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Sumsmary —The degree of cooling that might be achieved in gas-turbine blades with simple internal air-cooling is
surveyed with a view to pin-pointing the essential requirements for effective cooling with small quantities of cooling air.
A shape parameter Z (defined as (S,/c) 1'3/(4,/c?) is derived which forms a useful figure of merit for comparing the
relative efficiencies of various cooling passage configurations. To secure maximum economy in total cooling air in
blades with a given cooling passage configuration, it is desirable that the turbine-blade rows should be designed with
high pitch/chord ratios and low relative gas outlet angles (measured from axial direction). These requirements may
run counter to those for high turbine-expansion efficiency and in practice some compromise must be sought to give
optimum overall efficiency.

It is shown that efficient blade cooling becomes progressively more difficult at lower values of turbine-flow Reynolds
numbers, and cooling systems should be designed to give adequate cooling at the lowest operating Reynolds numbers
since this represents the most onerous condition.

The potentialities of blades with laminar-cooling and turbulent-cooling flow in the Coohng passages are compared.
Although laminar-cooling flow might enable better cooling at low Reynolds numbers to be achieved, turbulent-
cooling flow is generally to be preferred since this (a) permits more consistent cooling over a wide range of Reynolds
number in a simple air-cooled engine and (b) presents a simpler blade manufacturing problem,

1. Introduction.—The design and the theoretical prediction of the cooling performance of
internally air-cooled turbine blades is far from being an exact science. The large number of both
aerodynamic and geometric variables which might influence the cooling characteristics create a
considerable degree of complexity in the problem. A natural consequence of this is a tendency
at present for engine designers to develop cooled blades almost entirely by ad hoc experiment
and test.

The object of the present report is to show that the influence of quite a large number of the
geometric and aerodynamic variables affecting the cooling performance can, in fact, be predicted
to a fairly useful degree of accuracy and without a great deal of effort. In partlcular it is possible
to define many of the essential requirements for high efficiency of cooling. This in turn should
enable designers to be more highly selective in the types of cooled blade chosen for serious
experimental development. :

The approximate theory developed in the report is restricted to blades which are internally
cooled by forcing air through a number of passages of constant cross-section shape, passing span-
wise from root to tip. Such blades have been shown to have attractive cooling characteristics
(Ref. 1), and are most amenable to analytical investigation at the present time. Nevertheless,
many of the conclusions reached are equally applicable to more complex cooling arrangements
and in a qualitative sense the above restr1ct1on is not highly critical.

® N.G.T.E. Note NT. 174, recelved 9th June, 1955,



2. General Outline of the Problem of Blade Cooling.—If a blade is somehow maintained at a
temperature lower than the effective temperature of the gas flowing over it then heat is transferred
from the gas to the blade by a process of forced convection. Some heat may also be transmitted
to or from the blade surface by thermal radiation, the quantity depending upon the temperatures,
shapes, sizes, and emissivities of the blade surface and its surroundings. Lastly, heat may also
be carried to or from the blade by conduction through the blade material.

Usually the forced convective-heat transfer predominates and this is the only heat flow
considered in detail in this report. In a turbine in which both the blades and the adjacent ducting
all operate at temperatures in the region of about, say, 800 deg C, heat transfer by radiation will
be relatively small. Since this condition will probably represent common practice in the near
future the possible effects of radiation have not been considered here in detail. It is worth

noting, nevertheless, that appreciable radiation effects can arise in certain instances, a few of
which are listed below:

(@) In turbine stages incorporating uncooled ducts or blades (possibly refractory) adjacent
to cooled blades ‘

(6) In cascade tunnels when the adjacent ducting and, in particular, adjacent dummy blades
are either uncooled on the one hand or cooled to a relatively low value on the other.
If the temperatures of surfaces adjacent to a cooled blade are very high then, of course,

the effect of radiation will become most marked when the cooled blade temperature is
low, and vice versa

(c) Radiation heating or cooling will become progressively more marked as the operating
temperatures increase (since radiant-heat transfer varies generally in proportion to 7%)
and also as the gas-flow Reynolds number decreases (since convective-heat transfer to
blades will decrease roughly in proportion to Re,7).

Usually it is difficult to make a reliable assessment of the effects of radiation, when they arise,
due to the complicated shape of the radiating and receiving surfaces involved and also due to the
variable nature of the emissivities of various materials with surface physical conditions. Ref. 2
(Brown, 1951), nevertheless, gives a useful and simple theoretical treatment of the radiation-heat

transfer occurring between cooled rotor-blade rows and adjacent uncooled (refractory) nozzle-blade
TOWS. ‘

Heat transfer from the blade might be expected by conduction through the blade metal to the
cooler blade roots and discs. The conductivities of normal heat resistant materials and spanwise
blade temperature gradients are sufficiently low, however, for the net heat conducted in a spanwise
direction to be neglected in comparison to convective-heat flow, over normal ranges of gas-flow
Reynolds number. Heat transfer by conduction is then found to be of significant importance
only when estimating chordwise variation of blade temperature.

Returning to forced convection-heat flow it is clear that the first essential requirement for
assessing the performance of a cooled blade is an understanding of the dominant factors affecting
the values of gas to blade heat-transfer coefficients (referred to generally as ‘external’
heat-transfer coefficients). This is discussed in some detail in section 3 later.

To maintain an internally air-cooled blade at a low temperature the heat transferred from the
gas to the blade must be picked up by forced convection in the cooling passages and carried away

by the cooling air. To provide good cooling in a gas-turbine blade the essential requirements
are clearly: '

(2) a high internal heat-transfer coefficient
(b) a large internal cooled surface area

(c) as small a quantity of cooling flow as possible, in order to minimise losses in overall
engine performance caused by bleeding cooling air away from the engine compressor
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(d) the cooling air pressure drop in passing through the blade should be within the limits
set by the particular engine cycle if cooling air pressures are nowhere to exceed the
engine-compressor delivery pressure. :

Regarding requirement (¢) some compromise in cooling flow quantity may be necessary since the
smaller the cooling flow then the greater will be the rate at which the cooling flow is heated as
it passes through a blade, and the greater, therefore, will be the rate at which the blade tempera-
ture increases from root to tip.

The number of variables (both geometric and aerodynamic) affecting the internal heat transfer
are large and it is clearly essential to have an understanding of these factors, and also those
affecting the cooling air pressure loss. These are discussed in detail in sections 4 and 6.

3. External Heat-Transfer Coefficienis—The well-established practice of expressing heat-
transfer coefficients non-dimensionally in terms of Nusselt numbers is adhered to throughout the
present report. Local heat-transfer coefficients at any point on a blade are expressed by a local
Nusselt number, Nu, defined by kgc/i, (see Appendix I for notation). The mean value of
heat-transfer coefficient on a blade 1s expressed by a mean Nusselt number, Nu, defined by
hocll,.

It is demonstrated in standard text books on heat transfer (e.g., Refs. 3 and 4) that when
temperature variations in the gas-flow boundary layer are small, Nu at any point on a surface is
a function only of Reynolds number Re, Prandtl number Pr, and the surface shape. In practice,
however, the temperature variations through the boundary layers on cooled turbine blades are
frequently large. 'Many experimentors have attempted to preserve a simple unique relationship
between Nu,, Re, and Pr, for any given blade shape by defining the various gas properties
(viscosity, conductivity and density) at some empirically determined intermediate temperature
between the gas temperature and the mean blade-surface temperature. Such a process may be
convenient for purposes of analysis of experimental data but the complicated definitions of
Nusselt number and Reynolds number which result make it very tedious for a turbine designer
to apply such data in reverse to the problem of designing a cooled blade and predicting its
performance. A simple alternative is to adhere to the practice of always defining gas viscosity
and conductivity at gas total temperature and introducing a correction (generally small) which is
dependent upon the ratio of gas absolute temperature to mean blade absolute temperature
(T,/T,). Thisis found to be very convenient in practice since the correction for T,/T), is generally
less than 10 per cent and for many approximate calculations it might be ignored. :

For heat-transfer calculations the gas temperature adopted should be the ‘effective’ gas
temperature, 7.e., the temperature the blades would assume if there was no cooling and no loss
of heat by conduction or radiation. This temperature may be approximately defined by:

'}’_‘1—2
5 M

1_]_')’51]‘—12

T, = Typoray |1 — 015

where I is the mean Mach number of the flow around the blade profile. For low Mach numbers
(Iess than about 0-5) a negligible error is introduced if 7, is assumed to be equal to the gas total
temperature, measured relative to the blade.

A further simplification arises in that over a wide range of air temperatures. applicable to gas-
turbine practice the Prandtl number remains substantially constant (a value of 0-71 is assumed
throughout) so that Prandtl number can be ignored as an operative variable in the present
problem.

Fig. 1 illustrates the variation of local Nusselt number around one typical turbine-blade profile
(two-dimensional flow). This distribution is calculated using Squire’s method (Ref. 5). The
good general agreement occurring between theory and experiment is demonstrated in Ref. 6.
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It will be observed that at the leading edge, where the boundary layer is thin and laminar, the
local heat-transfer coefficient is large and that it decreases rapidly around the profile as the
boundary layer thickens. A rapid increase may be anticipated at the point where the boundary .
layer changes from laminar to turbulent flow. The magnitude of the high local value of heat
transfer at the leading edge is largely dependent upon the leading edge radius. The larger the
radius the smaller the local heat-transfer coefficient at the stagnation point will become. This
is illustrated in Fig. 1 where it is demonstrated that if the leading-edge radius is increased from

3 per cent to 6 per cent of the chord the local heat-transfer coefficient is decreased by roughly
30 per cent.

The calculated variation of the mean value of Nusselt number, Nu,, with gas-flow Reynolds
number, Re,, is illustrated in Fig. 2 for three types of turbine blade with transition occurring at
various arbltrarﬂy assumed positions on the blades. It is of particular interest to note that
although the shapes and velocity distributions around the three blade types vary appreciably,
the relationships between Nu, and Re, for each blade, when transition occurs at the same relative
positions on all blades, are to a first approximation not markedly different. It is clear, in fact,
that the position of the transition regions (or, more significantly, the relative proportion of the

blade surface over which the boundary layer is turbulent) has a dominating influence on the
mean value of heat-transfer coefficient.

In practice, of course, it is the nature of the pressure distribution over the surface which may
largely govern the position of the transition regions and high reaction (e.g., nozzle) blades may
usually be expected to have a much larger area of laminar boundary layer than low reaction
(e.g., impulse) blades. Now as the proportion of the blade surface over which the boundary-layer
flow is turbulent increases the value of Nu, at any given Reynolds number increases. Further-
more, Nu, varies in proportion with (Re,)* in sucha way that the exponent x increases gradually
from a value of 0-5 for a fully laminar boundary layer to 0-8 for a fully turbulent boundary layer.
Thus it may be anticipated from the foregoing considerations that at a given value of Reynolds

number the value of the mean Nusselt number and the Reynolds-number exponent x will increase
as the blade reaction decreases.

This is broadly substantiated in Fig. 3, which attempts to give an approximate correlation of .
Nu, and x for a fairly wide variety of turbine blades (as determined from National Gas Turbine
Establishment and other published experimental data) at a fixed reference Reynolds number of
2 x 10°. In deriving this relationship it was assumed that for any given blade:

< - Re, \*(T,\
% g 4 .
Nug—N%g (2>< 105) (Tb) , .. .. .. .. .- (1)

where Nu* is the value of Nu, when Re, = 2 x 10° and T,/T,— 1-0. It was assumed that
v = 0-14(Re, /2 x 10°)~"* this value being derived from unpublished work at N.G.T.E., and

values for Nu,* and x were then derived for the various blade shapes from the published experi-
mental data.

The relationship suggested in Flg 3 can only be regarded as approximate; in fact it implicitly
presupposes that for a wide variety of turbine-blade shapes the proportion of surface over which
the flow is turbulent (at a Reynolds number of 2 X 10°) is to a first approximation closely related
with the ratio of blade inlet angle to gas outlet angle. Although this may be nearly true for a
related family of blade shapes built up, say, from a standard aerofoil section onto camber-lines
of standard shape and all tested in a tunnel of constant turbulence, it is hardly likely to be very
accurate for the wide variety of unrelated blade shapes and varying turbulence conditions
encountered in general turbine engineering practice. Even so, the experimental values of Nu*
and «x plotted in Fig. 8, which come from a wide variety of sources (Refs. 6, 7, 8, 9, and 10) in
which the blade proﬁle shapes are quite unrelated and the measurement techmques differed
greatly, do not show a particularly excessive scatter. This relationship should, therefore, be

useful for immediate turbine englneenng purposes where a very high accuracy in the value of
Nu* is not critical.
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It will be noted that Fig. 3 suggests a higher level of values of Nu, and x for blades in turbines
(see Ref. 1) than for those fitted in cascade tunnels; this reflecting the larger scale of turbulence
and unsteady flow anticipated in a turbine as compared with the flow usually present in a typical
cascade tunnel.

The value of the temperature-ratio exponent, v, in equation (1) is perhaps the greatest unknown
at the time of writing. However, the sparse evidence at present available suggests that its value
for turbine-blade profiles is generally less than 0-2, and since values of T,/T, will rarely exceed
1-5 in the foreseeable future, the effect of the temperature-ratio correction is likely to be
relatively small. « '

4. Heat Transfer in Straight Cooling Passages of Uniform Cross-Section.—4.1. Turbulent Flow.—
This problem has been explored comprehensively by the National Advisory Committee for
Aeronautics (U.S.A.) and other investigators for turbulent flow in passages of various
- cross-sectional shapes and length/diameter ratio, over a wide range of internal-flow Reynolds
number, Re,, and air to wall temperature ratio, 7,/7,. The results are presented in various forms
in Refs. 11 and 12. However, following the form adopted in section 3, it is convenient to express
all cooling-flow properties at mean bulk cooling temperature 7, and to add a correction factor
- for the ratio of mean cooling air temperature to mean blade temperature, 7,/7,. The following
~ relationship for Nu, and the governing parameters may then be deduced from Ref. 11:

Nu, = 0-034(L/D,)~**(Pr,) 4 Re,)**(T,|T,)*%®. .. . .. . (2)
For Py, = 0-71 and L|D, = 50, equation (2) reduces to:
Nu, = 0-020(Re,)*3(T[,T,)**. .. . e e .. . (3)

Since the constant varies only very slowly with L/D, the simpler equation (3) can be used with
little error over a range of L/D, of about 30 to 100.

Heat transfer with turbulent flow inside stationary tubes and passages of constant cross-
sectional area is perhaps the most fully explored problem in the field of heat transfer, and
equations (2) and (3) have been shown to hold to a good degree of accuracy down to mean cooling
flow Reynolds numbers of about 8,000. Between Re, = 8,000 and the critical value for turbulent
flow (about 2,300), test data suggests that the equations will over-estimate the heat transfer,
the maximum error being about 30 per cent at Re, = 2,300. '

‘Tt is probable that the equations are almost equally good for passages in rapidly rotating rotor
blades although some slight influence might be anticipated due to (@) the secondary flow induced
in the air flow by Coriolis forces and (b) the larger values of Grashof number (associated with the
high relative ‘ g’). The secondary flow effect is likely to be the major one and arises due to the

-fact that the air passing through a rotor blade actually follows a curved path (relative to the
turbine casing). It might consequently be anticipated that the effect on heat transfer would to
a first approximation be similar to that occurring with flow in a curved pipe. The ratio of passage
diameter to the effective radius of bend would be very small in a practical instance, however,
and data quoted in Refs. 3 and 4 for heat transfer in curved pipes suggests that mean heat-transfer
coefficients would be increased by an amount only of the order of 1 per cent.

4.2. Laminar Flow.—Heat transfer for laminar flow of gases in tubes has not been explored
experimentally nearly so widely as for turbulent flow and relationships between mean Nusselt,
Reynolds, and Prandtl numbers and length/diameter ratio suggested by different investigators
(Refs. 3. 4, and 13) vary considerably in their form. A relationship suggested by McAdams
‘(Ref. 4) is preferred for the present investigation, this being:

_ © oy Re Py 0338 7 0-14
Nu, = 1-86( : ) (_) .
" L/p,) \a
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Since, for air, to a first approximation x o« 7% over a representative temperature range
(500-1,500 deg K.) and Pr = 0-71 this equation may be rewritten as:

2 0-333 0-087
N%czl-GG(Re“) (2) S 7
L/De Tb
0-333
ﬂl-GG(%), L (e

since (T,/T,)*% = 1-0.

Values of Nu, derived from this equation are found to agree reasonably well with alternative
empirical formulae, quoted in Refs. 3 and 13, over a range of Re,/(L/D,) of 6 to 20.

5. General Equations for Calculating the Mean Blade Temperatures of Simple Internally Air-
cooled Turbine Blades (Turbulent-cooling Flow).—The cooling characteristics of a blade over a
range of conditions will depend upon whether the cooling flow in the passages is turbulent or
laminar. For reasons discussed in section 8 later, however, a turbulent-cooling flow is generally
to be preferred. For this reason the bulk of the present report is devoted to blade cooling with
turbulent flow, discussion of cooling with laminar flow being confined to section 8.

By employing equations (1) and (8) it is possible to derive a group of equations defining the
- mean blade temperatures of simple internally air-cooled turbine blades in terms of the several
design parameters at the disposal of a designer. '

As already mentioned in section 1, the analysis is confined to blades cooled by passing cool
‘air spanwise from root to tip through smooth internal passages having arbitrary size and cross-
sectional shape but uniform throughout their length. Furthermore, at any selected spanwise
position only the chordwise mean of temperature is estimated. The more difficult problem of
assessing the chordwise variation of temperature at any given spanwise condition is outside the
scope of the present report.

The full derivation of the equations is given in Appendix I, which in addition contains an
outline of a simple recommended procedure for solving the equations and also gives an approxi-
mate method for allowing for the heat picked up by the cooling air within the root of a blade.

At any spanwise position along the blade (defined by a value of //L) the chordwise mean of
blade temperature is given approximately by (see Appendix I for notation) :

T,—1T, _ X _z
,Tg__Tw——l—l_i_Xe .. .. . . .. . .. (5)
where .
o 0-0066/s L _\"8 ST 06 % T)\"s Tg 0-55— 9
X = A (E — COS Of.z) Z(}S Reg (Tg) (T‘;) .. .. (6)
5 3-24k X I Tg ¥ Tg 0-15
o (1+X)f%(ﬁ>(i) % e D

N -
¢ S cos @ Re,! =~

The bulk cooling air temperature at any spanwise position is given by

]Tﬂ._c—;r{::l_e—"f.: ce e e .. .. . (8

-
The temperatures T, and T, in the above equations refér to the chordwise mean values of
T, and T, at the spanwise section considered. T
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Inspection of the above equations will reveal that for selected values of cooling-flow ratio,
gas-flow Reynolds number, and ratio of gas temperature to inlet cooling air temperature the
blade temperature is influenced by the external blade geometrical parameters &, fi/%, §/c, and
Ljc, and by a single internal passage-shape parameter, Z, defined as (S,/c)"?/(4./c%).

6. Pressure Losses in Blade Cooling Passages—In passing through the cooling passage of a
turbine blade the total and static pressures of the cooling air will be influenced by (a) the frictional
losses, (b) the continuous addition of heat to the cooling air as it passes along the passage and
(c) the centrifugal force on the cooling air if passing through a rotor blade.

For simple one-dimensional flow in a passage of uniform cross-sectional area the change in
total pressure over an element of passage length, 87, may be expressed (Ref. 14) as:

6P,  yMPsT, yMp? , ol ro?

When the cooling characteristics of a blade are known so that local values of 7, and Re, are
determined at all points along the passage length then the total pressure losses may be determined
by step by step integration of equation (9). A useful method for carrying out such computations
is described in Ref. 15. Suitable values of friction coefficient f, may be determined from the
data in Refs. 15 or 11.

Although this method must be adopted in practice if a reasonably accurate estimate of the
losses in a specific blade is required it is possible to demonstrate broadly the pressure-loss
characteristics of cooled blades by the use of simpler approximate formulae.

In a cooled engine it is supposed that the cooling air will be extracted from the main engine
compressor and the maximum pressure drop available for forcing cooling air through the cooling
passages of any particular row of turbine blades will depend upon the engine design and operating
conditions. To a good first approximation this available pressure drop, for a wide range of
operating conditions, will be proportional to some fixed multiple of the relative outlet dynamic
head of the main gas stream emerging from the row of blades considered (the actual value of this
multiple depending upon the particular engine design).

It is convenient, therefore, to express the cooling-air pressure drop in a cooled blade under any
given set of operating conditions as a ratio of the relative gas-outlet dynamic pressure.

Simple approximate equations for this pressure-drop coefficient, expressed in terms of con-
venient parameters such as cooling-flow ratio, aspect ratio, etc., are derived in Appendix II
For turbulent-cooling flow the final equation is:

T\ 1185 T sL 1-75 T %
| 0158 () (1+7) ( eosa) o
Pc entry ~ ]50 exit _ + Tc ¢ i

T, 4, D,
(%nggz) outlet (-Dg>0.25 (Reg)0.25 .
C

e

T, (U\*L* '
—2(F (= o
T,/ \vV,/ 7 . (10)

The first term on the right-hand side of the equation is the combined loss of total pressure due
to friction and heat addition; the second term is the cooling-air dynamic head at the point of
discharge from the blade tip (assumed totally lost); the third term applies only to rotor blades
and is the rise in total pressure along the blade passage caused by centrifugal compression.
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A similar type of equation may also be derived for laminar-cooling flow, namely :

TN T\ T\ (. sL L*
2(z) (7)) (+7) (65 ea)
Pa entry ~ Pc exit __ T Tc —I— Tc (ﬁ Ac c08 De

—_ g
(%nggz)exit (25) Reg
' 4

e e (52)

g

—2(%)(%)25: O 31

¢ g

Strictly speaking these approximate equations only hold true when the cooling and main gas-flow
Mach numbers are small. Nevertheless they serve well to demonstrate the relative influence of
various blade-design parameters on the resultant pressure-drop coefficient.

Three points of some importance may be noted at this juncture:

(@) For a blade of pre-fixed external geometry and operating conditions the pressure-drop
coefficient is uniquely determined by A, and D,, which in turn are uniquely determined

by Z, D,jc, and ¢. Thus, differing cooling-passage configurations will have similar
pressure-drop characteristics if the values of Z and D,/c are the same

(b) For a well-cooled blade the loss due to friction and heat addition (the first terms on the

right-hand side of equations (10) and (11)) predominates over the remaining component
losses

(c) Bearing point () in mind it will be seen that for a fixed overall pressure drop,

¢ oc Re 0517 oc Re ™ when the cooling flow is turbulent, and ¢ o Re, when the flow
is laminar.

7. Examination of the Individual Influence of Each of the Aerodynamic and Geometric Payameters
Governing the Amount of Cooling—The technique adopted in this section is to select arbitrarily a
‘ datum ” set of values for the parameters occurring in equations (5), (6) and (7) (section 5), these
defining a ‘ typical * turbine blade. The blade relative temperature, T, — T,,/T, — T,,, on this
blade at a spanwise position of //L = 0-6 is calculated and the value of each parameter is then

varied, one at a time, and the resulting variation of blade relative temperarure (at //L = 0-6)
noted.

The typical values arbitrarily assumed for the  datum ’ blade are as follows :

Outlet gas angle = & = 60 deg
Inlet blade angle = 8 = 0 deg
Pitch/chord = s/ = 0-75
Aspect ratio = Llc = 20
Gas-flow Reynolds number = Re, = 2 x 10°
Mean Nusselt number = Nu* = 400 )valges appropriate to ‘ turbine ’ blade
Reymolds number exponent = « = 0-65) (B:/% = 0) from Fig. 3.
Cooling-flow ratio ~ = + = .4 . = 0.015
' Paésage—,shapé lﬂafréme{er = 7. = 200
Temperatufe ratio . =1T,T, — 1-0
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These conditions lead to a blade having a mean blade relatlve temperature, T, — Tc,/ Tr,— 7,
varying from 0-87 at the root (//L = 0) to 0-69 at the tip (//L = 1-0), as shown in Flg 4. At
the selected reference position along the span (//L = 0-6) the mean blade relative temperature
is 0-59.

7.1. Influence of Cooling-Flow Ratio and the Passage-Shape Pavameter, Z —The effect of varying
the cooling-flow ratio ¢ and the passage-shape parameter Z on the mean blade relative temperature
at I/L = 0-6is illustrated jointly in Figs. 5a and 5b. The spanwise variation of blade temperature
for a few selected values of ¢ and Z is shown in Fig. 6. From these figures the following points
may be noted:

() When the cooling-flow ratio is increased the blade relative temperature decreases, but the
rate of temperature decrease with increase of flow falls away as the cooling-flow ratio
increases.

(b) For a selected value of cooling-flow ratio the blade temperatures decrease as the passage-
shape parameter Z increases. The blade temperature varies fairly rapidly with Z
when Z is small, but becomes progressively less sensitive to changes in Z when Z is large.

{¢) As Z increases the spanwise temperature variations also increase. This is due, of course,
to the fact that as Z increases the rate at which heat is transferred to the cooling air
per unit blade height is also increased and hence the temperature rise of the cooling
air as it passes through the blade is increased.

In general, values of Z in excess of about 150 are required for reasonably good cooling, although
the benefits to be gained by increasing Z beyond about 250 are relatively small. In practice,
caution is required when designing for high values of Z, to ensure that the cooling-flow Reynolds
number does not fall below the critical value for turbulent flow. This point is discussed more
fully later in the report.

Strictly the analysis in Ai)pendix I and equations (5), (6) and (7) is only correct when the
internal cooling-passage configuration consists of a number of passages of equal size and shape.
In this instance the passage-shape parameter, Z, may be expressed as follows :

Z = (S.[c)"3[(A,[c?) = 5-03(yn)"?*/(D,[c)"®, .. .. .. o (12)
where #n = number of cooling passages
D, = hydraulic diameter of cooling passages
v = a shape factor defined by S,’/=D,
S.” = periphery of one cooling passage = S,/% .

The shape factor, ¢, has a minimum value of unity for passages of circular cross-section and higher
values for passages of other cross-section. Some typical values are listed below:

Passage shape P
Circular 1-0
Square .. 1-272
Equilateral tnangle . 1-652
5: 1 rectangle 2-29
10 : 1 rectangle 3-85
5: 1 ellipse 2-24
10: 1 ellipse .. 4-17

Cleérly, from equation (12), the essential requirements for a high value of Z are (@) a small value
for D,[c and (b) a large value for yz. An important point concerning passage cross-sectional shape
is at once apparent. If values of Z and D, /c are pre-selected to give good cooling and low cooling
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air-pressure drop (it was shown in section 6 that the pressure-drop characteristics are determined
by Z and D,/c) then the actual number of passages required is inversely proportional to the shape
factor w. In particular, the choice of simple circular passages requires a maximum number of
holes whereas if passages of, say, rectangular or elliptical cross-section having an axis ratio of
10 : 1 are employed, the number of passages required is reduced to roughly one quarter of the
maximum. This effect of passage shape is illustrated diagrammatically in Fig. 7, which shows
three alternative patterns of cooling passage which should theoretically give similar cooling and
pressure-drop characteristics (i.c., similar values of Z and D, fc)

When the passages in a given blade are not all of the same size and shape the direct use of
equations (5), (6) and (7) will tend to over-estimate the degree of cooling achievable. This
happens since in practice’ a greater weight of cooling air will pass through the holes which are
larger than average size than through the holes that are smaller than average, so that the
“ effective ’ value of Z will be rather less than the overall value estimated from (Scfe)t2(A,[c?).
It is shown in Appendix 1V that the  effective ” value of Z may be expressed by :

@ 1-086
C0-8 z cr
A 0-036
r=1 cr .

" ]-143%0'8 >t (13)

Z effective —

where the suffix  denotes values ascribed to 4, and S, in each individual passage.

In deriving the expressions for estimating the degree of cooling, and incidentally the Z factor,
it has been assumed that heat is conducted readily to the entire surface of the cooling passages.
In some cooling-passage configurations it may happen that the heat flow conducted to some
parts of the cooling-passage periphery is ‘ throttled * (due to long heat flow paths in local parts
of the blade, coupled with low metal thermal conductivities). In such instances it may be
necessary -to multiply the value of Z by a factor, 5, analogous to the fin efficiency in the cooling
of finned bodies. No rules may be formulated for rapidly assessing an appropriate value for  at
the present state of the art, although for the types of passage considered in this report, e.g.,
Fig. 7, it is improbable that the value of 4 will be less than about 0-9. In the present calculations
a value of unity is assumed throughout.

7.2. Imfluence of Blade External Geometry—17.2. (a) Prtchichord ratio—The wider the blade
spacing then the fewer will be the number of blades in a row to be cooled and hence, for a given
overall value of cooling-flow ratio, the greater will be the quantity of cooling air available for
each individual blade. It is to be expected therefore that the degree of cooling achieved in blade
row (for a given overall cooling-flow ratio) will be improved by increasing the pitch/chord ratio.
This is demonstrated in Fig. 5c. At the same time some increase in the value of D,jc, », or n
(whilst preserving a similar value of Z) would be required to prevent an increase in cooling-air
pressure loss. In fact, if no adjustment other than an alteration in spacing were made in a blade
row in which the cooling flow was metered by the cooling-air pressure drop in the passages then

no change in the degree of cooling would occur, although the cooling-flow ratio would decrease
as the spacing were increased.

7.2. (b) Blade aspect ratio—The influence of aspect ratio on the degree of cooling of the typical
reference blade is shown in Fig. 5e. If the gas-flow Reynolds number remains constant then the
degree of cooling improves with increase of aspect ratio, although in the present instance aspect
ratios greater than about 2-0 produce only small improvements in cooling. The underlying reason
for this general influence of aspect ratio is, perhaps, not immediately obvious. It may be seen,
however, from Appendix I (equation (18)) that the ratio of internal cooling-flow Reynolds number
to external gas-flow Reynolds number is proportional to aspect ratio. Thus, for a constant
gas-flow Reynolds number the internal cooling-flow Reynolds number increases as the .aspect
ratio is increased and hence the internal heat-transfer coefficient is also increased, with a
- consequent reduction in blade temperature.
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When selecting a value for aspect ratio in practice the blade height and gas-flow conditions
will usually have been pre-determined, with the result that the operating gas-flow Reynolds
number will vary in direct proportion with the chord length chosen (i.e., Re, o« c/L). It will be
seen from Fig. 5c that when this is the case the variation of blade relative temperature with
aspect ratio is much reduced and that there is in fact an optimum value of the aspect ratio for
maximum cooling. The optimum value of aspect ratio for the reference blade is roughly 2-0,
although this value will vary slightly for other blade arrangements.

7.2. (¢) Influence of gas outlet angle—TFig. 5d illustrates the influence of gas outlet angle on
blade cooling, all other factors (cooling-flow ratio, cooling-passage configuration, etc.) being
fixed. Over the range of outlet angles of 45 deg to 70 deg normally encountered in conventional
turbine design the variation of blade temperatures is relatively large, the best cooling being
obtained with the lowest outlet angles. The reason for this might be explained as follows. As
the outlet angle of a given blade is increased (measured from axial direction) the throat area
decreases, with the consequence that the gas mass flow through each blade gas-flow passage also
decreases (gas-flow Reynolds number being assumed constant). For a fixed value of cooling-flow
ratio the cooling flow per blade will therefore decrease in proportion, with a resulting loss in
cooling. It should be noted particularly that the variation of blade temperature shown in
Fig. 5d is not associated with any change in mean external Nusselt number consequent upon
a change in blade setting or shape as outlet angle is changed. In the example shown it is
assumed that f,/%, remains constant (zero in this instance) and, as illustrated in Fig. 3, Nu* is
assumed to remain constant over a wide range of blade outlet angles if the ratio f,/a, is held

constant.

The marked influence of blade gas-outlet angle on the cooling efficiency of the blades clearly
has a repercussion on the optimum design velocity triangles for a cooled turbine stage. This
analysis indicates that to achieve a high degree of cooling with a low cooling-flow ratio it is
desirable to achieve the required turbine work output by designing the stages with relatively low
gas deflections and a high ratio of gas axial velocity to blade peripheral velocity. Unfortunately,
however, it is known that such stage designs may have lower total head efficiencies and may give
rise to higher exhaust-duct losses than stages with higher gas deflections and lower gas axial
velocities. Any reduction in turbine expansion efficiency due to using low deflection blading
must, therefore, be offset against the higher cooling efficiency (or smaller cooling flows) obtained,
and in practice some compromise must be struck to give optimum overall engine performance.
The optimum blading arrangement is likely to vary somewhat with different engine configurations
and at the present stage of knowledge it is unfortunately not possible to give any generalised

analysis of this problem.

7.2. (d) Influence of inlet blade angle—This is illustrated in Fig. 5f where it is shown that
cooling effectiveness is reduced as the inlet blade angle (or, more correctly, the ratio B./3s) 1is
increased. This variation is due entirely to the increase in Nu,* associated with an increase in
B/, (indicated in Fig. 3), the rise in Nu,* being presumed to be associated with a general increase
in the proportion of turbulent boundary layer on the blade surface as the degree of reaction is
reduced. :

Two curves are plotted in Fig. 5f showing the theoretical blade temperatures resulting from the
assumed relationships between Nu* and f,/a, for (i) blades in an actual turbine stage and (ii)
blades in lower turbulence cascade tunnels (see section 8). This illustrates the order of magnitude
of the difference in actual blade temperatures which might easily occur between blades tested
in a cascade tunnel and identical blades tested in an actual turbine stage. -

. 7.8. Effect of the Ratio of Gas Temperature to Cooling-Air Inlet Temperature.—The calculations
“illustrated.in Figs. 5 and 6 were made assuming that the actual temperature differences between
gas and cooling air were small, 7.e., T,/T,,— 1:0. As the ratio T,/7,, increases to more practical
values of 2 or more then so also will the ratio of gas temperature to mean blade temperature
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(T,/T,) increase, together with the ratio of mean blade temperature to mean cooling air tempera-
ture (T,/T,,). Now it was indicated in section 3 that an increase in 7'/, causes a slight increase
in the external heat-transfer coefficient (at a given Reynolds number, Re,). Similarly it will be
noted from equation (3), section 4.1, that an increase in the ratio 1,/7, causes a reduction in the
internal heat-transfer coefficient. It may be anticipated from this, therefore, that an increase

"in the ratio of gas to cooling-air temperature will cause a small increase in the mean blade relative
temperature (s.e., reduction in the relative degree of cooling).

This is illustrated for the ‘ typical ’ reference blade in Fig. 8a, where the influence of T,/T,, on
blade relative temperature is estimated for values of cooling-flow ratio of 1 per cent to 2 per cent
and cooling passage-shape parameter Z of 100 and 300. The relative degree of cooling lost as
a result of increasing the ratio of gas temperature to cooling-air inlet temperature is illustrated
more directly in Fig. 8b. In this figure the relative degree of cooling (I, — T,/T, — T,,) at each
value of T,/T,, is plotted as a ratio of the relative degree of cooling obtained when 7,/T,, — 1-0
(defined as (T, — T,/T, — T,,)*). From this figure it will be seen that the loss in cooling is
appreciably lower for high values of passage-shape parameter Z than for low values of Z.

The ratio of gas to cooling-air temperature also has a pronounced effect on the cooling-air
pressure-drop characteristics. The pressure-drop coefficient, 4P,[$p,V ? at any given value of
cooling-flow ratio decreases appreciably as the ratio 7,/T,, is increased. The reason for this is
simply that an increase in T,/T,, is accompanied by an increase in the ratio of mean cooling air
density to main gas-flow density, p,/p,, and (for constant cooling-flow ratio) by an inversely
proportional reduction in the ratio of mean cooling-air velocity, to gas-flow velocity, V,/V,.
This leads to a reduction in the ratio of mean cooling-flow dynamic head to gas-flow dynamic
head (45.V 2/%p,V ) and hence to a_reduction in pressure-drop coefficient 4P, [§p,V ?, since 4P,
remains roughly proportional to 35,V .2 This effect is illustrated in Fig. 9 where the pressure-drop
coefficient for the typical blade defined in section 7 (having Z = 200 and, in addition, an
assumption that D,jc = 0-025) is plotted against the cooling-flow ratio for values of T,/T,, = 1-0,
2-0, and 3-0. An effect similar to that calculated on Fig. 9 was observed experimentally on an
experimental air-cooled turbine reported in Ref. 1.

It is of interest to note that if the available cooling-air pressure-drop coefficient over a turbine
blade remains constant over a range of turbine operating conditions (as might be expected,
approximately, in an.engine) then the cooling-flow ratio will increase as 7,/7,, increases, and

- this increase in cooling flow will tend to offset, and in fact nearly counterbalance, the reduction
in blade relative temperature predicted in Fig. 8 for a constant flow ratio.

7.4. Influence of Gas-Flow Reynolds Number —It was shown in section 3 that the mean external
(gas to blade) heat-transfer coefficient decreases with gas-flow Reynolds number in proportion
to (Re,)*, where x will have a value in the region of 0-6 to 0-75 depending upon the blade shape
and setting angle. Heat flowing into a cooled blade will, therefore, decrease with decreasing
Reynolds number in proportion to (Re,)*. It was also shown in section 4 that the internal (blade
to cooling air) heat transfer decreases as the internal cooling-flow Reynolds number decreases,
in proportion to (Re,)®. Now when the cooling-flow ratio and the ratio of gas temperature to
cooling-air inlet temperature, T,/7,,, are héld constant the ratio of mean cooling-flow Reynolds
number to gas-flow Reynolds number, Re,/Re, also remains constant. It will be seen therefore
that with constant values of cooling-flow ratio and T,/T,, and decreasing values of Ke, the rate
at which heat can be removed from the blade by the cooling air decreases more than the rate at
which the heat flowing into the blade decreases. This results in a tendency for the blade relative
temperature to increase when the gas-flow Reynolds number Re, is reduced.

The calculated variation of blade relative temperature with gas-flow Reynolds number for the
reference ‘ datum ’ blade is plotted in Fig. 10 for cooling-flow ratios of 0-01 and 0-02 and for
values of T,/T,, of 1.0 and 3-0. It may be seen for example that with T,/T,, = 3-0 and a
cooling-flow ratio ¢ = 0-02 that the blade relative temperature increases gradually from 0-56 at
Re, = 6 x 10° to 0-665 at Re, =6 x 10*. Such an effect is appreciable and may seriously
impair the degree of cooling achieved in air-cooled aircraft-engine turbine blades at high altitudes.
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Tt should be noted thdt the variation in blade relative temperature is primarily dependent
upon the value of the Reynolds number exponent x in equation (1) (section 3), and that for low
reaction blades having a large proportion of turbulent boundary and values of x in the vicinity of
0-75 the variation of blade temperature with Re, would be very much less than with high reaction
or nozzle blades having lower values of x (about 0-6). At the same time, at any given value of
Reynolds number, the actual degree of cooling achieved on the low reaction blades may be less
than with the high reaction blades due to the high mean values of heat-transfer coefficient
associated with the formier (¢f. Sections 3 and 7.2 (d) and Figs. 3 and 5f).

A further important effect associated with reduction of Re, must be noted. Since the
cooling-flow Reynolds number Re, decreases in proportion to Re, for any given blade design
there will occur a critical value of Re, below which the cooling-flow Reynolds number ke, will
be less than the critical value for turbulent flow, the cooling flow then becoming laminar. A
decrease of Re, towards and past the critical value (about 2,300) will be accompanied by a fairly
rapid decrease of internal heat-transfer coefficient (Ref. 11) which has not been allowed for in
the estimations of blade relative temperature, so that in the vicinity of the critical values of Re,
shown in Fig. 10 a sharper increase in blade temperature than that illustrated might be expected.
A more realistic picture is probably that illustrated in Fig. 11, which was estimated for the same
blade operating at a constant value of cooling-flow ratio of 0-015 and 7/T,,— 1-0.

If the cooling-flow ratio is controlled by a fixed overall value of the cooling-air pressure-drop
coefficient (see section 6.0) then the increase in blade temperature with decreasing Reynolds
number becomes more severe, particularly if the cooling flow is laminar. This is due to the
increase in skin-friction coefficient accompanying a decrease in Re,, which causes a reduction in
the cooling-flow ratio. This is effect discussed in more detail in section 8.

If it is desired to operate a cooled blade over a wide range of Re,, with low minimum values,
and it is also desired to retain a turbulent flow in the cooling passages under all conditions (as is
generally the case) then a difficult compromise may be introduced into the design, as follows.
To maintain turbulent flow in smooth cooling passages at low values of gas-flow Reynolds number,
Re,, it is necessary that the ratio Re,/Re, must be as high as possible. However, for a blade of
predetermined external geometry and cooling-flow ratio and having a fixed overall value of the
cooling-air pressure-drop coefficient it is found that, approximately:

ReRe, c 12 . .. .. .. .. .. .. (14

This implies therefore that a high value of Re,[Re, is incompatible with a high value of Z, so that
some sacrifice in the relative degree of cooling is necessitated if a turbine is required to operate
with turbulent cooling flow down to low gas-flow Reynolds numbers. The nature of the
compromise is broadly indicated in Fig. 12, where, for the reference blade defined in section 7,
the critical value of gas-flow Reynolds number, Re,, is plotted against the passage-shape parameter
Z. Tt may be noted from both Fig. 12 and Fig. 10 that both a high value of 7,/T,, and a high
value of cooling-flow ratio ¢ help to reduce the critical value of -Re, at any given value of Z.
The relationships shown on these figures apply, of course, to only one blade and the critical values
of Re, and the variation of blade relative temperature with Re, will be somewhat different for
blades of other scantlings. Nevertheless the scantlings of the reference blade selected in this
report are sufficiently typical of high-pressure—stage turbine blades for the figures to give a
broadly representative picture.. It is also worth emphasising that variations in external geometry
leading to good cooling (high pitch/chord ratio, low outlet angle) also help in achieving a low
critical gas-flow Reynolds number.

It should, perhaps, be emphasised also that the above paragraphs refer essentially to blades
with smooth internal cooling passages. In practice it may always be possible to design blades
with internal passages partially filled with small baffles of some description to artificially maintain

turbulence at very low Reynolds numbers. A good example of such blades may be ‘insert’
blades described in Ref. 16.

13



8. Adr-Cooled Blades with Laminar-Cooling Flow.—Adopting equation (44) in section 4.2 for
the laminar-flow relationship between cooling-flow Nusselt number and cooling-flow Reynolds
number it is possible to derive general expressions for blade relative temperature in terms of
governing non-dimensional geometric and aerodynamic parameters in the same way as for
turbulent-cooling flow (see Appendix I). The resulting relationships are:

T,— T X -
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With laminar-cooling flow it is seen that the influence of the number, size, and shape of the
cooling passages is defined by a cooling-passage-shape parameter Z;,. The parameter Z, differs
from the equivalent parameter Z for turbulent-cooling flow, although it may be shown (Appendix
I) that the two are related by the equation: "
3-333 2- 666
7 _Z™(D.J9
40-2
Taking once again the reference ‘ datum ’ blade of section 7 it is possible to compare the
cooling characteristics achieved with both turbulent-cooling and laminar-cooling flow.

(18)

(19)

It is supposed that the external geometry, cooling-flow ratio, gas-flow Reynolds number, and
cooling-air pressure-drop coefficient have been arbitrarily fixed and then the resulting blade
relative temperatures, together with the necessary passage sizes and number of passages to meet
these requirements, are plotted in Fig. 13 over a large range of Z. This range of Z covers both
the laminar and turbulent regimes of cooling flow for two selected values of gas-flow Reynolds
number (a ‘normal’ value of about 2 x 10°, and a ‘low’ value of 4 X 10*) and a probable
transition region between the two is indicated.

From Fig. 13 it may be noted that:

(2) the lowest blade temperatures obtained with laminar-cooling flow are less than those
obtainable with turbulent-cooling flow, particularly at the lower values of Re,

(b) to achieve a high degree of cooling with laminar flow a very large number of passages of
very small diameter are required as compared with those required for turbulent flow.
The achievement of laminar flow, therefore, very considerably complicates the manu-
facturing problem and might also lead to passages more susceptible to fouling and
blockage

(¢) as the value of Re, decreases the maximum value of the passage-shape parameter Z at
which it is possible to maintain turbulent flow in the cooling passages decreases. This
point was also emphasised in the previous section 7.4. '

A further comparison between laminar and cooling flow is illustrated in Fig. 14a. The variation
of blade relative temperature with gas-flow Reynolds number at a constant value of cooling-flow
ratio is shown for two blades designed to operate with a laminar and turbulent flow respectively
over a range 10° > Re, > 6 x 10%, the cooling-air pressure-drop coefficient for both blades being
1-5 when Re, = 2 X 10°. With. the low minimum value of Re, of 6 X 10* the passage-shape
parameter Z is limited to the relatively low value of 100 for the conditions selected and consequently
the degree of cooling achieved with turbulent flow is appreciably less than that obtained with
the laminar-flow design. On the other hand the laminat-flow design requires a number of cooling
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passages specified by yn = 640 having a diameter specified by D,/c = 0-0103, whereas the
turbulent-flow blade only requires yn = 10 and D,/c = 0-042. Clearly the turbulent-flow blade
presents a much simpler manufacturing task.

If the cooling ratio is held constant at all values of Re, (as in Fig. 14a) the rate of variation of
mean blade relative temperature with gas-flow Reynolds number is broadly similar for both
designs. In practice, however, it is more probable that in a turbine the cooling-air pressure-drop
coefficient will remain substantially constant and the cooling-flow ratio ¢ will vary as Re, changes.
When this happens it is shown in Appendix IT that, approximately, for turbulent flow ¢ oc Re,*™*
whereas for laminar flow ¢ « Re,. The much more rapid variation of ¢ with Re, under these
conditions when the flow is laminar will therefore result in a much more rapid variation in blade
temperature. This is illustrated in Fig. 14b where the variation in blade relative temperature
with Re, for both the laminar-flow and turbulent-flow blade designs is estimated on the assumption
that the cooling-air pressure-drop coefficient remains constant at all values of Res. This clearly
emphasises the desirability for achieving turbulent-cooling flow in the blade cooling passages
if the cooling is to remain reasonably good over a wide operating range of Reynolds number when
the cooling flow is metered primarily by the pressure drop in the cooling passages.

9. Conclusions.—Simple equations have been derived from which the mean degree of cooling
achievable in single-pass internally air-cooled turbine blades may be approximately calculated.
Equations are also derived for approximately estimating the cooling-air pressure losses.

By means of these equations it is possible to examine the influence that various design
parameters, defining the geometric form and operating conditions of a cooled blade row, have on
the cooling characteristics and also to specify the essential requirements for good cooling. Some
broad conclusions resulting from such an examination are:

() When the gas-flow Reynolds number is high (greater than about 10°) a high degree of
cooling (mean blade relative temperature << 0-6) may be achieved with internal
cooling-passage configurations giving either laminar-cooling or turbulent-cooling flow.
Turbulent-cooling flow is generally preferable, however, since (i) a relatively small
number of cooling passages of relatively large diameter are required as compared with
those necessary to achieve laminar flow, and (ii) when the cooling flow is metered
primarily by the cooling-air pressure drop through the blades the cooling-flow ratio
varies only slowly with changes in gas-flow Reynolds number (such as may occur when
an aircraft engine operated over a range of altitudes) whereas with laminar flow the
cooling-flow ratio will vary roughly in nearly direct proportion to the Reynolds number.

(b) At low gas-flow Reynolds numbers, with smooth internal cooling passages, the degree of
cooling achievable with turbulent flow is less than that achievable with laminar flow.
Better cooling with turbulent flow at low gas-flow Reynolds numbers. might however
be achieved if some means are employed for artificially creating and maintaining
turbulent flow in fine cooling passages.

(c) All forms of internally air-cooled blade, when operated at a constant value of cooling-flow
ratio, are likely to suffer some loss in the degree of cooling when gas-flow Reynolds
number decreases. High reaction blades are likely to show greater variations of cooling
with change in Reynolds number than low reaction blades. The above reduction of
cooling with decrease in Reynolds number is likely to be accentuated further if the
cooling flow is metered primarily by the cooling-air pressure drop within the cooling
passages, since with such a system the cooling-flow ratio will tend to decrease with
reducing Reynolds number. This decrease in cooling-flow ratio and the resulting loss
of cooling may become very serious if the cooling flow becomes laminar. It would
seem important, therefore, that an air-cooled blade should be designed to satisfy the
required cooling performance at the lowest operating Reynolds number in any specified
engine since this clearly presents the most onerous condition.
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(@) When radiation and conduction effects are negligible the non-dimensional operating
parameters defining the relative non-dimensional blade temperature [(T, — T.,)/
(T, — T,,)] in a cooled blade row are (i) the cooling-flow ratio ¢, (ii) the gas-flow
Reynolds number, Re,, and (iii) the ratio of gas temperature to cooling-air inlet tempera-
ture T,/T,,. These remarks presuppose that Prandtl number remains substantially
constant over a wide range of gas temperatures and that to eliminate the influence of
gas-flow Mach number the gas temperature is the  effective ’ value defined, approxi-
mately, as static temperature +- 0-85 of the mean kinetic temperature.

(¢) To achieve good cooling with maximum economy of cooling air it is desirable that the
blades should have (i) low gas-outlet angles (measured from the axial direction) and
(ii) high pitch/chord ratios. Requirements (i) and (ii) are not entirely compatible with
the desirable stage design requirements for high turbine-expansion efficiency, and some
compromise between high turbine efficiency on the one hand and low quantity of cooling

flow on the other must be sought to achieve optimum overall performance in any
specified cooled engine.

(f) With turbulent-cooling flow a useful figure of merit for comparing the effectiveness of
various cooling passage configurations is the cooling-passage shape parameter Z,
defined by the ratio (S./c)"**/(4,/c*). In general Z should be made as high as possible

for good cooling, although improvements in cooling performance become relatlvely
small when Z > 250.

(g) The cooling-air pressure-drop characteristics of a given cooled blade are dependent upon
the cooling passage-shape parameter Z, and the hydraulic mean diameter of the
passages, D,. In a blade of fixed external design then cooling passage configurations
having similar values of D, and Z will have similar pressure-drop characteristics. For
preselected values of D, and Z the number of passages is a maximum when the passages
are of circular cross-section. For other cross-sectional shapes the number of passages
required varies inversely as the ratio of (hole periphery)/=zD,. Thus, for example, to
achieve a certain degree of cooling for a predetermined cooling—ﬂow ratio and
cooling-air pressure drop the use of highly elliptical or rectangular shaped passages
would require a very much smaller number of passages than simple circular passages.

(h) The cooling-air pressure drop is conveniently rendered non-dimensional by expressing it
as a ratio of the dynamic head of the main-stream gas flow leaving the blade row.
The resulting cooling-air pressure-drop coefficient, for a given cooled blade row, is then
a function primarily of cooling-flow ratio and temperature ratio (7,/7,,), and to a lesser
extent a function of the gas-flow Mach number, and gas-flow Reynolds number. This
method of rendering the pressure drop non-dimensional may form a convenient basis
for relating rig tests to engine conditions.
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NOTATION

Note. Bars over the letter symbols denote mean values along blade span.)

- Total cross-sectional area of cooling passages in one blade

Total cross-sectional area of metal in one blade in any spanwise position
A constant defined by %,,@./4,S,

Blade chord

Hydraulic diameter of cooling passage.(4 X area/periphery)
Exponential constant (2-718)

Passage friction coefficient (skin friction per unit area/$p.V.")

Blade to cooling air heat-transfer coefficient (heat flow per unit time per unit
surface area per unit temperature difference)

Gas to blade: h‘eat—transfer coefficient
Constant defined by Nu,*/(2 X 10°)

Specific heat of cooling air at constant pressure, at bulk cooling air tempera-
ture T, ' :

A function defined by equations (122) and (27) in Appendix I

Distance along blade span measured from root

Total heated span of blade

Total length of cooling passages (when greater than L)

Mach number of cooling-air flow

Number of coolihg passages in one blade

Mean coolirig-flow Nusselt number (4.D,/1.,)

Gas-flow Nusselt number (%,c/1,)

Mean gas-flow Nusselt number when Re, = 2 x 10° and T,/T,— 1-0
Total head pressure of cooling air

Static pressure of cooling air

Prandtl number of cooling air or gas respectively

Radius of rotation of blade at any spanwise position, or at mid-span (average)
Gas constant

Reynolds number of cooling air in blade passage (defined by hydraulic diameter
and gas properties at mean bulk cooling-air temperature)

Reynolds number of gas flow over turbine blade (defined by blade chord,
outlet relative gas velocity and gas properties at gas temperature T ,)

Blade pitch

Total ‘ wetted ’ periphery of cooling passages in one blade at any spanwise
position : ‘
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NOTATION—-continued

Total external periphery of blade profile (z.e., periphery ‘ wetted ’ by hot gas
stream) .

Blade metal temperature (chordwise mean value)

Static bulk temperature of cooling air

Total temperature of cooling air -

Inlet cooling-air temperature (z.e., value of T, at blade root)

‘ Effective ’ gas temiperature (i.e., mean static gas temperature plus 0-85 x
mean kinetic gas temperature, mean values being taken around the blade
profile)

Mean blade peripheral velocity

Cooling-air velocity

Relative outlet gas velocity from blade row
Cooling air mass flow/blade

Gas mass flow/blade |

An exponent of gas-flow Reynolds number defining the variation of Nusselt
number with Reynolds number (se¢ equation 1 in Section 3 and equation 20
in Appendix I)

Mean conductance ratio (,S,/%,S,) when cooling flow is turbulent
Mean conductance ratio when cooling flow is laminar
Constant (see equation 1 in section 8 and equation 20 in Appendix I)

Passage-shape parameter defined by (S,/c)"?/(4,/c* ; a useful figure of merit
for cooling-passage configurations when cooling flow is turbulent :

Passage-shape parameter defined by (S,[/c)"*3/(4,/c?)*%; a useful figure of

>

merit for cooling-passage configurations when cooling flow is laminar

Gas outlet angle from blade row . . .
. ' measured from axial direction’

Blade inlet angle
Ratio of specific heats
‘Thermal conductivity of cooling air at bulk cooling air temperature 7,
Thermal conductivity of hot gas at gas temperature 7,
Thermal conductivity of blade material
Viscosity of cooling air at bulk cooling air temperature T,
Viscosity of hot gas at gas temperature T,
Density of cooling air
Density of gas flow at blade outlet
Cooling flow ratio (w, /W)
Cooling-passage shape factor defined by (periphery of a cooling passage) /=D,
Angular velocitv of rotor row
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APPENDIX I

Dertvation of Equations Employed for Calculating the Degree of Cooling in a Simple
Internally Air-cooled Turbine Blade

Throughout the following analysis it is assumed that the blade is cooled by passing cold air
spanwise from root to tip through smooth internal passages which have uniform cross-sectional
size and shape throughout their length. The method adopted is in essence a development of that
described in Ref. 17.

Selecting an elemental length 6/ of the blade at a distance / from the root (see Fig. 15) the
basic differential equation of heat flow is obtained by equating the total rate of heat flow into

an element to zero. Thus:
T,

A, -+ hS (T, — T;) + 1S,(T, — T;) =0. .- . (1)
For the internal air flow through the elemental length, 87, the heat-balance equation is:
o S L BSAT, —T)=0. .. .. (@

The solution of these equations is greatly simplified if it is assumed that the effect of conduction
of heat spanwise along the blade is negligible. This condition is sufficiently fulfilled by turbine
blades having conventional values of aspect ratio (2 or more), when constructed of heat-resistant
materials. The assumption is only likely to lead to gross error when the aspect ratio is small,
or, to a lesser extent, when the operating gas-flow Reynolds number is very small.

Thus, if
hS,1hS, = X, kyw hS, = B
Jn =0 (equivalent to saying that spanwise conduction is negligible), 7T," = T,— T},
T, =T,— T, and dT,/dl = d°T,/dl* = 0 (i.e., uniform gas-temperature distribution), then
equations (1) and (2) can be rewritten as:

T,/(1 + X) — XT,) = 0 L (la)
and
‘B dT,’ , ;L
f&m——XTb +XT0 ——O. P . (2@)

For a cooled turbine blade operating in gas flow of uniform temperature the variation in %,
and %,, along the blade span is relatively small and, providing mean mid-span values of %,, and
h, are employed, it may be assumed that B is a constant. On the other hand the value of 4, may
increase appreciably from root to tip, particularly in blades in which a high degree of cooling is
obtained with a small quantity of cooling air. In solving equations (1) and (2a) therefore, it is
desirable to assume that X is some function of //L.

Solving equations (la) and (Qd) for 7, and T,’ yields:

Tb” = Tb,.l e_Kl .. .. P .. . PN .o P (3)
T, =T, e* . .. .. .. .. .. .. .. (4)
where )
VES T ¢ axX|a(llL) :
L= = — i a(ljL) .. .. .. ..
K= [ B wE X ) 0 )
and
L L X
K, = . El—l——Xd(l/L)' .. .. .. .. .. .. (6)

T, = value of T’ at the blade root = T, — T3,
T,,' = value of T,” at the blade root = 7T, — T, .
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Equation (1a) gives: '
T o Xr

br T 1 + Xr

where X , = value of X at the blade root.

7 R )

Thus, combining equations (7) and (3), we have :

Tb—'Tcr_ Xr —K,

m_l—l—l—X,e s . . .. ‘..7 . R (8)
and equation (4) may be rewritten as:

LTy _en. .. .. .q

g cr .

In an internally air-cooled blade having passages of uniform section along the blade span it is
found that the value of X increases roughly linearly from root to tip. It is thus permissible to
assume for purposes of calculation that:

X=X, +YUL) .. .. - .. .. .. .. .. 0

where Y is a constant whose value is dependent upon the blade configuration and operating
conditions. ' '

If equation (10) is substituted into equations (5) and (6) the latter may be integrated to give:

l
S o (] I
0
g )]

Finally, if the variation in X along the blade span is ignored and X is assumed to remain constant
and equal to the mid-span value X then the equations for K, and K, reduce to:

K, =K, — log, (12)

_ L X l
=K, =K=—{—=]l%). 12
K=K =K=7p (1 T X) (L) (124)
The expressions (8) and (9) for relative blade and cooling air temperatures then become:
T, — T X z
=1 s e” .. .. .. .. .. .. (120
Tr,— 1T, ! 14+ X © (126)
T,—T -
¢ er _ A-F
—Tg—Tw_l ek, .. . . .. . . .o (12¢)

Now in an internally air-cooled rotor blade operating in a stage in which the spanwise distribution
of gas temperature is substantially uniform the critical stress/temperature relationship usually
occurs in the vicinity of //L = 0-8-0-5. It is particularly important, therefore, that any simple
method for calculating the blade temperatures should give a good approximation to the true
values in the mid-span region of the blade. It is found that use of the simplest equations
(12a), (12b) and (12¢) fulfils this condition satisfactorily providing the values selected for B and X
are those equal to the mid-span values in the actual blade. The degree of error involved in
. making this assumption is illustrated in Fig. 15. These figures relate to the blade operating in
the N.G.T.E. Experimental Cooled Turbine No. 117 (Ref. 1), in which the degree of cooling
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achieved for a given quantity of cooling air was high and in which, as a consequence, the variation
in X along the blade span was relatively large. In this instance the variation of X was assumed
to be:

X =0-72 4 0-74 (/L) when w,/W, = 0-01

and X =1-324 0-72 (I/L) when w,/W, = 0-02.

It will be observed that the maximum error occurs close to the blade root and at low values of
cooling-flow ratio, the simple assumption that X = constant = X under-estimating the blade-root
temperature. On the other hand, from //L = 0-2 to 1-0 the simple approximations agree well
with the more accurate calculations. :

It remains, therefore, to derive suitable values for L/B, X, and K for any blade configuration.
The derivation of convenient expressions for these factors is outlined in the following paragraphs.

Note. In the above expressions for relative blade and cooling-air temperatures the value of
T, should, of course, be the ‘ effective ’ gas temperature measured relative to the blade. The
- effective  gas temperature may be approximately defined as: ‘

’Y"“le

T,= Typm|1—0-15

3

where J is the mean Mach number of the flow around the blade profile.

(a) Internal heat transfer (turbulent flow).—The average rate at which heat passes from blade to
cooling per unit temperature difference between blade 7', and cooling air T, is 4,S,, which may
be expressed as: o

Nu,l

hcsc:—'D—e—Sc . .. . . . .. Tae (13)
where Nu, = mean cooling-air Nusselt number defined at bulk air temperature

2, = conductivity of cooling air (at mean bulk temperature)
D, = mean hydraulic diameter of cooling passages
— 44,5,
A, = total cross-sectional area of all cooling passages in one blade
S, = total perimeter of all cooling passages in one blade.

From Ref. 11 the following expression for Nu, in passages of uniform cross-section may be derived :

T\ 0.55
Nus::0434Pﬂ4a4DJ—W%R@y%(§ﬂ ,
b

where conductivity, density and viscosity are all defined at bulk cooling-air temperature. For air

in which P = Prandt]l number = 0-71 and passages of L/D, = 25 to 100 this may adequately
be simplified to:

_ _ T 0-55
AmfzoomRm“(ﬁ) ey
Now, Re, = ﬁ”T:_:D“ = ﬁcI;ZA”% = %% . (15)%*

* In applications of equations (14) and (15) the values of zz, and 2, should strictly be evaluated at the bulk mean
static temperature of the cooling flow. In practice, however, the mean Mach number of the cooling flow rarely exceeds

a value of about 0-3 and a negligible error is introduced by evaluating 7, and , at the mean bulk total temperature.
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It is desirable to relate Re, to the external gas flow Reynolds number Re,. Re, is defined as
(p V) lu, where p, and V, are values of density and velocity of the main gas stream measured
downstream of and relative to the blade row, and g, is viscosity evaluated at the temperature 7.

__pVsLecos a,

Thus, Re, ST oos =
— Wg | c
. T u,sLcosay’ e . e .. (16)
where s = blade pitch

«, = gas outlet angle
W, = gas mass flow through one passage.

Therefore, combining (15) and (16) we have:

R LD
_EZ_: o= (%ig) (A—c”) (%) COS oy (%) . . .. . . (17.)

In the air and gas temperature range encountered in gas turbines x4 == constant X 7°%, so
that u,fu, = (T,/T,)"% Substituting this in equation (17), replacing D, by 44,/S,, and denoting
the cooling-flow ratio, w,/W,, by the symbol ¢ gives:

_ . 5 (L/C) (_]_‘_g)D.GZ
Re, = 44 ; -——(SC/C) COS o, T Re, . . .. .. .o (18)
Finally, therefore, inserting (18) and (14) into (13) we have 4
_ B .‘ s (L/C) jlo-s s (_1':_6)0-55 (5)0.496 chcz
h,S, = 0-02 [456 c—(SG/o) cosx,| Re, T, T 24 (19)

(b) External heat transfer—1t is supposed that the mean external heat-transfer coefficient (z.e.,
between hot gas and the blade outer surface) is governed by a relationship of the form:

N%g:k(Reg)"-(%)y. @

The constants %, ¥ and y will depend primarily upon the blade shape, and the choice of suitable
values is discussed briefly in section 3. '

In this relationship Nu, is defined as :

Nugz%andk:Nug*/(leOs)x, @

where 1, is defined at gas temperature 7,.). Re, has already been defined in the previous paragraph
(see equation (16)).

Thus equations (20) and (21) lead to the expression:
. Nu,
hySy = — £S5,

s o T\
=k—c—glg(Reg)(—1_:§)... O )
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(¢c) Dersvation of expression for X (turbulent-cooling flow).—Combining equations (22) and (19)
we can arrive at the following expression for X:

hgsg ,
[ s L 08 s G y1-2
— COS 062] (—c) 08,7 0:8—x /7 055 0-496 ;T
SO G )RR e
k S, 42_0 2, T, \T, T,
c c

Over the temperature range relevant to gas-turbine engines the conductivity of air may be assumed
to vary approximately in proportion to 7°7, so that the term (1,/4,) may be replaced by (T[T ).
Furthermore, the ratio of the blade outer per1phery to blade chord for a wide variety of typmal
turbine-blade profiles may be approximately taken as 2-3. Equation (23) then reduces to:

0-0066 ié 08 o o~3~x(zf" 0-824(27)0-55——3'
p ( cos 0C2> Z $7%(Re,) T) T, ;. o (24)

cc
£

-

where

Z = (Sofe)[(Aefe?) -

In this equation the mean values &,, §, T, and T, are taken to be the values occurring at the
mid-span position along the blade. It is worth noting that the expression inside the curly
brackets is defined completely by the blade and cooling-passage geometry, and the constant %,
which is empirically related with the blade geometry (Fig. 3).

(d) Derivation of expression for K.—From equation (12a) :
S S
B14+X\L
where L|B = Lh,S,|k,q0, = Lh,S |k, W, .
Substituting for %,S, from equation (22) and for W, from equation (16) we have that:

L___MSfOTJTy A L (25)
B $(Re) ~*(5/c) coS &y pokps

Now for air &, ¢ 7", so that:
_ Tc 0-15
kj;c = kpg (T;) .

Furthermore, u,k,, /4, = Prandtl number = Pr=0-71 (for air). Equation (25) then becomes:

L RS fe)(T Ty (T T, :
B:PM(Reg)l_x(s_/c)Cos)&z. SO0

Finally, therefore, if S,fc = 2-3:

3-24k
(§/c) cos @,

()" -
T)\T) $Rey 1+ %
Again, it is to be noted that the expression within the curly brackets is defined completely by
the blade geometry.
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(e) Application of devived formulae to the calculation of the mid-span blade and_ cooling-air
temperatures of a cooled blade (burbulent-cooling flow).—Summarising previous paragraphs, we have
at mid-span ({/L = 0-5) that : ‘

LA _e® . .. .. .. .. .. .. (=8
7.1, 71+ x° (28)
.ZTf%sz':l—e—f,'.. .. .. .. .. .. .. .. (29)
4 cr
o 00066 (sL ~ _\"° o o.s_x(z)°'sz4(£g)°'55—y
where 2= (C = cos az) pozre = (7) (7 .. (30)
] 3-24% ) YL X (Tg)”(Tg)"'“
e — = e .o .. « . 31
_ K %s/c cos &) pRe,! —*1 4+ X \T,/ \T,/ (81)
and L =0-5

L, s, ¢, @, k, %,y and z are fixed by the blade and cooling-passage geometry and by the assumed
relationship between Nu, and Re, (see section (b)). Selecting desired values for ¢, Re,, T;and T,
we then have at mid-span that:

(2{5)0-824(5)065—3')
T, \1,) |

ol 7
It is now necessary to make a preliminary guess at the values of T, and T, and to find the corre-
sponding values of X and K. These are then substituted in equations (28) and (29), from which
a first good approximation to the actual values of T, and T, may be derived. If the values of
X and K are then recalculated using the latter values of T, and 7, and resubstituted into equations
(28) and (29) a second closer approximation to the actual values of T, and 7, may be found.
This may be continued to further, and closer, approximations but the approximations will be
found to be very rapidly convergent to the correct values and it will very seldom be necessary
to proceed beyond the second approximations.

X = constant

K = constant

The values of T, and T, at spanwise positions other then at //L = 0-5 may be calculated by a
similar procedure. The appropriate value of /L must be inserted into equation (31) and the
values T, and T, in equations (28) to (31) must be replaced by the values of T, and T, appropriate
to the spanwise position considered. -

(f) Approximate method of allowing for the heat picked up by the cooling air wn the blade yoot
(turbulent-cooling flow).—In many constructional arrangements the blade cooling air will, in
addition to cooling the blade itself, also cool the blade root and, in particular, the blade-root
_ platform. Since the cooling of the root and platform will preheat the cooling air before it enters
the blade proper then the cooling of the blade itself will be rather less than that which would be
calculated by the previous method if the root cooling was ignored. It is desirable, therefore,
to devise a simple method of correcting for this effect.

It will be assumed that:

(i) the heat passed into the blade root (equal to the heat collected by the entry cooling air)
enters only across the blade-root-platform area exposed to the hot gas stream (suppose
this area is 4,)

(i) the mean heat-transfer coefficient between gés and platform is equal to the mean
heat-transfer coefficient between the gas and blade

(iii) the blade-platform temperature is equal to the temperature of the blade-root section.
25



Assumption (ii) is probably pessimistic since the actual values of gas to platform heat-transfer
coefficient will probably be lower, in practice, than the assumed values. This may be partially
counter-balanced, however, by the fact that heat may creep into the blade root by conduction,
convection and radiation from sources other than the scrubbed area of the platform defined
in assumption (i). Since the total effect of root and disc-rim cooling is not very great these

assumptions are unlikely to glve highly erroneous results and enable a correctlon to be made quite
simply as follows.

Assumptions (i) and (if) enable the actual root to be visualised as being equivalent, from a point
of view of the heat transfer, to an imaginary extension at the root end of the actual blade length
by an amount equal to (4 j,/A »)L, where 4, = platform area and A4, = actual blade surface area.
This imaginary extension of the blade length must be accompanied by an imaginary extension
of the gas stream (and gas-flow quantity) of the same proportion.

Now in equations (28) to (31) the value of the conductance ratio X, will not be influenced by
the imaginary extension of the blade. A modification will occur only to the parameter K which
controls the rate at which the cooling air is heated as it flows through the cooling passages.

Using a dash suffix to indicate values measured relative to the imaginary blade of extended
length then equation (31) for K may be rewritten as:

I .
_ 3.24k (f) X (_T_g)y(zg)m 30
~ {(sfc) cos &) ¢'(Re,)' —* 1 -+ X \T,/J\T,] ~ - (32)
;L A,
and L —Z+Z—bL
A
L'=L+22L
Tz, 5\ (33)
o — qu;
1+A—b

The ‘effective’ value of ¢’ arises as a result of the imaginary extension of the gas stream,

consequent upon the imaginary blade extension, which is not accompanied by any change in
the quantity of cooling air through the blade.

Substituting equations (33) into equation (32) yields:

‘ _ L s 4,

7 3-24% X _L A, (I_‘)y(Lg)O 15 (34)
{(s/c) cos @y} 1 + X ¢Re,! ~*\T, . . o

where, as before, //L has a value of 0-5. )

The procedure for calculating the mean blade and cooling-air temperature (T, and T,) is then
as described in section (e).

As before, the values of T, and T, at sections other than //L = 0-5 may be calculated by
substituting the appropriate Value of Z/L in equation (34) and replacing 7, and T, in equations
(28), (29), (30) and (34) by the values of T, and 7, at the particular spanwise p051t10n considered.

(g) Cooling with laminar flow in the cooling passages—Using a similar procedure to that outlined
in the previous paragraphs a set of equations for mean blade temperatures with laminar= =cooling
flow may be derived. The major difference lies only in the governing equation for coolant-flow
Nusselt number, it being assumed that with laminar flow:

0-333
Nu, ——166[ Re, )] .

. %

(see section 4.2)
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The full derivation of the equations for blade temperature is not given here, but, following
the procedure of the p1evious paragraphs, it may easily be shown that for laminar-cooling flow :

T,—T,_, B X g
Tr,— 1T, 14+ X,
Tr,— T _
e T 1 _ e K
Tg - T“’ 1 © l — -
. 3 0-333 0-56 y
where X = 30%%56 [(cos o) (z):l Z’; G033 Re 08—+ (%) <%:—:) .. (36)
. Sc 1-333 Ao 0-666
Z=(2) )& @)
_ 3-24k ) (TN(TN\"  (JL)X,
B= | () () . ... (3
! (5c) cos a,) \ T,/ \T,/ ¢Re~*(1 + X)) (38)

With laminar-cooling flow it is seen from equations (36) and (37) that the influence of cooling
passage shape and size is wholly characterized by the cooling passage shape number Z,. This
number differs from the shape number, Z, appropriate to turbulent-cooling flow and it is of
interest to find a relationship between the two.

Now, Z = (S.fe)"*[(4.[c")
Zy = (S,[e)" % [(A[c?)**
and D Je = 4(A4,[c")[(S.[c)
from which : - -
7, DL )

APPENDIX II
Derivation of Approximate Formulae for Cooling-Atr Pressure Loss

(@) Turbulent flow—It is demonstrated in Ref. 14 that for one-dimensional flow in a passage
of constant cross-sectional area with friction, heat addition, and a centrifugal acceleration in the -
direction of flow the change of total head pressure along an incremental length of passage 4/ is
given by:

8P,  yM2eT, yMp? 6 6l | ro®
P.=" "9 T 3 4fE+R—tcal’ .. .. .. .. (1)
and M, =V [/ (vp:pr.) > .. .. .. .. .. .. .. (2)

where P, = total head pressure of cooling air
T, = total temperature of cooling air
M, = Mach number of flow of cooling air
y = ratio of specific heats
f

= skin-friction coefficient

D, = hydraulic diameter of passage
7 = radius of rotation of blade at spanwise position /
o = angular velocity of rotation

R = cooling-air gas constant

t, = static temperature of cooling air

V, = cooling-air velocity

p. = cooling-air density

., = static pressure of cooling air.
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It is desirable to express the overall total pressure loss for the blade passage as a fraction of the
dynamic head of the gas flow leaving the blade row, $p,V* (se¢ section 6). A fairly simple equation
may be derived if the simplifying assumption is made that M, is small so that p,— P, and

t,— T,.
Using equations (1) and (2) it can then be shown that for an incremental length of passage, 6/

6P pV2oT p V.2 .06l p U? 8l
co= Lo T Pole ygpt 4 ofer 20 .. .. .. 3
%Pngz PV T Png2 fDe+ Pngz 4 )

where U = peripheral speed of blade = wr.

By employing Reynolds analogy it is possible to relate 6 T,/ T, to friction coefficient /. Reynolds
analogy may be written :

hkyp V., = f12.
Equating heat flows we have also:
Sh(Ty — T,)6l = p,V, Ak, 0T,

" whence
oT, (T, S, A,
Sl o E
6T, T 6l
Therefore TB:(T—Z’—l)Zf—D—C. - . ce . . - (4)
Inserting equation (4) into equation (3) yields: |
P, eV} TN ol p.\ (U \? 8l
w2 (r) Y
—_9Pig 4f7 Zg L &(Qﬂzﬂ
— ngqs(Ag) @)t y) s o 6
Now A, = Ls cos &,.
AN?  [sL cos &, 2
Therefore (Z) = [T} . .. .. .. e .. .. (6)

11 equation (6) is now inserted into equation (5) and if in addition 87 is replaced by the full passage
length L* (which may be greater than the length of the heated span of the blade L) and a mean
value (p,/p,) is approximated by (7,/T,) then :

Painlet - Pcoutlet .__ (Tc) ( Tb) ( SL - )2 L*
e =2f T, 1+ T, d)Ao COS &, D

where 7 = mean radius of rotor-blade row.

If the cooling air is discharged from the blade tips in such a Way that the full outlet dynamic
head of the cooling air ($p,V,%) ., is lost then it may be shown that approximately:

i cV02 ext SL = 2Tci
(—igng—g)z_t:(qb COS(Xz) 7 O )

g
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Combining (7) and (8) we have:

Pcin]et _ pcoutlet __ (z_-‘_o) ( E) ( §_L_ - )2 E
P A AV AR AU Il iy
sL 2 Tmp) (Tg) (U‘) L*
- —2{=) ) = . . .. 9
+(¢‘A6COS°‘2)(Tg SAVIAA R ®)
The mean skin-friction coefficient, f, for turbulent flow in a passage is given by :
;_ 0-079 |
= — . 10
/ (Re,)0% (10)

A relationship between Re, and Re, is derived in equation (17) of Appendix I. If this relation-
ship is introduced into equation (10) then:

Tc)0~155

0-079(Tg

f: T, 0-25 25 ' 25 *
DN\ 0-25
(b5 cosm) () (Ra)

(104)

Introducing equation (104) into equation (9) then yields:

' Tc 1-155 Tb sl _ 175 7 %
Pci'nlet - pcouglet _ 0 158 (i) (1 + T—c) (qs Z—c €08 ocz) E
%nggz (Dce)0~25(R8g)o~%s

o3f o) ()

g

—2(%)(%)25: L a

g

The first term on the right-hand side of equation (11) is the loss due to friction and heat addition,
the second term is the cooling-air dynamic head lost at discharge from the blade tip, and the
third term (applicable only to rotor blades) is the centrifugal compression due to the rotation of
the blade row. In general it is found that with passage configurations giving good cooling
(Z > 150) the major part of the loss is due to friction and heat addition, the remaining two losses
being relatively small and opposite in sign.

A typical break-down of the components of the total overall cooling air pressure drop is given
in the table below for the ‘ datum’ blade defined in section 7 when Z = 200, (D,[c) = 0-025,
Lle =2, L*|c = 25, T,/T,, =2-0, UV, = 0-87, L*/f = 0-85 .

Cooling-flow ratio ¢ 0-01 0-02
AP . L " :
e due to friction and heat addition 0-53 1:58
2PV 4
AP due to discharge loss from blade tip
m ue to discharge loss from blade tip 0-143 9‘493
AP a fueal .
T, pa due to centrifugal compression —()-614 —0-680
2PV g )
Overall loss Zeiet — Poouts 0-039 1-393

3o,V
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It may be noted from equation (11) that blades having different cooling passage configurations
but identical external geometry and gas operating conditions will have similar pressure-drop
characteristics if the values of 4, and D, are the same for each configuration. This is equivalent
to saying that the pressure-drop characteristics will be similar if the values of Z and (D,/c) are
the same for each cooling passage configuration.

(0) Laminar flow.—An equation of similar form to equation (11) may be derived for laminar
flow in the passages. The major difference arises from the modified relationship between friction
coefficient f, and cooling-flow Reynolds number, Re,, for laminar flow. If the temperature ratio
(1,/1,) is close to unity then:

; 16

f Re
If (T,/T,) is appreciably greater than unity then some unpublished work indicates that a better

approximation is:

(12)

|

_ 16 T-o-4s ] .
fﬁe(%). T 6 1.7

If the relationship between Re, and Re, (equation (17) of Appendix I) is introduced into
equation (12a) then: ‘

T 3 045 0-62
6(7) (7)
‘ ; N € 0240)

L D '
(«,-6 SZG cos &2) (f) Re,

Introducing equation (126) into equation (9) finally yields:

f=

ELSZ &)0-45( E)( g ﬁ_)g
Pcinlet—pcoutletZSZ(Tg) (Tc 1+Tc ¢.Ac cos i De
30V (DE) Re
c g
(4 5E cos 5. ) (Lo (&)(E)Z—E‘i ~
—I—(d;‘ccosacz)(Tg)——Z P s

As for turbulent flow it will be found that for blades of practical interest with laminar internal
flow the major part of the loss is that due to friction and heat transfer (first term on right-hand side
of equation (13)). Also different passage configurations will give similar pressure-drop character-
istics in a blade of fixed external geometry and operating conditions if 4, and D, are similar,
ie., it Z, or Z,, and D, Jc are similar.

(¢c) Note on influence of Re,—It is of interest to determine the variation of the cooling-flow
ratio, ¢, with gas-flow Reynolds number, Re,, when all other factors (including pressure-drop
coefficient (P, iper — Peower)/(3p,V ") Temain constant. These conditions apply to the particular
case of an air-cooled aircraft engine operating at fixed non-dimensional speed over a range of
altitude. '

Since the major part of the cooling-air pressure drops are contained in the first terms on the
right-hand side of equations (11) and (13), for turbulent and laminar flow respectively, then it
may be seen that to a first approximation :

¢ o« Re,O®T o ReO™ .. . .. for turbulent flow

and
¢ < Re, .. . vey e .. for laminar flow.
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If, therefore, the cooling air to the blades is metered solely by the pressure drop occurring across
the blade cooling passages (this possibly represents the simplest conceivable arrangement in an
engine) then the variation of cooling-flow ratio with Re, will be relatively small when the cooling
flow is turbulent, but large when the flow is laminar. The possible consequences of this are
discussed in section 8. ' :

(@) Influence of compressibility (furbulent flow).—Equation (11) is only strictly correct when
the Mach numbers of the main gas flow and cooling flow are very small. It is possible however
to frame an approximate correction to equation (11) for higher relative outlet Mach numbers
of the main gas flow at exit from the blade (0-1 << M, < 0-9) as follows:

Pcinlet - pz:exit

F— =y = remaining terms in equation (11) (14)
gtot2 gstat2

1st term R.H.S. of equation (11}
M 2 M2
{“"7 1+ 42)}+

The above equation is derived on the assumption that f.es 2= Prearz - [Pz = relative outlet
total pressure of main gas flow; p,.., = outlet static pressure of main gas flow.]

"APPENDIX III

Derivation of * Effective’ Passage-Shape Parameter when Passages in One Blade are of
Varying Size and Shape (Turbulent Flow)

If the cobling passages in a blade are not all of equal size and shape then equation (24) of
Appendix I, for X, should be rewritten as:

. 00066 _ §£ 0-8 s s <£)0-8.24(I_5)0‘55—y n 0.8.
X = o (cos % C) Re, T T, 21 (Z.$,"°) . (1)

. 4
where Z, and ¢, refer to the values of (S,,/c)"%/(4,,/c*) and cooling-flow ratio for each individual
passage.

Now the pressure-drop coefficients, 4P,/(}p,V %), for the cooling air flowing through each of
the passages will all be equal. If the major part of the pressure drop is due to skin friction and
heat addition (Ist term on right-hand side of equation (11), Appendix II) and the pressure-drop
coefficients in all passages are equal then equation (11) of Appendix II indicates that,
approximately : :

1-75 1-75 0-25
¢'1’ OcAcr DDer 7

i.e., ¢, = constant X A4, D,%"*
1-143
:constantx‘s—”m, .. .. . .. .. .. .. (2)
whence ” e
¢:Zl¢,=constdnt2%—”o—_ﬁ3-. .. - . . .. (3
Therefore ” A

(AMI-MS
, SMO~143)
%ZTW, @
Zl (56:0-143)
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Now the summation term at the end of equation (1) may be rewritten as:

S O, = 8 s e e e ()
r=1
where

n , 0-8 " n , 0-8 Scrl-z ) '
Zeo = 3. (‘%) z,=e% % ({%) T e

Substituting equation (4) into equation (6) yields :

" Scrl -086

0-086
7 =1 Acr

s - O )]
i Aor %

-143
=1 Scro

00'8

Z effective —

Finally, substituting equation (5) in equation (1) gives:

- 0-0066 s L\08 T o 7055
A= k (COS &25;) $°° Z eective 184 °‘8—x(i> (Tg)

where Z ..., 15 defined by equation (7).
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