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Summary.--The laminar boundary-layer equation, for a linearly retarded velocity in the main stream, U = 1 -- }x 
ill reduced variables, has been solved numerically by working in finite intervals in x, with a correction for the finite 
length of x-interval. The method was first tried out on the region near the forward stagnation point, where the results 
could be checked from tables given by Howarth, a n d  proved very satisfactory. The separation point has been 
determined by two independent methods to be close to x = 0.959, in excellent agreement with Howarth's value. The 
nature of the singularity at the separation point is discussed. 

1. Introduction.---The equations of the laminar boundary layer, in their usual form, are partial 
differential equations in two variables, and though in a few special cases the variables can be 
separated, this is not possible in general. A number of approximate methods, of various kinds, 
have been developed for obtaining approximate solutions in more general cases. A survey and 
critical discussion of methods then available was given by Howarth 7 in 1934, and other methods 
have since been developed by K~irm~n and Millikan 9, Howarth 8 and others. 

More recently, a rather general method for the numerical or mechancial solution of partial 
differential equations with suitable forms of boundary conditions has been proposed and in- 
vestigated by Hartree and Womersley 5, and a test of this method on a simple form of the equation 
Of heat conduction was entirely satisfactory and showed that  the method was manageable in 
practice, and, in that  case, would give results of quite good accuracy (five figures) without undue 
labour in numerical work. The method, which is outlined in section 2 of the present report, 
is also very suitable for the use of mechanical methods of integration such as the differential 
analyser of Dr. Bush 1 e, if not such a high accuracy in the solution is required, and it has been 
applied successfully to tile solution of the equation 

~0 ~20 
~-7 = ax e + ~ e ° '  

which arises in the theory of the thermal breakdown of dielectrics in alternating fields ~, using the 
differential analyser at Manchester University. 

These successful trials of the method led to the hope that  it could also be applied successfully 
to the equations of the lamiiaar boundary layer. This application is certainly a more ambitious 
one than the previous ones attempted, as the equation is of a higher order and more elaborate, 
and the range of integration is formally infinite in a direction normal to the boundary, whereas, 
apart from a few experiments, previous applications had been concerned with a finite range of 
integration in the corresponding variable. But the boundary conditions are of the form which 
allows the application of the method, and the effective range of integration in practice did no t  
seem likely to be too large to be convenient, 
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The solution of the boundary-layer equations depends on the pressure distribution over the 
solid boundary, or the equivalent v,elocffy distributiont in the main stream just outside the 
boundary layer. I t  was proposed in the first instance to at tempt the solution of the boundary- 
layer equations by Hartree and Womersley's method for two cases, namely for Schubauer's 
experimental pressure distribution 13 for an ellipse of axial ratio 3 : 1, and for a linearly retarded 
velocity in the main stream. For the former case it was proposed to use the differential analyser 
for carrying out mechanically the integrations involved; for the latter case it seemed desirable 
to work to a greater nominal accuracy than tha t  obtainable from the differential analvser, and 
it was proposed to do the integration numerically. The present report is concerned primarily 
with the latter work. 

The case of a linearly-retarded velocity in the main stream has been examined by K~rm~n 
and Millikan ° and by Howarth 8. K~rmfin and Millikan's method gives separation at x* z 0. 102 
(in Howarth 's  notation) whereas Pohlhausen's method 1° gives separation at x* z 0. 156. Howarth 
estimates the position of the separation point as between x* = 0.119 and 0- 129 (Ref. 8, p. 555), 
and probably close to x* = 0. 120 (p. 564). I t  may be said at once tha t  the results of the present 
calculations entirely confirm this last result of Howarth, and in fact show that  his result is correct 
nearly to one further decimal; they indicate tha t  the separation point is close to 8x* = 0. 959. 

The fact that  for this case the pressure distribution is given by a formula, and so can be 
evaluated and interpolated with certainty to any accuracy required, makes this case a satisfactory 
one for comparative trials of different methods of obtaining approximate solutions of the 
boundary-layer equations. An experimentally observed pressure distribution, such as 
Schubauer's, has the disadvantage for this purpose that  the observational material can be 
analysed by different workers in slightly different ways in deducing, for example, the pressure- 
gradient distribution or its derivative from the observed pressure. If the flow is very sensitive 
to the pressure distribution, as it is in tha t  case, it is very difficult to make sure to what extent 
differences between the results of different approximations are real and how much they depend 
on slightly different interpretations of the observational material. 

This is why it seemed worth while carrying out the present calculations to a rather high nominal 
accuracy, whereas a lower accuracy was regarded as adequate for the solution of the equations 
with Schubauer's pressure distIibution. 

Nov., 1948. The work covered in this and the succeeding Reports was carried out at the 
University of Manchester, and reported to the Aeronautical Research Committee before the war. 
I t  was approved for publication, but revision for publication was interrupted by the outbreak 
of war. The methods used and the results obtained, however, still seem of sufficient interest 
to put on record. Further, two other investigations (Refs. 14 and 15) in the theory of the 
laminar boundary layer in the immediate neighbourhood of the separation point were suggested 
directly by the results of this work, and other references have also been made to it 1G. 

2. Outli~e of the Method of Integration.--For equations in two independent variables, the 
essential idea of Hartree and Womersley's method is the replacement of the partial differential 
equation by an approximately equivalent ordinary differential equation, by replacing derivatives 
with respect to one of the variables by  corresponding finite difference ratios, retaining the deriva- 
tives with respect to the other variable to be integrated either mechanically or by  some standard 
process for the numerical integration of ordinary differential equations. In the present case, 
as will be seen, derivatives parallel to the boundary are replaced by finite differences, and 
integration is carried out along successive normals to the boundary at finite intervals, so that  
from the distribution of velocity across one section of the boundary layer, the distribution of 
velocity across another section at an interval downstream is calculated. 

t On the approximations of the boundary-layer theory, the pressure i.s uniform throughout any one section of the 
boundary layer. The pressure is the quantity which explicitly appears in the equation of motion, but it is often 
convenient to express it in terms of an " equivalent " velocity in the main stream. 
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Further,  Richardson's process of " h~-extrapolati0n "1~ can be used to estimate and correct 
for the leading terms in the error made by working with finite intervals in one of the variables. 
The use of this process involves covering the same range by two independent integrations, one 
with intervals of half the length of those used in the other. I t  can be shown that  under certain 
conditions, satisfied in the case of the boundary-layer equation, the aggregate error is proportional 
to the square of the interval length, so tha t  from the difference between the results of these two 
integrations, the error in each can be estimated and an appropriate correction applied. This 
process of correction is of course not exact, and only deals with the leading terms in the error 
involved by the use of finite intervals, but the residual error can usually be kept small by the 
use of sufficiently small intervals. 

I t  is  of interest to compare the kind of approximation made in the present method with those 
made in some other methods for obtaining approximate solutions of the boundary-layer equations. 

Pohlhausen's 1° method and some others involve the assumption tha t  the velocity distribution 
in the boundary layer at any one section is given to an adequate approximation by a member 
of a one-parameter set of functions. In Pohlhausen's method the appropriate member of the 
set, at each section, is selected by use of the momentum-integral equation ; the separate solutions 
represent the velocity distribution in the form of a quartic in the distance normM to the boundary, 
which does not seem a satisfactory form for a distribution which must tend asymptotically to 
that  in the main stream. 

Howarth 's  method for a general pressure distribution (Ref. 8, Part  II), also involves the 
assumption tha t  the velocity profile at each section can be matched exactly by a member of a 
one-parameter set of functions, but  in this case these functions represent the set of velocity 
distributions through the boundary layer for some standard pressure distribution, namely that  
corresponding to a linearly-retarded velocity distribution in the main stream. 

Some of these approximations appear rather artificial and formal, and in many cases it is 
difficult to assess the errors they are likely to introduce. In the present method the on ly  
approximation is the replacement of a derivative by a finite difference ; this seems a straight- 
forward approximation, and is one whose effect it is possible to assess quantitatively, and, 
ideally, the errors it introduces can be made as small as required by taking small enough intervals. 

3. The Boundary-layer Equation.--Since the work is done in terms of non-dimensional reduced 
variables throughout, it is convenient to s tar t  from the boundary-layer equation in terms of 
these variables. 

The following notation will be used :-~ 
Vo 

l 

R 
/x 

Uou 
(Vo/Rl  )v 

UoV(x) 
p 

(l~' U0)1/2~TJ 

a representative velocity ~ of the system considered 
a representative length 
kinematic viscosity of fluid 

uol/  
distance measured along boundary (x = 0 at forward stagnation point) 
distance measured normal to boundary (y = 0 at boundary) 
tangential  component of velocity 
normal component of velocity 
velocity in main stream at distance x downstream 
pressure [j~(x) = P0 -- ½ U~(x)] * 
stream function t. 

* This relation between/9 and U depends on the approximations of the boundary-layer theory ; it is sometimes 
convenient to express a pressure distribution in terms of t h e "  equivalent " velocity distribution given by this relation. 

t I t  is convenient to distinguish between the solution of equation (1) which will be regarded as the " exact " boundary 
layer equation (in the sense that  it is the equation for which a solution is required, not that it is an exact expression 
of the physical situation) and that  of the approximate equation by which it will later be replaced. ~ will be used for 
the former, and ~ for the latter. 
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In  the reduced variables x, y ,  p ,  U,  T so defined, the  boundary  layer equat ion is ~ 

_ 03ku 
0 T  0 ~  " ~ ~ ' ~  @ + . . . .  (1) 
Oy ~ x ~ y  Ox ~y~ - -  - -  d x  oy  ~ . . . . . . . . . .  

d U  03T 
----- V ~ -  + Oy3 . . . . . . . . . . . . .  (2) 

and the  reduced s t ream function ~ is related to the reduced velocity components  u, v by 

u -  ~ y ,  v = -  0-~ . . . . . . . . . . . . . . . .  (3) 

The boundary  condit ions satisfied by  !/' are 
0g/ 

T = 0 ,  a y - - 0 a t y = 0 '  . . . . . . . . . . . . . .  (4) 

bku 
Oy ---, U(x)  as y - - ~ o o  . . . . . . . . .  . . . .  (5) 

Since in the approximate  t r ea tmen t  of this equat ion to be considered in this report, the  x 
derivatives are replaced by  finite differences, while the y derivatives are retained, it is convenient  
to use dashes to indicate y derivatives. Hence we write (1) in the  form 

T , , , = N , O ~ '  N,,Og-' d p  
0-~- - dx  + ~ . . . . . . . . . . . . .  (6) 

For reference later, we require the  values of various orders of y derivatives of T at y = 0 
in the  absence of a singularity at the  boundary.  These will be indicated by a suffix 0, and can 
most  easily be derived by put t ing  ~ = T '  = 0 in the  results of successive differentiation of (6) 
with respect to y. The first few are found to be as follows : - -  

dp 
W '  - d x  (a) 

W~o 'vl = 0 (b) 

d~eo' du;  
• "~o °~ = v'; '  d x  - -  u;  d x  (c) 

TX" = 2 d2p ~ ' '  9 d~P 
dx~ ~o = ,, d x  2 u,', (d) 

g-'[~"~ 2 @ d~p . .  (7) 
=- d x  d x  2 (e) 

dv"o v~ dV'o' ~ u ;  (~u; '~ ~ 
TI~ "~1 = 4 T o '  d x  - -  5 ~ ° ~  d x  - -  4 u ; ~  ~ x  ~ - -  Uo \ ~ - /  ( f )  

d d.; @ 
• ' ~  a ~ P  13Uo + 9 (g) TI; "~ = 10(Uo) d x  ~ - -  dx  d x  ~ \ o d x / - d x  

TI~ 1 = 8u;  5 @ d ' p  2 (h) 
d x  d x  ~ \ d - ~ /  .l " 

Of these, (7) (a), (b), (d), (e) have been given by Goldstein*, and (c), (f) are implied by formulae 
in the  same paper~. 

* Ref. 3, formulae (3). 
t Ref. 3, formula (5), see also Howarth, Ref. 8, formula (27), Prandtl, Rel. 11 ; the denominator of the last term 

given by Howarth should read 8 (Ou/3y) ~. 
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The relations (7) (d), (e), (h) suggest tha t  it would be an advantage to take the case of a uniform 
15ressure gradient, rather than a uniform velocity gradient in the main stream, as the standard 
case for which to at tempt to work out a rather accurate numerical solution. This procedure 
was contemplated for other reasons before the work was started, but  Howarth 's  work had already 
been done for a uniform velocity gradient, and in order tha t  results of the present work should 
be strictly comparable with those of Howarth's,  it was iudged better to carry out the work for 
the same case. I t  might have been still better to repeat Howarth 's  work for a uniform retarding 
pressure gradient*. 

For convenience of comparison with Howarth 's  results, we suppose the representative velocity 
and length chosen so that ,  in the reduced variables, 

U = 1 -- ½x . . . . . . . . . . . . . . . . . . .  (8) 

For a fiat plate at zero incidence, this means that  Uo is taken as the velocity in the main stream 
at the, leading edge, and the typical length is the length in which the velocity in the main stream 
decreases to -~Uo. Then our reduced variable x is the quant i ty  which Howarth writes 8x*, in 
terms of which his expansion of the stream function is carried out. Howarth 's  results give 
separation at 8x* = 0.96, so tha t  the range of x over which integration is to be carried out is of 
the order of unity, which is convenient on numerical grounds. 

4. Approximate Form of the Boundary-layer Equation.--As already outlined in section 2, the 
process used in this work for obtaining an approximation to the solution of a partial differential 
equation in two variables depends essentially on replacing the derivatives with respect to one 
of the variables by finite differences. 

Since the boundary conditions to be satisfied are at x = 0 and at both ends of the range of 
integration in y, the x derivative is the one which it is appropriate to replace by a finite difference 
coefficient, while leaving the y derivatives as such, to be integrated by numerical or mechanical 
means. 

We will indicate by a small letter ~p the solution of the approximate equa t ion  by which the 
exact equation (6) is replaced. For the x interval from xl to x~, values of ~o etc. at xl and x~ will 
be indicated by suffices 1 and 2 respectively. The equation satisfied by ~o is ob ta inedby  replacing 
x derivatives by corresponding ratios of finite differences, e.g., ~T/Ox by (~v~- ~)/(x~- xl), 
and by replacing other quantities by  the arithmetic mean of their values at the beginning and 
end of the interval. Thus (6) is replaced by 

! t 

1 (~l)~ tt _~_ ~3tl tt) _ _  ~ ] ) 1  ~ ) 2  ~ ] ) 1  + . p  . .  ( 9 )  = ½ + - _ - 
- x ,  - ½ + v ; ' )  - x ,  " 

where P takes the place of d#/dx. 
The appropriate expression to take for P,  in general, gave rise to an unexpected difficulty. 

At first sight the obvious replacement appears to be 

: p ~ 2 -  P l  1 U22-- U12 (10) 
• • . . . , ° • • . ° 

- -  X 2  - -  X z - -  ~ Xg. - -  X z  ' 

but, since p is a given function of x, so that  P2 does not involve the unknown ~ ,  there would be 
no difficulty in using the alternative 

[(rid--fix) (dd~Px)t " . . . . . . . . . . . .  (11) P---½ 3+ , 

the order of the error is the same as for (10). 

t F o r  U = bo~/(1 - -  2x*) (in H o w a r t h ' s  no t a t i on )  which  gives  the  same  p ressure  a n d  pressure  g r a d i e n t  a t  x ---- 0 as  
in  t he  case  cons ide red  b y  H o w a r t h ,  t he  differences f r o m  H o w a r t h ' s  w o r k  are  t h a t  the  t e r m  - -  ~ in e q u a t i o n  (7) of 
H o w a r t h ' s  p a p e r  is o m i t t e d ,  a n d  the  cond i t ions  (14) on f~', f3' • • • a t  in f in i ty  a re  r ep l aced  b y  f~ = - -  1/26, fa' = 1/29, 
f ;  = - 5 / 2 1 ~  . . . . .  
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When the  pressure is a polynomial  of degree not higher than  the second in x, and only then,  
the  two approximations for P are identical. Thus, for example, no discrimination between these 
two expressions for  P is necessary for the calculations with which this report  is primarily con- 
cerned, in which U is linear, and so p quadratic,  in x ; but  the  point  may, and did, arise in a ra ther  
acute form when calculations are carried out for empirical pressure distributions such, for example,  
as Schubauer's*. 

I t  would seem desirable to ensure, if possible, tha t  the approximate  solution should have the 
right behaviour  at both  ends of the range of y integrat ion ; by this means it might  be hoped 
tha t  the  correction for finite x-interval length would be kept  nearly as small as possible. 

For y ----- 0, (9) becomes 

1 V,")  + = P ,  

and if ~,'" is to satisfy the same condit ion as ~" ' ,  namely  ~o"----dp/dx (cf. (Va)), clearly the  
expression (11) is the  appropriate one to use for P.  On the other  hand  for y - - + ~ ,  we would 
require ~'"  and ~"  to tend  to 0, when (9) becomes 

0 = ½ - xl) + P, 
and then  expression (10) is the appropriate  one to use. 

This establishes definitely the  appropriate  expression to be taken  at each end of the range of 
y integration,  and since in general these will give different values of P, it is necessary to have 
some rule for interpolat ing between them for in termedia te  values of y. I t  would seem tha t  the  
tangent ia l  velocity, or its square, might  be a suitable variable in terms of which to interpolate  
between the  extreme values of P,  since it provides a measure of the  extent  to which the  flow 
is different from tha t  at  the  boundary  or at infinity. Interpolat ion between the extreme values 
of P,  linearly in ~', would make  ~P/~y # 0 at  y = 0, whereas on differentiating (9) and put t ing  
~p ~ ~ ' ~ 0  a t y - - - - 0 ,  

X U y /  0 

Hence, in order tha t  ~ should be as good an approximat ion as possible to T, we require the  
lef t-hand side to be zero (cf. (Vb)). This condition is satisfied by interpolat ing between the  
ext reme values of P,  l inearly in ,3 ~ ,~ so tha t  

P = Po + (v,~/U~) 2 A P  . . . . . . . . . . . . . . .  (12) 

where P0 is given by (11) and A P  is the difference between the values of P given by (10) and (11). 

The value of A P  is usually small, and the exact way in which the interpolat ion between the  
ext reme values of P is carried out is ra ther  a refinement.  The above argument  is not  conclusive, 
but  it shows what  to avoid, and on the basis of it the  substi tut ion (11) has been used when A P  
was appreciable. A test on a rather  large x-interval, for which A P  was nearly 15 per cent. of 
P0, for Schubauer 's  pressure distribution, gave very satisfactory results (see R. and M. 2427). 

I t  is interest ing to put  y ~-- 0 in the results of differentiating (9) successively, and to compare 
the  results with the relations (7) to be satisfied with the  derivatives of the  exact solution T at 

* The work leading to the analytical results of this section was stimulated largely by difficulties encountered in the 
work on Schubauer's observed pressure distribution, but it is convenient to summarise it here, as some of the results 
are relevant in connection with the present work. 

t Possibly linear interpolation in (~v~ + ~)~ would be better, but ~ is known before the integration is started while 
~ is not, Since the variation of P is usually small, this method of interpolation is probably adequate. 
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the origin. It  will be assumed that  P is given by (12), and also that  ~p~ satisfies the conditions (7) 
so that,  for example, from (~(ff/+ ~o~,))o = 0 it follows that  also (~(2 ~1 -- ~))o = 0. Then 

( ~ "  + ~',")o = 2Po '(a) 

( ~ / +  ~,~1)o = 0 (b) 

= ( c )  
2 2  - -  X l  

(~)~vi) _~_ ~/)(lVi))0 = 2 ( ~ / ) ~ t  _~_ ~ / ) t l , )0  (~o2't-- ~)tlt,t)o (~3p~ 
x2 -- x~ + 2 \ ~Y~/0 (d) 

. .  ( 1 3 )  
,,, ~ / ~ p \  

v~ ~ o - -  ( ~  + ~ ) 0  x ~ : - x ~  

These relations simplify considerably when the pressure gradient is linear in x, for then, first, 
the two expressions (10) and (11) for P are the same, so that  P given by (12) is independent 
of y, and the various derivatives of P on the right-hand side of (13) then vanish. And secondly, 
we then have 

( )  ( )  (,4) 
2 1 

exactly, so that  13 (d) and (e) become 

(~')  + ~o~))o = 2 (~'~' + ~')o dx ~ d~p 

dx ~ , 

hence if w~ satisfies (7) (d) and (e), then so does ~p2. 

. . . .  . . . .  ( 1 5 )  

'~Thus, for the case with which this report is primarily concerned, it appears that  the method 
of solution adopted necessarily imposes the conditions (7) (a), (b), (d), (e) on the approximate 
solution obtained. This may be significant in discussing how much information about the flow 
in the immediate neighbourhood of the separation point can be deduced from the results of these 
ca lculations (see section 10). 

On the other hand (13) (c) and (f) are not exactly equivalent to (7) (c) and (f) respectively. 

5. Form of Equation Suitable for  Integration for Small x.--The form (6) of the boundary-layer 
equation (or the form (9) by which it is replaced) is not suitable for integration in the neighbour- 
hood of the leading edge of a plate, on account of the presence of a singularity there. The nature 
of ~his singularity and the fact that  when the pressure gradient is zero, ~ is a function of y / x  1/~ 
only, suggests the use of the variables 

ill this neighbourhood. 

~ = y /2x  1/~ (16) t t q • t ~ q ¢ s o 
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Since for zero pressure gradient the flow is a function of ~ only, it is probable that  for other 
pressure distributions the " thickness " Of the boundary layer, and hence the range of integration 
normal to the boundary to be covered before the flow becomes sensibly that  in the main stream, 
will be more nearly the same at different sections when expressed in terms of ~ rather than in 
terms of y. Also the velocity distributions through the boundary layer at different sections 
are likely to be more nearly the same when expressed as functions of v rather than of y, and 
particularly so near the leading edge. For both reasons, the approximations made in replacing 
the partial differential equation by an ordinary equation are likely to be smaller than when 
the equation in (~, ,1) is used rather than tha t  in (x, y), at any rate for small x. 

In terms of (8, v), equation (6) becomes 

~ - -  ~ ~ [_ ~ - -  + . . . . . . . .  (17) 

where 
¢ = ~ / x  ' l~  , • . . . . . . . . . . . . . . . . .  (18) 

so tha t  
u = ½0¢/~  . . . . . . . . . . . . . . . . .  (19) 

The function ¢ defined by (18) is the function ~/(box~,) Ilz of Howarth 's  paper*. Also for the 
velocity distribution in the main stream (8), our x is Howarth 's  8x*, as already mentioned, hence 

¢ = fo(V) - -  xf~(v) + x~f~(v) - -  x~f3(v) . . ,  . . . . . . . .  (20) 

where the f ' s  are the functions tabulated by Howarth. 

Using Howarth 's  tables, it is easy to evaluate the velocity distribution through the boundary 
layer, and other data required for starting the integration, at a value of x away from the singularity 
at the leading edge, but still near enough for the values derived from Howarth's  series, taken as 
far as his tables go (up to f~), to be quite reliable to the last figure required. The starting point 
chosen was x = 0.4, but in addition, as a test of the method of integration, and of the accuracy 
to be expected of the method of correction for the finite size of x-interval, it was decided to carry 
out an integration from x = 0 to 0 .4  also. In terms of v, there is no singularity at x = 0, but a 
" velocity distribution " there is needed to start  the integration, since the boundary layer has 
a non-zero thickness in ~ at x = 0; from (20) the required information at x = 0 is given by the 
function f0 and its derivatives. 

6. A p p r o x i m a t e  F o r m  o f  the B o u n d a r y - l a y e r  E q u a t i o n  i n  (8, ~).--The replacement of the 
boundary-layer equation in the form (17) by an equation for integration through a finite 8-interval 
raised two points in connection with the appropriate replacement of derivatives by finite 
differences. 

The first is concerned with the appropriate replacement for 8~¢/~8 and similar terms. 
Replacement of 8 by its mean value and ~¢/~8 by the appropriate finite difference ratio gives 

¢ 2 -  ¢ ,  (21) 
(82 + _ 8 1 '  ' . . . . . . . . . . .  

(where $ has been written for the function satisfied by the approximate equation), and the same 
expression is obtained if we use the identi ty 

8 a~ -- ~8 (8¢) -- ¢ ,  

and carry out the appropriate replacements. 

* Ref. 8, formula (1). 
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Thus (17) is replaced by 

- ½ (¢3 + ¢~) + 2 (~, + ~,) (¢, _ ¢~) × (¢~ + ¢1) - 2(2 (22) ~ -  ~1 ~ ' "" 

where Q is the quant i ty  used to replace the term 4 ~ ( U 3 ) / ~  in (17). The 'second point is the 
appropriate replacement for this term. 

As in the case of the term in equation (6) not involving ~0, this term could be replaced, to equal 
accuracy, in two ways, namely by the arithmetic mean of its initial and final values in the 
x-interval. 

[ ..  (23) 
Q = 2 ~ 3 \  ~ /3 + ~:~\-ff-~/,J ' " . . . . . . .  

or by  using the form of replacement (21) 

Q - 2 (}~ + $,) U 2 3 -  v'~ . . . . . .  (24) 
83- el . . . . . .  

With U = 1 -- {$, these give respectively 

• Q = _ ½ [(~ + $,) _ { ($32 + $2)3 (a) ~ . .  . .  . .  (25) 

J 
and these are not the same, even for a linear pressure gradient. The former appears the more 
natural  if the term 4~(U*)/~¢ is written in (17) in the explicit form -- ~ (1 -- -~) which it  takes 
with U = 1 -- ½~, the latter appears the more na tura l i f  one starts from the general form of (17). 

On further investigation (25) (b) appears likely to be the better, since on substituting (24) in 
(22) it will be seen tha t  the boundary condition 

- -  2 U  
/ 

at infinity can then be satisfied exactly by  the approximate solutions ¢. 

7. Process of Solution.--The process of solution of the ordinary equation (9) or (22) was the 
same in principle in all cases. An outline of the'process for equation (9) will be given, followed 
by notes of the main points at which the integration of (22) differs from it. 

The quantities required from the solution are the velocity profile, tha t  is to say the distribution 
of tangential velocity ~'  through the boundary layer, and the normal gradient of the tangential  
velocity at the boundary, ~0~', which gives the skin friction and is needed to determine the separa- 
tion point. The stream function ~v itself is of no particular interest ; from the point of view of the 
integration it is merely an auxiliary variable introduced as the most convenient way of ensuring 
tha t  the equation of continuity is satisfied. 

For any one x-interval, say from x -- xl to x -- x2, the flow at the initial section x -= xl is 
known, and as we will see, for the equation in the form (9) the only data necessary is ~ as a 
function of y ;  correspondingly ~ as a function of y is required to form the data for the next 
interval x -~ x3 to x -- x.,. 
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The equat ion to be solved, for each x-interval, is third-order  non-linear, with two boundary  
conditions specified at one end of the range of integrat ion (9' = 9 = 0 at y = 0) and one at the 
other (9' -+  U as y - +  oo). To obtain a solution satisfying them,  it is necessary to use some form 
of tr ial-and-error method,  and the  form of the  boundary  conditions suggests in tegrat ing from 
y = 0 with different trial values of (9,~')0, and adjust ing the value of 90' so tha t  the  solution 
satisfies the condit ion at y = oo. 

The process of integrat ion for any one trial value of (9.Y)0 is straightforward. The integrat ion 
formula 

~ y.+ dy 
b(2f) = 2f'dy ---- 0y If,; + f [  --  a)~ (Og; + O~f~')] (26) 

(here suffixes 0 and 1 indicate values at the  ends of the  interval  6y of the y integration) was used 
for each integrat ion ; the  interval  of integrat ion taken  throughout  was Oy = 0.1,  and the  second 
difference terms in (26) were usually small and often negligible. As suggested by (26), the  
quanti t ies  actually calculated are : - -  

33 ~ 0 
073(92 -~- 91), 2~-~(92 -~- 9t)1)1 4 @ ( 9 ~ !  ~o~), 8(yJ2-- ~), 

the  powers of 2 in the  coefficients being chosen to avoid a large number  of divisions by 2*. 

For convenience in using these quantit ies,  the  equat ion is t aken  in the  form 

03 1 0 ~ --  91) 1 @-~ (9~ + gd --16 (x _ xd [{4 §-y (9~ + gd} [4 ~ (~,°~ 
) 

For U = 1 -- ~x, the  te rm 32P (x2 -- x~) 

. . . .  (27) 

which is equal to --  16 (U2 ~ -- U~ 2) (see (10)) becomes 

The quanti t ies  obtained by integrat ion are 2-0y-~ (98 + 91), 4 ~ (92 - /  ~vl), 8 (92 -- 91); 

4 ~ (92 -- 91) is obtained by subtract ing 8 09~/0y from 0y ( ~  + ~ ) '  and this is the only point 

in the integrat ion at which information concerning the  velocity profile at  x~ is required. 

The solutions with different s tar t ing values of [~ (~0~ + 91)/~y21o diverge rather  rapidly from 
one another~ beyond about y = 2, especially for the smaller values of x 2 -  xl, whereas the  
integrat ion has to be taken to about  y ----- 6 or y = 8 before the  flow in the  boundary  layer has 
become substantial ly tha t  in the  mainstream. I t  is therefore usually necessary to interpolate,  
at  some in termedia te  y, between the  solutions calculated with different trial s tar t ing values 
of 9;', and to start a new integrat ion from the  interpolated values. This interpolat ion process 
may have to be repeated many  t imes (usually 10 to 20 t imes in the present work) before trial 
solutions are obtained over the whole range, and near enough together  for the  solution satisfying 
the  conditions at infinity to be interpolated between them. 

* I am indebted to Dr. L. J. Comrie for suggesting this arrangement, which has been very successful. 
The difference between two such solutions may increase by a factor 2,000 or more in a range of 1 in y. 
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Before s ta r t ing  a solution from interpolated values of 2 (~.;' + ~0'1') etc., it is necessary to 
verify t ha t  the  use of l inear interpolat ion is justified. This can be done by in terpola t ing 

32 3 33 
2 g~-~ (~0~ + wl), 4 ~ (~o~ ± ~0 d, 8 (~0~ -- ~o~), and evaluat ing ~y--~ (~0~ + ~o~) from them using (27) ; 

3 a 
if the  result  agrees wi th  the  in terpolated value of ~-.  (~o~ + ~o~), then  linear interpolat ion is justified*. 

Approaching the  separat ion point,  the  solutions for different t r ial  values of (~o.~')o run near ly  
parallel  to one another  for a long way  (out to about  y = 2) and then  separate  rapidly.  S tudy  
of th~ numerical  details of the  in tegra t ion shows tha t  38 (~0~ + ~l)/~y~ is r emarkab ly  insensit ive 

3 ~ to the  value t aken  for [0 ~ (~2 + ~1)/Y ]0, a l though the  separate terms in (27) m a y  individual ly  
have considerably different values in the  two integrat ions.  This means t ha t  the  in tegra t ion  of a 
t r ial  solution has to be cont inued over quite a considerable range from y = 0 before the behaviour  
of ~ shows in which way  the solution is going to diverge. The result is tha t ,  unless care is taken,  

t h e  accumulated  effects of rounding-off errors m a y  mask the real effects of a change of tr ial  
value of [3 ~ (~v~ + ~)/3y~]. Thus in this  region (~;')0 is not  very  well defined by  the condit ion 
at  y ~-oo. and special precautions (such as the  re tent ion of an extra  place of decimals to keep 
down the effect of rounding-off errors) are necessary to obtain a good approximat ion  to the posit ion 
of the  separat ion point .  

This behaviour  is p robably  not  accidental.  Ra the r  similar  behaviour  was found in the  case 
of the  solutions of a related equation arising in Fa lkner  and Skan 's  t r ea tmen t  of the boundar.y- 
layer  equation]' ,  and this  behaviour  is probably  related also to the  difficulty tha t  was met  in 
t ry ing  to find any  approximat ion  t o  a solution downst ream from the  separat ion point. 

In  the  in tegrat ion for a single x-interval  i t  is only necessary to work with  the  functions 
~0~ :k ~0z and thei r  derivatives.  Once a " f i n a l  solution, namely  one sat isfying the  boundary  
condit ion at  y = oo, has been obtained,  8 (~: --  ~;) is calculated for it and added to the  given 
8~0[ to give 8~0~, which is them smoothed before being used as the  given function 8~'~ for the  
nex t  x-interval.  

This  smoothing of the  values of ~0'~ is impor tant ,  as the  process used to correct for the  finite 
length of x-interval  tends to exaggerate  small  irregularities in the  da ta  or in tegrat ion as will be 
seen short ly.  Also the  q u a n t i t y  actual ly  calculated in the in tegrat ion is 4 (~0~ + ~0;), and any  
irregularit ies (due to rounding-off errors) in it  are, in effect, doubled in calculat ing 8W~', and these 
irregularit ies might  exaggerate  the  effects of rounding-off errors in 8~0~'. 

Similarly it  is advisable to ensure t ha t  the  numerical  values of 8~0' for small y are in fact 
consistent  wi th  the  conditions (7) (a), (b), (d), (e), which we have seen the approximate  solution 
should sat isfy exact ly  (apart  from rounding-off errors) when p is quadrat ic  in x. Wi th  
U ~ 1 --  ~x, these condit ions become 

t i t  " * t t  . * "  ~fl0 : ~ (1  l X )  ~)(0 iv} 0 ~0~ w) - -  31,2 ~0 0 ~ t ~ * , ) _  1 (1  - -  ~ X )  , ~ , ' 2 ~ g  , 

s0 tha t  r 
8 ~  ~ ~ ~0' .~ 1 - ~x y0 8~o~"~y~ (28) 

8 ~ ° ' = 8 ~ ° o ' y + 1 (  1 - l x ) y ~ + - - 4 ~ .  Y - ~ Y  - 3 2 × 7 2 0  + - N - . t  • 

Thu ;  we should have 

i y + ½(1 -- ~x)y  -- ~8-oY -- ~3-2~-7~0 y ~J y ,  4! + ~ + "  " " 

* This criterion is not a general one, but applies in the present case because departures from linearity appear first 
in the highest derivative and increase rapidly with y. 

Ref. 4. The behaviour referred to is the insensitiveness of y', at large x, to y"(O) for small 3 -- /~0, so that y"(O) 
is not well determined by the condition on y' at large x (see section 3 of the paper quoted). 3 ---- 80 corresponds, in a 
s~nse~ to separation. 
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The left-hand side is evaluated from the values of 8~' and plotted against 9 ,  usually for values 
of y up to 1.5. For small 3' (less than about y = 0.5) the plotted points are usually irregular on 
account of the considerable contribution from a unit in the last decimal when divided by y4, 
but this can be indicated in plotting. Allowing for this, a smooth curve (usually a straight line) 
is drawn " through " the points, the values of the right-hand side read off, and values of 8~' 
reconstructed from them*. 

In the smoothing and adjustment of the values of 8~', it was very seldom necessary to alter 
any value by more than a unit in the last decimal, and only about one in ten of the values were 
altered by a unit. 

The process of correction for finite length of x-interval was as follows. The interval x~ to x3 
--- .... x~ 4- 2 X  was covered by two independent integrations, one with a single interval of length 
2X and the other with two intervals of length X each. If OI and 0 ,  are the values of any quant i ty  
0, at x = x~ and the same value of y ,  calculated from the 1-interval and 2-interval integrations, 
respectively, then Richardson's process of h~-extrapolation ~2 gives 

0,, 4- ½ ( 0 .  - -  0z) . . . . . . . . . .  (29) 

as the value corrected for finite length of x-interval. The correction is not, of course, exact, 
but the two leading terms in the error are eliminated by this process. 

As already mentioned, this process tends to exaggerate small irregularities in the initial data. 
This can be seen as follows. Suppose that  at x = x~, a single one of the values of ~v~ is in error 
by ~, so tha t  the value used in the integration is ~v't 4- ~. This single irregularity would not 
greatly affect the integration, and in any case, since ( ~  4- v/~) is obtained by integration of 
(~p,'/+ ~ ' ) ,  ~ 4- ~[ is smooth (apart from rounding-off errors) so tha t  w,~, deduced from the 
integrated (~v~ 4- ~p[) and the given (~'~ 4- ~), is in error by -- e. Similarly the result w~ for the 
second interval ~ would be in error by 4- ~. But ~ obtained in l : interval  would be in error 
by -- ~, and using (29) it will be seen that  the "h~-extrapolated" value would be in error by 5~/3. 
This shows how irregularities may build up, and why it is desirable to smooth the results at 
each stage to prevent this occurring, t 

For the equation in the form (22), the data required at the initial section consists of both 
a¢~/a~l and ¢~; the latter is best obtained by integrating a¢~/av. The equation can be put in 
a slightly more convenient form for numerical work, but at best it is appreciably more com- 
plicated than (27) on account of the appearance of factors involving $ explicitly, and of (¢~ + ¢~) 
as well as ¢~ -- ¢~. 

8. T r i a l  Solut ion,  ~ -----0 to 0 .4 . - -As  already mentioned, it was decided first to carry out a 
trial solution of (17) from ~ = 0 to 0.4, as a general test of the method. 

In planning the details of the arrangement of the first experimental work, it happened that  
the equation was written with the term -- 4 ~ ( U ~ ) / ~  in the explicit form ~(1 -- ~ )  which it 
takes with U = 1 -- ~x, and consequently the substitution (25a) for Q was used at first without 
enquiry as to whether a more suitable substitution could be found. The first integrations, in 
which three decimals were retained in ~ 6 / ~  and ~¢/~ ,  were hardly precise enough to bring 
into prominence the difficulty of satisfying the boundary conditions with this substitution for Q ; 
but the results were so encouraging tha t  it seemed worth repeating the integrations with an extra 
decimal throughout, and then the difficulty was plain. This led to a further examination of 
the approximate equation from the point of view of the terminal conditions to be satisfied, and 
this showed the formal advantage of the substitution (25b). 

* For  this method of adjusting 9'  to the series, I am indebted to Mr. W. Hartree. 
In  the work as actually carried out, the coefficient o f y  6 in (28) was taken, in error, to be (1 - -  ~-x)/16 × 720 ; this error 

was not noticed till long after the work was completed, but it is not  likely to have effected tile results seriously. I am 
indebted to Dr. C. W. Jones for the correction. 

t Some part  of the accumulation of errors in this way  can be avoided by  taking four short intervals and two long 
ones before e a r r i n g  out the process of h~-extrapolation. 
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To see whether this formally more satisfactory substitution gave quanti tat ively better results 
in practice, integrations were carried out with it as well. In all integrations the interval ~ ---- 0 
to 0 .4  was covered by two independent calculations, one with one interval $ ---- 0 to 0.4, and the 
other with two intervals $ = 0 to 0-2, ~ = 0.2  to 0.4. The results are summarised in Table 1. 
This shows the advantage of the substitution (25b) over the substitution (25a) on all counts; 
the errors due to finite xdnterval are smaller, and the h2-extrapolated values are more accurate. 

The full results with substitution (25b) are shown in Table 2, and compared with results of 
calculations from Howarth 's  tables. The results of the integration seem highly satisfactory. 
The maximum error in the values of 2~¢/~v is 0.0004 out of a maximum o( 3.8, or 1 in 10,000 
of the maximum velocity. As the fourth decimal was the last retained in the integration, which 
covered a range of 4 in V, this error is hardly greater than the possible cumulative rounding-off 
error. The value of (~2¢/~v~),=0 at ~ = 0.4  agrees ahnost exactly with the value calculated from 
Howarth 's  series, but  the extreme closeness of the agreement is probably a numerical accident. 

These r~sults were regarded as good enough to justify the retention of a fourth decimal in the 
further work. The accuracy and range of Howarth 's  tables are only just enough to guarantee a 
fourth decimal in 2~¢ /~  at x ---- 0.4", and in going further we soon get beyond the range where 
the results can be tested by comparison with his tables. But  the satisfactory results of this 
trial suggest that  some confidence can be placed in the results of the continuation of the integration 
by the same method. 

9. Continuation of the Solution.-- Starting from the values of 2 ~ / ~  at ~ = 0.4, calculated 
from Howarth's  tables and tabulated in Table 2, the range ~ = 0" 4 to 0 .8  was covered in one 
and two steps. The results of these two separate integrations, and the results obtained from 
them by h~-extrapolation and smoothed, are given in Table 3. The maximum difference between 
the results of the one-step and two-step calculations is about 1.7 times as large as for the interval 

---- 0 to 0.4, and occurs at about the same place (7 = 1.5). 

The calculation was first carried out to three decimals in 2~¢/~ ,  and then repeated to four 
decimals; this or a similar process was used throughout a large part of the work; the three- 
decimal solution forms a valuable guide in the four-decimal work, in providing approximate 
values for the variation of the solution with variation of the trial starting value of [~2(¢2+¢1)/~230, 
and in suggesting the appropriate interpolation between two trial solutions. 

I t  is perhaps worth noting tha t  the final results of the three-decimal calculations nowhere 
differ by  more than 25 in the third decimal from the results of the four-decimal calculations. 
In view of the large number of possibilities of accumulation of rounding-up errors in the various 
integrations and interpolations, this degree of accuracy in the last decimal retained seems rather 
surprising. The fact tha t  the solution has to fit boundary conditions at both ends of the range 
is not in itself an adequate explanation, for it might be possible for the solution to be appreciably 
ill error for finite y, and still fit the boundary condition at y = ~.  This accuracy in the last 
decimal has been noticed in other calculations of this kind (for example in the solution of the 
equation 30/~t = ~O/~x 2 + 1 used by Hartree and Womersley as a test of the method of integra- 
tion), and appears to be characteristic of them. I t  suggests that  also the fourth decimal in the 
four-decimalcalculations may be given some significance, although it was really only retained 
to avoid the accumulation of rounding-off erlors in the third decimal. 

By  the time x ---- 0 .8  had been reached, the awkward form of equation (21) for practical work 
had become very clear to all who had taken part  in the numerical work. Since the integration 
had by  then been taken well away from the singularity at the leading edge, so that  the argument 
in favour of (22) rather than (9) had no longer much weight, and it was anticipated that  with 
the best conditions the approach to the separation point might be rather troublesome, it was 
decided to change over to the use of the simpler equation (9)~ with y as the co-ordinate normal 
to the boundary. 

* The contributions from the functions f 'v, f ' s  . . . .  which have not been calculated by Howarth, may amount tO 1 
in the fourth decimal at ~ ---- 0.4, but they can probably be estimated to adequate accuracy. Five decimals in ~6/~'J 
were kept in the calculations from Howarth 's  tables, to avoid the accumulation of rounding-off errors. 
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At x = 0.8, ~ = y/2.(0.8) :'~ = 0.559017y, and the solution was available at exact values 
of ~/ (multiples of 0.1), as tabulated in Table 3. Values of 20¢/~j were interpolated at multiples 
of 0.1 in y, and converted into values of 80~o/~y for use in equation (9) in form (27) ; these values, 
smoothed and adjusted by (28), are given in the second column in Table 4, and formed the starting 
point for the further integration. It would have been possible to continue using values of y 
corresponding to the exact values of ~1 at x = 0.8, but it was judged that the time and trouble 
of interpolating to exact values of y would be repaid in quicker and easier working later, and this 
was undoubtedly the case. 

The aim of the subsequent work was twofold. First, it was required to determine the separation 
point as accurately as possible, and, if possible, the flow in the immediate neighbourhood of 
the separation point and the nature of the singularity at that point. Secondly, it was required 
to calculate the flow through the whole boundary layer, for evaluation of the integrals 

0 ( 1  - -  u/U) dy for the "displacement thickness" and o (u/U) (1 -- u/U) dy for the 

" momentum thickness " 

For the determination of the separation point and the flow" in its neighbourhood it was not 
necessary to integrate the equations through the whole thickness of the boundary layer, as in 
the trial-and-error determination of the starting value of (~;' + ~p'l'), in order to obtain a solution 
with the right behaviour at ~, solutions with different trial starting values diverge so rapidly 
beyond about y = 2.5 that  the behaviour of two trial solutions at about y = 3 is already enough 
to show how the required solution must be interpolated between them, accurately enough to 
establish the fourth decimal in this solution out to about y = 2.5. 

Thus for this purpose it is only necessary to take successive mtegrat:ons out progressively less 
and less far from the boundary. On the other hand, as already explained, it is desirable to carry 
out these integrations to the highest degree of numerical accuracy which the data and method 
will provide. Four decimals were retained through this part of the work, the four-decimal 
calculations being usually preceded by three-decimal calculations to provide a guide as already 
explained. 

After some experiments with longer x steps, the following were adopted : 

Stage (A). x = 0.8 to 0.88 in one and two steps; correction at x = 0.88 for finite size 
of x steps. 

Stage (B). Using the final results of stage (A), x = 0.88 to 0.94 in one and two steps; 
correction at x = 0.94 for finite size of x steps. 

Stage (C). Using the' final results of stage (B), x = 0.94 to 0.956 and 0.94 to 0.958, each 
in one and two steps, and correction for finite size of x steps. 

The final results of each stage were smoothed and adjusted to the series (28) as already explained 
before being used as the starting values for the next stage. 

For stage (B), an at tempt was first made to go from x = 0"88 to 0-96 in one and two steps, 
but the difference between the results at x = 0.96 in one and two steps was too large to give 
confidence in the results as part of the data for determining the separation point. The corrections 
for the finite length of x-interval increase rapidly on close approach to the separation point, 
and it seemed advisable to approach it by intervals as small as were practicable. 

For stage (C), it was at first intended to go from x = 0.94 to 0.96 in one and  two steps, but 
no solution could be found for the second step, and it was later found that x -- 0.96 is just beyond 
the separation point. 
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The results at x ----- 0.956 and 0.958 were both calculated by one and two steps from x ----- 0" 94 ; 
the correction for the finite size of x-interval at x----0-958 was about three times tha t  at 
x -~ 0.956; this rapid increase is presumably due to the close approach to the singularity at the 
separation point. Despite this, an a t tempt  was made to reach the separation point itself, and 
appeared to be successful; this will be discussed in section 10. 

For the calculation of the flow well away from the boundary, it seemed adequate to dispense 
with the fourth decimal, and three decimals in 8a~o/ay were kept throughout;  also it seemed 
adequate to work with larger x-intervals beyond x = 0.88. A unit in the third decimal represents 
about 1 part in 8,000 of the velocity in the main stream, and the retention of this decimal is 
probably enough to guard against the accumulation of rounding-off errors to any extent which 
would be appreciable in the use of the results. The greatest correction for finite interval length 
at x ---- 0.88 and x = 0.94 was only 15 in the third decimal, so the results at x = 0.84 and 0-92 
should not be in error by more than 1 in the last decimal, as far as errors due to the finite length 
of x-interval are concerned. 

A complete table of the results is given in Table 4. For x ----- 0.84, 0.91, 0.92, 0.948, 0.949 
only  results calculated in one step are available, and these are tabulated. For x ---- 0.88, 0-94, 
0.956, 0.958 results calculated by one step and two steps are given to show tile magnitude of the 
difference, and also " final " results, namely, results corrected for finite size of x-interval and, 
for x ----- 0.88 and 0.94 for which the results formed the starting point for further integrations, 
smoothed and ajusted by the series (28). 

Values  of the  d i s p l a c e m e n t  t h i c k n e s s  . ( 1 -  u / U ) d y ,  t h e  m o m e n t u m  t h i c k n e s s  

fo o (u/U) (1 -- u/U) dy, and 2 (Ou/~y)o are given in Table 5. 

The " final " values of 2 (Ou/~y)o which are not enclosed in brackets have been obta ined 
by Richardson's process of h2-extrapolation from the results of calculation by one and two steps, 
and subsequent adjustment to fit the series (28). This adjustment is responsible for the differences 
of a unit in the last figure, in some cases, between the " final ' values and the values obtained 
by ha-extrapolation. Approximate corrections for interval length have also been applied to the 
values of 2 (Ou/Oy)o for which only results calculated by one step are available. From the 
general theory of the method of integration, it follows tha t  the leading, term in the error after 
one step ~x = A is a quarter of tha t  after two such steps. The error m the latter case can be 
estimated from the results of calculations with two small steps ~x = .,t and one large step 
~x ---- 2zl, and hence a correction to the results calculated by one small step ~x ---- A can be 
estimated. " F i n a l "  results involving corrections thus estimated are enclosed in brackets. 

10. The Separation Poin t . - -There  are two ways of at tempting to determine the position of the 
separation point from the results of integrations such as those considered in this report. One 
is to carry out the integrations up to points as near the separation point as possible, to determine 
the value of (~u/~y)o, the velocity gradient at the boundary, at different sections, and to extra- 
polate, from these values, the value of x at which (au/~y)o ~ O. The other way is to carry the 
integration up to the separation point itself by altering slightly the trial and error process for 
finding the solution satisfying the required boundary conditions; instead of taking a given 
x-interval and adjusting (~')0 so that  the solution satisfies the required condition at 0% one can 
specify (~')o : 0 and adjust the x-interval length. Both these methods have been used, and 
give closely consistent values for x,, the value of x at the separation point. 

The values of 2 (~u/~y)o -~ 2 ~ '  at different sections are given in Table 5. The extrapolation 
of the separation point from these values of 2 (~u/~y)o would be most satisfactory and convincing 
if it were known how (~u/~y)o should vary near the separation point, so tha t  the extrapolation 
would be simply a mat ter  of determining constants in a known formula. But no analytical 
investigation of the nature of the singularity at separation, and of the flow upstream from separa- 
tion, was available at filst. Goldstein ~ had examined the flow downstream from an arbitrary 

15 



giveu velocity distribution through the boundary layer, and had considered shortly the case 
when this velocity distribution was such that  (~u/Oy)o = 0 (Ref. 3, section 4.1), but this problem 
is rather different from the problem of the flow upstream from separation, in which the velocity 
distribution at separation is essentially not given, but has to be determined from the boundary- 
layer equation and the flow further upstream. Thus there was no theoretical formula with which 
to compare the results of the integration, and in the first instance the analysis of these results 
had to be more or less empirical. Different methods of making this analysis, either by plotting 
log [2 (~u/Oy)ol against log ( x , -  x) for different values of x,, or by  plotting [2 (~U/Oy)o} 1/q 
against x for different values of q, all showed that,  near the separation point, the values of 
2 (~u/Oy)o could be fitted closely by 

2 ( ulOy)o (xs - x ) ¢ ,  . . . . . . . . . . . .  (29) 
with x~ close to 0.959, and q definitely greater than ½ and less than ~. A value about q = 0.6  
seemed indicated, and indeed the whole set of values of 2 (Ou/Oy)o from x = 0 .8  onwards are 
represented very closely by (29) with q = 0.6. 

At this stage, the results were discussed with Dr. Goldstein, who undertook further analytical 
examination of the flow ups t ream from separation. An account of this work has recently been 
published 14. 

Goldstein found first that  the boundary-layer equations have no solution giving a relation of 
the form (29) for the behaviour of (Ou/~y)o, with the index q greater than ½ and less than 3, and 
with u finite at x = x,, y = 0. This showed that,  as seemed possible from the first, (29) was 
simply an empirical formula fitting the available numerical data, but having no theoretical 
basis. Such an empirical fit can, of course, only suggest and not establish the limiting behaviour 
of (Ou/~y)o as x - + x , ;  if (Ou/~y)o were really expressible, for example, in a power series in 
(x, -- x) ~/4 beginning with a term in (x, -- x) t/~, then for the small, but not extremely small values 
of (x, -- x) for which values of (Ou/Oy)o are available, the behaviour of the function defined by the 
power series might simulate quite closely the behaviour expressed by (29) with y = 0.6. 

From Goldstein's results for the flow downstream from a given velocity distribution at separation, 
it follows tha t  either the singularity at separation is of such a kind that  (Ou/Oy)o = 0 [(x -- x=)~/4~, 
in which case the condition (7a) of the present report is violated at the separation point, or the 
singularity is of a less drastic kind in which (~u/Oy)o = 0 [(x -- Xs) 1/~] and the conditions (Ta), 
(Tb) still hold at the separation point itself. Although, as already pointed out, these results are 
not directly applicable to the present problem, they suggest the kind of solution to be examined. 

The values of (Ou/Oy)o calculated by integration seem to rule out a limiting behaviour described 
by an index q = 1 in (29), hence only the index 1 seemed possible, and this case was examined 
in detail by Goldstein for the flow upstream from separation. 
as far as they concern the present discussion, are as follows. 
Notation :-- 

U, = value of U~ at separation, 

Us' = value of dUJdx~ at separation, 

z, = - u , / u , ' ,  

R, = l, UJv, 

x i  = 

Yl = R y r  ya/I,, 
ul = ua/U,, 

The results so far obtained, and 

= p a / p a u ? ,  

(a suffix a is used here to represent Values of quantities in some dimensional system of measure- 
ments, since the symbols x, y, u . . .  without suffixes are used in this report for non-dimensional 
quantities). 
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Let the  pressure dis t r ibut ion near  separat ion be such t ha t  

~P~ 
- -  ax~ - -  1 + P~x~ + P2x~ 2 + P,~x~ 3 . . . ,  . . . . . . . . . .  (30)  

so tha t  for U ---- bo - -  b~x, P~  = 1, P 2  = P~  ---- . • • = 0 .  

Also let ~i = x j  1/4, rll = yl/21/'~ -~711/4 , 

and suppose tha t  the  veloci ty  u~ at separat ion is expansible in the form 

= ~y~ + a~y~ + a~y~ + . . . ,  . . . . . . . . . .  (31) 

and tha t  the  veloci ty gradient  at  the solid boundary ,  ups t ream from separation,  is given by 

~ / y ~ = o  = (~q~2 _+_ ~z2#~" + . ~  + . . . )  . . . . . . . . . . .  (32)  

Then a2 = ½ and  aa = 0 (so tha t  the relations (7a), (7b) still hold), cq is arbi t rary,  and the other  
coefficients are de te rmined  in terms of it by  relations of which the  first few are IRef. 14, formulae 
(29) and (31)-(34)7 

~z~. = 1" 778~, 2 (a) 

~z~ ---= 3 . 3 1  lc~  3 (b) 

a~ = - -  0" 1 3 5 ~  3 (d) 
P~ 

a6 = - -  0"0595<zl 4 - -  360" (e) 

. . . . . . . . . .  ( 3 3 )  

Since the boundary- layer  equation,  in the dimensionless reduced form (1) which has been taken  
as the basis of the  present  work,  can be derived from the dimensional  form by put t ing  v --  1, 
p = 1, it follows tha t  the  relations between Goldstein's reduced variables and those of this paper,  
defined in section 2, can be obta ined by  pu t t ing  v = 1, o = 1 in the definitions of his reduced 
variables and dropping the  suffix a. Thus, for example,  t ak ing  x,. = 0 .959 as the separat ion 
point  to an adequa te  approximat ion  for the present  purpose, we have 

- -  g ' = ½ ,  U ~ =  1 - - { - ( 0 . 9 5 9 ) - - 0 . 8 8 ,  l s = 7 " 0 4 ,  R s = 6 " 2 0  . . . . .  (34) 

Now from (32) 

or, on subst i tu t ion for c~,, 0~3 in terms of cq from (33) (a), (b), 

[ 3"311~'3 1 2 (Ou/~y )o  2 5 / 2 R } / " U  s 1 "778~1 ~ (x ,  - -  x )  1/4 + 11/9 (xs - -  x )  1'~ + 
( X s  - x )  - l Y  + l ?  " " " " 

With  the numerical  values (34) appropr ia te  to the  present  case, this becomes* 

2 (ou/ y)o 
100. [100 (x.~ --  x)] t/~ = 6 .65 [~  + 0.3453~ei2{100 (x~ --  x)} ~/~ 

+ 0. 1248 ~t3{100 (x~ - -  x ) }  1/2 @-  . . -1 . . . . .  ( 3 5 )  

(The factors 100 are in t roduced  for numer ica l  convenience).  

On the  assumptions on which this formula  is deduced,  namely  tha t  there  is a s ingular i ty  at 
separat ion of such a na ture  tha t  ( a u / O y ) o  = 0 [ ( x , -  x) ~/~] for x - - ->-x ,  the  veloci ty gradient  at 
the  boundary ,  ups t ream from the separat ion point  but  in the ne ighbourhood of it, mus t  va ry  

* I am indebted to Dr. C. W. Jones for corrections to the values of the numerical coefficients in this equation. 
Consequent corrections have been made in Fig. 1, in the value (36) of xl, and in Table 6 (Nov. 1948). 
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according to (35) for some value of ~1, and it is required to deduce the value of ~ and x~ from 
the observed values of (?,u/Oy). near  the  separat ion point.  This is most  convenient ly  done 
graphical ly by  plot t ing (au/ay) , / (x~ - -  x) ~/2 against (x, --  x) '/~ (or convenient  mult iples of these 
variables as indicated in (35)). This is done in Fig. 1. A set of curves, d rawn according to (35) 
for different values of a,, gives a set of possible variat ions of the r igh t -hand  side of (35) in the  
immedia te  ne ighbourhood of the separat ion point ;  these are shown by broken curves in the 
figure. Since x is not  exact ly  known,  it is necessary to use different tr ial  values in evaluat ing 
the lef t -hand side of (35) from the  values of 2(du/dy)0 obta ined from the  in tegra t ion  and given 
in Table 5; curves drawn through points so calculated for x , , -  0"9588 and 0.9590 are shown 
by full lines in the  figure: 

The fit between the  two kinds of curve is not  perfect,  but  a fairly good fit is given by 

a~ -- 0 .47  . . . . . . . . . . . . . . . .  (36) 

approximate ly ,  of the set of curves given by  (35), and the curve for a value of x slightly smaller 
than 

x~ ~= 0. 9589 . . . . . . . . . . . . . . . . .  (37) 

Such a curve is shown thus :  

The " bump  " in the  curve at  about  x = 0 .95  is curious, bu t  seems real. The general  agree- 
ment  be tween the  calculations for different values of x- interval  length seems a good check 
against gross errors in the  numerica l  work, and  it does not  seem at all, p lobable  tha t  the results 
are subject  to such errors. The smallness of the  corrections for x-interval  length makes  it seem 
probable tha t ,  except  perhaps  at x = 0.958, the  values of 2 (O,t/~y)o t abu la ted  in Table 5, and 
used in plot t ing the results in Fig. 1, are not  in error by  more  than  0.0002. At the  bo t tom of 
the figure is a set of vert ical  lines showing the  displacement  in ordinate  of p lo t ted  points at 
different values of x, for a difference of 0.0005 in tile value of 2 (au/ay)o,  and  the  errors in the 
plot ted points should not  be half the  length of the  corresponding lines ; corrections for such errors 
(if they  really existed) would not  smooth out  the  " b u m p  " If the point  at  x = 0-956 was 
omit ted,  a smoother  fit can be made  by  taking ~1 = 0.51,  x, = 0.9587 approx imate ly ;  bu t  
there  seems no other  reason for reject ing the results at x = 0"956. 

As a l ready ment ioned,  an a t t emp t  was also made  to carry  the process of numerical  in tegrat ion 
up to the  separat ion point  itself, by tak ing  (~0;')0 = 0 and adjust ing the length of the  x in terval  
so tha t  the  bounda ry  condit ion at infinity was satisfied; this was found to be quite practicable.  
The integrat ion s tar t ing from x, - :  0" 94, and going to the separat ion point  (defined by  (~p,Y)o = 0) 
in one step, gave x~ - 0.9592, whereas an in tegra t ion  also s tar t ing from x - 0.94,  tak ing  one 
step to x ~= 0 .95 and another  from there to separation,  gave x -  0.9590. The results are 
given in Table 6, and there  are in surprisingly close agreement ,  coflsidering the large correction 
for interval  length at x = 0.958, compared  to tha t  at x = 0.956, a l ready noted.  

Values of 8 (~Pfi'3') corrected for x-interval  length are also given in Table 6; the correction is 
only approximate ,  as in the two-step integrat ion the intervals  were not of exact ly  the  same 
length, and in any case it is not  clear t ha t  Richardson 's  h2-extrapolation process is valid in the  
present case, when tile range of integrat ion in x has been defined by ~//', not in terms of x. But  
the correction is small and should be approximate ly  correct. The agreement  with the  value 
(37) for the position of the separat ion point is excellent. 

Using the relations (33) (c), (d), (e), and the value (36) of e~, the velocity profile at separat ion 
becomes 

8u :-- 0. 4403v ~ --  0.0041y ~ -- 0- 0005~y ~ -- 0.0000~ff . . . . . . .  (38) 

Values of 8~, /~ 3, -- 8~ at separation,  calculated from this formula,  are given in Table 6 for 
comparison with the results of the  integrat ion out  to the  separat ion point. The agreement  is 
good out  to about  y = 0.8,  and this is about  as far as any agreement  in the  fourth decimal  
place is to be expected,  since in fitting the  series (28) to the veloci ty distr ibution th rough  the  
bounda ry  layer  at the separation point, it is usually f o u n d  tha t  terms of order  y7 and higher 
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give appreciable contributions to the  fourth decimal in 8u at y = 1, and probably the  same as 
the  case here. In view of this ,  and of the doubt  about  the  val idi ty  of the  correction for x-interval 
length for the values of 8u at separation the agreement  seems staisfactory. 

In comparing these results, it must  not  be forgotten that ,  as pointed out in section 4, the  process 
d,p 

of integrat ion imposes on the approximate  solution V~ certain conditions, such as ~,'," = u'o' = d ~ '  

~/~ ~ = u,; . . . .  0,  for all x. Thus even if there were a singulari ty of a kind for which these 
conditions were violated, the  me thod  of integrat ion up to the separation point would fail to 
reveal its nature. But  the values of 2 (au /Oy)o  seem to indicate ra ther  definitely tha t  this quan t i ty  
has not the  behaviour 2 (Ou/Oy)o  --- 0 [(x~ -- x)1/4~ to be expected if there is such a singularity, 
and, if it has not, then  the fact tha t  the  integrat ion up to separation could not reveal such a 
singularity is no reason for suspecting the results of the integrat ion in this case. 

There are, however, two difficulties remaining. 

First, a singularity of the type assumed would make  the normal  velocity v, at the  separation 
point, become infinite like (x~'-- x)-~/2 (for y ----- 0). Large normal  velocities are to be expected 
at separation, and the  appearance of formal infinities may  simply be a sign of the  breakdown of 
the assumptions of the boundary- layer  theory (negligible normal  accelerations and rates of shear). 

Further,  the  expressions for the ~ 's such as (33) (a), (b), are found from the condit ion ~hat 
the solution for the functionf,,  ,_~ in the  expansion 

u~ = 2~1" [f;(~h) + ~:~f,'(V~) + t:,~" (~) + . . .] 

should not  contain exponential ly large terms in its asymptot ic  expansion for large ~. For f,, 
however,  Goldstein found tha t  this condit ion does not determine e~, but  gives a relation (Ref. 14, 
formula (35)) between the functions f l  tof~, and it was not clear whether  this relation is satisfied. 
If it is not satisfied, the conclusion would seem to be tha t  the  singulari ty is not  of the type 
assumed, and it is doubtful  whether  there is any other  k ind  of singularity which gives a solution 
of the  boundary-laver  equations at separation. This point has been examined more recently 
by Dr. (; .W. Jones i~, who comes to the conclusion tha t  the condit ion is satisfied, so tha t  there is 
a singularity of the kind supposed. 

I t  is difficult from a purely numerical t r ea tment  of the  solution of the equations to make  
absolutely certain of the  existence of a singulari ty or separation, but  all the evidence of the  
present work suggests tha t  there  is one. The main lines of evidence are as follows. 

(a) The variaton of 2 ( a u / a y ) o  with x near the separation point does not suggest a polynomial  
variation with (x --  x~), as would be necessary to avoid a singularity. 

(b) If there were no singularity, the correction for size of x-interval length would not be expected 
to increase very rapidly as the separation point is approached,  as in fact it does (compare results 
at  x = 0 .956 and 0.958 in Table 4). 

(c) If there were no singularity at the separation point, the velocity distr ibution there would 
have no terms in y~, y~, yS, and would be 

8u = 0. 4400y 2 --  0.00004y °, 

which does not  fit tim velocity profile calculated by integrat ion (compare (38) and Table 6). 

(d) If there were no singularity at the separation point, no difficulty would be expected in 
taking the  solution through this point, or in start ing from it and working downstream. Actually 
both these processes have  been tried fairly thoroughly,  and in nei ther  case has it been fount1 
possible to get any solution at all satisfying the  boundary  condit ion at y -= or, for any start ing 
value of (~0.','),,. In this connection, it should be ment ioned  tha t  Goldstein found (Ref. 14, p. 50 
and 55) tha t  the fact tha t  a~ in (31) is necessarily negat ive (see (33) (c)) means tha t  there is no 
r e a l  solution of the boundary- layer  equations downstream from separation. 

These results all strongly suggest the presence of a singularity of a faMy severe kind at the 
separation point. 
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11. A c k n o w l e d g m e n t s . - - I  wish to  a c k n o w l e d g e  m y  t h a n k s  a n d  i ndeb t ednes s  to Dr.  S. Golds te in  
f o r  his i n t e re s t  a n d  for m a n y  va luab le  discussions d u r i n g  the  course  of th is  work ,  and  for his 
pe rmiss ion  to  quo t e  his resul ts  r e fe r r ed  to  in sec t ion  10. Also I wish to express  m y  t h a n k s  to 
t h e  A e r o n a u t i c a l  Resea rch  C o m m i t t e e  for a g r a n t  to enable  m e  to  ob t a in  profess ional  ass is tance  
in some  of  t he  ex tens ive  c o m p u t i n g  w o r k  involved,  a n d  t o  Dr.  L. J .  Comrie,  D i r ec to r  of Scientif ic 
C o m p u t i n g  Service  Ltd . ,  a n d  his s taff  for the i r  con t r i bu t i ons  to t he  progress  of t h e  work.  F u r t h e r ,  
I wish to acknowledge  the  v e r y  subs t an t i a l  he lp  I h a d  f rom m y  fatheJ ,  t h e  la te  Mr. W. H a r t r e e ,  
in t h e  ba l ance  o f  t h e  c o m p u t i n g  work ,  b o t h  in t he  e x p l o r a t o r y ' w o r k  discussed in sec t ion  8 wh ich  
es tab l i shed  t h e  poss ibi l i ty  of us ing the  m e t h o d  c o n t e m p l a t e d  a n d  subsequen t ly ,  p a r t i c u l a r l y  in 
t h e  r a t h e r  t ed ious  a n d  t r y i n g  w o r k  w i t h  smal l  x - in te rva l s  used  in a p p r o a c h i n g  the  sepa ra t ion  
point .  
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T A B L E  1. 
Tr ia l  In tegrat ion • ~ : 0 to O. 4 in  One and  Two  Steps  

S u m m a r y  of Resu l t s  

= 0.4 \U~Vo 
one step .. 
two steps .. 
h2-extrapolated 

~=0 .4Maximumerror  in 09/8~ 
one step .. 
two steps .. 
h2-extrapolated 

. . 

Results using 
substitution 
(25a) for O 

1-12385 

0.91675 
0.9075 
0.9044 

0.0244 
0.0069 
0.0005 

Results using 
substitution 
(25b) for Q 

1"12115 

0.9063 
O. 90455 
O. 9039~ 

0.0122 
0-0031 
0.0004 

Results calculated 
from Howarth's 

Tables 

1.12085 

I i O" 90396 
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Results at 

TABLE 2 

Trial integration, ~ = 0 to O" 4 in One and Two Steps 

= 0" 4, using substitution (25b) for Q, and comparison 
results calculated from Howarth% tables 

with 

(,~v/,~,~). 

0"0 
0.1 
0"2 
0"3 
0' 4 
0 '5  
0"6 
0 '7  
0"8 
0"9 
1-0 
1"1 
1'2 
1"3 
1"4 
1"5 
1-6 
1"7 
1"8 
1"9 
2"0 
2"1 
2"2 
2"3 
2"4 
2"5 
2.6 
2"7 
2-8 
2"9 
3 '0  
3"1 
3 '2  
3"3 
3-4 
3"5 
3"6 
3 '7  
3"8 
3"9 
4 '0  
4"1 
4"2 

One step Two steps 

0"9063 

0.0000 
o-1848~ 
0"3775~ 
0'57715 
0"7830 
0"9940 
1"20865 
1.4252 
1.64165 
1-8558~ 
2"0656 
2"26855 
2"4624 
2"6452 
2"81505 
2"9706 
3"1108 
3.23525 
3.34405 
3.4371 
3.51565 
3.5806 
3.6334 
3.6756 
3.70865 
3.73395 
3.7531 
3.7673 
3.7776 
3-78495 
3"7900 
3.79355 
3.7959 
3"79745 
3-79845 
3"79905 
3.79945 
3.79965 
3.79985 
3.7999 
3.8000 
3.8000 
3.8000 

0.90455 

Table of 23q9/0,~ 

0.0000 
0"18465 
0.3768 
0.57595 
0.7812 
0.99145 
1-2054 
1.4211 
1.63675 
1.85005 
2.05905 
2.26125 
2-45445 
2.63665 
2"80615 
2.96155 
3"1019 
3"22665 
3.33565 
3.4294 
3.50865 
3.57445 
3.6280 
3.6710 
3-7048 
3.7309 
3.7507 s 
3.7655 
3.77615 
3.7838 
3.7892 
3-79295 
3-7955 
3.79715 
3'7983 
3.7990 
3.7994 
3.79965 
3.7998 
3-7999 
3.79995 
3.8000 
3.8000 

Final 
(h2-extra - 
polated) 

o.9o395 

0.0000 
0.1846 
0-37655 
0"57555 
0.7806 
0.9906 
1-2043 
1.4197 
1.6351 
1.8481 
2.05685 
2.25885 
2.4518 
2"6338 
2.8032 
2.95855 
3-0989 
3.22375 
3.33285 
3.4268 
3-5063 
3.5724 
3.6262 
3 . 6 6 9 5  
3.7035 
3.7299 
3.74995 
3.7649 
3.77565 
3.7834 
3.7889 
3.7927 s 
3.7954 
3"7970~ 
3.79825 
3.7990 
3.7994 
3.79965 
3.7998 
3.7999 
3.79995 
3.8000 
3.8000 

Howarth 

O" 90395 

0-0000 
0.1846 
0-37655 
0.5755 
0-78055 
0"99055 
1-2041 
1.41945 
1.6348 
1.84785 
2"05645 
2.2584 
2.4514 
2.6335 
2.8030 
2.9584 
3.0988 
3.2237 
3.33285 
3.4268 
3.50625 

3.6262 

3"7034 

3-7500 

3"77555 

3.7889 

3.7953 

3-79815 

3.7993 

3.79975 

3.7999 

3.8000 

(Final) 
-- (Howarth) 
4th decimal 

--Ol 

0 
0 
0 

+05 
+05 
+05 
+2  
+25 
+3 
+25 
+4 
t45  
+4 
+ 3  
+2 
+1,~ 
+1 
+05 

0 
0 

+05 

-o~ 

+1 

()~ 

O~ 

0 
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T A B L E  "3 

Results at ~ = O. 8 in  One and Two Steps f rom ~ --- O. 4 

0.0 
0 . t  
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1"0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1,9 
2.0 
2.1 
2-2 
2.3 
2.4 
2-5 
2.6 
2.7 
2.8 
2.9 
3.0 
3.1 
3.2 
3-3 
3-4 
3-5 
3.6 
3.7 
3.8 
3.9 
4,0 
4.1 
4-2 
4.3 
4.4 

One step 

0.40185 

Two steps 

0.0000 
0.0877 
0.1897 
0.3057 
0.4355 
0"5778 
0"7317 
0.8957 
1.06825 
1.2477 
1.4318 
1.6186 
1-8056 
1.9904 
2.1708 
2.3442 
2-5089 
2.6630 
2.8050 
2.9340 
3.0491 
3.1506 
3.2383 
3.3127 
3.3753 
3.4267 
3.4684 
3.5013 
3.5271 
3.5471 
3.5621 
3.5733 
3.5815 
3,5872 
3.5916 
3.5945 
3.5963 
3.5978 
3.5987 
3.5993 
3.5996 
3.5999 
3.6000 
3.6000 
3.6000 

Difference 
(1 step)-(2 step) 

4th decimal 

0.3997 215 

Table of 2~9/0q. 

0.0000 
0.0872 
0"18855 
0.3037 
0.4323 
0"5734 
0.7260 
0.8888 
1.06005 
1"2382 
1.4211 
1.6065 
1.7924 • 
1.9764 
2.1560 
2.3292 
2-4939 
2-6482 
2 . 7 9 0 7  
2.9203 
3.0365 
3.1391 
3.2279 
3.3039 
3.3677 
3.4203 
3.4630 
3.497t 
3.5238 
3.5444 
3-5602 
3 .5718 
3.5804 
3-5866 
3.5910 
3.5940 
3.5961 
3.5975 
3-5984 
3.5991 
3.5995 
3.59975 
3.5999 
3.6000 
3.6000 

0 
5 

115 
20 
32 
44 
57 
69 
82 
95 

107 
121 
132 
140 
148 
150 
151 
148 
143 
137 
126 
115 
104 
88 
76 
64 
54 
42 
33 
27 
19 
15 
11 
6 
6 
5 
2 
3 
3 
2 
2 
15 
1 
0 
0 

Final 
(h~-extrapolated) 
and smoothed) 

0.3990 

0.0000 
0.0870 
0.1881 
0.3030 
0.4312 
0.5719 
0.7241 
0.8864 
1.0573 
t-2350 
1.4175 
1.6025 
1.7880 
1..9717 
2.1512 
2-3242 
2.4888 
2.6432 
2.7859 
2.9157 
3.0323 
3,1352 
3.2246 
3.3010 
3.3652 
3.4182 
3.4613 
3.4957 
3-5227 
3.5436 
3.5595 
3.5714 
3.5801 
3.5864 
3.5908 
3-5939 
3.5960 
3-5974 
3.5983 
3.5990 
3.59945 
3.5997 
3.5999 
3.6000 
3.6000 
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TABLE 4 

Results of Integration of Boundary-layer Equation for U = 1 --  i x  

2( ~t,/~y2)o 

Y 

0.0 
0.1 
0.2 
0.3 
0.4 
0-5 
0.6 
0"7 
0 ' 8  
0.9 
1.0 
1.1 
1"2 
1.3 
1-4 
1"5 
1.6 
1"7 
1 '8 
1.9 
2.0 
2-1 
2-2 
2.3 
2.4 
2.5 
2 ' 6  
2"7 
2.8 
2.9 
3"0 
3"1 
3.2 
3 ' 3  
3.4 
3.5 
3"6 

x = 0 . 8 0  

0.2229 

0.0000 
0.0936 
0-1962 
0.3077 
0.4280 
0.5569 
0.6942 
0.8395 
0.9926 
1.1532 
1.3209 
1.4954 
1-6762 
1.8626 
2-0540 
2.2500 
2'4498 
2'6528 
2'8580 
3.0646 
3-2720 
3-4794 
3"6862 
3.8914 
4.0942 
4.2937 
4.4892 
4.6800 
4"8654 
5'0442 
5.2176 
5.3932 
5.5412 
5.6912 
5.8330 
5.9666 
6.0918 

0"84 
1 step 1 step 

0.1808 

0.0000 
0.0768 
0.1624 
0.2570 
0.3604 
0.4726 
0.5932 
0-7221 
0-8590 
1.0036 
1'1556 
1.3145 
1.4800 
1.6517 
1.8290 
2.0114 
2-1983 
2"3890 
2.5830 
2"7797 
2.9784 
3-1781 
3.3780 
3-5776 
3.7763 
3'9732 
4.1675 
4.3585 
4"5454 
4.7277 
4.9047 
5"076 
5"241 
5.3985 
5" 5495 
5.693 
5.829 

:0.88 ] ~1 0-91 
1 step Final I 1 step 

0'1374 
I 

O- 1383 O" 1385 O" 1024 

Table of 8~,/~y 

0.0000 0.0000 0.0000 0.0000 
0"0595 0"0597~ 0"05985 0"0453 
0-1278 0.1284 0"1286 0"0994 
0-2049 0"20585 0"2062 0.1624 
0"2907 0"29205 0"2925 0"2341 
0'3853 0-3869 0"38745 0"3145 
0"48835 0"4903 0"4909 0"4033 
0"59985 0"6020 0"60265 0"5006 
0-7196 0'72175 0"7225 0"6061 
0"8472 0"8494 0-8502 i. 0"7196 
0-9823 0'9846 0"9855 0"8408 
1"1247 1"1271 1.1280 0-9695 
1"2740 1"2766 1"2774 1"1054 
1'4300 1-4325 1-4334 1'2482 
1'5921 1"5946 1"5955 1"3975 
1'7597 1"7624 1"7633 1"5529 
1"9326 1'9354 1"9363 1'7139 
2"1101 2"1131 2"1140 1"8802 
2"2907 2'2948 2"2958 2"0511 
2"4770 2"4800 2"4818 2"2263 
2"6654 2"6680 2"6690 2"4052 
2'8560 2"8584 2"8593 2"5872 
3'0479 3"0504 3"05125 2"7715 
3"2408 3'2433 3-2441 2"9578 
3"4339 3"4363 3"4371 3"1453 
3-6266 3"6288 3'6296 3"3334 
3"8182 3"8202 3"8209 3"5213 
4'0078 4"0097 4.0103 3"7085 
4"1949 4"1966 4"1972 3"8941 
4'3788 4"3803 4"3808 
4"5587 4"5600 4"5604 
4"735 4"735 4"735 
4"905 4"905 4"905 
5"071 5"0705 5"070 
5.229 5"229 5"229 
5"381 5"3815 5"3815 

' 5.526 5.5265 5.527 

0 " 9 2  c [ 
1 step 1 step 

0.0883 

0.000 
0.0395 
0.088 
0.1455 
0.212 
0-2875 
0-371 
0.463 
0.5635 
0.6715 
0.7875 
0.911 
1.042 
1-180 
1.3245 
1.4755 
1.632 
1.744 
1.961 
2.1325 
2.308 
2-4865 
2.6675 
2.851 
3.0365 
3.223 
3"4095 
3.5955 
3.7805 
3.964 
4.1455 
4'324 
4"4985 
4.669 
4.835 
4.996 
5-1515 

o.o5865 

0.0000 
0.02785 
0'0645 
0"1099 
0"1640 
0'2268 
0.2982 
0"3781 
0-4663 
0"5626 
0"6669 
0"7789 
0'8984 
1"0251 
1-15875 
1-2990 
1"4454 
1"5977 
1"7553 
1"9181 
2"0854 
2"2568 
2"4313 
2"6092 
2"7893 

- - 0 . 9 4  
2 step Final 

0.05825 0-0582 

0.0000 0.0000 
0-0277 0.0277 
0-0643 0.0642 
0.1096 0.1095 
0.16365 0-16355 
0:2264 0"22625 
0.2977 0'2975 
0"3774 0"37715 
0'4654 0"4651 
0.56155 0"5612 
0-66565 0'6652 
0.7774 I 0"7769 
0.8967 I 0-89615 
1.0233 I 1.0227 
1.15675] 1.1561 
1.296851 1.29615 
1.44315 1.4424 
1-5953 1.5945 
1-7528 1.7520 
1"9154[ 1"91455 
 .o82551 2-o816 
2.2537 I 2.2527 
2.4283 2.4272 
2.6058 2.60465 
2-7858 2.7846 
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TABLE 4--continued 

Y 

3.7 
3.8 
3"9 
4.0 
4.1 
4"2 
4-3 
4-4 
4"5 
4.6 
4.7 
4.8 
4.9 
5.0 
5.1 
5.2 
5:3 
5.4 
5.5 
5"6 
5"7 
5"8 
'5.9 
6.0 

6.2 
6"4 
6"6 
6"8 
7.0 
7"2 
7"4 
7.6 
7"8 
8 '0  

x = 0 . 8 0  0-84 
1 step 

6.2082 5.956 
6.3162 6.0755 
6.4158 6.187 
6.5072 6-2905 
6.5906 6-386 
6"6664 6.474 
6"7348 6.555 
6.7962 6.628 
6.8510 6.6945 
6" 8998 6.7545 
6" 9430 6.808 
6" 9810 6" 8555 
7"0142 6"8975 
7"0430 6"935 
7"0680 6"968 
7"0896 6"997 
7.1082 7"0225 
7.1240 7.0445 
7.1374 7.063 
7.1488 7.079 
7.1584 7.093 
7.1662 7.105 
7.1726 7.115 
7-1780 7"123 

7.1860 7.1355 
7"1912 7-144 
7.1946 7.1495 
7.1968 7.1535 
7.1982 7'156 
7"1991 7"158 
7"1996 7"159 
7'1998 7"159~ 
7"1999 7"160 
7"2000 7"160 

c 0 . 8 8 -  
1 step 2 step Final 

0"91 
1 step 

Table of 80q~/by 

5.664 5.6645 
5" 796 5" 796 
5.920 5.920 
6.037 6.0365 
6. 145 6.1445 
6.245 6.2455 
6- 337 6- 339 
6.422 6.425 
6.501 6.5035 
6.574 6.5755 
6.639 6.6416 
6.698 6.701 
6.752 6.7545 
6.801 6.8025 
6.844 6.8455 
6.882 6.8835 
6-914 6.917 
6-944 6"9465 
6- 969 6.9725 
6- 991 6.995 
7.010 7.0145 
7.028 7.031 
7.043 7.0455 
7.056 7.0575 

7.076 7.0775 
7.091 7.0915 
7.101 7.1015 
7-107 7.1075 
7.112 7.112 
7.115 7.115 
7.117 7.117 
7.119 7'1185 
7.120 7"1195 
7.120 7.120 

5 -~665 
5.796 
5.920 
6.037 
6.145 
6.246 
6.339 
6.425 
6-504 
6.576 
6.642 
6.702 
6-755 
6.803 
6.846 
6.884 
6.918 
6.947 
6.973 
6.996 
7.016 
7.032 
7.046 
7.058 

7.078 
7.092 
7.102 
7.108 
7.112 
7.115 
7.117 
7.1185 
7.1195 
7.120 

0"92 
'1 step 

5"3015 
5"445 
5"5815 
5"711 
5"834 
5" 950 
6.0585 
6. 160 
6. 254 
6.341 
6-4215 
6-4955 
6-5635 
6.6255 
6.681 
6"731 
6.776 
6.8165 
6" 8525 
6" 8845 
6"9125 
6" 937 
6.9585 
6.977 

7.0065 
7- 029 
7.045 
7.0565 
7.064 s 
7.0695 
7.0735 
7.0765 . 
7 "0785 
7.080 
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Y 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1-4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 

TABLE 4-- .era/huM : ! 

l m  
x=0"948 

1 step 

0.0425 

l s tep  I r l s t ep  [ 2step 

0.0402 [ 0.0204 [ 0.0196 

Final 

0"0193 

'[~ l s tep  

'0.0125 

0.0000 0.0000 
0.0214 0.0203 
0.0516 0.0498 
0.090,5 0.0878 
0-1382 0.13458 
0.1945 0-1899 s 
0.2593 0.2539 
0"3327 i 0"3264 
0"4145 0.4072 
0.5043 0.4962 
0.6022 0.5932 
0-7080 0-6982 
0-8213 0.8100 
0.9420 0-9304 
1.0607 1.0573 
1.2042 I- 1910 
1-3451 1.6312 
1.4922 1.4775 
1.6449 1.6296 
1.8029 1.7863 
1.9567 1.9400 

Table of 8~ /8y  

0.0000 0.0000 
o.o126 o.o1226 
0.0339 0.0333 
0.0640 0.06318 
O.lO28 0.10178 
O. 1502 O- 1490 
o.2o~ o . ~  
0-2700 0.2602 i 
0.3438 o.342o, 
0"4251 0-42318 
0-5145 0.5123 
0.6119 0.6094 
0.7170 0.7143 
0-8295 0.8267 
0.9494 0.9464 
1.0763 1-07318 
1.2100 1.203~ 
1.3,500 1.3464 
1.4959 1.4922 
1.6475 1.6437 
1-8043 1.8004 

0.0000 
0.01218 
0.0331 
0"03~ 
0.1014 
0.1486 
p.2044 
0.2687 
0.3415 
O-4225 
0.5116 
0.6086 
0.7134 
0-8258 
0.9454 
1.0721 
1.2034 
1.34,52 
1.4910 
1.6424 
1.7900 

0.0000 
0.0093 
0.0275 
0-0345 
0-0902 
0.1345 
0.1874 
0.2480 
0-3188 
0.3070 
0.483,% 
0.5777 
0.6799 
0.7890 
0-9067 
1.0309 
1-1019 
1-2994 
1.4431 

0.958 
2 step 

0.0106 

0.0000 
0.0088 
0.0~21 
o.o524~ 
0.0874 
0.13105 
0.1833 
0.2442 
0.3135 
0.3011 
0.47675 
0.5704 
0.67198 
0.7811 
O.8076 
1.0212 
1.1517 
1.2886 
1.4318 

i 

Final 

0.0100 

0.0000 
0.0086 
O. 0259 
0-0517 
0-0865 
p-1299 
O. 1819 
0.2426 
0.3117 
0.3891 
0.47456 
0.5680 
0.C~93 
0-7783 
0.8946 
1.0180 
1-1482 
1.2850 
1.4280 
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TABLE,, 5 

Displacement Thickness, Momentum Thickness and Velocity Gradient at Boundary, 
for U = 1 -- ~x 

Displacement Momentum 
thickness thickness 

f :  [ 1 -  (u/U)]dy f~ (u/U)[1- (u/U)]dy Small 
steps 

2(6u/~y)o 

Large 
step 

l 
Final 

0"80 
0"84 
0"88 
0"91 
0"92 
0 '94 

0"948 
0.949 
0"950 
0"956 
0.958 

2"248 
2.290 
2.546 

2"748 

0.719 
0"746 
0.772 

0.798 

0.1808 
0.1383 
0.1023 
0.0883 
0.05825 

0.0425 
0.0402 
0.0379 
0.0196 
0.0106 

0.1374 

0-058% 

0.0204 
0.0125 

(0.1809) 
0.1385 

(0.1022) 
(0.0882) 
0.0582 

(0.0424) 
(0.0401) 
(0.0378) 
0"0193 
0-0100 

TABLE 6 

U 1 - -  -~x 

Integration from x = O. 94 to Separation Point in One and Two Steps 

Y 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0-6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 

1 step 

0.9598 

• 2 step h2-extrapolated 

0.9591 0.9589 

Table of 8~9 /~  

Calculated from 
formula (38) 

0"0000 
0.0044 
0.0176 
0.0395 
0"070I 
0"1094 
0"1573 
0"2138 
0"2787 
0.3520 
0"4335 
0.5231 
0"6205 
0.7257 

0.0000 
0.0044 
0.01765 
0.03965 
0.0704 
0.1098 
0"1579 
0.2145 
O" 2796 
0"3530 
0.4347 
0'5244 
0"6220 
0"7272 

0.0000 
0.0044 
0.01765 
0"0397 
0"0705 
0"1099 
0"1581 
0.2147 
0"2799 
0"3533 
0"4351 
0"5247 
0.6225 
0"7277 

0-0000 
0.0044 
0-0176 
0.0396 
0.0703 
0.1098 
0-1579 
0.2147 
0.2799 
0.3536 
0.4356 

(90347) Wt. 131806 K.5 11/49 Hw. 
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