphs 2 to 5). The vor t ic i ty  moves out in a ' front ' consisting of a large amoun t  of 
vorticity.  Beyond  the  front the  radial  veloci ty of the  source flow is d iver ted  away from the  line 
of s y m m e t r y  y = 0, and just  beh ind  it are produced quite large velocities directed towards the  
line of symmetry .  Wi th in  the front  there is a s tagnat ion point  where the  fluid is ins tantaneously  
at rest (and which at t ----- 0-25 is near  the s tagnat ion point  on the wall). 

Hence the  front consists of two large ' whirls ', one on either side of the  axis Of symmetry ,  
similar to a vor tex pair in a perfect  fluid. The fluid particles which make  up these front whirls 
are cont inual ly  changing since the streamlines are not  particle paths. 

The front whirls leave beh ind  them an almost  s teady flow. From t = 1.00 to Z = 1-20 the 
veloci ty and vor t ic i ty  at no point  changed by  more than  5 per cent of the  average values at the  
orifice for x ~< 3 diameters,  and from t = 1.19 to t = 1.20 the  vort ic i ty  in this region changed 
by  less than  0.1 per cent. This s teady flow consists in the jet  cont inuing from the  orifice un- 
changed except  tha t  as x increases more of the neighbouring fluid is accelerated from rest to 
move  with the  je t ,  which increases in velocity as it widens. The high veloci ty gradient  present  
in the  jet  at  the  orifice diffuses away as the  fluid moves downst ream (cf. Bickley's  jet  shown in 
Graph 6). .- 
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The simplification of omitting the velocity calculation was first introduced in the 37th step, 
the velocity being calculated only in the even numbered steps for 36 ~< n ~ 84, and only if n 
was divisible by  4 for 84 ~< n ~< 120. The maximum error introduced in the vorticity by omitting 
the velocity calculation in s consecutive steps (less than 4 per cent (section 3.3) ) occurred in the 
front whiffs and this error decreased, though not alwgys monotonically, as one passed to points 
nearer the boundary. If the error in the points k = kl, -- 5 ~ j ~< 5, tha t  would have been 
introduced through only calculating the velocity every 2sth step became less than 1.5 per cent 
no further velocities (k < kl) were calculated in that  step. Usually this meant that  the velocity 
was not calculated at 1/3 of those points, where the velocity was required. The error introduced 
in doing this was probably less than 1.5 per cent and certainly less than 4 per cent. However, 
every second time the velocity was calculated it was calculated at every point of the mesh behind 
the front whiffs. 

7.4. Effect o[ Reynolds Number.--Results were also obtained for a symmetrical jet at Reynolds 
numbers 50, 100, 150, 300. These calculations were actually performed with a small un- 
symmetrical pertm-bation superimposed, the symmetrical flow being given by: 

k,J] symmetrica I ~ -  ~ t ~  k, j 

In these calculations the velocity was computed in every step. , 

For Reynolds number 100, the results obtained in this way agree to 4 significant decimal digits 
with the results obtained previously up to t = 0.36. From then on differences appear, since in 
the first calculation the velocity was then only computed every second step. For t = 0.60 this 
difference is greatest at the points (11, ± 4) being there 8 per cent of the average vortici ty at the 
orifice. 

These flows were also s tar ted  from rest and with the same boundary conditions, (4) and (5), 
the different Reynolds numbers being obtained by  using different values for the coefficient of 
viscosity, v. Calculations were carried Up to t = 0.60. 

The velocity and vorticity distributions show little variation with Reynolds number in the 
time when  the velocity at the orifice is increasing (t ~ 0.25). After t = 0.25 the jet widens 
more for lower Reynolds numbers, the velocity in the jet becoming correspondingly smaller. 
At t ---- 0.60 the velocity for Reynolds number 50 is much smaller than for the higher Reynolds 
numbers, and the large values of the vorticity at the orifice rapidly decrease as the fluid moves 
downstream (Graph 7). The front whirls at t = 0"60 also shown considerable variation with 
Reynolds number. For a lower Reynolds number, the front whirls: 

(a) do not travel so far downstream 
(b) rotate less rapidly 
(c) have the smaller vorticity comprising them spread over a larger area. The velocity of 

the inflow near the wa!l decreases as the Reynolds number increases. 

Except for Reynolds number 50, the vortici ty distributions show periodic variation with k 
along the lines j = ± 1 (Graphs 13 and 14). The amplitude of these oscillations increases with 
Reynolds number and for R = 300 also increases With time. This is at t r ibuted to the instabil i ty 
of the finite-difference equations (section 4.1). For R = 300 it cannot be a feature of the actual 
flow (which is the solution of the differential equation) since a maximum value of the vorticity 
at a point not on the boundary must decrease with time. (In cartesian co-ordinates 

Da~ aco a~o aeo 
'Dr = a--7 + u Fx + v a7 

= + a y , /  

< 0). 
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Although the amplitude of these oscillations in the vorticity distribution is large, the effect on 
the velocity is small. Oscillations in the velocity are only really noticeable for R = 300 when 
the vortici ty variation along the line d = 1 is of the same order as the average vorticity at  the 
orifice. 

7.5. Perturbations.--The perturbations were introduced at t = 0.25 so that  at t = 0.25, 
cou = 0 everywhere. In the next 5 steps F(t) > 0 and positive vorticity is convected along the 
lines j = 4- 1. This positive vorticity increases the velocity component v at points further from 
the orifice which causes the appearance of negative values of m u at points J = 0, 4- 1, where the 
vorticity gradient in the y direction is large and positive. Also, this positive vorticity produces 
a negative velocity component v near the boundary which generates negative vorticity. 

More information is obtained by examining the three Fourier components of the perturbation, 
~o,. Separate computations could have been done, each with a single frequency, but  since the 
amplitudes used were small (for the 3 frequencies in phase the value of o), at the orifice is 1 per 
cent of the average vorticity) the method adopted (using harmonic analysis) will give the same 
results more rapidly. 

For Reynolds numbers 50, 100, 150, 300, C, and % were calculated and Cq are given in Graphs 
17 to 19. Along J = 0, 4- 1, 4- 2, Cq is seen to increase with Reynolds number. This is par t ly  
due to the fact tha t  ~/o~,/~,j~(') increases with Reynolds number. Except for the two higher 
frequencies at Reynolds number 50, along d -- 0, 4- 2, Cq also increases with k for k < 8 which 
is behind the front whirls. Since ~)~"} = 0 for large k, C~ = 0 for large k. 

At most points, C1 > Ca > Ca showing that  the lowest frequency oscillation (fl = 5) is least 
stable. For Reynolds number 50, the higher frequency oscillations (10 and 15) are quickly 
damped out as the fluid moves away from the orifice. 

The definition of eq by equations (44) is not unique since if eq satisfies equation (44), so also does: 

where ~. is any integer. 

0~ ! 

The particular value of % was chosen so that :  

+ +,,; > 

1 
(b) o ) > - - 

5q" 

% = (1/c)x + d, where 
oscillation. The value 

From the graph of eq it was seen that  % was approximately a linear function of x. Let 
c, d are constants. Then c is the phase velocity of the qth of frequency 
of c obtained from the graphs was: 

j = o  d = l  R 

q - - 1  q = 2  q = 3  q = l  q = 2  q = 3  
12 15 21 11 10 14 50 
13 13 15 12 10 17 100 
13 13 14 11 11 17 150 

11 11 300 

which have averages of 14 and 12. The third frequency of oscillation appears to travel more 
quickly than the other two, the average value of c for it being 17 for d ---- 0 and 15 for d = 1. 

The phase velocity is less than the fluid velocity, the latter being 24 for j = 0 and 18 for d = 1 
at the orifice. 
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LEGEND 

Graphs 1 to 5. The starting of a symmetrical jet at Reynolds number 100. Because of tile 
symmetry  only one half of each graph is given. 

(a) Contours of equal vortici ty (~o = 1, 10, 20, 30, 40, 50) are shown in the upper half 
of the graphs. Tile line of symmetry,  OX, is the contour co ---- 0. 

(b) The streamlines are shown in the lower half of the graphs. In drawing these an 
a t tempt  was made to space the streamlines inversely as the velocity magnitude. 
Tile line of symmetry,  OX, is one of this system of streamlines. 

Graph 1 is for t = 0.15, 

Graph 2 is for t = 0.25, 

Graph 3 is for t ---- 0.45, 

Graph 4 is for t = 0.80, 

Graph 5 is for t = 1-20. 

Graph 6. The steady flow of a jet at Reynolds number 100 as given by Bickley's solution. 
Vorticity contours and streamlines are drawn as in Graphs 1 to 5. 
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Graphs 7 to 10. The  s t a r t ing  
con tours  and  s t reaml ines  

Gr a ph  

Gra ph  

Graph  

Graph  

of a s y m m e t r i c a l  jet  for different  Reyno lds  numbers .  
a t  t = 0 .60  are d r awn  as in Graphs  1 to 6. 

7 is for Reyno lds  n u m b e r  50, 

8 is for Reyno lds  n u m b e r  100, 

9 is for Revno lds  n u m b e r  150, 

10 is for Reyno lds  n u m b e r  300. 

Vor t i c i ty  

Graph 11. Vor t i c i ty  agains t  t ime  at  po in t s  on the  line j" = 1 for the  s t a r t ing  of a sym m et r i c a l  
je t  at R e y n o l d s  n u m b e r  100. 

k = 0 is x == 0 .0 ,  y = 0 .25  (at the  orifice), 

4 i s x =  1.0, y = 0 . 2 5 ,  

8 is x --  2 .0 ,  y = 0 .27 ,  

12 is x ---- 3-2,  y = 0 .29 ,  

16 is x = 4 .4 ,  y = 0 .32,  

24 is x = 7 .4 ,  y --  0 .43.  

k ___ 

k =  

k =  

k =  

Graph 12. Vor t i c i ty  aga ins t  t ime  at  po in t s  on the  lines 2" = 2 and  j = 4 for t he  s t a r t ing  of a 
symmetrical jet at  Reyno lds  n u m b e r  100. 

, 

0 is 

j z 

k =  x - O 'O,y  = 

x =  l ' 0 ,  y - -  

x -  2"0, y = 

x = 3 .2 ,  y - :  

x = 4 . 4 ,  y = 

x = 7 .4 ,  y = 

0" 5 (at the  edge of the  orifice), 

0 .5 ,  

0-5,  

0 .6 ,  

0 .6 ,  

0 .9 .  

k =- 41s 

k :  81S 

k = 121s 

k = 161s 

k = 24 is 

j----4, 

k =  0 

k =  4 

k- - - - . 8  

k =  12 

k =  16 

k = 24 

is x = 0 .0 ,  y --  1 .0  (on the  wall), 

I S X =  1.O,y = 1.0,  

is x = 2 .0 ,  y = 1.1, 

l s x = : 3 " l , y =  1.2,  

l s x = 4 " 3 ,  y =  1"3, 

I S X = 7 " 2 ,  y =  1.7.  

Graph 13. Vor t i c i ty  agains t  t ime  at po in t s  on the  line j = 1 for the  s t a r t ing  of a s y m m e t r i c a l  
jet  at  Reyno lds  n u m b e r  50. 

Graph 14. Vor t i c i ty  agains t  t ime  at  po in t s  on the  line j = 1 for t he  s ta r t ing  of a s y m m e t r i c a l  
je t  at  R e y n o l d s  n u m b e r  150. At  Reyno lds  n u m b e r  300 the  vor t i c i ty  at  po in t s  on j = 1 
showed  b{gger oscil lat ions wh ich  increased  in a m p l i t u d e  as t increased.  

Graph 15. Vor t i c i t y  agains t  t ime  a t  po in t s  on the  lines j = 2 and  j = 4 for t he  s ta r t ing  of a 
s y m m e t r i c a l  je t  at  R e y n o l d s  n u m b e r  50. 
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Graph 161 Vorticity against time at points on the lines 2" = 2 and 2" = 4 for the starting of a 
symmetrical jet a tReyno lds  number 150. At Reynolds number 300 the vorticity at points 
on j = 2 was further increased, and at points on j =  4 was further reduced. 

Graphs 17 to 19. The amplitudes, C1, C2, Ca, of the unsymmetrical sinusoidal oscillations in the 
vorticity for the perturbed jet plotted against k. 

3 

= Co + 
q = I  

Cq sin 2uqf(t -- O. 25 -- e~), 

The vorticity, ~os, for the corresponding symmetrical jet at t = 0.60, is also given for 
comparison (see Section 5.2). Away from the center-line of the jet (onj  = 3, 4 and 5) these 
amplitudes were found to be small. 

Graph 17 is for Reynolds number 50, 

Graph 18 is for Reynolds number 100, 

Graph 19 is for Reynolds number 150. 

For Reynolds number 300 the graph of vorticity against k for points on j = 1 for the 
symmetrical jet showed very large oscillations. The perturbation amplitudes were also 
larger. 

Graph 20. Critical stability curves. The time interval ratio, A l/Ax, for various Reynolds 
numbers (based on the mesh width, A x). 

R~ = The Reynolds number of the mesh × 4 

u~X 
- -  4 .  

u A t  L - -  2Ax"  

For larger time intervals the difference equation is unstable and unbounded (see Section 4.2). 

(a) Forward time-difference (equation (7)) 

(b) Improved time difference (equation (13)) 

(c) h(X)/X which was used to determine graph (b) 

(d) Rm = 32L.  

(c) is also a critical stability curve (R,,/L) 
equation (equation 13) ). 

for the improved time difference 
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