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Summary —The application of second harmonic control on a helicopter rotor causes a redistribution of the loading
over the disc. This can be utilised to postpone the forward speed limitations imposed by stalling of the retreating blade.

This report develops the theory for second harmonic control.. The resultant flapping motion and subsequent incidence
distribution depend mainly on blade inertia number. A practical check on the flapping with a full-scale rotor on a
testing tower gave excellent agreement with the theory. '

1. Introduction.—The ordinary rotor with flapping hinges and cyclic pitch control maintains
a roughly uniform lift round the disc. As the helicopter forward speed increases, the-resultant
airflow over the retreating blade decreases and a higher incidence is required. However, stalling
incidence is soon reached and, as a consequence of the vibration which blade stalling produces,
a limitation is imposed on the forward speed of the helicopter. The stage in helicopter develop-
ment has now been reached where this limitation gives a lower speed than that otherwise
attainable with the avaijlable engine power. B ' '

One of the possible methods for postponing this limitation is the use of second harmonic control
to redistribute the loading over the disc. In this scheme, the loading on the retreating and
advancing sides could be reduced and compensated by an increased loading on the fore and aft
sectors. By this means, a much more even distribution of incidence on the retreating side is
achieved and the stalling limitation of forward speed is postponed to a higher tip speed ratio: .

It is fairly easy to devise a mechanism for applying this second harmonic cyclic pitch to the
blades. Any form of swashplate, rotating at 32 in the same direction or at-2 in the opposite
direction in relation to the rotor speed 2, could give the appropriate application of control.
This, of course, means additional complication in the rotor head ; further gears, bearings, etc.,
would be required, adding to a system which is already regarded by many as too complicated
mechanically. Also, the second harmonic pitch has to be operated by a fluctuating torque (since
the control is not at the fundamental rotor frequency) of amplitude 34/(4,* + B,°)1 2%, where
I is the moment of inertia of the blade about its longitudinal axis. Taking a typical example
with a control amplitude of 6 deg, the fluctuating torque is equivalent to a pitching-moment
coefficient on the blade of 4~ 0-01. In addition to this loading on the swashplate and control
links, there will also be a tendency to cause a twisting of the blade. The purpose of the present
report is to develop the theory and to investigate the advantages to be gained.

2. Theory.—A rotor of radius R is assumed to have a forward velocity 7 and rotational-velocity
Q. The axes of reference are taken, through the rotor centre, parallel and perpendicular to the
mean tip-path plane. This definition is similar to that used in general helicopter work, but the
mean tip-path plane is taker to allow for the deviations from this due to the second harmonic
flapping motion. - T o

* R.A.E. Report Aero. 2472, received 24th November, 1é52.
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. The component of the forward velocity parallel to the mean tip-path plane is
| 2R . | | B
The velocity through the disc, perpendicular to the mean tip-path plane, is
J0R . |

At the present stage of the theory, the usual assumption is made that 7 is constant over the disc.

The velocities of the air with respect to a blade element distant = xR from the rotor axis
are as follows.

The velocity parallel to the mean tip-path plane and perpendicﬁlar to the blade (chordwise) is
(% + u sin p) 2R . .. .. .. . .. (1)

The velocity perpendicular to the mean tip-path plane and to the blade (through the disc) is
(l—l—ﬁﬂCbSip—l—%%)QR R

where § is assumed to be small, so that sin 8 can be replaced by # and cos g by unity.

Defining flapping angle in the usual way and considering terms only asAfa‘r as the second
harmonic

B = ay— a,cos p — b, sin y — a, cos 2y — b, sin 2y .. .. e (3)

where, by definition of the axes as above, @, and b, are zero but in order to make the théoreﬁcal;
treatment more general they may be retained in the form given. Differentiating,

%:+alsinzp—blcoszp+2azsin21p—262(ios21p .. .. )
and -
?’;:—{—alcoszp+blsinz,u+4a200321p—|—4bzsin21p. .. .. .. - (5)-

Hence, the velocity through the disc, by combining equations (2), (3) and (4) is given by
[4 + w cos y (@ — a; cos v — b, sin y — a, cos 2y — b, sin 2y) ‘ , ’
+x(élsin1p — b, cos p +2azsin 2y — 2b, cos 29)]QR . .. . | .. (6)
~The biade pitch setting at ﬁny azimuth position can be expressed in the form o
9 =9y —A,cosp — Bysiny — A,cos 29 — Bysin2yp . .. .. .. o (D)

The effective incidence of the blade element is |

A+ Bucosy + b

o=y — Ay cosp — Bysiny — A, cos 29 — B, sin 2y — 7 T asing 8
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or, using the expansion given by e‘qﬁattioni (6): ST - T
oc=ﬁg—Alcoézp—Blsinzp—AchSZw-—stinZy), , ,

. - 1
— [A +pcosy (a, — a, cosy — by sin y — a, cos 2y — b, sin 2y)

—I—x(ozlsmzp——b cos —|—26Z281I121/1—°b cos21p]/[x—[—/us1n v} - .. (9)
The aerodynamic force acting on the blade element ¢R dx is
aF = —pacQzR3(x—{—p,,sm p)2o dx . e e . .. . . .. (10)
The corresponding moment with respect to the ﬂappmg hmge is,
adM = xRAF -
—-2pozc.Q2R4(x—|—,usm1p) ax dx . .. . .. . .. o (11)
Integrating along the blade and taking 11m1ts X = 0 and B to allow for the tip loss
M—f tpac®R*x(x + p sin p)’a dx .. .. . .. ..o (12)
(1] \
_M_ZIB(x3+2x2usin1p%xyzsinzw)ocdx. . e .. (138)
%paszR? o N . : o

Using the evaluation of « from equation (9)

B
M J [(x3 + 2x%u sin p 4 xp® sin® p) o,
[i]

Ioac®R* —
T (%® 4+ 29% sin p 4 xp® sin® y

(2® + 24% sin v + xu®sin® p
(x® 4+ 24% sin p 4 xp®sin® p

+ )
+ (2* + 22% sin v + xp®sin® ) (—
+ I
+ )

— (#* + xp sin )2
— (& + % sin y)(u cos y)(a
)

— A4, cos y)

B, sin y)

— A, cos 2y) -
—, B, sin 2y)

o — @, COS p — by sin p — a, cos 2y — b, sin 2y)

— (#* 4+ #% sin y)(a, sin v — by cos v + 2a, sin 2y — 25, cos Zzp)] ax .

(14)

Integratmg equation (14) and expressing trlgonometncal products in harmonic angles the

aerodynamic moment becomes

M

. B4 B2‘u'2 B2 2
LoacQ®R* <_ T3 B,usmzp - 4. 4 08 21‘”)19
4 .
(ﬁ cos —|— 2 sin 21/; —|— 2 . cos y — B;M2 cos »31,0)(——
B ﬂ Bu 2 i _ BHR _
+ T sin p -+ == 5 oS 21/) + B*%*sin o 3 -sin 31;))(
+ (-I cos 2y -{-A%ﬁ‘ sin.3y — B3‘“ sinyp + BZ " cos Qy
\BZ‘L‘Z o leu2 _
— B cos dp — = )( A,)
3..,

(4521)



4 3 - .
-|-(£ sin 2y —I—&‘coszp B’ucos 31/)—}- sm P B,)
3 ,
——(B Slnw)l
3 : o
—<33”)(aocoszp~%c052w—%_%sin21p-%c053¢
a, by by s
— 5 COS Y — —2-sm3zp §smvp)
2,2
_(Bu >( sm21p——_s1n31p 4sin1p—]—%c0531p
' b, 128 2 by
— g oSy — 4Esm4 4+ZCOS4¢>
B . .
—<—~>(alsmzp—bl COS?/)—|—20L281n21p——2792 cosZw)
(BBM)< cosZw——b_smny)—azcos3zp—}—azcosw
2 L :
~—bgsln31p—}—b251n1p>. .. .. .. '(15)

For a blade element dx of unit mass m, distant xR from the rotor axis, the 1ncrement in
centrifugal force and the corresponding moment about the flapping . hmge are as’ fo]lows

dCF)=mO@%Rdx .. .. .. ... .. .. (18
a(C.F. Mom.) = mQ**R*gdx . .. . .. e .. (17
Therefore C.F. Mom. = fl mxtR2Q%B dx
(1] i . . . C
=L2. .. .. .. ... .8

Taking moments about the flapping hinge and neglecting the moment due to the weight of
the blade ‘ _—

M =1,0% + Lp

;1192(54-:(%. e q9)
Rewriting to give the form of the left-hand side of equation (15) |
| M Le A
LpacQ®R* ™ pacQ’R* (ﬁ. + QY o
: B 2 ﬁ ’ B . ,rj
_;<5+?2_2 R IR (20)

where p is the blade inertia number = pacRY/I, .
Evaluating by substituting for g and § from equations (3) and (5) =

M

9 :
Toac@®R* (ﬂo + 3a, cos 2y -+ 3b, sin 29) . . .. (21
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Comparing the equations (15) and (21) and equating the corresponding coefficients, the
following equations are obtained.

‘B;:(Bz + )9~ 20 By, L Bt 4, — gao | | n Bgsz - 0 (2
=Bt e, — 5B = Blay+ BBy — Bl =0 . 9
__‘B;‘uzﬁo - + §33ﬁB1 _ B;»(Bz LA, B—;”ozl — gaz + %452 —0 B (25)
_ %Al — BB 4 w9, — B;”%ao | %34‘61 — E;az »l—‘gbz =0... (2)

~ These equations are similar to equations (22)-to (26) of Ref. 1, except for the additional terms
due to the second harmonic pitch control and' the omission of the flapping harmonics above the
second. The work could be extended to include the effects on the higher harmonics of flappin
if necessary. The equations so derived would be identical with equations (22) to (34) of Ref. I,
except that the additional coefficients. would appear. : ‘

Reference term Equation Additional coefficient
Cons‘.tant ' 22 + B;M i A,
- COS Y .23 — -B—;ﬁ B,
sin » 24 - %3_# 4,
cos 2y A 25 — 7 (B2 + 1?4,
; | - B?
sin 2y 26 — T (B® 4+ p*) B,
; s
cos 3y 27 %_P_‘ B,
' - 3
sndy 28 —Fra,
cos 4y 29 B;‘“z A,
sin 4y 30 | B;;ﬁ B,

- . Higher harmonics - 31 to 34 —
5



J can be eliminated from equations (22) and (24). From equation (22), the value for 2 is .
3B Bup B, 2 | By . o
B‘a[? (B + )0, — 2 B+ B 4, ~Zay+ sﬂ,,b-z] @

A=

‘Substituting in equation (24)

By ¥ __ Q2 ;BZ 2__ 1,2 v p o B? 3 ~2 ;o 3y :

o (7B* — 9uh)8, — 7 (B 2u>Bl+Bu(-3-—W)A2+B_yao.
. 2 2 R ) . .
=B B — ye— Bu (B + Sie=0. .. . (e

From equations (28) and (23) we obtained the evaluation of the first harmonics of cqnfrol and
flapping =~ o

_ # (1B — 9u® dp (B* — fpu’ 12ua,
Bt o= gp (g ) T sp(H—h ) T g
2u (B* + g’ ' = (
aplEoge o L @
| ., _4 Bu . 4 Bu % Buw . , o
_A‘+'bi'*§m2a°+§'BWBZ+3’W%' .. .. SR (30)

Substituting these values from equations (29) and (30) in equations (25) and (26) respectively

— 23 1
By (5 B — )0, — %2(34 2 B’ + V4,

B — fu? B — jut (B — §’)
_.y% + o= f;‘[ My—0 .. .. . @
-z %T;—Mf a2~§’52=0. L @3

Equations (31) and (32) are linear in form and they can be split into- parts dealing with the
flapping due to the forward speed conditions and the flapping due to the second harmonic control.
Without second harmonic control, ¢.e., 4, = B, = 0, the equations become

Bz‘uz 5 p2__ 3.2 4M2 __6 yod B4—%%Bz 2_%‘“4 .
BZ——%/,LZ(36B 3M)ﬁo‘|—mao ; ?—)ﬂz—l—?( B — L )62—0.. (33)
and
B2 2 B4 B2 ‘_1_ P 6 .
BZ-+ﬂ%M—2 (g”ng _ —%—,uZ)ao — o —BTEET’L: Ay — ; bz =0. .. .. .. .. (34)

Equations (83) and (34) represent the second harmonic flapping produced by the forward
speed conditions (without second harmonic control). They are identical with equations (42)
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and (43) of Ref. 1 except for the omission of the small terms due to higher harmonics. The
generalised solutions for this flapping motion can be obtained from Ref. 1, where the numerlcal
evaluations are also included in graphical form.

" The flapping due to the second harmoric control is given by the following equations:

BB ey, 6,y BB B 35
¢ B V4, - .—2+ ( ot =0 .. (35)
and _
Bz Bt — 5Bz 2 ~‘ _M4 , B Bz_i_'__‘uz _6 .
e JL zmyzz Sh=0... . . .. (39)
Hence
[ ( i 34?/32‘1‘?15#2 }ao
B4_17B2 2—%/"4 12\32_’_%‘uz 2
4 23Bz 2 “:“ 7 B2y B4—~—B l‘u,‘l -
%<B4 HBW — Ao B*+ Iu i )32 - 67)
12 7 B 4 B /B" — 11B%® ——M }
[B%»\BZ 18ﬂ>+ 2\ B b
BZV B4 23 BZIuZ _ %_#4 o 1 B4_ T5§ 2 2 1u4 B
24 32 — Ju? A T—Bz< B* + T—g,u ) - (38)

D1V1d1ng out the fractions and neglecting powers of x* and h1gher these equations smlphfy to
the following form :

<+932)+ <+g%>_ —__<1 332}4_%(1 932)3 B

(+9B2 ({jr%_@>'—bz=g_;y(l 932>A 2(1—%%22)32. - 10
- 9B/

The flapping coefficients a, and &, can be evaluated 1ndependent1y for any given second harmonic
control application or alternatlvely a generalised form can be derived by combining equations
(39) and (40) to give the ratio of the flapping amplitude to the applied second harmonic control
amplitude together with the corresponding phase relationship. ,

The amplitude ratio is given by

YN, G Rd (o ) R

AFF B2 ‘B%(l 5 Bz> + 3 ( . )
) 9B2

7




If the azimuth. phase angle of the flapping is denoted by u; and the corresponding phase of
the second harmonic control by v,, where these angles are the actual azimuth positions on the
disc

tan21pf=2-2 .. .. .. .. .. (42
2
tan2w5=%. . .. .. . ce .. (48)
, *
Evaluating from equations (89) and (40)
[ 1—7&
B* 9 B* )
KOt b | e (44)
{ 3B

. The amplitude and phase angle of the flapping depend mairily on the blade inertia number.

The tip speed ratio and the tip loss have minor effects. It is perhaps useful to obtain-a physmal
picture of the main results by putting p = 0 and B, = 1.

Then

;

(45)

e

Yy — Y, == tan“1< 12) (46)

Considering fwo limiting cases for the inertia number, (i) as y — 0 the amplitude ratio— 0
and y; — y,—>x/2 and (i) as y->oo the amplitude ratio —» 0-5 and v, — y,—> nwf4. For
0 <y <o, w/2> yp; — y, > x4, ie., the flapping follows the second harmomc control. The
example discussed later illustrates this in greater detail.

The incidence at any point along the blade is given by equation.(9). The change in incidence
distribution due to the apphcatlon of the second harmonic control is given by :

ooy = — A, cos 2y — B, sin 2y
pcosy o
_ m( a cqs 29 — b, sin 2y)
x
S S— — 2 2 .. .. .. (47
¥ T asm 1‘0(2012 sin 21/) by cOS 2v) (47)

where 4, and b, are the coefficients of the flapping motion due to-the application of 4, and B, -
and are given by equations (39) and (40). The distribution varies along the blade as well as with
azimuth position. The general solution can only be obtained by plotting 1nc1dence contours over
the disc for given values of z and second harmonic control coefficients.

However, while any particular example must be evaluated as above, it is possible by suitable
approximation to obtain a simple expression giving the general effect. The value of  does not
have a serious influence in equation (47) (eXCept near the root. of the blade) and the general order
of the incidence is given by :

oy 2= — Ay cOS 29 — B, sin 2y .
— 2a, sin 2y + 2b, cos 2y . . .o .. o (48)
8



Again, we use approximations of the expressions for a, and b, given in equations (39) and
(40) viz. : :

_%AZ_lBZ

RS y24 R 7'
7 Tz

and

YA, — 1B ‘ . ‘
247 PR

52_@_. R €= 1)
y 12

Evaluating in terms of the ratio of incidence amplitude to feathering amplitude and the
corresponding phase angle '

oy ~ 1
VA Tl (3] o
wa—wca%tan—l(_.l% P (%)

Thus, for ordinary blades with an inertia number of about 12, the incidence to feathering
amplitude is about 1/4/2, 4.e., about 70 per cent of the control pitch becomes useful incidence.

If we consider the limiting cases, heavy blades (y — 0) have practically no flapping and the
total control input appears as incidence whereas for very light blades (y — o) the flapping motion
is such as to cancel out the control input and results in no change of incidence. The approximate
values of incidence and flapping amplitude are plotted in Fig. 1.

3. Numerical Evaluation.—The expressions for a, and b, due to the second harmonic control
A, and B, are given in equations (39) and (40) and are functions of the blade inertia number y,
the tip speed ratio s, 4, and B,. Instead of presenting evaluations of 4, and b, independently,
it is much more convenient to express the resultant flapping in terms of the amplitude ratio as
given by equation (41) and the phase angle between the flapping and applied second harmonic
control as given by equation (44). These parameters are plotted against the blade inertia number
for a range of tip speed ratios in Figs. 2 and 3, taking B = 0-97.

An extensive range of blade inertia numbers is taken to assist in the general interpretation of
the control effects but for most helicopters the blade inertia number will lie in the range 8 to 12.
A range of tip speed ratio from 0 to 0-6 is taken but it must be remembered that blade stalling
is not taken into account, so that for many practical examples the higher part of the range may
not be strictly applicable. -

In the case of the incidence distribution, there is a variation along the blade in addition to the
other variables which occur in the flapping motion. It is therefore impossible to give any gener-
alised evaluations and each particular case must be considered independently and estimated from
equation (9) or, if only the difference due to the second harmonic control is required, equation (47)
may be used.

To give some idea of the order of the incidence variation produced by the second harmonic
control, equation (51) has been evaluated and the amplitude has been plotted in Fig. 1, together
with the corresponding flapping amplitude. It will be seen from Fig. 1 that, for very heavy blades
(y — 0), there is practically no flapping and the incidence change is almost equivalent to the

9



applied feathering. For very light blades (y — o), the flapping virtually cancels out thé feathering
and no change in incidence is produced. For normal helicopter blades (y about 12) the resultant
incidence produced is about 70 per cent of the feathering input. The value for phase angle given
in equation (52) is the same as for the flapping in equation (46) but in this case the applicable
rahge is from 0 to — 45 deg, 7.¢., the incidence follows 90 deg after the flapping.

In order to give some idea of the influence of the second harmonic control in suppressing blade
stalling, a particular example has been evaluated. A representative rotor is considered at a tip
speed ratio of 0-4. The incidence distribution for this rotor is shown in Fig. 4, and the conditions
have been chosen such that the incidence over large area on the retreating side exceeds 16 deg,
a value which is generally accepted as a limiting condition for flight. Fig. 5 gives the incidence
distribution for the same rotor under similar conditions but with the second harmonic control
applied in such a way as to reduce the large incidences on the retreating side, the second harmonic
control amplitude being 6 deg. Fig. 6 shows, on a unit basis, the incidence changes which are
obtained for second harmonic control applied at the.appropriate phase angle to provide the
resultant effects as given by Fig. 5. ' o '

Since the incidence distributions in Figs. 4, 5 and 6 are somewhat complicated, it may be easier
to appreciate the general effects of the second harmonic control by taking the approximate
solutions as illustrated in Fig. 7. The second harmonic control with unit amplitude is plotted at
the appropriate phase angle to give maximum reduction of incidence in the 270 to 300 deg region.
The maximum flapping angle amplitude is about 30 per cent of the control angle, the flapping
occurring about 70 deg later. The flapping angular velocity has been divided by £ and is therefore
in the form of the incidence changes due to flapping. Subtracting this from the control pitch
application gives the resultant incidence, viz., about 75 per cent of the control input at a phase
angle of about 20 deg before the control. These approximate values in Fig. 7 compare reasonably
well with the distribution for the outer sections of the blade in Fig. 6. - »

4. Rotor Tower Test.—In his paper on the Sikorsky rotor tower?, Jensen describes a-test.on
an S-52 metal blade where second harmonic control was applied in an attempt to introduce
vibratory stresses similar to the flight stresses. This idea was discussed in more detail in an
earlier paper by Winson on rotor fatigue life®. An example of the records of flapping due to the
second harmonic control is given in Fig. 12 of Ref. 2 and this record has been analysed as a check
on the theory presented in this report. - o ‘ R

" The rotor tower test was analysed into the usual form of a Fourier series, the terms showing
the usual coning angle, a first harmonic, 7.e., tilt due to wind speed on the tower, the predominant
second harmonic flapping and negligible amplitudes for the higher harmonics. The blades under
test were the S-52 metal main rotor blades which have an inertia number of 9-3, baséd on a lift
slope of 5-6. :

The tower test gives an amplitude ratio of flapping of 0-27 at a phase angle of 74 deg. Usiné
the curves of Figs. 1 and 2, the corresponding theoretical estimates are 0.28 and 73 deg giving
exceptionally good agreement with the practical test. ' o '

" 5. Discussion.—The calculations of the blade flapping motion due to an imposed second
harmonic control show that the resultant amplitude and phase angle are mainly a function of
blade inertia number. ~This is in contrast to the effect of first harmonic control which imposes a
flapping motion‘with amplitude and phase angle independent of inertia number. If we restrict
our attention in Figs. 2 and 3 to the range of inertia numbers for the ordinary helicopter blades,
viz., from 8 to 12, the amplitude ratio only varies from 0-25 to 0-33 and the phase angle from
75 to 70 deg. 'Thus, for ordinary helicopter blades the results do not depend critically on inertia
number. On the practical side, we have the rotor tower test which verifies the calculations,
giving agreement within the experimental accuracy of the tests. '

Considering now the variations with tip speed ratio, we find these are very small. Thus, for
most purposes, the positioning of the second-harmonic control in relation to the rotor azimuth

10



need not be altered with the flight conditions: There is no-direct experimental evidence available
on this point but, remembering that the calculations of the second harmonic of flapping due to
forward speed show general agreement with experimental results, there is reason to suppose that
similar results can be expected in the present conditions.

The use of a second harmonic control could have several applications : :
(a) the elimination of the inherent second-order flapping due to forward speed
(b) the reproduction during ground-testing of stresses measured in forward flight cases
(c) the redistribution of loading on the disc to avoid the blade stalling conjditioné limiting
forward speed.

With regard to (a), such a control might be of some use on a two-bladed rotor but for rotors
with three or more blades there is no indication that the inherent second-order flapping has any
serious effects on the helicopter characteristics.

With regard to (), this form of control would be of Véfy 1imited use, since the second harmonic
does not appear to introduce any serious stress variations* and the natural blade bending frequency
seems to be a much more critical condition.

‘The redistribution of loading over the disc could be an important factor in relation to the
forward speed limitations imposed by stalling of the retreating blade. -~ = -

The example given in Figs. 4 and 5 illustrates the marked effect that such a control can have
in reducing the high incidences over the retreating sector of the disc. This is, of course, only a
temporary remedy but it does indicate that forward speeds of the helicopter could beincreased by
the equivalent of about 0-1 on tip speed ratio, as far as blade stalling limitations are concerned,
if there is sufficient engine power available to meet this increase. On the other hand, it does
imply further complication to the rotor head, which may be an undesirable feature at the present
stage of helicopter development as the mechanical reliability is still somewhat suspect.

As mentioned earlier, oscillating forces are required to apply the second harmonic pitch angles
to the blade and the stressing conditions, which these forces apply to the swash plate, bearings,
etc: and their tendency to twist the blade, will require some analysis. Also, the larger flapping
angles in the higher harmonics may introduce appreciable Coreolis forces which might cause some
effects on the in-plane motion of the blades.

There is practically no effect on the general rotor performance with the second harmonic
control applied. The reduction of the large incidences on the retreating side gives some reduction
in profile drag in that sector. The torque required is decreased to a small extent but this is partly
offset by an increase in the rotor H-force. The net result is that the performance remains about
the same and the main influence of the control is to allow higher forward speeds by suppressing
the high incidences on the retreating side.

6. Conclusions.—6.1. A theory has been developed to calculate the flapping and incidence
distribution imposed on a rotor by a second harmonic control.

6.2. The flapping amplitude and phase angle depend mainly on blade inertia number and to a
small extent on tip speed ratio. For the range of ordinary blades the variation in the results

is not large.

6.3. A rotor tower test shows excellent agreement with this theory. ' N
" 6:4. Thé second harmonic control is a means for redistributing the loading on a rotor disc and
could be utilised to postpone the forward speed limitations due to stalling of the retreating blade.

et d
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LIST OF SYMBOLS
a Lift slope for blade

@, Coning angle

%, az} Coefficients in Fourier series for flapping angle
1, Y2 :
‘él’ ‘gz} Coefficients in Fourier series for pitch angle
1 2
B Factor to allow for tip loss, taken as 0-97
¢ Blade chord
I Moment of inertia of blade about flapping hinge
M Aerodynamic moment about flapping hinge
R Blade radius
% = 7[R, fraction of blade radius
o Blade incidence
Kogr Incidence due to second harmonic control
8 Flapping angle
4
y = P aIcR , blade inertia number
. 1 -
Y Blade azimuth angle
Yoo V5o Y Phase angles for second harmonic control and resulting flapping and
incidence
B Blade pitch angle
i Coefficient of flow through the disc
@ Tip speed ratio
Q Rotor angular velocity
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