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Summary.~The wing of infinite span oscillating harmonically in incompressible flow but having a vortex trail of 
finite length Sc is discussed theoretically. The ' incomplete circulation functions'  Cs which arises in this case is 
tabulated. As an example, the damping moment due to slow pitching oscillations is shown for several values of S. 
The result is of interest as a wind-tunnel correction, in particular in that range of small ~requencies which occurs in 
flight stability oscillations. 

Agreement with a n  experiment in an open-jet wind tunnel is obtained. A contradiction between different experiments 
in closed-jet wind tunnels is mentioned. 

1. Introduct ion.--The problem of the wing oscillating harmonically in incompressible two- 
dimensional flow has been treated by numerous authors t on the assumption that  the motion 
has existed for so long tha t  the  vortex trail can be treated as having infinite length and harmonic 
vortex distribution. The results of these investigations are familiar in the form of aerodynamic 
coefficients which have long been used in flutter calculations and recently in flight stabil i ty 
calculations. 

In the present paper the case of a vortex trail, which has finite length Sc (c -- wing chord) 
but has still a harmonic vortex distribution, is discfissed. I t  is possible tha t  such a case arises, 
for example, when a wing oscillates in a wind tunnel. However, in this case it arises within 
the framework of a rather complicated system of limitations to the air stream. In order t o  
have simple propositions the following system of two wings in an unrestricted medium is 
considered in the present paper. 

The first or main wing (see Fig. 1), is the given wing ; it is supposed that  it has been oscillating 
harmonically for a long time so that  its vortex trail can be assumed to be harmonic. In this 
trail and at a fixed distance Sc from the first wing, the second or auxiliary wing oscillates; it 
oscillates in such a Way as just to cancel the vorticity of the trail, so tha t  no vortex trail exists 
behind the second wing. As a further simplification the chord Oc of the auxiliary wing is 
supposed to be negligibly small ; thus this wing is in effect nothing but  a single vortex of harmonic 
intensity. I t  is obvious that  the existence, in some form or other, of this vortex is necessary 
in order tha t  the physical system be complete; to call this vortex a ' w i n g '  is a matter  of 
illustration only. 

* R.A.E. Report Structures 148, received 23rd October, 1953. 

t The first was Birnbaum 1 (1922). An independent approach was developed by Wagner 2 (1925). 
continued Birnbaum's work ; Glauert4 (1929) continued Wagner's work (see also section 2). 
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Kfissner3 (1929) 
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We assume the downwash w(x,t) at the main wing to be given and require the resulting forces 
on this wing. S is the parameter  of our  problem. 

The investigation here presented was made two years ago in connection with an unsuccessful 
a t tempt  5 to reproduce, in an open-jet wind tunnel, the undamped pitching oscillations that  had 
been predicted theoretically by  GlauerP. I t  was found tha t  the introduction of the parameter 
S yielded as good an agreement between theory and experiment as could be expected. I t  was 
felt aL the time that,  for reasons explained in section 5, this agreement should be tested by 
further experiments, varying in part icular ' the parameter S. These further experiments could 
not then be made and are not likely t o  be made in the near future. Justification for com- 
municating the existing results now is seen in • 

(a) the practical importance of the fact that  Glanert's theoretical prediction could not be 
corroborated by careful experiments in an open-jet wind tunnel and that  this failure 
could be explained quanti tat ively by the finite length of the vortex trail in these 
experiments 

(b) the statement made in a recent paper by  Runyan  6 that  Glauert flutter has been observed- 
in a closed-jet wind tunnel (this occurrence is discussed in section 6) 

(c) the recently renewed interest 7 ifi t h e  circulation function C of unsteady flow. This 
function arises in the limit S --~ oo of the present analysis. This analysis, by  virtue 
of the finite parameter S, avoids certain mathematical  difficulties which arose in some 
of the. previous treatments of the case of an infinite vortex trail. 

2. R e m a r k  on the Circulat ion F u n c t i o n . - - W e  start  our discussion of a system of two wings 
by recalling a few of the results concerning a single wing. This problem* has a general solution 
in closed Iorm~ • the lift distribution p(x, t)  due to an arb i t rarydownwash W(x,t) is: .  

P(x' t )  = P V  f ~ i  [ g  ~w(x't) ~t " 

I 1(} 1 + w(x,t) ~ _ x ~- T ( l v )  - -  1 + x l - -  de . . . . .  (1) 

For details of notation see section 3.1. The symbol i der~otes Cauchy's principal value. 

Both in t h e  general formula (1) and in the more familiar individual aerodynamic coefficients 
a certain transcendental function of the frequency parameter v occurs. This function has been 
defined differently by  different authors" 

+ - C(½ ) =__ - -  

H ,  K (½i ) 
= iHo + = Ko(li ) + K (½i ) . . . . . . .  (2) 

The notation T was introduced by Kfissner 1°, the notation C by Theodorsen 11. Tl~e notation 
A - -  i B  is used in British flutter practice. The H/2> are Hankel functions of the second kind, 
the K, are modified Bessel functions. 

The difference in the definitions of the two functions T and C" 1 q- T = 2C instead of T = C, 
is not arbitrary as the two functions have different physical significances. We may split the 
flow around the wing, and consequently the lift distribution p, into a circulatory part and a 
non-circulatory part" the circulatory part has the factor C(½v). On the other hand we may 
split ib(x,t) into a part which depends only upon the momentary values of w and ~w/Ot, the 
instantaneous part, and a part  which depends upon the history of the motion and thus upon 

* As defined already in section 1 ; single wing, oscillating harmonically in two-dimensional incompressible flow. 
j~ Discovered by Soehngen s and by Schwarz 9. 
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t h e  distribution of the vorticity along the vortex trail, the transient part.  This transient part  
has the factor T(½v) in (1) ; in fact (1) remains valid for any history of the motion if the T-function 
i s  replaced by the function*_ appropriate to the:history. 

Thus the two functions C and T, often called after Theodorsen and Kiissner respectively, are 
the " circulation, function _' and"  transient-lift function ' of harmonic motion. The first of these 
terms is well established. The second is not. Otherwise there is no pract ical  reason for 
preferring the ~ one of the other in the present problem. As a mat ter  of fact the circulation as 
such has kless significance in  Unsteady flow than it has in steady flow, while the transient part  
of the flow has less significance in harmonic motion than, it has in non-uniform motion. The 
analysis of the present paper follows closely that  of Schwarz 9, who uses the T-function. 

In the present paper we set out to investigate that  function Ts which replaces the function T 
m (i) if p(x,t) and w(x,t) are respectively the lift distribution and downwash of the main wing 
in our system of two wings (see section 1 and Fig. 1). Obviously we must expect" 

lim T s  T ' 
S--Noo 

We may further define (see (2))" 

.- Cs = ½(1 + Ts) 

with the consequence" 

rlm Cs 
s - ->-  o~ 

We call Ts and Cs the 
respectively. 

3. Analysis.--3.1. Notation. -2  

' incomplete T-function'  
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(3b) 

and the ' incomplete circulation funct ion '  

Time 
Air density 
Circular frequency 
Chord o fma in  wing 
Chord of auxiliary wing 
Speed of air flow 
2V/c Reduced speed 
2~fc/V Frequency parameter 
i~/2 = 2~if/v Imaginary frequency parameter 
Non-dimensional coordinate (see Fig. 1) 
(S + 0" 5)c Distance between wings (see Figl 1) 

w(x)  v e x p  (2 i/t) 

Free vorticity 
(x) V exp (2zdft) 

q~(x) V exp (2x~i/t) 
Local lift 
Real part  
Imaginary part  
Reynolds number 

Downwash produced by the two wings 

Bound vorticity 
Total vorticity 

* This function starts from zero as the motion starts from rest so that  the adjective ' i n s t an taneous '  for the 
remaining par t  is. adequate (Ktissner~). 
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3.2. Aerodynamic Proposi t ions . - -The system of two wings oscillating harmonically in incom- 
pressible two-dimensional flow has already been described in section 1; it is shown in Fig. 1. 
The usual assumptions of linearised aerofoil theory are made: thin aerofoil, small amplitudes, 
potential flow. 

Bound vorticity 7, free vorticity e and total vorticity 9 are interconnected by  the relation: 

7(x,~) + ~(x,E) = ~(x,t)  . . . . . . . . . . . . . . .  (1) 

Bound vorticity exists at the two wings only. Free vorticity exists at the two wings and also 
forms the vortex trail between them: 

(x,t) - 7(x/)  - 0 in [-- oo, -- 1] and Is + 6, oo] 

y(x,t) = O i n  [1, s - -  $], . . . . . . . . . . . .  (la) 

the [ ] brackets referring to the z-coordinate. 

Owing to (la) the Kut ta  condition of smooth flow at the trailing edge need be stated for the 
main wing only:  

[TCm,l) I ~ . . . . . . . . . . . . . . . . .  ( lb)  

As vor t id ty  is generated at the two wings only, the vorticity of the trail is subject to the 
con dition : 

= = ~  s _ ~ , ~ + s -  - x  ( l ~ x ~ s - ~ ) .  .. (lc) 
I9 7) 

At a given point of either wing the bound vordci ty  7 and free vorticity e are related b y  
Helmholz's theorem, which yields: 

~7 de 0 9 ae 
a-~ + d r - a t  F v ~ = 0  . . . . . . . . .  (2) 

On integrating equation (2) and using equations (la) and (lc) we obtain : 

~(x,~) = - v _1 ~ ~(~,t)  d~ ( - -  1 < x .<.< 1) 

- -  v ~ t  ~o ~ , t  - -  d ~  

v (1 < x ~< s - ~ )  
1 ~+~ a ( < t + s  - x  

1 (~+~ =+vj~ ~(~'t) d~ (s - -~<x<s+6)  . . . . .  (:~) 

The total  vorticity is related to the downwash w(x,t) by the theorem of Blot and Savart  : 

s ~ ~ x ~ s + . . . . . . . . . . . . .  (4) 

The local lift p is related to the bound vortieity 7 by  the theorem of Kut ta  and Joukowski : 

~ ( x , t )  = p V T ( x , t )  . . . . . . . . . . . . . . . . . . . .  (5) 

3.3. Harmonic Mo t io~ . - -We  assume the instantaneous downwash w at the main wing to be 
given. The aerodynamic relations stated in the preceding section are not sufficient to determine 
the bound vorticity 7, and thus the local lift p (see section 3.2, equation (5)). We are still free 
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to decide upon the history of the  motion and also have a certain choice left for the downwash 
distribution over the auxiliary wing. These freedoms will now be eliminated by first introducing 
harmonic motion and then going to the limit ~ -+  0. 

In the case of harmonic motion the free vorticity s along the vortex trail can be written : 

F / 
~ J  

v)J, . . . . . . . . .  

(1) 

with all unknown constant ~. By means of (1), and using the non-dimensional notation defined 
in section 3.1, equation 3.2(4) becomes: 

2-~ + x v - - - -  d~ = w(x) + ~ - -  d~ . . . .  (2) 
d s - - ~ . A  " X - -  

For t from equation 3.2(3): 

o o e(,_~)o~ '+~ ~(~) d~ . . . .  (3) F+ 1 C O  

- - - -  - -  e . • • 2~ J_~ ~ ( ~ ) d ~ -  2~ ~,_~ 

Equation (3) states the physically obvious fact that  the total vorticities of the two wings must 
be equal, apart from a phase difference. 

3.4. Integral Equat ion and S o l u t i o n . - - B y  going to the limit a -~  0 in equations 3.3(2) and (3) 
the integral equation which governs our problem is obtained: 

< lf -- e 'l 1 v(~) ~ = w(x) + x e- '~  ds  + ( -  1 < x ~< 1) . .  (1) 
2-~ x ~  1 x -  ~ ~ ( x -  s) ' 

with : 

• e o f ~ i v ( e )  de . . . .  (la) ~ - = ~  . . . . . . . . . . .  

Equation (1) is an integral equation of the first kind of the form: 

2 ~  x - -  

which has the solution, due to A. Betz : 

f (x)  = ~ V - 4 - ~ ]  _~g(~) ~ -  ~ ~ - x . . . . .  

Equation (2) is tile only solution of equation (la) which, if formed for equation (1), fulfils the 
condition equation 3.2 (lb). 

This solution still contains the unknown X which has to be eliminated by means of equation 
(la). Having thus found the total  vorticity 9(x) we obtain the bound vorticity ~,(x) by means 
of equation 3.2 (1) and (3): 

r (x)  = ~(x) + ~ ~(~) a~ . . . . . . . . . . .  (3) 
- - 1  

The lift distribution p is then obtained by means of equation 3.2(5): 

fl(x,t) = p V~7(x) exp (2~i/t) . . . . . . . . . . .  (3a) 

By letting s tend to infinity in our problem (1), (la) and (3), we obtain the familiar problem of 
the wing with infinite vortex trail in the form discussed by SchwarzL The final result obtained 
by Schwarz is equation. 2(1); our aim is to find the alteration which occurs in equation 2(1) 
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if s takes a finite value. Thus, in performing the integrations contained in equations (la), (2) 
and (3) we need concern ourselves only with those terms which contain the parameter s. This 
part  of the analysis is given in Appendix I ; the result is as given below" 

Equation 2(1) remains valid for our system of two wings if the T-function is replaced as 
follows" ,~, 

with 

r(½~) - ~  T~,,(½~) ~ T~(½v) 
l + x  
S - - X  

Us(½~) . . . . . . . . .  (4) 

2Hls(½V) -- 1 
rs(½~) = CHo, s(½~) + Hls(½v) 

4 e -~s 1 
Vs(½~) --  ~ iHos(½V) + Hls(½~) ~¢/(s ~ -  1) . . . . . . . .  (4a) 

The functions H,s are incomplete Hankel functions (see Appendix II). Owing to the relation" 

~ m  H,~(½~) = H/2~(½~) . . . . . . . . . . . . . .  (4b) 
.%+-00 

and equation 2(2), the condition 2(3) is fulfilled. 

3.5. Lif t  and Momen t . - -Le t  L,  be the lift acting on the part of the chordwise section between 
the point x and the trailing edge, and let M, be the moment about the mid-chord point x = 0 
of L,, : 

,d X 

M .  = c 2 u p ( u , t )  d u  . . . . . . . . . . . . . .  (1) 

Let L,, M~ refer to the case of all infinite vortex trail. By applying equation (1) to equation 
2(1) the familiar results are obtained; these depend upon the  downwash w(#) and contain the 
T-function (or the equivalent C-function). 

Let L,s, M~s be the forces corresponding to L,, M, in our case of a finite vortex trail. These 
forces are obtained by again applying equation (1) to equation 2(1) but  only after replacing the 
T-function by the TsSunct ion (see 3.4(4)). We find the formulae for L,, M~ remain valid in the 
case of a finite vortex trail if we make the substitution" 

{ I~/to 'for L,s 
T(½v) -+ Ts(½v) --  Us(½v) × (sI2 --  Io --  I~)/I~ for M,s . . . . .  (2) 

The I ,  are the following integrals: 

±o= / ( ] l - u  du sin-Zx \ ] ~ - ~ 7  : ½ ~ - -  ~¢/(1 2 2) 

; _11 [~ = , u  ~ du = (1 -- ½x)~/(1 -- x ~) ~ ( ~  -- sin-ix) 

I2 
x S - - ~ l ,  

+ ~ / ( 1 - - x  2 ) - 2 ~ / ( s  2 -  1) t a n - l J ( ~ + x . s . _ - - x  s + { )  ' (2a) 
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In the particular case x = -- 1, i.e, for total  lift L and total  moment M, we obtain for equation 
(2)" 

t l  1 1 for . L  s - -  ~ / ( s  2 - -  1)  - -  2 s  8 s  ~ ' ' "  

T(½J --+ T s ( ½ V ) -  Vs(½V) × 1 1 for M s . . .  (2b) 
--  2s{s --  V ( s  2 --= 1 ) } -  ~2 8s'" " " 

3.6. The Incomplete Circulation Func t ion . - -The  T-function is a function of the frequency 
parameter v only; the function Ts,, is a function of the three parameters v, S and x. In order 
to simplify our result we now discard the dependence of Ts,, upon x by neglecting the function 
Us. Thus we use the function Ts of equation 3.4(4a) as the function Ts of equations 2(3) and 
(3a). From equations 3.4(4) and (4a) it can be seen tha t  the error thus committed is of the 
order S ~-2 (cf. also Table 1 and Fig. 3). 

From equations 2(2) and 3.4(4a) ill conjunction with Appendix 1I(2) the following expression 
for the incomplete circulation function is obtained: 

G(~;') i~ ~ / ( ~ -  l) e-°~ a~ + V(s ~ - a) ~o . . . .  (1) 
~ + 1  s + l  e -~'" . . . .  

~/ (~  - 1) e-°" d~ + V ( s ~ _  1) 

The limit s -+.oo cannot formally be introduced in equation (1) as it stands but  it can be thus 
introduced after transforming equation (1) to read: 

G(½,0 = ' ~ + 1  + c° f l l J (~- -  l) - 1I e-<~d~l + I~l \~-- 1~ _ 1l e_<O: e_<O 
( la)  

Both numerator and denominator of equations (l), (la) are nearly independent of s if s is 
large, the derivatives of both with respect to s being of the order s -2. I t  will be noticed tha t  
this is due to the terms which represent the auxiliary wing, or, if for a moment we consider the 
case of a wing in free flight, to the terms which represent the initial vortex. By  leaving these 
terms out we would obtain:  

f 
s 
1 V ( ~  ~ - -  1) e-°~ dn 

Equation (lb) becomes meaningless if s is replaced by oo. 

Some previous authors have used the fight-hand side of equation (lb), with oo for s, as the 
definition for the C-function. This is certainly incorrect from a formal point of view. However, 
i t  can be shown* tha t  indeed: 

C(lv) = lim ~ ~ / (~  -- 1) 

<-1) 
e - ~  dfl i 

" 1 

e -~n d~ 

. .  ( lc) 

* For example, by considering unstable oscillations, i.e., co = ff + i v, going to tile limit s -> 0% applying equation 
All(S), and considering the limit/z + 0 after that. 
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i.e., tha t  the limit of the  quot ient  (lb) exists and has the  correct value. Thus the  terms which 
represent the  initial vor tex are not  strictly necessary in the  process s -+0% but  they  simplify 
this process. 

For the  purpose of numerical  evaluat ion it is convenient  to t ransform equat ion (1) by  intro- 
ducing v = --  2iro and S = (s --  1)/2. The following symmetr ical  expression is obta ined for 
the  Ts function : 

i~,( s -~ ,  I /  ~ \ 

= -  , • . . . . . . .  ( 2 )  

Note  that"  

and tha t"  

S 
Ts(0)  - -  S + 1 . . . . . . . . . . . . . . . . .  (2a) 

0 Frlog 4s - 1  - o "  ,og st1 
- -  

( s  < 00) 
$ - . I  

io2 (s =o2)  . . . . .  (3) 

Numerical  values for the  function Ts and also for the function Us have been calculated by 
methods  explained in Appendix  III .  The results are tabula ted  in Table 1. In  Table 2 the  
incomplete  circulation function is given in the  form : 

Cs(½~) -= &(~)  -- iBs(~) . . . . . . . . . . . . . . .  (4) 

(Cf. 2(2)). Ts is shown graphically in Fig. 2. 

4. Damping Moment  Due to Slow Pitching Oscillations--Comparison with Exper imen t . - -The  
case of a harmonical ly  oscillating wing having a vor tex trail of finite length arises in wind- tunnel  
tests. Such tests are made  in order to obtain information regarding the  wing with infinite 
vor tex trail (S ----- o2). In  fact the  theoret ical  effect of a finite parameter  value S, as seen from 
F~g. 2, is not  very impor tan t  in such cases, generally speaking, as S is usually fairly large 

N 10, say). 

There is an except ion:  the  relative effect which S has on the  imaginary part  of the  function 
Ts remains large even for large values of S if the  frequency v is sufficiently small. T h i s c a n  
also be seen from equat ion 3.6(3) : the  function ~ T, owing to the  t e rm v log v which it contains, 
has an infinite slope as v tends to zero, while 0 Ts has a finite slope (S # o2). This becomes 
impor tan t  in connection with the single-degree-of-freedom pitching flutter which exists, theoreti-  
cally, ~in a certain range of forward axis positions. This flutter was discovered by  Glauert ~ and 
hence should be called ' Glauert  flutter '. 

Fig. 3 refers to this flutter. I t  shows, in the  range 0 ~< v ~< 0.12 and for the  pi tching axis at  
x0 = --  5/3, the  out-of-phase damping  m o m e n t :  

--  ~ M~ = --  pc2V%m~ exp (2~ift) , 

which results for different values of S. Glauert flutter arises if --  ~ Ms < 0. ' Exact  t h e o r y '  
refers to equat ion 3.4(4); ' simplified t h e o r y '  refers to equat ion 3.6(1). ' Quasi-steady assump- 
t i o n '  refers to the  assumption T(r) - 1 which, unti l  recently, was in general use in flight 
stabil i ty calcula t ions .  

The axis position Xo = -- 5/3 was chosen as being well sui ted for an a t t empt  to verify Glauert  
flutter experimentally.  Let  F be the  force which, if applied at mid-chord,  would produce the  
negat ive damping m o m e n t  J M~ about  x0. The axis position of m a x i m u m  m o m e n t  o0 Ms is 
forward, the  axis position of m a x i m u m  force F is aft of Xo =- - -  5/3. 
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Glauert flutter does not arise (as is well known) if the quasi-steady assumption is used. i t  
arises in unsteady theory proper if S = oo and v < 0. 077; it persists (as shown in Fig. 3) if 
S = 50 and still persists if S = 20, though in a reduced range and with much reduced intensity. 
I t  has disappeared when S comes down to 10. 

Fig. 3 also shows an experimental resulP, obtained with the wind-tunnel arrangement sketched 
in Fig. 4. The parameter S takes the value S = 11 if the fan is supposed to represent the 
auxiliary wing. With  S = 11 the experimental result agrees well with the theoretical results, 
as some allowance must be made for damping effects due to the finite thickness of the wing, to 
its finite effective span and to the existence of a boundary layer, and these effects are not allowed 
for in the theoretical curves of Fig. 3*. 

5. Application as a Wind-tunnel Correction.--The difference between the two theoreticai results 
for finite and infinite length of the vortex trail suggests itself as a wind-tunnel correction, and 
the good agreement between theoretical prediction and experimental result shown in Fig. 3 
would seem to speak convincingly enough for the validity of this correction for arrangements of 
the kind shown in Fig. 4. 

However, this suggestion needs some cautionary consideration. Our simple theoretical 
assumption of two wings ill an infinitely extended medium is, after all, only a very rough 
approximation of the complicated arrangement shown in Fig. 4. 

Consider first the finite cross-section of the actual jet. W . P .  Jones% assuming fixed walls, 
has shown that  the finite cross-section has a damping effect similar to that  of the finite length 
S of the trail. Indeed, it is conceivable tha t  the fixed walls restrict the effectiveness of the 
more distant parts of the vortex trail. However, the jet of Fig. 4 is not closed throughout but 
is open behind the wing; somewhat optimistically, we might claim that  the effects of the two 
different kinds of boundaries can be expected roughly to cancel each other on the wing itself. 

Another suspicion arises in respect of the effect, at tr ibuted to the fan, of cancelling the vortex 
trail :  it is by  no means proved t h a t t h i s  effect does exist. Consider in particular the limiting 
case of steady flow. Here the wing produces not a vortex trail but  a downwash trail which will 
hardly be affected much by the fan ; on the other hand tile flow would be straightened effectively 
by the collector which encloses the f a n .  The latter effect has been investigated theoretically~ 
(for the case of steady flow, i.e., v = 0) and has been found to  be of the order exp ( -- S), while 
our theory (at v = 0), assuming a second wing having a lift on the first, yields an effect of order 
S -1 (cf. 3.6(2a)). This would indicate tha t  tile ' collector effect '  decreases much more rapidly 
as S tends to infinity than does the ' fan effect ', whereas it seems inconceivable, in the case of 
steady flow, that  the collector should have less effect than the fan. 

The last argument looks less conclusive in the case of unsteady flow, i.e., in the case v # 0, 
where there is a vortex trail. Such a trail must be cancelled somehow at its end, and our 
theoretical assumption of a second wing would thus appear to be adequate. Indeed in our 
theory the length S has a decisive effect, even for very small values of v, on the imaginary part  
of tile Ts-function (see Fig. 3), and thus on tile damping forces which disappear altogether as v 
tends to zero. Perhaps the experimental result can be taken as indicating tha t  our simplified 
theory is appropriate as regards the imaginary part  of the function Ts, though it is probably 
inadequate as regards the real part  of Ts if v is small. However, it is felt that  a more extensive 
set of experimental results should be available before a judgment of this kind can be given. 

6. Remark on Runyan 's  Experimental ResuI t . - - In  the preceding section tile relation has been 
discussed between wind-tunnel experiments and the theoretical case of a Wing with an infinite 
harmonical vortex trail ill two-dimensional unrestricted flow. A marked difference was found. 
However, Wind-tunnel tests are made mainly for application to actual flight, and here the 

* Mechanical friction is eliminated from the experimental result in Fig 3. 
t See, for example, Vandrey 14. 
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agreement can be expected to be better. The vortex trail of the actuai wing in free flight has 
also a finite effective length, for it tends to die out owing t o  (a) its inherent instability, (b) the 
viscosity of the air, (c) three=dimensional effects. 

This position would appear to be comforting. On the other hand the contradiction, stated 
below, between different wind-tunnel results is disquieting. The evidence available does not 
suffice to solve this contradiction. I t  is felt that  the whole problem of' wind-tunnel interference 
needs careful investigation in view of existing programmes for measuring low-frequency aero- 
dynamic coefficients in various wind tunnels. 

The contradiction arises as follows" Runvan" claims to have obtained Glauert flutter .ili the 
Langley 4.5-ft Closed-Jet Flut ter  Research" Tunnel with a Wing 8 in. ×' 47 in., pitching about 
the axis x0 = -- 1.24. Forces were not measured in these tests but the highest value V~max of 
the. parameter v~ = 2af~c/V at which sustained oscillations were observed was recorded for 
various relative densities of the wing*. , 

Runyan  calculated theoretical values v~ ..... ,h by assuming unrestricted two-dimensional flow 
and S = co but allowing for the mechanical friction of  the model  suspension. Ignoring for a 
moment the finite height of the wind tunnel (i.e., its extension vertical to the wing) we must 
expect" 

V . . . . . .  < V . . . . . .  £1 . . . . . . . . . . . .  ( 1 )  

for each of the following reasons" 

(i) the finite value of the parameter S 

(ii) finite thickness of wing, and boundary layer effects 

(iii) gaps of 3.5 in. each between Wing tips and tunnel wxlls. 

However, Runyan found, in contradiction to. (1)" 

" . . . .  - >. ~ . . . .  th • • ; • • : . . . . . . .  (la) 
for all wing densities. 

Taking the evidence so far listed we would expect the exp!anafion for the contradiction (1), 
(la) to arise from the finite tunnel height in Runyan 's  experiment; namely, that  th is  height had 
a negative damping effect in the case of a closed-je~ tunnel This conclusion, however, would 
contradict Jones's theory ~3 (see section 5), and would-thus contradict tl~e experimental results ~3 
which were obtained by J. B. Bra t t ,  agatin in a closed-jet tunnel,  and which support Jones's 
theoryj ~. 

The suspicion of course arises that  an unknown source of negative damping was present  in 
Runyan 's  tests. 

7. Co~clusions.--The chordwise distribution of lift on a wing in incompressible flow which 
oscillates harmonically with an arbitrary downwash w(x) and has a vortex trail of finite length 
Sc has been discussed (two-dimensional linearised problem).. The  familiar results for the wing 
with infinite vortex trail remain valid if in them Ktissner's T-function for the transient lift, or 
Theodorsen's circulation function C, as the case may be, are replaced by corresponding incomplete 
functions Ts and Cs respectively. These functions are tabulated;  t h e y  become functions of" 
frequency parameter v and length of trail S alone if terms of order S -2 are neglected. The 
term iv log v, which occurs in t h e T -  and C-functions, does not Occur in t h e  Ts- and Cs-funetions 
if S is finite. As a consequence, Glauert flutter, which means single-degree-pf-freedom pitching 
flutter, is not possible if S is smaller than about 18. 

*f~ = natural frequency of pitching. The wind tffnnel could be operated at any air pressure between atmospheric 
and 0.5 in. of mercury and the relative wing density could thus' be varied. 

In Runyan's  experiments the ratio of tunnel height to wing chord was 6.75. This value is just sufficiently small, 
according to Jones's theory, to exclude Glauert flutter without resort to mechanical friction or the other damping 
effect listed above ((i) to (iii)). 

10 



Glauert flutter occurs at small frequencies, corresponding to flight stability oscillations. Here 
the effect of S being finite is significant. On the other hand, this effect becomes negligible if S 
is not too small (S > 10, say) in the frequency range of ordinary flutter (v > 0" 1, say). 

The theoretical results have been confirmed by tests in an open-jet wind tunnel but further 
tests are required in order to separate the present effect f romwal l  interference effects. 

A contradiction has been pointed out between tests in closed-jet wind tunnels made by Brat t  
and by Runyan: Brat t ' s  tests support an interference theory by W. P. Jones, whereas Runyan's  
tests would seem to contradict it. I t  is felt tha t  the problem of wind-tunnel corrections for 
slowly oscillating wings requires further investigation. 
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A P P E N D I X  I 

Integr ations 
Applying equat ion 3.4(2) to equat ion 3.4(1) we obtain" 

~(x) = ~ ~ t ~ l  _~(~) ~7 t V ~ l  ~ - x . . . .  

o r  

~(x) = q(x) + ~ F ( x )  , . . . . . . . . . . . . . .  ( l a )  

where q(x) is independent  of s and" 

d( )<I f ;  °-°s ld(' 2 1 --  x e - ~  d~ + 
F(x) = 2~ ~ ~----- ~ co(~ s) ~ ~ ' x 

: ~ / t V + - - ~ l  . _ _  x - ~ t ~ - - 3 - U  d n +  c o ( x - s ) ~ / t s  - I I ,  " " ( l b )  

The last line is obta ined by changing the  order of integrat ion and performing the  then  inner 
integration. ' 

According to equations 3:4(la) and 3.4(3) the  function 9(x) given by  (1) and (lb) has to be 
in tegra ted  to give the  quanti t ies  ~ and y(x) . .  The integral  required for i is a particular case of 
t ha t  required for y(x). We require only those terms which depend upon the parameter  s, i.e., 
we require the  integral  of F(x). After changing the  order of integrat ion the inner integrat ion 
can be performed" 

) l _ x  dx I i  \ 7 - - 1  
J - l . ~ , l ~ , n _ _  - - x - -  ½~ + s i n - l x  + 2  I [~- -1) - - , ,  , - , ( k ( x ' ~ ) - - ½ ~ )  , .. . .  (2) 

wi th  

d ( ' -  + . . . . . .  k(x ,~ )  = t a n  - t  1 + x ~ - -  " "" 

Thus  

n(~ )  de - ?~ e - s .  R(x ,~)  ~i t ~ _ _ - l l  d~ + . . . ,  . . . .  (3) 
- - 1  1 

if R(x,~) is the  r ight -hand side of equat ion (2). I t  is readily verified tha t  

so tha t  the  integral  (3),exists in the limit s--~0o ; but  this is not  t rue of the  integrals over the  
individual  terms of R(x,r]). Because of this, mathemat ica l  difficulties have arisen i n  previous 
t rea tments  of the  wing wi th  infinite vor tex trail. These difficulties are e l iminated when we 
assume s to be finite. Then  R(x,~) can be split into its terms wi thout  hesi tat ion;  we obtain" 

f_ If; I F(~) d~ {½~ -p- sin -x x}Hs @ 2 e -<° 4 e -°" - - -  e - ~  k(x,~)d~ + ~(x,s) . .  ( 4 )  
With * co ~ co ' 

Hs - iHos(-- ico) + Hxs(-- ico) . . . . . . . . . . . . .  , (4a) 

The functions H,s are defined in the Appendix  II.  

We have k(1,~]) - 0 and hence" 

l f ~ ( S )  de  2Q + 2 @ Hs  + 2 ) l = i ~ e -~ , • . . . . . . . . . . .  ( 5 )  

where 

2 ~ Q - - f i : q ( ~ ) d ~  ( independent  of s) . 
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From equations (5) and 3.4(la) : 

2Q 
- ~ H ~  . . . . . . . . . . . . . . . . . . .  (S)  

The total  vort ici ty 9 is obtained b y  inserting equations (lb) and (6) in equation (1). 

In  order to obtain the bound vort ici ty y (see 3.4(3)), we have to t ransform the integral  .in 
equation (2): 

- ~ e - ° '  k(x,n) k + e -°~ k(x,s 
: re  l ' 

= e-<~ + 7 ~ i t i ~ } l  , q ( ¢  1) 1 

[ d ( 1  -- x ) (  2 e - 's  1 + x ) l  . .  (7) 
_~_ e-~ ~_ 1 F(x) _ ~ iHos ~ ¢o%/(s 2 -= 1) s --  " 

Equat ions (1) to (7), inserted ill equations 3.4(3) and (3a), yield equation 3.4(4). 

Let • 

and let" 

A P P E N D I X  II 

Definition of Incomplete Hankel  Func t ions  

t - - i  

*(~) = ~ / ( ~ : -  1) , = o 

~ / ( ¢ -  1) ~ = i 

= - l e  - ° ~  r ( ~ )  & + r / s )  B 

The functions H,s occur in Appendix I, equation (4). 

Consider the l imit  S -+oo. As 

(1) 

(2) 

. . . .  = 0 ,  . . . . . .  (3) 

this l im i t  exists. I n  the case r = 0 we can fo rma l ly  let s tend to in f i n i t y  in equat ion (2) ; in the 
case r = I we have first to t ransform the integral  as follows" 

s ?~ s 

f W_ ÷ '-(e-o-o o-o ) . . . . .  
There is thus obtained" 

= e - ~  = H0/21(½~)  
J1 v / ( ¢ -  1) 

- -  - 1 e - ~ '  ~-__ 1 d~7 + 1 v ' ( ,7  1) -g e - °  = H ; = ~ ( ~ )  , . .  (S) 

tha t  is, the functions H,s become Hankel  functions of the second kind in the l imit  S -- ,m. For 
this reason we call the ' funct ions H,s the ' incomplete Hankel  ,functions ' 
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A P P E N D I X  I I I  

Numerical Evaluation 
Formula 3.6(2) for the incomplete T-function may be written" 

T1 Ts(½V) = -T~ . . . . . . . . .  
with 

or alternatively • 

. . . . . . . .  ( 1 )  

~ s l l  S \ & (-- i~,)" T, = e- ~/ t ~ )  -k iv 2_, an o n! 

o 

0 a )  

v~ eiv/2 ) T1 = - - - ~  [Ho(~)'(lv) + iH,(~)(½v)]- A, 

. . . . .  ( lb)  
V~ eiV/2 T2 = + ~ -  [Ho(2)(½v) --iHl(2)(½v)] @ A2 

The two methods indicated by (la) and (lb) have l~een used for calculating the numerical Tables 
1 and 2 in overlapping ranges" 

method (a) • S 

method (b) • S 

Method (a). We have 

and thus" 

Further" 

a n 

(n + 1)a,, = 

1,2  

2, 5, 10, 20, 50 

"v . / (  v__2_~ 
f o ~/ ~v + ll dV . . . . . . . . . . . . .  ( 2 )  

cosh  - *  (2S -I- 1) . . . . . . . . . .  . .  . .  (2a) 

S"V{S(S -}- i ) }  (n -}- e) " - '  . ' . .  • . . . . .  (2b) 

an_l  @- a n 

Method (b). 

with 

we find" 

Thus" 

Writing, compare equation 3.6(1a) with Appendix II ,  equations (2), (4) and (5)" 

A ' =  l l -- J ( S ~ l )  } e-'~s + ~ (--)'n(C" + 

A,____ l J ( _ ~ _ _ !  ) __ it  e_,.s + ~, (--)" 2n ~- 1 (C.-Jr-iD.) , • • (3) 

1 .3 .5 . . .  (2n --  1) 
2.4.6 . . . .  2n ' 

f~o sin r V ~.~o COS v V 
C,~= ~, s - - 7 - d v "  = i s  v" dv . . . . . . . . .  (3a) 

c ,  = ~ [½~ - S , ( ~ S ) ]  ; D ,  = - -  ~ C i ( ~ S )  , 

where Si(x) and Ci(x) denote sine-integral and cosine-integral. 

Further  : 
__ 7 , / s i n v S  ~ ~ / c o s ~ S  

C,,+~-- ~ \ S" + D./ ; D.+~= 7~ \ -S~ 

. . . . . .  (3b) 

c.)  . . . . .  (3c) 
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0'1158 
0.1319 

0 
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0.0175 
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0.1763 
0.1907 
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= - -  a 

m 

0 
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0.0752 
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