ROYAL #

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL REPORTS AND MEMORANDA

Calculated Velocity Distributions and Force Derivatives for a Series of High-Speed Aerofoils

By

C. S. SINNOTT, B.Sc., of the Aerodynamics Division, N.P.L.

Crown Copyright Reserved

LONDON: HER MAJESTY'S STATIONERY OFFICE

1957

NINE SHILLINGS NET

Calculated Velocity Distribution and Force Derivatives for a Series of High-Speed Aerofoils

By

C. S. SINNOTT, B.Sc., of the Aerodynamics Division, N.P.L.

Reports and Memoranda No. 3045* December, 1955

Summary.—The Polygon method of Woods² is used to calculate the velocity distribution over a number of twodimensional aerofoils at low incidence, subcritical flows only being considered. Lift slopes and aerodynamic centres at zero lift are also calculated.

Some comparisons with experimental results are made, and these show good agreement at zero incidence.

1. Introduction.—A series of tests on a number of high-speed aerofoil sections is being undertaken by the High Speed Laboratory of the Aerodynamics Division, National Physical Laboratory. In this report some theoretical results for these aerofoils are presented and discussed.

The 'Polygon' method of Woods¹ (1950) is used as this theory has previously been shown to give satisfactory results at high subsonic Mach numbers in the absence of local regions of supersonic flow. Application of the method is fully described by Woods in Ref. 2; physically it involves the replacement of an aerofoil by a finite number of circular arcs, on each of which it is assumed that the product of the radius of curvature and the velocity is constant. A further approximation, necessary to linearize the compressible-flow equation, is discussed in section 2.2.

Calculations have been made, for symmetric aerofoils of 10, 6 and 4 per cent thickness, derived from two basic sections, the RAE 102 and 104 ' rooftop ' aerofoils whose co-ordinates are given in Ref. 3 (Pankhurst and Squire, 1952). The completed programme is given in section 3.

Solutions for incompressible flow and for a Mach number of 0.70 have been obtained for each aerofoil at incidences of 0, 1, 2 and 4 deg. Velocity distributions for the thinner aerofoils are given at higher Mach numbers, but in no instance is the estimated critical Mach number of the aerofoil at zero incidence exceeded. In cases where the velocity increments due to incidence lead to supersonic flow the remaining subsonic part of the distribution is calculated; this may have little significance if the supersonic region in the corresponding real flow terminates in a shock wave.

The velocity distributions, which are obtained directly as the results of the Polygon method, are given in Tables 2 to 5; the curves of C_p or p/p_0 against x/c shown in Figs. 3 to 14 are derived from these by graphical methods. The results are discussed in Sections 4 and 5.

Comparisons with measured pressure distributions for the 6 per cent RAE 104 aerofoil are shown in Figs. 23, 24 and 25, and for the 10 per cent RAE 102 aerofoil in Fig. 26. The results for the latter aerofoil at zero Mach number and incidence are also compared with those given in Ref. 3; some comments on this comparison will be found in section 4.

* Published with permission of the Director, National Physical Laboratory.

The velocity distributions have been used to calculate the lift slopes and aerodynamic centres for zero incidence and these results are shown in Table 6.

2. Theory.—2.1. Derivation of Basic Equations.—In this section a short account of the basic mathematical theory of the Polygon¹ method is given.

With δs and δn orthogonal, the equations of the two-dimensional flow of an inviscid compressible fluid may be written⁴:

$$\frac{\partial\theta}{\partial n} + \frac{(1 - M^2)}{q} \cdot \frac{\partial q}{\partial s} = 0$$

$$\frac{\partial\theta}{\partial s} - \frac{1}{q} \frac{\partial q}{\partial n} = 0$$
, ... (1)

where (q, θ) defines the velocity vector. Take ∂s in the stream direction; then from the definition of the velocity potential and stream function, ϕ and ψ respectively, *viz.*,

equations (1) become:

and

where

Put

$$m = \frac{\rho_0}{\rho} \cdot \beta \cdot \dots \cdot \dots \cdot \dots \cdot \dots \cdot \dots \cdot \dots \cdot (4)$$

With these substitutions equations (2) may be written:

$\left(\frac{\partial \theta}{\partial \psi} + m \frac{\partial r}{\partial \theta} = 0 \right)$	
$\frac{\partial \theta}{\partial \phi} - \frac{1}{m} \frac{\partial r}{\partial \psi} = 0 \int dt$	
$rac{\partial}{\partial \phi}\left(m\;rac{\partial r}{\partial \phi} ight)+rac{\partial}{\partial \psi}\left(rac{1}{m}\;rac{\partial r}{\partial \psi} ight)=0\;.$	·

whence

This equation is linearized by replacing m by m_{∞} , its value in the free stream, which gives:

A solution of equation (5) is derived as an integral equation, from which r can be evaluated for a particular aerofoil and Mach number by an iterative method. Incidence effects can then be calculated from the relation:

where γ is a parameter defining position on the aerofoil.

t

The application of the method is described in Ref. 2, where quantities for the numerical solution of the derived integral equation are tabulated. The results of additional calculations for $M_{\infty} = 0.70, 0.80$ and 0.85 are given in Table 1 of this paper.

2.2. Discussion of the Approximation $m = m_{\infty}$.—A point of interest arises from the approximation $m = m_{\infty}$, used to obtain the linearized equation (5). Although it would appear to be consistent to use this same degree of approximation in calculating the relation between q/U and r, it is not necessary to do so; for from equations (3) and (4):

$$r = \int_{0}^{L} m \frac{\rho}{\rho_{0}} dL , \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad (7)$$

which can be integrated exactly. However, von Kármán⁵ (1941), when obtaining a compressibleflow solution in terms of the corresponding incompressible flow, defined r by:

Woods found that results obtained with equation (7) appeared to overestimate compressibility effects when compared with experiment, whereas those obtained with equation (8) underestimated the effects. He considered the two definitions by a comparison between a compressibility-correction formula derived from equation (7) and the well-known Kármán-Tsien rule. The comparison with experimental results led him to choose the definition:

$$r = \frac{1}{2} \int_{0}^{L} (m + m_{\infty}) \frac{\rho}{\rho_{0}} dL . \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad (9)$$

However, as is shown in Fig. 13 of Ref. 5, the Kármán-Tsien rule does not give the same results as equation (8), particularly at high Mach numbers. Moreover, a modification of the pressure distribution at zero Mach number by using such formulae implies no change in the equipotentials due to compressibility. Therefore, to examine thoroughly the value of the relations (7), (8) and (9) between q/U and r, all three have been used with the Polygon method to calculate the pressure distributions over a given aerofoil (6 per cent RAE 104) at Mach numbers of 0.70 and 0.80. The results are shown in Figs. 1 and 2 together with two sets of experimental results; these were obtained with transition from a laminar to turbulent boundary layer fixed near the leading edge, and with transition free. At $M_{\infty} = 0.70$ the difference in the calculated pressure distributions due to the use of equations (7), (8) and (9) are small and less than measured boundary-layer effects. At $M_{\infty} = 0.80$, however, the differences are significant and it appears that equation (9) gives the best agreement with the mean of the experimental results for zero incidence. Some results at incidence are also shown in Figs. 1 and 2 to illustrate the comparison of the three definitions of r for high values of C_p ; they are not strictly comparable with the experimental results because viscous effects become important at non-zero lift.

The definition of r given by equation (9) has been used in all the calculations for this paper other than those discussed above. It does of course introduce an element of empiricism into the results, but this appears to be justified.

3. Results.—The following table gives the aerofoils and Mach numbers for which velocity distributions have been calculated by the Polygon method. In each case velocity distributions at 0, 1, 2 and 4 deg incidence are given in a separate table and curves of C_p or p/p_0 against x/c are drawn. The table below shows where these are to be found.

Aerofoil	${M}_{\infty}$	Table	Figure
10 per cent RAE 102	0 0 • 70	2a 2b	3 4
6 per cent RAE 102	$\begin{array}{c} 0\\ 0\cdot 70\\ 0\cdot 80\end{array}$	3a 3b 3c	5 6 7
6 per cent RAE 104	$\begin{array}{c} 0\\ 0\cdot 70\\ 0\cdot 80\end{array}$	4a 4b 4c	8 9 .10
4 per cent RAE 104	$ \begin{array}{c} 0 \\ 0.70 \\ 0.80 \\ 0.85 \end{array} $	5a 5b 5c 5d -	11 12 13 14

Summary of Calculations

In addition to these results some have been taken from Ref. 2 for the 10 per cent RAE 104 aerofoil to illustrate thickness effects in Figs. 16, 17 and 18.

The plotted pressure-ratio distributions were calculated from the relations:

$$C_{p} = \left\{ \left[1 - 0 \cdot 2M_{\infty}^{2} \left(\left(\frac{q}{U} \right)^{2} - 1 \right) \right]^{3 \cdot 5} - 1 \right] / 0 \cdot 7M_{\infty}^{2} \right\}$$
$$\frac{p}{p_{0}} = \left(0 \cdot 7M_{\infty}^{2} C_{p} + 1 \right) / \left(1 + 0 \cdot 2M_{\infty}^{2} \right)^{3 \cdot 5}$$

where the ratio of specific heats for air is taken as 1.4. The first relation was used to construct a graph of C_p versus q/U for a prescribed M_{∞} ; values of C_p corresponding to the calculated velocities were then read off and p/p_0 calculated from the second equation.

Force derivatives were calculated from the velocity distributions at zero incidence by the method described in section 5 of Ref. 2. In Table 6 the lift and pitching-moment derivatives and aerodynamic centres are given for the aerofoils and Mach numbers listed above.

4. Discussion and Analysis.—4.1. Pressure distributions.—The pressure distribution curves of Figs. 3 to 14 show the effect of incidence for a given aerofoil and Mach number; all follow a similar pattern and call for little comment. It should be noted that for the curves where a supersonic peak is omitted, the remaining subsonic distribution is calculated on the assumption of shock-free flow. The designed 'roof-top' shape of the pressure distribution is evident, but the curves have not been drawn with discontinuous gradients at 0.4c for the RAE 102 and 0.6c for the RAE 104, where these aerofoil profiles have irregularities in curvature. To do so would imply a more exact solution than is given by the Polygon method, since an important feature of the method is the assumption of constant qc/UR over a selected number of discrete intervals of the chord. That the singularities have only a local effect is shown in Fig. 15 by the comparison for the 10 per cent RAE 102 aerofoil with results obtained in Ref. 3 by Goldstein's Approximation III. Measured pressure distributions are in any case modified by the boundary layer and show no discontinuities in gradient. Figs. 16 and 17 show the effect of thickness on the pressure distributions for the RAE 104 profile at 0 and 2 deg incidence in incompressible flow. It is noticeable in Fig. 16 that, except in the neighbourhood of the leading and trailing edges, C_p is very nearly proportional to thickness at zero incidence; a similar relation is evident for t/c < 0.06 in the p/p_0 curves of Fig. 18 at $M_{\infty} = 0.70$.

Fig. 19 illustrates the effect of Mach number on the pressure distributions for the 4 per cent RAE 104 aerofoil at zero incidence, and Fig. 20 that at 2 degrees incidence. Some of these results and those for the 6 per cent RAE 104 aerofoil are presented in a different form in Fig. 21. Here C_p for a point on the upper surface of the aerofoils is plotted against Mach number. Curves for various values of $C_{p,0}$ are given by using the results for different incidences and aerofoil thicknesses. The first point of interest arises from curves D and E which compare the theoretical change in C_p with M_{∞} for two different values of t/c at points on the aerofoils giving approximately the same $C_{p,0}$. The similar variation with Mach number supports the remarks on thickness effect earlier in this section. Curves A, B and C are compared with values of C_p calculated from the approximate formula:

$$C_{p} = \frac{1}{\beta_{\infty}} C_{p0} - \frac{1}{2\beta_{\infty}^{2}} \left(1 - \beta_{\infty} + 0 \cdot 3 \frac{M_{\infty}^{4}}{\beta_{\infty}^{2}} \right) C_{p0}^{2} + 0 (C_{p0}^{3}) , \qquad \dots \qquad (10)$$

which is derived in Ref. 2 on the basis of the semi-empirical relation between q/U and r given by equation (9) in section 2.2 of the present paper. These results are used to extrapolate curve C past $C_{p \text{ sonic}}$ so as to obtain an estimate of the critical Mach number for zero incidence. This is found to be 0.846, which compares well with the measured value of 0.844, but it should be noted that sonic velocity is first attained experimentally at x = 0.6c. In Table 7 the value estimated from the Kármán-Tsien rule is 0.853; both this and the other values of $M_{\rm crit}$ given in Table 7 were estimated from the Polygon-method results for incompressible flow. The chief purpose of Fig. 21 is to show that the variation of C_p with M_{∞} is similar for a considerable range of C_{p0} and independent of incidence, and that the approximate compressibility formula (10) compares well with the exact Polygon method for $M_{\infty} < (M_{\rm crit} - 0.05)$.

A further comparison between the Polygon method and equation (10) is shown in Fig. 22. In this case the complete pressure distributions for the 4 per cent RAE 104 aerofoil at $\alpha = 0$ are given for $M_{\infty} = 0.80$ and 0.85; results obtained by the Kármán-Tsien rule are also shown. Equation (10) slightly underestimates the results of the Polygon method at $M_{\infty} = 0.85$, the Kármán-Tsien results being lower still; the difference in the shape of the pressure distributions at $M_{\infty} = 0.85$ follows from the application of the compressibility rules to the calculated incompressible-flow pressure distribution. However, at $M_{\infty} = 0.80$ differences introduced in this way are very small.

The preceding discussion of thickness and compressibility effects suggests a simple method for the estimation of compressible-flow pressure distributions for families of aerofoils:

- (a) The use of the Polygon method to calculate the incompressible flow for one member of the family
- (b) From (a) a linear relation with respect to thickness/chord ratio leads to values of $C_{p,0}$ for any (small) value of t/c
- (c) Equation (10) may then be used to calculate the C_p distribution at a prescribed freestream Mach number
- (d) The function r (section 2) can be obtained from the values of C_p , and equation (6) used to estimate incidence effects. For this step it is sufficient to assume that the relation between the chordwise parameters γ and x/c is independent of thickness and Mach number.

Application of this scheme to aerofoils less than 10 per cent thick for Mach numbers less than $(M_{\rm crit} - 0.05)$ should give results which do not differ significantly from those obtained by the exact Polygon method.

4.2. Force Derivatives.—In Fig. 27 the calculated lift shapes for the RAE 104 aerofoils are shown so as to illustrate the effects of thickness and Mach number. The derivative $\partial C_L/\partial \alpha$ is divided by $2\pi/\beta$ so that the quotient is a measure of thickness effect at a given Mach number or the effect of Mach number, in excess of that given by the Glauert law, at a given thickness.

The values of the position of the aerodynamic centre of the aerofoils, given as a fraction of the chord measured from the leading edge, vary little with thickness or Mach number. The results for the RAE 102 aerofoils show a slight forward movement with decrease in thickness or increase in Mach number; the same thickness effect is apparent from the RAE 104 values but these do not vary significantly with Mach number.

5. Experimental Results for the 6 per cent RAE 104 and 10 per cent RAE 102 Aerofoils.—Tests have been made on the 6 per cent RAE 104 aerofoil in the N.P.L. 20×8 in. High-Speed Tunnel*. As described in section 2.2 the results were found to justify the use of equation (9) in preference to equations (7) or (8). The comparison between theory and experiment is considered in more detail in this section, together with some low-speed results for the 10 per cent RAE 102 aerofoil⁶.

Figs. 23, 24 and 25 show pressure distributions obtained by the Polygon method and by experiment for the 6 per cent RAE 104 aerofoil at $M_{\infty} = 0$, 0.70 and 0.80 respectively. The experimental results were obtained with transition fixed near the leading edge. In each case results for 0, 1 and 2 deg incidence are given. For incompressible flow there is good agreement between theory and experiment at zero incidence and this is confirmed by the comparison for the 10 per cent RAE 102 shown in Fig. 26. In the first place, Figs. 24 and 25 illustrate the conclusions of section 2.2, the curves for $\alpha = 0$ being the same as those in Figs. 1 and 2 derived from equation (9).

In all the results with the aerofoil producing lift the theory consistently overestimates the resultant pressure increments, particularly on the upper surface. This is to be expected, for the theory considers inviscid flow, so that thickening or separation of the boundary layer, with consequent loss of lift, is not allowed for. Woods² suggested an alternative interpretation of the theoretical results by supposing that the loss of lift could be represented by a change of incidence. He compared theory and experiment for the same total lift, defining an equivalent theoretical incidence α_E by:

$$\alpha_E = C_{L \text{ expt}} / (\partial C_L / \partial \alpha)_{\text{Theory}};$$

but the experimental results which he used are no longer considered to be entirely satisfactory. A similar comparison can however be made for the 6 per cent RAE aerofoil from the measured C_L and values of $\partial C_L/\partial \alpha$ given in Table 6. The value of α_E corresponding to a real incidence of 1 deg at $M_{\alpha} = 0.70$ is 0.76 deg, and for 2 deg, 1.58 deg. Fig. 24 can now be reconsidered, for the theoretical pressure distribution at $\alpha = \alpha_E$ can be visualized by linear interpolation in the results for 0, 1 and 2 deg. It is clear that, whilst an improved comparison with experiment is obtained for the upper surface distribution, this is not the case for the lower surface. A probable explanation is that boundary-layer growth against the steep adverse pressure gradients on the upper surface is greater than on the lower surface. It appears that the loss in lift cannot be represented by an equivalent reduction in incidence.

6. Concluding Remarks.—It seems clear from the comparisons with experiment that the Polygon method is a satisfactory means of calculating subsonic flows about aerofoils when viscous effects are unimportant. It has been shown that the semi-empirical approximation embodied in equation (9) originally used by Woods is justified.

Perhaps the greatest value of this investigation lies in the suggested method of calculating approximate pressure distributions for geometrically similar aerofoils. For instance, calculations for a 10 per cent thick section in incompressible flow can be used to obtain pressure distributions

^{*} The complete results are as yet unpublished.

for any similar section of smaller thickness at Mach numbers below $(M_{\rm crit} - 0.05)$. Results obtained in this way should not differ significantly from those calculated by the exact Polygon method.

7. Acknowledgements.—The calculations for this paper were made by Mrs. J. S. Sindall and Miss J. E. Elliott of the Aerodynamics Division, N.P.L.

NOTATION

- C_L Lift coefficient
- C_m Pitching-moment coefficient, leading-edge axis
- C_{p} Pressure coefficient
- C_{p0} Pressure coefficient for incompressible flow
 - *c* Aerofoil chord

h Aerodynamic centre

$$L \equiv \log_{e} (U/q)$$

M Local Mach number

$$m = \beta \rho_0 / \rho$$

 p, p_0 Local and stagnation static pressure respectively

 (q, θ) Velocity vector in polar co-ordinates

$$r \equiv \int_{0}^{L} \beta \, dL$$

t Maximum thickness of aerofoil

U Speed of undisturbed stream

x Distance measured along aerofoil chord from leading edge

α Aerofoil incidence

$$\beta \equiv \sqrt{(1-M^2)}$$

 γ Angular measure of chordwise distance (Ref. 2, Section 3)

 ρ, ρ_0 Local and stagnation density respectively

 ϕ Velocity potential

 ψ Stream function

 ∞ Used as a suffix to denote values in the undisturbed stream

REFERENCES

Author	Title, etc.
L. C. Woods	The two-dimensional subsonic flow of an inviscid fluid about an aerofoil of arbitrary shape. R. & M. 2811. November, 1950.
L. C. Woods	The application of the Polygon method to the calculation of the com- pressible subsonic flow round two-dimensional aerofoils. C.P. 115. June, 1952.
R. C. Pankhurst and H. B. Squire	Calculated pressure distributions for the RAE 100-104 aerofoil sections. C.P. 80. March, 1950.
See also:	·
J. Williams and E. M. Love	Surface slopes and curvatures of the RAE 100–104 and other rooftop-type aerofoil sections. C.P. 129. October, 1952.
H. W. Liepmann and A. E. Puchett	Aerodynamics of a Compressible Fluid. Chap. 11; Wiley and Sons. (1947).
T. von Kármán ,	Compressibility effects in aerodynamics. J. Ac. Sci. Vol. 8, No. 9. July, 1941.
H. C. Garner and A. S. Batson	Measurement of lift, pitching moment, pressure distribution and boundary layers on a 10 per cent RAE 102 aerofoil. (To be published.)
	Author L. C. Woods L. C. Woods R. C. Pankhurst and H. B. Squire See also: J. Williams and E. M. Love H. W. Liepmann and A. E. Puchett T. von Kármán H. C. Garner and A. S. Batson

		$r imes 10^4$		alII		$-r imes 10^4$	
$q_{I}O$	0.70	0.80	0.85	<i>q</i> /0	0.70	0.80	0.85
0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.80 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.90 0.91 0.92 0.93 0.94 0.95 0.99 1.00	$\begin{array}{c} 2573\\ 2458\\ 2345\\ 2234\\ 2125\\ 2018\\ 1912\\ 1808\\ 1707\\ 1606\\ 1509\\ 1411\\ 1317\\ 1224\\ 1132\\ 1042\\ 953\\ 866\\ 780\\ 696\\ 613\\ 532\\ 452\\ 373\\ 296\\ 220\\ 146\\ 72\\ 0 \end{array}$	$1495 \\ 1405 \\ 1317 \\ 1231 \\ 1146 \\ 1063 \\ 981 \\ 901 \\ 823 \\ 746 \\ 671 \\ 597 \\ 525 \\ 454 \\ 385 \\ 317 \\ 251 \\ 186 \\ 123 \\ 61 \\ 0$	$1359 \\ 1275 \\ 1194 \\ 1114 \\ 1036 \\ 960 \\ 885 \\ 812 \\ 740 \\ 670 \\ 601 \\ 534 \\ 469 \\ 405 \\ 342 \\ 281 \\ 222 \\ 164 \\ 108 \\ 53 \\ 0$	$\begin{array}{c} 1 \cdot 00 \\ 1 \cdot 01 \\ 1 \cdot 02 \\ 1 \cdot 03 \\ 1 \cdot 04 \\ 1 \cdot 05 \\ 1 \cdot 06 \\ 1 \cdot 07 \\ 1 \cdot 08 \\ 1 \cdot 09 \\ 1 \cdot 10 \\ 1 \cdot 11 \\ 1 \cdot 12 \\ 1 \cdot 13 \\ 1 \cdot 14 \\ 1 \cdot 15 \\ 1 \cdot 16 \\ 1 \cdot 17 \\ 1 \cdot 18 \\ 1 \cdot 19 \\ 1 \cdot 10 \\ 1 \cdot 21 \\ 1 \cdot 22 \\ 1 \cdot 23 \\ 1 \cdot 24 \\ 1 \cdot 25 \\ 1 \cdot 26 \\ 1 \cdot 27 \\ 1 \cdot 28 \\ 1 \cdot 29 \\ 1 \cdot 30 \end{array}$	$\begin{array}{c} 0\\ 71\\ 140\\ 209\\ 276\\ 342\\ 406\\ 469\\ 532\\ 592\\ 653\\ 712\\ 770\\ 827\\ 882\\ 935\\ 989\\ 1040\\ 1092\\ 1141\\ 1190\\ 1238\\ 1284\\ 1329\\ 1373\\ 1416\\ 1457\\ 1498\\ 1537\\ 1575\\ 1611\\ \end{array}$	0 59 117 174 229 283 335 386 435 483 530 575 619 661 702 741 779 814 848 880 910	0 51 101 150 197 243 287 330 371 410 447 482 516 547 575

TABLE 1

Table of
$$r\left(\equiv \int_{0}^{L} \beta \, dL\right)$$
 against q/U

for $M_{\infty} = 0.70, 0.80$ and 0.85

TABLES 2a and 2b

Velocity Distributions

	α.	0 deg	1 0	leg	2 6	leg	4 6	leg
	x/c		Upper	Lower	Upper	Lower	Upper	Lower
Table 2a	$0 \\ 0.001 \\ 0.006$	0.472	0.787	0.158	1.100		1.727	
10 per cent RAE 102	0.000	1.038	1.101	$0.704 \\ 0.901$	$1.310 \\ 1.312$	$0.505 \\ 0.762$	1.710 1.585	$ \begin{array}{c c} 0 \cdot 101 \\ 0 \cdot 485 \end{array} $
$M_{\infty} = 0$	0.032 0.053 0.084 0.136 0.200 0.272 0.350 0.432 0.517 0.603 0.687 0.760 0.837 0.896 0.946 0.9981 0.902	$\begin{array}{c} 1.075\\ 1.101\\ 1.118\\ 1.127\\ 1.133\\ 1.132\\ 1.130\\ 1.118\\ 1.093\\ 1.067\\ 1.040\\ 1.015\\ 0.995\\ 0.975\\ 0.952\\ 0.923\\ 0.864\\ \end{array}$	$\begin{array}{c} 1\cdot 175\\ 1\cdot 181\\ 1\cdot 179\\ 1\cdot 174\\ 1\cdot 170\\ 1\cdot 160\\ 1\cdot 150\\ 1\cdot 139\\ 1\cdot 111\\ 1\cdot 081\\ 1\cdot 052\\ 1\cdot 024\\ 1\cdot 000\\ 0\cdot 980\\ 0\cdot 962\\ 0\cdot 926\\ 0\cdot 926\\ 0\cdot 870\\ \end{array}$	$\begin{array}{c} 0.971\\ 1.020\\ 1.051\\ 1.080\\ 1.091\\ 1.101\\ 1.104\\ 1.091\\ 1.071\\ 1.050\\ 1.030\\ 1.007\\ 0.990\\ 0.971\\ 0.952\\ 0.926\\ 0.862\\ \end{array}$	$\begin{array}{c} 1 \cdot 277 \\ 1 \cdot 261 \\ 1 \cdot 241 \\ 1 \cdot 222 \\ 1 \cdot 208 \\ 1 \cdot 194 \\ 1 \cdot 181 \\ 1 \cdot 160 \\ 1 \cdot 128 \\ 1 \cdot 095 \\ 1 \cdot 063 \\ 1 \cdot 033 \\ 1 \cdot 008 \\ 0 \cdot 985 \\ 0 \cdot 985 \\ 0 \cdot 959 \\ 0 \cdot 926 \\ 0 \cdot 865 \end{array}$	$\begin{array}{c} 0.883\\ 0.940\\ 0.993\\ 1.032\\ 1.056\\ 1.070\\ 1.078\\ 1.075\\ 1.058\\ 1.037\\ 1.016\\ 0.996\\ 0.980\\ 0.964\\ 0.945\\ 0.918\\ 0.862\\ \end{array}$	$\begin{array}{c} 1\cdot 478 \\ 1\cdot 418 \\ 1\cdot 362 \\ 1\cdot 315 \\ 1\cdot 282 \\ 1\cdot 254 \\ 1\cdot 230 \\ 1\cdot 200 \\ 1\cdot 161 \\ 1\cdot 121 \\ 1\cdot 084 \\ 1\cdot 050 \\ 1\cdot 021 \\ 0\cdot 994 \\ 0\cdot 965 \\ 0\cdot 929 \\ 0\cdot 864 \end{array}$	$\begin{array}{c} 0.668\\ 0.778\\ 0.868\\ 0.935\\ 0.978\\ 1.006\\ 1.024\\ 1.030\\ 1.021\\ 1.007\\ 0.992\\ 0.976\\ 0.964\\ 0.952\\ 0.935\\ 0.921\\ 0.859\end{array}$
Table 2b 10 per cent RAE 102 $M_{\infty} = 0.70$	$\begin{array}{c} 0\\ 0\cdot 001 \\ \cdot\\ 0\cdot 007\\ 0\cdot 017\\ 0\cdot 033\\ 0\cdot 053\\ 0\cdot 053\\ 0\cdot 086\\ 0\cdot 138\\ 0\cdot 200\\ 0\cdot 269\\ 0\cdot 344\\ 0\cdot 424\\ 0\cdot 507\\ 0\cdot 592\\ 0\cdot 676\\ 0\cdot 756\\ 0\cdot 829\\ 0\cdot 891\\ 0\cdot 942\\ 0\cdot 978\\ 0\cdot 998\\ 1\cdot 000\\ \end{array}$	$\begin{array}{c} 0\cdot 472\\ 0\cdot 893\\ 1\cdot 056\\ 1\cdot 115\\ 1\cdot 156\\ 1\cdot 185\\ 1\cdot 199\\ 1\cdot 208\\ 1\cdot 208\\ 1\cdot 208\\ 1\cdot 208\\ 1\cdot 208\\ 1\cdot 203\\ 1\cdot 183\\ 1\cdot 144\\ 1\cdot 101\\ 1\cdot 061\\ 1\cdot 024\\ 0\cdot 994\\ 0\cdot 967\\ 0\cdot 936\\ 0\cdot 897\\ 0\cdot 824\\ \end{array}$	$\begin{array}{c} 0.870\\ 0.966\\ 1.033\\ 1.082\\ 1.117\\ 1.141\\ 1.152\\ 1.157\\ 1.146\\ 1.115\\ 1.079\\ 1.043\\ 1.011\\ 0.984\\ 0.959\\ 0.931\\ 0.894\\ 0.823\\ \end{array}$	$\begin{array}{c} 1 \cdot 296 \\ 1 \cdot 286 \\ 1 \cdot 269 \\ 1 \cdot 253 \\ 1 \cdot 223 \\ 1 \cdot 174 \\ 1 \cdot 124 \\ 1 \cdot 078 \\ 1 \cdot 037 \\ 1 \cdot 004 \\ 0 \cdot 974 \\ 0 \cdot 940 \\ 0 \cdot 900 \\ 0 \cdot 825 \end{array}$	0.836 0.920 0.991 1.044 1.080 1.100 1.114 1.010 1.086 1.026 0.997 0.973 0.951 0.926 0.891 0.822	$\begin{array}{c} 1 \cdot 265 \\ 1 \cdot 204 \\ 1 \cdot 147 \\ 1 \cdot 095 \\ 1 \cdot 050 \\ 1 \cdot 013 \\ 0 \cdot 981 \\ 0 \cdot 945 \\ 0 \cdot 902 \\ 0 \cdot 825 \end{array}$	$\begin{array}{c} 0.726\\ 0.830\\ 0.911\\ 0.968\\ 1.006\\ 1.032\\ 1.042\\ 1.031\\ 1.012\\ 0.990\\ 0.969\\ 0.951\\ 0.935\\ 0.914\\ 0.884\\ 0.819\\ \end{array}$	$ \begin{array}{c} 1 \cdot 270 \\ 1 \cdot 194 \\ 1 \cdot 129 \\ 1 \cdot 075 \\ 1 \cdot 031 \\ 0 \cdot 993 \\ 0 \cdot 952 \\ 0 \cdot 905 \\ 0 \cdot 825 \\ \end{array} $

TABLES 3a and 3b

V	elocity	v Di	stril	butions
---	---------	------	-------	---------

		1		1		1	•	
	α	0 deg	1 de	eg	2 de	eg	4 de	eg
	x/c	······································	Upper	Lower	Upper	Lower	Upper	Lower
Table 3a 6 per cent RAE 102 $M_{\infty} = 0$	$\begin{array}{c} 0\\ 0\cdot 001\\ 0\cdot 007\\ 0\cdot 017\\ 0\cdot 033\\ 0\cdot 054\\ 0\cdot 088\\ 0\cdot 143\\ 0\cdot 207\\ 0\cdot 280\\ 0\cdot 359\\ 0\cdot 443\\ 0\cdot 528\\ 0\cdot 614\\ 0\cdot 696\\ 0\cdot 774\\ 0\cdot 843\\ 0\cdot 902\\ 0\cdot 949\\ 0\cdot 981\\ 0\cdot 998\\ 1\cdot 000\\ \end{array}$	$\begin{array}{c} 0.645\\ 0.984\\ 1.043\\ 1.065\\ 1.073\\ 1.077\\ 1.080\\ 1.081\\ 1.081\\ 1.080\\ 1.071\\ 1.056\\ 1.040\\ 1.024\\ 1.009\\ 0.997\\ 0.986\\ 0.972\\ 0.954\\ 0.916\\ \end{array}$	$\begin{array}{c} 1 \cdot 074 \\ 1 \cdot 202 \\ 1 \cdot 181 \\ 1 \cdot 166 \\ 1 \cdot 151 \\ 1 \cdot 136 \\ 1 \cdot 125 \\ 1 \cdot 117 \\ 1 \cdot 110 \\ 1 \cdot 104 \\ 1 \cdot 091 \\ 1 \cdot 073 \\ 1 \cdot 054 \\ 1 \cdot 035 \\ 1 \cdot 018 \\ 1 \cdot 000 \\ 0 \cdot 991 \\ 0 \cdot 975 \\ 0 \cdot 956 \\ 0 \cdot 917 \end{array}$	$\begin{array}{c} 0\cdot 215\\ 0\cdot 766\\ 0\cdot 905\\ 0\cdot 965\\ 0\cdot 995\\ 1\cdot 017\\ 1\cdot 034\\ 1\cdot 045\\ 1\cdot 051\\ 1\cdot 055\\ 1\cdot 050\\ 1\cdot 039\\ 1\cdot 026\\ 1\cdot 013\\ 1\cdot 000\\ 0\cdot 990\\ 0\cdot 980\\ 0\cdot 968\\ 0\cdot 951\\ 0\cdot 916\end{array}$	$1 \cdot 504$ $1 \cdot 420$ $1 \cdot 319$ $1 \cdot 265$ $1 \cdot 228$ $1 \cdot 195$ $1 \cdot 170$ $1 \cdot 153$ $1 \cdot 139$ $1 \cdot 128$ $1 \cdot 111$ $1 \cdot 089$ $1 \cdot 067$ $1 \cdot 046$ $1 \cdot 027$ $1 \cdot 011$ $0 \cdot 996$ $0 \cdot 979$ $0 \cdot 957$ $0 \cdot 917$	0.547 0.766 0.864 0.916 0.957 0.988 1.008 1.021 1.030 1.022 1.030 1.022 1.011 1.001 0.990 0.982 0.974 0.964 0.914	$2 \cdot 361$ $1 \cdot 854$ $1 \cdot 593$ $1 \cdot 464$ $1 \cdot 382$ $1 \cdot 312$ $1 \cdot 315$ $1 \cdot 224$ $1 \cdot 196$ $1 \cdot 176$ $1 \cdot 150$ $1 \cdot 121$ $1 \cdot 093$ $1 \cdot 067$ $1 \cdot 044$ $1 \cdot 024$ $1 \cdot 005$ $0 \cdot 984$ $0 \cdot 960$ $0 \cdot 917$	0.109 0.488 0.662 0.759 0.836 0.934 0.960 0.979 0.987 0.986 0.982 0.976 0.970 0.966 0.970 0.966 0.962 0.954 0.492 0.911
Table 3b 6 per cent RAE 102 $M_{\infty} = 0.70$	$\begin{array}{c} 0\\ 0\cdot 001\\ 0\cdot 007\\ 0\cdot 018\\ 0\cdot 033\\ 0\cdot 054\\ 0\cdot 088\\ 0\cdot 141\\ 0\cdot 205\\ 0\cdot 276\\ 0\cdot 354\\ 0\cdot 354\\ 0\cdot 521\\ 0\cdot 606\\ 0\cdot 690\\ 0\cdot 768\\ 0\cdot 839\\ 0\cdot 899\\ 0\cdot 899\\ 0\cdot 947\\ 0\cdot 980\\ 0\cdot 998\\ 1\cdot 000\\ \end{array}$	$\begin{array}{c} 0 \cdot 645 \\ 0 \cdot 978 \\ 1 \cdot 063 \\ 1 \cdot 097 \\ 1 \cdot 109 \\ 1 \cdot 114 \\ 1 \cdot 120 \\ 1 \cdot 122 \\ 1 \cdot 121 \\ 1 \cdot 120 \\ 1 \cdot 120 \\ 1 \cdot 082 \\ 1 \cdot 082 \\ 1 \cdot 058 \\ 1 \cdot 034 \\ 1 \cdot 013 \\ 0 \cdot 996 \\ 0 \cdot 980 \\ 0 \cdot 961 \\ 0 \cdot 937 \\ 0 \cdot 889 \end{array}$	$1 \cdot 275$ $1 \cdot 243$ $1 \cdot 215$ $1 \cdot 196$ $1 \cdot 182$ $1 \cdot 169$ $1 \cdot 159$ $1 \cdot 139$ $1 \cdot 139$ $1 \cdot 110$ $1 \cdot 080$ $1 \cdot 052$ $1 \cdot 027$ $1 \cdot 006$ $0 \cdot 987$ $0 \cdot 966$ $0 \cdot 939$ $0 \cdot 889$	$\begin{array}{c} 0.872\\ 0.950\\ 0.991\\ 1.022\\ 1.048\\ 1.064\\ 1.073\\ 1.080\\ 1.074\\ 1.057\\ 1.038\\ 1.019\\ 1.001\\ 0.986\\ 0.972\\ 0.956\\ 0.933\\ 0.887\\ \end{array}$	$\begin{array}{c} 1 \cdot 286 \\ 1 \cdot 250 \\ 1 \cdot 222 \\ 1 \cdot 202 \\ 1 \cdot 174 \\ 1 \cdot 136 \\ 1 \cdot 101 \\ 1 \cdot 069 \\ 1 \cdot 039 \\ 1 \cdot 016 \\ 0 \cdot 994 \\ 0 \cdot 970 \\ 0 \cdot 942 \\ 0 \cdot 889 \end{array}$	0.823 0.940 0.942 1.010 1.028 1.042 1.043 1.032 1.017 1.002 0.987 0.976 0.964 0.950 0.930 0.886	$\begin{array}{c} 1 \cdot 300 \\ 1 \cdot 247 \\ 1 \cdot 192 \\ 1 \cdot 143 \\ 1 \cdot 101 \\ 1 \cdot 064 \\ 1 \cdot 034 \\ 1 \cdot 007 \\ 0 \cdot 978 \\ 0 \cdot 945 \\ 0 \cdot 889 \end{array}$	0.790 0.862 0.910 0.944 0.970 0.983 0.982 0.976 0.968 0.960 0.954 0.938 0.922 0.882

TABLES 3c and 4a

Velocity Distributions

	α	0 deg	1 0	leg	2 6	leg	4 0	leg
	x/c		Upper	Lower	Upper	Lower	Upper	Lower
Table 3c 6 per cent RAE 102 $M_{\infty} = 0.80$	$\begin{array}{c} 0\\ 0\cdot 001\\ 0\cdot 007\\ 0\cdot 018\\ 0\cdot 034\\ 0\cdot 054\\ 0\cdot 058\\ 0\cdot 141\\ 0\cdot 203\\ 0\cdot 274\\ 0\cdot 351\\ 0\cdot 432\\ 0\cdot 515\\ 0\cdot 601\\ 0\cdot 684\\ 0\cdot 763\\ 0\cdot 835\\ 0\cdot 896\\ 0\cdot 945\\ 0\cdot 980\\ 0\cdot 998\\ 1\cdot 000\\ \end{array}$	$\begin{array}{c} 0\cdot 645\\ 0\cdot 975\\ 1\cdot 071\\ 1\cdot 115\\ 1\cdot 133\\ 1\cdot 144\\ 1\cdot 152\\ 1\cdot 157\\ 1\cdot 156\\ 1\cdot 157\\ 1\cdot 156\\ 1\cdot 154\\ 1\cdot 138\\ 1\cdot 106\\ 1\cdot 074\\ 1\cdot 044\\ 1\cdot 017\\ 0\cdot 996\\ 0\cdot 977\\ 0\cdot 954\\ 0\cdot 926\\ 0\cdot 872\\ \end{array}$	$ \begin{array}{c} 1 \cdot 191 \\ 1 \cdot 143 \\ 1 \cdot 101 \\ 1 \cdot 065 \\ 1 \cdot 033 \\ 1 \cdot 008 \\ 0 \cdot 985 \\ 0 \cdot 960 \\ 0 \cdot 929 \\ 0 \cdot 873 \\ \end{array} $	$\begin{array}{c} 0.853\\ 0.939\\ 0.987\\ 1.025\\ 1.025\\ 1.078\\ 1.090\\ 1.099\\ 1.099\\ 1.094\\ 1.072\\ 1.047\\ 1.023\\ 1.002\\ 0.984\\ 0.968\\ 0.948\\ 0.922\\ 0.871\\ \end{array}$	$ \begin{array}{c} 1 \cdot 186 \\ 1 \cdot 130 \\ 1 \cdot 086 \\ 1 \cdot 049 \\ 1 \cdot 019 \\ 0 \cdot 993 \\ 0 \cdot 965 \\ 0 \cdot 932 \\ 0 \cdot 873 \\ \end{array} $	$\begin{array}{c} 0.860\\ 0.923\\ 0.972\\ 1.008\\ 1.034\\ 1.051\\ 1.065\\ 1.065\\ 1.066\\ 1.049\\ 1.030\\ 1.010\\ 0.992\\ 0.977\\ 0.964\\ 0.946\\ 0.923\\ 0.871\\ \end{array}$	$ \begin{array}{r} 1 \cdot 197 \\ 1 \cdot 130 \\ 1 \cdot 080 \\ 1 \cdot 042 \\ 1 \cdot 008 \\ 0 \cdot 974 \\ 0 \cdot 936 \\ 0 \cdot 873 \\ \end{array} $	$\begin{array}{c} 0.843\\ 0.896\\ 0.934\\ 0.964\\ 0.980\\ 0.979\\ 0.972\\ 0.963\\ 0.954\\ 0.946\\ 0.939\\ 0.928\\ 0.910\\ 0.865\end{array}$
Table 4a 6 per cent RAE 104 $M_{\infty} = 0$	$\begin{array}{c} 0\\ 0\cdot 001\\ 0\cdot 007\\ 0\cdot 018\\ 0\cdot 034\\ 0\cdot 054\\ 0\cdot 054\\ 0\cdot 090\\ 0\cdot 145\\ 0\cdot 210\\ 0\cdot 284\\ 0\cdot 363\\ 0\cdot 447\\ 0\cdot 533\\ 0\cdot 617\\ 0\cdot 698\\ 0\cdot 774\\ 0\cdot 843\\ 0\cdot 902\\ 0\cdot 948\\ 0\cdot 902\\ 0\cdot 948\\ 0\cdot 981\\ 0\cdot 998\\ 1\cdot 000\\ \end{array}$	$\begin{array}{c} 0\cdot 659\\ 0\cdot 973\\ 1\cdot 024\\ 1\cdot 046\\ 1\cdot 057\\ 1\cdot 063\\ 1\cdot 067\\ 1\cdot 069\\ 1\cdot 068\\ 1\cdot 060\\ 1\cdot 040\\ 1\cdot 019\\ 1\cdot 001\\ 0\cdot 986\\ 0\cdot 969\\ 0\cdot 946\\ 0\cdot 902 \end{array}$	$\begin{array}{c} 1 \cdot 098 \\ 1 \cdot 189 \\ 1 \cdot 159 \\ 1 \cdot 145 \\ 1 \cdot 134 \\ 1 \cdot 122 \\ 1 \cdot 112 \\ 1 \cdot 104 \\ 1 \cdot 098 \\ 1 \cdot 098 \\ 1 \cdot 094 \\ 1 \cdot 089 \\ 1 \cdot 084 \\ 1 \cdot 074 \\ 1 \cdot 051 \\ 1 \cdot 028 \\ 1 \cdot 008 \\ 0 \cdot 991 \\ 0 \cdot 972 \\ 0 \cdot 948 \\ 0 \cdot 903 \end{array}$	$\begin{array}{c} 0 \cdot 220 \\ 0 \cdot 757 \\ 0 \cdot 888 \\ 0 \cdot 948 \\ 0 \cdot 980 \\ 1 \cdot 004 \\ 1 \cdot 022 \\ 1 \cdot 033 \\ 1 \cdot 040 \\ 1 \cdot 045 \\ 1 \cdot 048 \\ 1 \cdot 050 \\ 1 \cdot 046 \\ 1 \cdot 028 \\ 1 \cdot 009 \\ 0 \cdot 994 \\ 0 \cdot 980 \\ 0 \cdot 965 \\ 0 \cdot 944 \\ 0 \cdot 902 \end{array}$	$\begin{array}{c} 1\cdot 537\\ 1\cdot 404\\ 1\cdot 295\\ 1\cdot 243\\ 1\cdot 210\\ 1\cdot 180\\ 1\cdot 156\\ 1\cdot 140\\ 1\cdot 127\\ 1\cdot 1127\\ 1\cdot 1127\\ 1\cdot 109\\ 1\cdot 101\\ 1\cdot 088\\ 1\cdot 062\\ 1\cdot 037\\ 1\cdot 015\\ 0\cdot 996\\ 0\cdot 976\\ 0\cdot 950\\ 0\cdot 903\\ \end{array}$	0.541 1.752 0.849 0.903 0.945 0.976 0.996 1.010 1.020 1.020 1.027 1.033 1.031 1.016 1.000 0.986 0.974 0.960 0.942 0.901	$2 \cdot 412$ $1 \cdot 833$ $1 \cdot 564$ $1 \cdot 438$ $1 \cdot 362$ $1 \cdot 296$ $1 \cdot 300$ $1 \cdot 209$ $1 \cdot 183$ $1 \cdot 164$ $1 \cdot 147$ $1 \cdot 133$ $1 \cdot 114$ $1 \cdot 084$ $1 \cdot 053$ $1 \cdot 028$ $1 \cdot 005$ $0 \cdot 981$ $0 \cdot 903$	0.108 0.479 0.650 0.748 0.825 0.885 0.423 0.949 0.970 0.9970 0.9971 0.011 0.9991 0.979 0.979 0.979 0.962 0.935 0.898

Velocity Distributions

	α	0 deg	1 d	eg	2 d	eg	4 d	eg
	, x/c		Upper	Lower	Upper	Lower	Upper	Lower
Table 4b 6 per cent RAE 104 $M_{\infty} = 0.70$	$\begin{array}{c} 0\\ 0\cdot001\\ 0\cdot007\\ 0\cdot018\\ 0\cdot034\\ 0\cdot055\\ 0\cdot090\\ 0\cdot144\\ 0\cdot209\\ 0\cdot281\\ 0$	0.659 0.969 1.036 1.068 1.084 1.093 1.098 1.101 1.102 1.102 1.102 1.101 1.102 1.001 1.090 1.060 1.028 1.002 0.981 0.957 0.927 0.871	$1 \cdot 171$ $1 \cdot 268$ $1 \cdot 235$ $1 \cdot 214$ $1 \cdot 191$ $1 \cdot 173$ $1 \cdot 160$ $1 \cdot 149$ $1 \cdot 149$ $1 \cdot 142$ $1 \cdot 134$ $1 \cdot 127$ $1 \cdot 112$ $1 \cdot 077$ $1 \cdot 041$ $1 \cdot 012$ $0 \cdot 988$ $0 \cdot 962$ $0 \cdot 930$ $0 \cdot 871$	0.855 0.929 0.973 1.005 1.030 1.046 1.057 1.065 1.070 1.073 1.068 1.042 1.042 1.014 0.992 0.973 0.952 0.924 0.870	$1 \cdot 258$ $1 \cdot 224$ $1 \cdot 200$ $1 \cdot 183$ $1 \cdot 168$ $1 \cdot 155$ $1 \cdot 134$ $0 \cdot 194$ $1 \cdot 054$ $1 \cdot 022$ $0 \cdot 995$ $0 \cdot 966$ $0 \cdot 932$ $0 \cdot 872$	$0 \cdot 806$ $0 \cdot 872$ $0 \cdot 925$ $0 \cdot 967$ $0 \cdot 994$ $1 \cdot 013$ $1 \cdot 028$ $1 \cdot 038$ $1 \cdot 047$ $1 \cdot 046$ $1 \cdot 025$ $1 \cdot 001$ $0 \cdot 981$ $0 \cdot 965$ $0 \cdot 946$ $0 \cdot 921$ $0 \cdot 868$	$\begin{array}{c} 1\cdot 275\\ 1\cdot 240\\ 1\cdot 212\\ 1\cdot 180\\ 1\cdot 128\\ 1\cdot 079\\ 1\cdot 040\\ 1\cdot 008\\ 0\cdot 974\\ 0\cdot 936\\ 0\cdot 871\end{array}$	0.779 0.850 0.897 0.931 0.958 0.978 0.995 1.002 0.989 0.973 0.959 0.973 0.959 0.948 0.934 0.913 0.864
Table 4c 6 per cent RAE 104 $M_{\infty} = 0.80$	$\begin{array}{c} 0\\ 0\cdot001\\ 0\cdot007\\ 0\cdot018\\ 0\cdot035\\ 0\cdot056\\ 0\cdot090\\ 0\cdot144\\ 0\cdot208\\ 0\cdot281\\ 0\cdot281\\ 0\cdot359\\ 0\cdot281\\ 0\cdot359\\ 0\cdot281\\ 0\cdot359\\ 0\cdot281\\ 0\cdot359\\ 0\cdot281\\ 0\cdot688\\ 0\cdot765\\ 0\cdot835\\ 0\cdot835\\ 0\cdot836\\ 0\cdot945\\ 0\cdot979\\ 0\cdot998\\ 1\cdot000\\ \end{array}$	0.659 0.954 1.039 1.080 1.102 1.114 1.124 1.127 1.129 1.130 1.128 1.128 1.126 1.114 1.035 1.003 0.977 0.950 0.916 0.853	$1 \cdot 189$ $1 \cdot 178$ $1 \cdot 167$ $1 \cdot 146$ $1 \cdot 098$ $1 \cdot 051$ $1 \cdot 015$ $0 \cdot 986$ $0 \cdot 955$ $0 \cdot 919$ $0 \cdot 854$	0.834 0.916 0.965 1.004 1.035 1.055 1.068 1.079 1.085 1.090 1.085 1.090 1.085 1.019 0.991 0.991 0.968 0.944 0.912 0.852	$\begin{array}{c} 1 \cdot 181 \\ 1 \cdot 121 \\ 1 \cdot 008 \\ 1 \cdot 027 \\ 0 \cdot 994 \\ 0 \cdot 960 \\ 0 \cdot 921 \\ 0 \cdot 854 \end{array}$	0.853 0.912 0.960 0.992 1.014 1.032 1.046 1.056 1.056 1.056 1.031 1.002 0.978 0.959 0.937 0.909 0.850	$1 \cdot 172$ $1 \cdot 101$ $1 \cdot 049$ $1 \cdot 009$ $0 \cdot 969$ $0 \cdot 925$ $0 \cdot 854$	0.829 0.881 0.919 0.950 0.974 0.993 1.003 0.988 0.969 0.953 0.940 0.923 0.900 0.846

TABLES 5a and 5b

Velocity Distributions

· .	α	0 deg	1 d	leg	2 d	leg	· 4 d	eg
	x/c		Upper	Lower	Upper	Lower	Upper	Lower
Table 5a 4 per cent RAE 104 $M_{\infty} = 0$	$\begin{array}{c} 0\\ 0\cdot 001\\ 0\cdot 007\\ 0\cdot 018\\ 0\cdot 034\\ 0\cdot 055\\ 0\cdot 090\\ 0\cdot 145\\ 0\cdot 211\\ 0\cdot 285\\ 0\cdot 366\\ 0\cdot 450\\ 0\cdot 536\\ 0\cdot 621\\ 0\cdot 702\\ 0\cdot 778\\ 0\cdot 846\\ 0\cdot 904\\ 0\cdot 950\\ 0\cdot 982\\ 0\cdot 998\\ 1\cdot 000\\ \end{array}$	$\begin{array}{c} 0.764\\ 0.997\\ 1.027\\ 1.036\\ 1.041\\ 1.044\\ 1.044\\ 1.046\\ 1.047\\ 1.047\\ 1.047\\ 1.047\\ 1.046\\ 1.046\\ 1.046\\ 1.042\\ 1.027\\ 1.013\\ 1.001\\ 0.990\\ 0.978\\ 0.963\\ 0.932\\ \end{array}$	$\begin{array}{c} 1\cdot 272\\ 1\cdot 218\\ 1\cdot 163\\ 1\cdot 134\\ 1\cdot 117\\ 1\cdot 102\\ 1\cdot 090\\ 1\cdot 081\\ 1\cdot 075\\ 1\cdot 070\\ 1\cdot 066\\ 1\cdot 062\\ 1\cdot 066\\ 1\cdot 062\\ 1\cdot 055\\ 1\cdot 038\\ 1\cdot 022\\ 1\cdot 008\\ 0\cdot 996\\ 0\cdot 982\\ 0\cdot 965\\ 0\cdot 932\end{array}$	0.254 0.776 0.891 0.938 0.965 0.986 1.002 1.011 1.018 1.023 1.026 1.029 1.028 1.004 0.994 0.994 0.994 0.994 0.995 0.975 0.961 0.931	$\begin{array}{c} 1\cdot 781 \\ 1\cdot 438 \\ 1\cdot 299 \\ 1\cdot 231 \\ 1\cdot 192 \\ 1\cdot 159 \\ 1\cdot 133 \\ 1\cdot 116 \\ 1\cdot 103 \\ 1\cdot 094 \\ 1\cdot 086 \\ 1\cdot 079 \\ 1\cdot 069 \\ 1\cdot 049 \\ 1\cdot 049 \\ 1\cdot 049 \\ 1\cdot 049 \\ 1\cdot 015 \\ 1\cdot 001 \\ 0\cdot 985 \\ 0\cdot 967 \\ 0\cdot 933 \end{array}$	0.554 0.754 0.840 0.889 0.928 0.957 0.976 0.988 0.998 1.006 1.012 1.013 1.040 0.994 0.994 0.994 0.9970 0.970	$2 \cdot 796$ $1 \cdot 878$ $1 \cdot 569$ $1 \cdot 424$ $1 \cdot 341$ $1 \cdot 272$ $1 \cdot 274$ $1 \cdot 185$ $1 \cdot 159$ $1 \cdot 140$ $1 \cdot 124$ $1 \cdot 110$ $1 \cdot 095$ $1 \cdot 070$ $1 \cdot 047$ $1 \cdot 027$ $1 \cdot 010$ $0 \cdot 991$ $0 \cdot 933$	0.111 0.480 0.644 0.736 0.810 0.867 0.904 0.929 0.949 0.964 0.976 0.978 0.979 0.974 0.970 0.966 0.961 0.952 0.927
Table 5b 4 per cent RAE 104 $M_{\infty} = 0.70$	$\begin{array}{c} 0\\ 0\cdot 001\\ 0\cdot 007\\ 0\cdot 018\\ 0\cdot 034\\ 0\cdot 055\\ 0\cdot 090\\ 0\cdot 145\\ 0\cdot 210\\ 0\cdot 284\\ 0\cdot 364\\ 0\cdot 447\\ 0\cdot 533\\ 0\cdot 616\\ 0\cdot 698\\ 0\cdot 774\\ 0\cdot 843\\ 0\cdot 902\\ 0\cdot 948\\ 0\cdot 981\\ 0\cdot 998\\ 1\cdot 000\\ \end{array}$	$\begin{array}{c} 0.764\\ 1.002\\ 1.041\\ 1.053\\ 1.060\\ 1.065\\ 1.069\\ 1.069\\ 1.069\\ 1.069\\ 1.069\\ 1.069\\ 1.069\\ 1.068\\ 1.068\\ 1.068\\ 1.068\\ 1.068\\ 1.063\\ 1.040\\ 1.019\\ 1.002\\ 0.986\\ 0.970\\ 0.949\\ 0.907\end{array}$	$1 \cdot 277$ $1 \cdot 214$ $1 \cdot 183$ $1 \cdot 157$ $1 \cdot 138$ $1 \cdot 124$ $1 \cdot 161$ $1 \cdot 105$ $1 \cdot 099$ $1 \cdot 093$ $1 \cdot 084$ $1 \cdot 057$ $1 \cdot 032$ $1 \cdot 012$ $0 \cdot 994$ $0 \cdot 975$ $0 \cdot 908$	0.727 0.859 0.918 0.953 0.981 1.004 1.017 1.026 1.133 1.038 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.006 0.991 0.979 0.964 0.906	$\begin{array}{c} 1 \cdot 265 \\ 1 \cdot 216 \\ 1 \cdot 183 \\ 1 \cdot 160 \\ 1 \cdot 144 \\ 1 \cdot 130 \\ 1 \cdot 119 \\ 1 \cdot 105 \\ 1 \cdot 074 \\ 1 \cdot 045 \\ 1 \cdot 021 \\ 1 \cdot 001 \\ 0 \cdot 979 \\ 0 \cdot 954 \\ 0 \cdot 908 \end{array}$	0.797 0.856 0.904 0.943 0.968 0.985 0.999 1.009 1.018 1.021 1.006 0.992 0.981 0.959 0.942 0.905	$\begin{array}{c} 1 \cdot 265 \\ 1 \cdot 226 \\ 1 \cdot 196 \\ 1 \cdot 172 \\ 1 \cdot 147 \\ 1 \cdot 106 \\ 1 \cdot 070 \\ 1 \cdot 039 \\ 1 \cdot 014 \\ 0 \cdot 987 \\ 0 \cdot 957 \\ 0 \cdot 908 \end{array}$	0.763 0.830 0.874 0.906 0.932 0.952 0.968 0.979 0.972 0.965 0.959 0.954 0.934 0.901

TABLES 5c and 5d

Velocity Distributions

	α	0 deg	1 de	eg _	2 de	eg.	4 de	g
	x/c		Upper	Lower	Upper	Lower	Upper	Lower
Table 5c 4 per cent RAE 104 $M_{\infty} = 0.80$	$\begin{array}{c} 0\\ 0\cdot 001\\ 0\cdot 007\\ 0\cdot 018\\ 0\cdot 034\\ 0\cdot 055\\ 0\cdot 090\\ 0\cdot 144\\ 0\cdot 209\\ 0\cdot 283\\ 0\cdot 362\\ 0\cdot 446\\ 0\cdot 530\\ 0\cdot 614\\ 0\cdot 695\\ 0\cdot 772\\ 0\cdot 844\\ 0\cdot 900\\ 0\cdot 948\\ 0\cdot 980\\ 0\cdot 998\\ 1\cdot 900\\ 0\cdot 998\\ 0\cdot 988\\ 0\cdot 9$	$\begin{array}{c} 0.764\\ 0.997\\ 1.047\\ 1.063\\ 1.073\\ 1.078\\ 1.082\\ 1.084\\ 1.084\\ 1.084\\ 1.084\\ 1.084\\ 1.084\\ 1.084\\ 1.084\\ 1.084\\ 1.084\\ 1.084\\ 1.084\\ 1.02\\ 0.984\\ 0.965\\ 0.940\\ 0.894\\ \end{array}$	$\begin{array}{c} 1\cdot 182\\ 1\cdot 160\\ 1\cdot 145\\ 1\cdot 134\\ 1\cdot 125\\ 1\cdot 118\\ 1\cdot 105\\ 1\cdot 071\\ 1\cdot 040\\ 1\cdot 014\\ 0\cdot 993\\ 0\cdot 970\\ 0\cdot 943\\ 0\cdot 894\end{array}$	0.839 0.904 0.944 0.976 1.002 1.019 1.030 1.039 1.046 1.051 1.051 1.051 1.029 1.008 0.990 0.975 0.958 0.937 0.892	$1 \cdot 195$ $1 \cdot 172$ $1 \cdot 155$ $1 \cdot 135$ $1 \cdot 092$ $1 \cdot 056$ $1 \cdot 026$ $1 \cdot 001$ $0 \cdot 976$ $0 \cdot 946$ $0 \cdot 895$	0.836 0.889 0.932 0.960 0.981 0.997 1.010 1.021 1.025 1.008 0.992 0.977 0.966 0.952 0.933 0.891	$1 \cdot 137$ $1 \cdot 088$ $1 \cdot 048$ $1 \cdot 017$ $0 \cdot 985$ $0 \cdot 950$ $0 \cdot 894$	0.807 0.856 0.892 0.920 0.943 0.963 0.975 0.968 0.959 0.952 0.946 0.938 0.924 0.886
Table 5d 4 per cent RAE 104 $M_{\infty} = 0.85$	$\begin{array}{c} 0\\ 0\\ 0.001\\ 0.007\\ 0.018\\ 0.034\\ 0.055\\ 0.090\\ 0.144\\ 0.209\\ 0.282\\ 0.361\\ 0.444\\ 0.528\\ 0.611\\ 0.692\\ 0.769\\ 0.839\\ 0.899\\ 0.946\\ 0.980\\ 0.998\\ 1.000\\ \end{array}$	0.764 0.994 1.054 1.074 1.086 1.094 1.099 1.101 1.102 1.103 1.040 1.099 1.061 1.029 1.003 0.982 0.960 0.932 0.881	$ \begin{array}{r} 1 \cdot 140 \\ 1 \cdot 098 \\ 1 \cdot 048 \\ 1 \cdot 017 \\ 0 \cdot 992 \\ 0 \cdot 966 \\ 0 \cdot 935 \\ 0 \cdot 882 \\ \end{array} $	0.824 0.937 0.973 1.002 1.022 1.036 1.046 1.054 1.065 1.065 1.065 1.036 1.010 0.989 0.972 0.953 0.928 0.879	$ \begin{array}{r} 1 \cdot 117 \\ 1 \cdot 067 \\ 1 \cdot 030 \\ 1 \cdot 001 \\ 0 \cdot 972 \\ 0 \cdot 938 \\ 0 \cdot 882 \\ \end{array} $	0.821 0.878 0.924 0.955 0.979 0.998 1.012 1.026 1.033 1.012 0.991 0.975 0.961 0.924 0.878	$1 \cdot 108$ $1 \cdot 057$ $1 \cdot 019$ $0 \cdot 982$ $0 \cdot 943$ $0 \cdot 882$	0.843 0.912 0.937 0.960 0.976 0.966 0.955 0.946 0.940 0.930 0.914 0.873

Aerofoil	M_{∞}	$\partial C_L / \partial \alpha$	$-\partial C_m/\partial \alpha$	h
10 per cent RAE 102	· 0 0·70	$\begin{array}{r} 6\cdot72\\ 10\cdot94 \end{array}$	$\begin{array}{c} \cdot & 1 \cdot 75 \\ & 2 \cdot 80 \end{array}$	$0.260 \\ 0.256$
6 per cent RAE 102	$0 \\ 0.70 \\ 0.80$	$ \begin{array}{r} 6.59 \\ 9.98 \\ 13.77 \end{array} $	$ \begin{array}{r} 1 \cdot 69 \\ 2 \cdot 52 \\ 3 \cdot 40 \end{array} $	$0.256 \\ 0.252 \\ 0.247$
10 per cent RAE 104*	0 0:70	6.78 10.89	$ \begin{array}{r} 1 \cdot 80 \\ 2 \cdot 86 \end{array} $	$\begin{array}{c} 0\cdot 266\\ 0\cdot 263\end{array}$
6 per cent RAE 104	$0 \\ 0.70 \\ 0.80$	$ \begin{array}{r} 6 \cdot 56 \\ 9 \cdot 82 \\ 13 \cdot 05 \end{array} $	$ \begin{array}{r} 1 \cdot 70 \\ 2 \cdot 54 \\ 3 \cdot 39 \end{array} $	$0.259 \\ 0.259 \\ 0.260$
4 per cent RAE 104	$0 \\ 0.70 \\ 0.80$	$6 \cdot 49 \\ 9 \cdot 52 \\ 12 \cdot 02$	$ \begin{array}{r} 1 \cdot 66 \\ 2 \cdot 42 \\ 3 \cdot 06 \end{array} $	$0.256 \\ 0.254 \\ 0.255$

TABLE 6

Pitching moments about leading edge.

TABLE 7

Aerofoil	$M_{\rm crit}$
10 per cent RAE 102	0.782
6 per cent RAE 102	0.838
10 per cent RAE 104	0.794
6 per cent RAE 104	0.853
4 per cent RAE 104	0.885

Critical Mach number estimated from $C_{p\,0\,\min}$ by the Kármán-Tsien Rule

.

* The results for this aerofoil are taken from Ref. 2.

-16

Figs. 3 to 14 show the results given in Tables 2 to 5 plotted in terms of C_p or p/p_0 .

A scale of local Mach number is given on the right-hand side of those Figures showing compressible-flow pressure distributions.

The aerofoil and free-stream Mach number are indicated in the top right-hand corner of each Figure.

FIG. 18. Effect of thickness at high speed.

FIG. 21. Variation of C_p with Mach number.

FIG. 27. Thickness and Mach number effect on lift slopes for the RAE 104 aerofoils.

(40853) Wt. 439 K7 8/57 F. M. & S.

PRINTED IN GREAT BRITAIN

Publication of the Aeronautical Research Council

ANNUAL TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL (BOUND VOLUMES)

I. Aerodynamics General, Performance, Airscrews, Engines. 50s. (51s. 9d.). 1939 Vol. Vol. II. Stability and Control, Flutter and Vibration, Instruments, Structures, Seaplanes, etc. 63s. (64s. 9d.)

1940 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Icing, Stability and Control Structures, and a miscellaneous section. 50s. (51s. 9d.)

1941 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Stability and Control Structures. 63s. (64s. 9d.)

1942 Vol. I. Aero and Hydrodynamics, Aerofoils, Airscrews, Engines. 75s. (76s. 9d.) Vol. II. Noise, Parachutes, Stability and Control, Structures, Vibration, Wind

Tunnels. 47s. 6d. (49s. 3d.)

1943 Vol. I. Aerodynamics, Aerofoils, Airscrews. 80s. (81s. 9d.)

Vol. II. Engines, Flutter, Materials, Parachutes, Performance, Stability and Control, Structures. 90s. (92s. 6d.)

I. Aero and Hydrodynamics, Aerofoils, Aircraft, Airscrews, Controls. 84s. 1944 Vol. (86s. 3d.)

Vol. II. Flutter and Vibration, Materials, Miscellaneous, Navigation, Parachutes, Performance, Plates and Panels, Stability, Structures, Test Equipment, Wind Tunnels. 84s. (86s. 3d.)

1945 Vol. I. Aero and Hydrodynamics, Aerofoils. 130s. (132s. 6d.)

Vol. II. Aircraft, Airscrews, Controls. 130s. (132s. 6d.)

Vol. III. Flutter and Vibration, Instruments, Miscellaneous, Parachutes, Plates and Panels, Propulsion. 130s. (132s. 3d.) Vol. IV. Stability, Structures, Wind Tunnels, Wind Tunnel Technique. 130s.

(132s. 3d.)

Annual Reports of the Aeronautical Research Council—

1937 2s. (2s. 2d.) 1938 Is. 6d. (1s. 8d.) 1939-48 3s. (3s. 3d.)

Index to all Reports and Memoranda published in the Annual Technical Reports, and separately-April, 1950 R. & M. 2600 2s. 6d. (2s. 8d.)

Author Index to all Reports and Memoranda of the Aeronautical **Research** Council-1909—January, 1954

R. & M. No. 2570 15s. (15s. 6d.)

Indexes to the Technical Reports of the Aeronautical Research Council-

December 1, 1936—June 30, 1939 July 1, 1939–June 30, 1945 July 1, 1945—June 30, 1946 July 1, 1946—December 31, 1946 January 1, 1947—June 30, 1947

R. & M. No. 1850 Is. 3d. (Is. 5d.) R. & M. No. 1950 1s. (1s. 2d.) R. & M. No. 2050 IS. (IS. 2d.) R. & M. No. 2150 Is. 3d. (1s. 5d.) R. & M. No. 2250 Is. 3d. (1s. 5d.)

Published Reports and Memoranda of the Aeronautical Research Council—

Between	Nos.	2251-2349
Between	Nos.	2351-2449
Between	Nos.	2451-2549
Between	Nos.	2551–2649

1

R.	& M. No. 2350	1s. 9d. (1s. 11d.)
R.	& M. No. 2450	2s. (2s. 2d.)
R,	& M. No. 2550	2s. 6d. (2s. 8d.)
R.	& M. No. 2650	2s. 6d. (2s. 8d.)

Prices in brackets include postage

HER MAJESTY'S STATIONERY OFFICE

York House, Kingsway, London W.C.2; 423 Oxford Street, London W.I (Post Orders: P.O. Box 569, London S.E.I); 13a Castle Street, Edinburgh 2; 39 King Street, Manchester 2; 2 Edmund Street, Birmingham 3; 109 St. Mary Street, Cardiff; Tower Lane, Bristol, 1; 80 Chichester Street, Belfast, or through any bookseller.

S.O. Code No. 23-3045