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Variation of the Thickness
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SUMMARY

]

The stress distribution in a long, swept~back, solid, thin wing under
a bending moment or a torsional moment is calculated using the inextensional
theory for thin flat plates. Solutions are given for all sweep~back angles
for strips whose cross-sections are rectangular, diamond shaped, parebolic
and double wedge shaped.
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4 Notation

b width of strip

cr

thickness of strip at a point

thickness of strip at the centre

flexural rigidity at a point = Ets/ 12(4 ~ v2)
flexural rigidity at the centre

bending moment

torsicnal moment

& o &7 7 o

,0y axes in plane of strip, as shown in Fig.1

a angle which generator makes with the x axis
&, angle at which strip is built in
n distance measured along generator

Ny7y distances of edges of plates measured elong generator
M moment acting perpendicular to generator

Mn moment per unit length at a distance T along the generator

da 2
3 b ax cosec o
7 n/n1 ,
g atress at a point
bt2 b2

o Zﬁ’? ¢ or -B-EIQ o

f(e) defined by eqation (25)

g(e) defined by equation (32)
F defined by equation (17)
« defined by equation {7)

x* effective extra length, shown in Fig.3

0Q/0P din Pig.3
K a constant of integration
;i;ﬂ_q_i:
¢(G) € "’? ,dﬂ
2 Introdustion
3 R - o '
A long bs‘p:@f;.p; whose''thiékiie¥s Varies across its width, is built in at

a sweep-back.angle’« a,, .and a bending moment or a torsional moment is
applied at its ends. The mode of deformation, stress distribution and
stiffness are obtained using the inextensional theory for thin flat plates1'2
in which it is assumed that the strip is bent without any middle surface
strain, and cansequently must take the form of a developable surface.
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The assumption that there is no strain in the middle surface is gener-
ally velid when the deflection of the plate is large compared with its
thickness, so it is only applicable to very thin wings.

General equations are obtained for a long strip with arbitrary cross-
section subjected to a bending moment or a torsional moment. These equations
are solved, for all sweep-back angles, for rectangular, diamond, parabolic
and double wedge cross-~sections.
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3 Method of Solution
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Fig.1

Fig.1 shows a strip to which a moment Mg is applied, HKL and HK'L!
sre two adjoining generators making angles « and (o + da) with the x
axis. The strip KLL'X' forms part of a conical surface whose apex is at H.

The totel moment acting perpendicular to the generator IHKL is given
by

/4

M, = M sin« (1)

while if a torsional moment Ml, is applied instead

M, = M cosa. (2)

Mansfield and IﬂIJ.e«snn.'-n'z.‘l and, IvIaa'mxf'J'.eld2 have shown that the strain

energy in inextensional deformation is given by

. e

12

U = %‘ S S da , (3)
7'2_133_1 .
[
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where Dy is the flexural rigidity at a distance ™ along the generator
HKI, from H, By maximisation of U a relationship can be obtained between
x and «, It is shown in Appendix I that for a strip subjected to a bend-
ing moment this relationship is

sin® @ = ge) , (&)

while for a strip subjected to a torsional moment

sin 2a = g(e) , (5)
where
£ = b-g;a cose02 o (6)

and g 1is a function of & and of the shape of the cross section, though
it is independent of the width and thickness of the cross-section., In
Appendix IV expressions are obtained for g as a function of € for each
of the four cross-sections considered here.

As g is a complicated function of e, equations (4) and (5) can be
solved only by numerical methods., For each cross~section a number of values
of €& were chosen, g was calculated for each of these, using the appro-
priate formula from Appendix IV, then equations (4) and (5) were used to
calculate a for each velue of e . Integration of equation (6) by arith-
metical methods then made it possible to plot x/b against «, and to draw
the generators on a diagram of the strip. Figs.4k to 15 show the generators
for the four types of strip considered in this paper.

It can be shown that, under inextensional deformation, the strain
energy in a long strip subjected to a bending moment becomes a maximum when
the generators at some distance from the ends are at 90° to Ox; while, if
it is subjected to a torsional moment, the strain energy becomes a maximum
when they are at 45° to Ox . From this it follows that, in the problem of
a clamped strip, & must tend to 90° as x tends to infinity if a bending
moment is epplied, and to 45° if a torsional moment is applied.

When € =0, g is always equal to unity, giving en engle a = 90°
in the bending case, and a = 45° in the torsional case. As & increases,
g always decreases; but g does not always decrease to zero, so that «
does not always decrease to zero. In fact equation (4) has solutions only
for values of a greater than %y, where

., 2
sin® @, = g . (7)

The generators for a less than 0y all pass through the point 0, as
shown in Fig.2. As generators for varying angles all pass through the same
point, it follows that

dx
a—;.—.-.o

and consequently, on substituting this in equation (6), it is secn that €
has no finite value.
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In the cases shown in Fig,2 (a) and (b), if the generators and stress
distribution are known for a, = O, then they are givea for all other
values of a,, as the plate can be clamped along any of the generators of
the agy = O system without altering the stresses and strains in the system.
Similerly, for the case shown in Fig.2(e), it is sufficient to calculate the
generators and stress distribution for a5 = 90°, The generators and stress
distributions for rectangular, diamond shaped, parabolic and double wedge
ghaped cross-sections are shown in Figs.4 to 15.

4 Stress Distribution

In Appendix II it is shown that, where « > a4, the distribution of
stress is given by the relationship

LM IO (®)
gM—B ¢ £ e=0¢i%+-§-i ’
or
2
bt
ot = =—=¢ = E:)('Q' 1 ;
SMI' <t f)s=0¢i%+£-i )
where ——
¢ = & g%



and f is a function of ¢ , for which a general expression is obtained in
Appendix I, Specisl expressions for f are given in Appendix IV for the
four strips with which we are dealing.

For each cross-section, graphs of equal stress were obtained by giving
o' selected values, then for any particular value of o', y/b was calculated
for each generator using equations (8) and (9), remembering that t/t;, is a
function of y/b, and that the value of € was known for each generator.
Consequently, for each value of o', the appropriate value of y/b was
marked on each generator, and graphs of equal o' were obtained. These are
shown in Figs.4 to 15.

Equations (8) and (9) apply only where a > a4. It is shown in
Appendix II that, where a < ay,

2
bt . 2
ot = —"20' = (‘t‘j's'"lu (10)
oy b/ ) L
or
2
bt ;
o = =20 = (%)En———z& . (11)
7 " )t

Graphs of equal stress were obtained in this region by the same method as
was used for o > a1 .

5 Effective Lengths

If a long strip, shown in Pig.3(a), of length ¢, built in at an
angle a,, rotates as much on application of My as a similar strip, of
length ?8 + x*), built in at 90° then we can say that the effective length
of the former strip is (€ + x*) . For large values of ¢, x* depends
only on o, . In Appendix III x* is evaluated, and so is ¥, which is
defined by the equation

Y = 0Q/0P . (42)
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It is shown in Appendix IIT that in the bending case

Y cot a_ = x*/b

. ] &
(—f-> 1 1-sm 2a1_txo+s:|.n 2&0:|+f [(f_) sinza_ 1 Jda
£ o by () 2 4 2 & e o f & sin2
- 4
1
(R XN ] (13)

This equation was integrated numerically, and Y is plotted as a function
of &y in Fig.16 for the appropriate cross-sections.

If is applied to a strip of 1 h &, and the strip rotates as
much as a similar strip of length (£ + x*) clemped at 45°, then we can say
that the effective length of the former strip is (& + x*) . A strip
clamped at 45° has been chosen as a standard because such a strip bends in a
simple manner, with all its generators parallel, on application of a tor-
sional moment. It is shown in Appendix III that, for the case shown in
Fig. j(b) ’

¥(cot a - 1) = x*/b
o 2
- 9 [ . . £\ 4 cos a 9
== —(—y 2a,+8ina, -2a =sina ] +[/L[<—) - J da,
(e>o e ! 1 ° ° % &/o £ E a?.:l.n2
1
sr e (14)
while for the case shown in Fig.3(c),
Y(cot & +1) = x/v (15)

where x*/b is given by the same expression, except that the limit of
integration in this instance ia }u/tp;.

6 Discussion of Results

Figs.4 to 15 show the generators and stresses in strips with rectan~
gular, diamond shaped, parabolic and double wedge shaped cross-sections when
& bending moment or a torsionsl moment is applied on the strip. Fig.h is
taken from 'The Inextensional Theory for Thin Flat Plates! by ManafielaZ,
Pigs.7, 8 and 9 refer to diamond shaped strips, and show that there is no
extra stress concentration due to the clamping of the strip at a skew angle.
F1gs.10 to 15 refer to double wedge shaped strips and parsbolic strips, and
show highly localised stresses, with a stress concentration factor of up to
1.20 for the double wedge shaped strip, and of up to 1.52 for the parabolic
strip. The rectangular strip (show in Figs.4, 5 and 6) has a very high
stress concentration in a small regicn; but this must not be taken too
seriocusly, as in this region the inextensional theory is inapplicable, even
when it is accurate elsewhere.

Figs.16 and 17 show how the stiffnesses of the strips vary with the
angle a, at which the strip is to be clamped. Fig.16 refers to a strip
subjected to a bending moment, and shows that as &, approaches 90°, ¥
approaches 0,5, so that the effective length of the strip is nearly equal to
the average length; while for small values of a,, ¥ becomes small, so
that the effective length approaches the smallest length of the strip.
Fig.17 refers to a strip subjected to a torsional moment. In this instance
Y approaches 0.5 as &, approaches 45° or 135°, and ¥ becomes small when
%, approaches 0% or 909,

-8 -



v 7 Conclusions

Methods of calculation are derived for a long Bt’rip, built in at any
angle, subjected to a bending moment or a torsional moment. The method is
applied to strips with rectangular, diamond shaped, parabolic and double
wedge shaped cross-sections, and diagrams are presented showing generators
and lines of equal streass,

It is shown that clamping the diamond shaped strip at a skew angle
produces no extra stress concentration, that clamping the parsbolic and
double wedge shaped strips mroduces a small extra stress concentration, and
that clamping the rectangular strip produces very high stresses in a small
region. .

The stiffness of the strips is discussed and expressions are given for
the effective length of a strip under a bending moment or a torsional
moment. From the graphs the effective length can be obtained for any of the
four strips which have been considered, for any sweep-back angle.

S
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APFENDIX 1
K _—
Determination of the gemerators of a long strip built
in at an angle, and subjected to a moment

Equation (3), for the strain energy of the strips, can be put in the
form

U=%—/Fda (16)

where

(17)

i

It is difficult to deal with F in this form, and it is convenient to
substitute other expressions for 7m, 74 and My . Using the notation of
Fig,1 it follows from geametrical considerations that

dx
n, = 38« (48)
and that
my, =M, = b cosec a. (19)
If we also substitute
T = T]/‘n1 (20)
and
da 2
€ = b3 cosec & (21)
Co My =M
o 21 (22)
™
in equation (17), it becomes ‘
o
F = 14-8 i (23)
) D) 4L
I)o (Dc) T
i *
Hi 4 ‘
= ome—ai X 24
By =)
where ; k : C
¢ S TR R .
T 14e
D \ &7
1



DY) . (&Y

D) T \&/
which is a function of y/b for a given shape of plate, and as

T = 1 +8yh (26)
it follows that £ is a function of & . Therefore, using equations (24)

and (21), it follows that P is a function of o and of dx/da for a
given strip., Considering that

U o= -gfza (a, -g-x;) a (27)

is to be maximised, it can be shown from the calculus of variations that

oF

@ = K, (28)

where K is a constent, Using equations (24) and (21) *his becames

oF df oe

K = E&?a/_d_x_
\da

[£3
= 3s (29)
D f2 de b !
(e}
which can be put in the form
M sin «
Buda (ﬂ) (30)
ZMa sin afw ¢ \f -
where
af
Pt

As x tends to infinity, « tende to ®/2 in the bending case and
%/t or 3m/4h in the torsion case, In either case da/dx tends to zero,
and consequently € does the same, Substituting equations (1) and (2) for
M, equation (30) becomes
sin’ « gle) (bending)
and (31)
sin 2a g(e) (torsion)

]

where

&) = 5(§) - (32)

As f can be calculated as a function of &, these equations show the

relationship between a and €, from which a relationship can be obtained
between x and a ,

Y
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APPENDIX TT

Determination of the Stress Distribution in the Strip

The equation for the principal stress on the surface of a plate
subjected to a bending moment in one dimension is

g = GMT/tz .

Using the equations given by Mansfield?s? and Kleema.n1, this becomes

t™n D
1 g

(33)

(34)

for any plate under inextensional deformation. Substituting equations (17)

and (24) we have

6D,q. M
0‘ = 2 -
D, t™n. £{e)

(35)

For the bending case, equations (1), (&) and (32} are substituted to give

D
. - %.ﬂ(ﬂ) 1
t2 D f‘o'nqss:.na

(36)

which is valid only when a > @4 . From geometrical considerations it can

be shown that

nsina = TI,ISinﬂ-i-.V;

and substitution of this and equation (18) into equation (36) gives

o-'

2
bt '
i @T)@ (11 xj (> ap)
°of iz th
A similar treatment of the torsional case produces the equation

- 2

When ® < a,, € is infinite. So for bending equation (35) becomes

L]

: @nNLBsmu
D, £2 11th("")o

o

(37)

(38)

(39)

(40)



As my = 0 for this region, equation (37) is simplified, and on substitu-
tion in equation (40) gives

b2 2
o s @ = (B <o) (1)

f{=) ¥

while a similar treatment of the torsional case gives

S - i (0) sin 2a (a<a1). 2)

fooy

-13 =



APPENDIX ITI

Determination of the Stiffness of the Strip

The flexibility of a strip subjected to a particular type of loading
is equal to the strain energy produced by that loading divided by half the
square of the magnitude of the load, The flexibility of a long strip built
in at an angle &, under a moment My is therefore egqual to

U ,

iy

N

X= M2
-5 [ s )
MB a:ao °

substituting equations (16) and (&; for U . The flexibility of the
equivalent strip of length (£ + x*), shown in Fig,3, is

& 4 x*®

Lt ()

[
Q

This integral can be rewritten by replacing

&
¥
[y P
L\';:)j
DU ljti
3l&

£=0

1
o'l
1+
UIU

[ys.

Q
As 'r|/n1->1 as £+ 0, equation (18) can be substituted, giving

W

9 - o fom

80 that the flexibility of' the equivalent strip becomes

£ 4+ x* ( 6)
w_(#/5), b

-l -



Equating expressions (43) and (46), the equivalent length is determined by
the equation

1 > £ 2 &
[ sin & .o ‘ sin o da . _ X . 1 ax
o Doflmi Dof dx - bDo ‘f?eio bDo Zf;e)o
o o o
seenes (11-7)
so that

a1 é y 2
(5 4 .2 £\ sin’ @ dn 1
T (e)o'fze;j f sin” a du + f[\s)o F oax " b -
Q

%
cosees {48)

When & is large the integral from O to £ can be considered as an
integral from a =a, to « =x%/2, Vhen, in sddition, equation {(21) is
used to substitute for dx/da, and the first integral is evaluated,
equation (48) becomes

X" p 4 1 §in 2(;1 & sin 2a° e £\ sin?a 1
v = (E) ) | 2 & 2t :l* f [(E) 2 2Jd°"
0 « 0 € sin
1

F

ceeres  {(49)

4 similar treatment of the torsional case gives the equation

- (&) P 3“/#_4 2 17
X . . f cos o
— | = 2%, +8in 20, -~ 20 -~ sin Zu] + / L(._.) - lJ aa
b (e)o ftw)'[ 1 17 “%% o . A F e sin?
. 4

vesees (50}

where the upper limit of the integral is =/4 for the situation shown in
Fig.3(b), and 3%/4 for the situation shown in Fig.3(c). °©

- 15 =



APPENDIX IV

Evaluation of f(e) and g(e) for particular cross-sections

It is desired to evaluate f and g for each cross-section, where
f 1is given by equation (25), that is

14€

while, from equation (32),

where

1 Rectangular Strip

As t =1%t,, f is determined by the equation

1+&
at
f = / -'i‘_ ‘
1 -
When € =0
£ _ &
e ~ de
(52)
= 1
and therefore
J1 +€ (1 +¢)/fe, (53)
2 Diamond shaped sirip
The shape- is defined by the &quations
2 _ ., X Led A
T = ZJb fgr 5 < 3
[¢]
and 5 i X
Fl , t7 o = - ': ’ ¥
) R 2( - %) for >4 (54)

- 16 =



Remembering that (D/Dg) is the cube of (t/t5), and substituting equation

(26) for y/b we have

3 ~
D T = 1
5‘*:8(—3"*-) for 1< T < 1+8/2
o
and e
D T - 1)
D—-:B(-— e) for1+8/2<T<1+e.J
o
Theref ore
[>
1+/2T—13dT 1"'8(84-1—1‘)5512
f=8/ (T) -,i',—+8j g T
1 +£/2

On integration this expression becomes

£ = 8(8 + 1) én \11 "582/ (1 +"‘/2)- 5(1 +2/e)

which tends to &/4 as ¢ » 0, so0 that

£y 4
¢/ %7

Differentiation of equation (57) gives

a 1 i1+8 24 ey 18
de = '%(’*e)&nG+e72>+64&n(1+2)"‘ 2

1] ]

from which it follows that

3
1 1 +e 8 € 2
2@ ) @) 5o {95049

p2e( (o o o)

3 Parabolic Strip

For a parsbolic strip

L Y4 _X\.
T ﬁlpb<1 b)’

o

80 that, on substituting equation (26), we have
se e (Y (-

-17 -

=)

UlU

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)



and f 1is given by the equation

14€
f=-§g/ (T—1)_3(T-8-1)5%?'- (63)

£
On integration this becomes
1 4.1 41 .5 1 (1s+e)’
f = 614.{:-55-2084- 2+6€3+ z‘_~4---5-----L—é)-—&n(‘l +€)] s

cenees (64)

and its differential coefficicnt with respect to € is given by

3
daf 1 1 13 12 6 1 4€

& 54{2 - - - <L . +3 (2 +¢€) Zn(‘l-l-e)].
de 082 233 291" 95 e? .

€

senees (65)

When € =0,
'Y @
80 that
3
1 1 1 11 5 1.0 +e)
140 [ _ . + + + -tr = - tn (1 + e)}
. B\l 608 7 002 T 123 T e gD | g ! )
3
1 -—1—-—-11-32--6+5(2+6)-(+1+8 &n(1+8)]
J-LOQZ 233 281" 35 :g

eeeses (67)

4 Double wedge shaped strip

The shape is defined by the equations

t . X XA N
to = 3 3 for 0< b < 3 )
o l.xr.2
£ = 1 for 3<b<3 , ? (68)
and
L h 2 X
— = 3(1- ) for S <&<¢c4,
to b 3 b
Substituting for :‘Z— as before, the expression for f is
14£/3 3 1+2€ /3 1+€
I =1V a7 ar I =1y ar
f = [ 27<_8>T+/ T-I-[ 2?(1 ejT’
1 1+e/3 142¢ /3

cenees (69)



which becames on integration

1+ 2e/ 21 21 3 l+e 1.1
f = 6n<m‘32)-63 in (‘l+e./3)-c-$3 (1+€) 5“(?,,%2?5)'21 (8-;-2).

essses (70)

On differentiating and reorganising the terms we have

2 Y
a _ 8 81, , 1 1ee ) 36
& = eﬁn(“eﬂ)-e (” ) ‘n(ﬂ'z‘% v (71)
When & =0

’ (72)

-

£ .
€

nj=

and substitution of {70), (71) and (72) into the equation for g gives

/o {&n G-ﬁ‘:}) -7- en (14€/3) + "7' (14¢)° e 1+2e 3) 21 \e )}

— T s - (1 ) () 5]

- 19 =
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FIG. 4. STRESSES AND GENERATORS IN A RECTANGULAR STRIP SUBJECTED TO
A BENDING MOMENT WITH CLAMPING ANGLE (o = O.
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FIG. 6. RECTANGULAR STRIP SUBJECTED TO A TORSIONAL MOMENT
WITH CLAMPING ANGLE ©o¢o=90.
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DISCONTINUITY
IN SOLUTION
AT o¢, 234-5°

FIG. 8 DIAMOND SHAPED STRIP SUBJECTED TO A TORSIONAL MOMENT,
WITH CLAMPING ANGLE =0
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FIG.9. DIAMOND SHAPED STRIP SUBJECTED TO A TORSIONAL MOMENT,
WITH CLAMPING ANGLE &= 90°
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FIG. 10. PARABOLIC STRIP SUBJECTED TO A BENDING MOMENT,
WITH CLAMPING ANGLE ;=0
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DISCONTINUITY
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AT o, = 59-1°

FIG. |12. PARABOLIC STRIP SUBJECTED TO A TORSIONAL MOMENT
WITH CLAMPING ANGLE oC4=90]
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CROSS SECTION

FIG. 13. DOUBLE WEDGE SHAPED STRIP SUBJECTED TO A BENDING MOMENT
WITH CLAMPING ANGLE ©&o=0
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DISCONTINUITY
IN. SOLUTION
AT oty = 57.4°

FIG.15. DOUBLE WEDGE SHAPED STRIP SUBJECTED TO A TORSIONAL MOMENT,
WITH CLAMPING ANGLE o=90°
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