MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL REPORTS AND MEMORANDA

Theoretical Loa Distributions on Fin-Body-Tailplane Arrangements in a Side-wind

By
J. Weber, Dr.rer.nat., and A. C. Hawk, B.A.

Crown Copyright Reserved

LONDON : HER MAJESTY'S STATIONERY OFFICE 1957

Theoretical Load Distributions on Fin-Body-Tailplane Arrangements in a Side-wind

By
J. Weber, Dr.rer.nat., and A. C. Hawk, B.A
Communicated by the Principal Director of Scientific Research (Air), Ministry of Supply

Reports and Memoranda No. 2992*
August, 1954

Abstract

Summary.-A theory has been developed for calculating the distributions of sideforce and lift on fin-fuselage-tailplane arrangements in a side-wind but with the tailplane set at zero incidence. The analysis is limited to incompressible flow and has been further simplified by assuming that the geometrical arrangement is in each case such as to give constant induced sidewash. The results, which can be extended to other arrangements and to compressible subb-critical flow, are required for stability and stressing analyses. This paper is a continuation of an earlier note by the first author (Ref. 1), where the interference between fin and fuselage was considered. The addition of the tailplane introduced into the present report brings considerable changes in the load distribution as well as in the overall forces. The actual calculation procedure is very simple and quick since the main functions needed are presented in tables and charts for representative cases. The results for other geometrical arrangements can be obtained by interpolation.

1. Introduction.-The work described in this report belongs to a series of investigations of the mutual interference between the separate parts of combinations of lifting surfaces and bodies. This interference problem can be divided into two major parts: (i) the determination of the pressure distribution when the wing and body are at zero incidence (thickness effect) ; (ii) the determination of the load distribution when the wing is at a finite angle (either incidence or side-wash). Only the second problem is treated here ; it can easily be solved for arrangements, for which the resulting trailing vortex system produces constant induced velocity along the wing span. In this case the load distribution can be calculated from the two-dimensional flow around the cross-section of the wake in the Trefftz-plane (which is situated far behind the wing for wings of large aspect ratio), if the induced velocity is known. The latter is determined from the given characteristics of the wing; i.e., plan-form, angle of sweep and sectional lift slope.

This method has been applied by Nagel and Mangler ${ }^{2,3}$ and Falkner and Darwin ${ }^{4}$ to wings with end plates, by Rotta ${ }^{5}$ to wings with single plates, by Hartley ${ }^{6}$ to wings with tip tanks and by the first author to wings with fences ${ }^{7}$ and to fin-fuselage arrangements ${ }^{1}$. The method is used in the present report to determine the load distribution for fin-tailplane-fuselage combinations. Recent experimental investigations are reported in Refs. 8 and 9.

Comparison with experimental results has demonstrated that the theoretical results obtained for combinations which give constant induced velocities can successfully be used to estimate the additional load distributions for other combinations. In Ref. 9 it has been shown for fin-fuselage

[^0]combinations without tailplane that the side-force distribution along the height of the fin and fuselage can be obtained with sufficient accuracy from the theoretical load distributions on a wing with a cylindrical body at one end, by adding the difference between the side-force calculated for a constant induced side-wash arrangement and the side-force for the isolated fin which gives constant induced side-wash to the side-force distribution on the given fin alone ${ }^{9}$. Differences between the side-forces on any given arrangement and those for the constant induced side-wash arrangement can be appreciable only when the aspect ratio is large. They will become smaller as the aspect ratio A is decreased, and in the limiting case $A \rightarrow 0$ the theory is exact for any arrangement. Experimental evidence has also shown that the fuiselage need not be strictly cylindrical in the neighbourhood of and behind the fin to allow the application of the theoretical results which were obtained for cylindrical bodies. This means that the shape of the wake immediately behind the trailing edge matters most and not any alterations far behind; this is consistent with the fact that, for ordinary wings, the rolling-up of the trailing vortices far downstream can be ignored when calculating the induced velocity at the wing.

This report gives the side-force distributions along the height of fin and body and the spanwise lift distribution on tailplane and body for fin-tailplane-fuselage arrangements in a pure side-wind. The main flow is at zero incidence with respect to the axis of the fuselage. The fuselage is of circular cross-section, it is assumed to be cylindrical near the wing, and this cylindrical part is assumed long enough to ensure that the wake behind the system has the shape of a spanwise cross-section through fin-tailplane-fuselage. The tailplane can be attached either to the fuselage or to the fin. The method is applicable to tailplanes of straight cross-section without dihedral, except for tailplanes positioned near the fin-fuselage junction in which case the conformal transformation requires a curved cross-section. The chord of the tailplane is assumed to be about the same as that of the fin.

Numerical values of the induced side-wash, the side-force and the lift distributions are given in charts and tables for a series of representative cases. Tailplanes of various spans, varying from zero to three times the height of the fin outside the body, are considered at four spanwise positions: at the body centre-line, at the top of the fin and at 0.5 and 0.75 times the fin height away from the fin-fuselage junction. The body diameter varies between zero and the fin height. The special case of zero body diameter which has been treated by Rotta ${ }^{5}$, and the case of zero tailplane span, dealt with in Ref. 1, are included. They are treated here by simpler conformal transformations than those of Refs. 1 and 5. The provision of these charts and tables means that the actual computation which remains to be done in any particular case is very small. The geometrical configurations considered should be sufficient to enable most practical cases to be calculated by interpolation.

Though the calculations are restricted to incompressible flow, the results can be applied to sub-critical compressible flow by employing the well-known Prandtl-Glauert procedure.

The same transformations of the Trefftz-plane can be used when calculating the load distribution for a main flow which has a side-wash angle and an incidence. This report deals with the case of zero incidence only. The general problem with the main flow at an angle of incidence and side-wash has been treated by Bryson ${ }^{10}$ and Landah1 ${ }^{11}$ for the special case of a tailplane along the line of symmetry of the body by employing the slender-body theory.
2. The Potential Function of the Flow in the Trefftz-Plane.-The force distribution over the body, fin and tailplane is proportional to the local difference of the potential function on either side of the vortex sheet in the Trefftz-plane. To determine the flow in the Trefftz-plane is a twodimensional problem, which can be solved by conformal transformation. The wake contour in the Trefftz-plane is moving with constant velocity $y_{y_{\infty}}$ in the direction of the tailplane span. The flow around the moving wake contour is equal to the one around the non-moving contour in a parallel flow of velocity $-v_{y_{\infty}}$, on which is superimposed a parallel flow of velocity $v_{y_{\omega}}$.

First, a conformal transformation is determined which transforms the flow around the wake contour into the flow past a flat plate parallel to the uniform stream - $v_{y_{\infty}}$, for which the potential function is known.

A rectangular system of co-ordinates x, y, z is chosen, with the x-axis along wind, the z-axis along the line of symmetry, and the origin on the body axis (see Fig. 1). Let R be the radius of the body, h the height of the fin outside the body, b the total span of the tailplane, and h_{1} its distance from the body-fin junction, measured positively from body-fin junction to body-tailplane junction. Then the wake contour in the Trefftz-plane, $x=\infty$, may be taken as the circle $y^{2}+z^{2}=R^{2}$, the line $y=0, R<z<R+h$ and the line $z=R+h_{1},-b / 2<y<b / 2$. To obtain dimensionless parameters all lengths are divided by h and throughout the section describing the conformal transformation R, b, h_{1}, y and z are written for $R / h, b / h, h_{1} / h, y / h$ and z / h.

The transformation is performed in four steps. The position of certain points on the contour and their transforms are shown in Fig. 1, and the co-ordinates of the points are given in Table 1. The case of the tailplane lying in the line of symmetry of the body allows some simplification and is therefore dealt with separately in section 7.

In the first step, the ζ-plane where

$$
\begin{equation*}
\zeta=y+i z . \tag{1}
\end{equation*}
$$

is transformed into the ζ_{1}-plane so that the circle ABCA is transformed into a slit along the z_{1}-axis from A_{1} to C_{1}. This is done by the transformation,

$$
\begin{equation*}
\zeta_{1}=\zeta-\frac{R^{2}}{\zeta} . \quad . . \tag{2}
\end{equation*}
$$

This transforms the fin CG into the z_{1}-axis from C_{1} to G_{1} and the tailplane EFJ into a curve $\mathrm{E}_{1} \mathrm{~F}_{1} \mathrm{~J}_{1}$. In the next transformation this curve is approximated by the arc of a circle through the points $\mathrm{E}_{1}, \mathrm{~F}_{1}, \mathrm{~J}_{1}$. This means that the tailplane for which the calculations are performed is not exactly straight.

To show the accuracy of this approximation, a few tailplane shapes are plotted in Fig. 2, which become circular arcs in the ζ_{1}-plane by the transformation of equation (2). The results are given for arrangements with large body diameter compared with the height of the fin, since for these cases the deviations from a straight tailplane become larger than for small bodies. The figure shows that in those cases where the tailplane is not near the fin-body junction the difference between the calculated tailplane and the straight tailplane is negligible.

For tailplanes near the fin-body junction, the tailplane shapes that lead to circular arcs in the ζ_{1}-plane are not straight. This is no serious drawback for the practical application of the present calculation method since a straight tailplane on top of a fuselage of circular cross-section does not seem to be an aerodynamically good arrangement in view of the acute angle that would be formed at the tailplane-fuselage junction. For a tailplane near the fuselage-fin junction one will, therefore, either design a fuselage which has a non-circular cross-section in the neighbourhood of fin and tailplane or take a tailplane that is not straight. This means that tailplane shapes as in Fig. 2 are probably still reasonable for estimating the effect of the tailplane on the side-forces on fin and body. For the design of tailplanes near the top of the fuselage the shape of neutral tailplanes which do not affect the flow around fin and fuselage alone are of interest. Such shapes are plotted in Fig. 14.

By the second transformation the circular arc $E_{1} F_{1} J_{1}$ is transformed into a full circle and the z_{1}-axis from A_{1} to D_{1} and F_{1} to G_{1} into the z_{2}-axis from A_{2} to D_{2} and F_{2} to G_{2}. The transformation is:

$$
\begin{equation*}
\zeta_{1}-i z_{\mathrm{E} 1}=\zeta_{2}+\frac{y_{\mathrm{E1}}^{2}}{4} \frac{1}{\zeta_{2}} . \quad . \quad \ldots \quad . \quad . \quad . \quad \text {.. ... } \tag{3}
\end{equation*}
$$

With

$$
\begin{equation*}
x=z_{\mathrm{E} 1}=\frac{\left(h_{1}+R\right)\left[h_{1}{ }^{2}+2 h_{1} R+2 R^{2}+(b / 2)^{2}\right]}{\left(h_{1}+R\right)^{2}+(b / 2)^{2}} \quad \ldots \quad . \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda=y_{\mathrm{E} 1}=\frac{(b / 2)\left[h_{1}{ }^{2}+2 h_{1} R+(b / 2)^{2}\right]}{\left(h_{1}+R\right)^{2}+(b / 2)^{2}} \quad \ldots \quad . . \tag{5}
\end{equation*}
$$

equation (3) can be written in the form:

$$
\begin{equation*}
\zeta_{2}=\frac{1}{2}\left[\zeta_{1}-i x \mp \sqrt{ }\left\{\left(\zeta_{1}-i x\right)^{2}-\lambda^{2}\right\}\right] \ldots \quad \ldots \quad . . \tag{6}
\end{equation*}
$$

The minus sign holds for points on the z_{1}-axis below D_{1} and for the lower side of the circular arc, the positive sign for points on the z_{1}-axis above F_{1} and for the upper side of the circular arc.

The circle in the ζ_{2}-plane has the centre:
and the radius

$$
\begin{equation*}
\zeta_{2}=i \frac{\mu}{2}=i \frac{z_{\mathrm{D} 2}+z_{\mathrm{F} 2}}{2}=i \frac{R^{2}(b / 2)^{2}}{2\left(h_{1}+R\right)\left[\left(h_{1}+R\right)^{2}+(b / 2)^{2}\right]} \tag{7}
\end{equation*}
$$

and the

$$
r=\frac{z_{\mathrm{F} 2}-z_{\mathrm{D} 2}}{2}=\frac{1}{2} \sqrt{ }\left(\mu^{2}+\lambda^{2}\right)
$$

In the next step the circle is transformed into a straight line along the z_{3}-axis by the transformation

$$
\begin{equation*}
\zeta_{3}=\zeta_{2}-i \frac{\mu}{2}-\frac{1}{4} \frac{\mu^{2}+\lambda^{2}}{\zeta_{2}-i \frac{\mu}{2}} . \quad . \quad . \quad . . \quad . . \tag{8}
\end{equation*}
$$

Thus the whole wake contour is transformed into a slit along the z_{3}-axis from A_{3} to G_{3}.
Finally, this slit is transformed into a slit along the y_{4}-axis by the transformation:

$$
\begin{equation*}
\left.\zeta_{4}=\sqrt{\{ }\left(\zeta_{3}+i \frac{\varrho-\sigma}{2}\right)^{2}+\left(\frac{\varrho+\sigma}{2}\right)^{2}\right\} \quad \ldots \quad . \quad \ldots \quad . \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\varrho=-z_{\mathrm{A} 3}=+\frac{1}{2}\left[2 R+x+\mu+\sqrt{ }\left\{(2 R+x)^{2}+\lambda^{2}\right\}+\frac{\mu^{2}+\lambda^{2}}{2 R+x+\mu+\sqrt{ }\left\{(2 R+x)^{2}+\lambda^{2}\right\}}\right] \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma=z_{G 3}=\frac{1}{2}\left[\tau-x-\mu+\sqrt{ }\left\{(\tau-x)^{2}+\lambda^{2}\right\}+\frac{\mu^{2}+\lambda^{2}}{\tau-x-\mu+\sqrt{ }\left\{(\tau-x)^{2}+\lambda^{2}\right\}}\right] \quad . \tag{11}
\end{equation*}
$$

with

$$
\begin{equation*}
\tau=z_{\mathrm{G} 1}=\frac{1+2 R+2 R^{2}}{1+R} . \quad . \quad . \quad . . \quad . \quad . \quad . \quad . . \quad . \quad \text {.. } \tag{12}
\end{equation*}
$$

Thus the relation between points on the wake contour and on the slit in the ζ_{4}-plane is known. Points on the wake contour correspond to points on the z_{3}-axis. For any point on the body where $-R \leqslant z \leqslant R, y=\sqrt{ }\left(R^{2}-z^{2}\right)$, the relation reads:

$$
\begin{equation*}
z_{3}=\frac{1}{2}\left[2 z-x-\mu-\sqrt{ }\left\{(2 z-x)^{2}+\lambda^{2}\right\}+\frac{\mu^{2}+\lambda^{2}}{2 z-x-\mu-\sqrt{ }\left\{(2 z-x)^{2}+\lambda^{2}\right\}}\right] \tag{13}
\end{equation*}
$$

and for any point on the fin, where $y=0, R \leqslant z \leqslant R+1$, the relation is:

$$
\begin{align*}
z_{3}= & \frac{1}{2} \\
& {\left[\frac{z^{2}+R^{2}}{z}-x-\mu \mp \sqrt{ }\left\{\left(\frac{z^{2}+R^{2}}{z}-x\right)^{2}+\lambda^{2}\right\}\right.} \tag{14}\\
& +\frac{\mu^{2}+\lambda^{2}}{\left.\left.\frac{z^{2}+R^{2}}{z}-x-\mu \mp \sqrt{\left\{\left(\frac{z^{2}+R^{2}}{z}-x\right)^{2}+\lambda^{2}\right.}\right\}\right]}
\end{align*}
$$

with the negative sign holding for points of the fin between the body and tailplane

$$
R \leqslant z \leqslant R+h_{1}
$$

and the positive sign for points outside

$$
R+h_{1} \leqslant z \leqslant R+1
$$

The relation between corresponding points on the z_{3}-axis and the y_{4}-axis reads:

$$
\begin{equation*}
y_{4}= \pm \sqrt{ }\left\{-z_{3}^{2}-(\varrho-\sigma) z_{3}+\varrho \sigma\right\} . \tag{15}
\end{equation*}
$$

For the tailplane which has been replaced by a curve differing slightly from the straight line $z=R+h_{1}$, points of the same y-value on the actual and the replacement tailplane are correlated We find corresponding points on the tailplane and the y_{4}-axis by the relations:

$$
\begin{align*}
& z_{3}=\frac{1}{2}\left[-(\varrho-\sigma) \pm \sqrt{ }\left\{(\varrho+\sigma)^{2}-4 y_{4}^{2}\right\}\right] \tag{16}\\
& y_{1}=\frac{1}{2} \sqrt{\left\{\mu^{2}+\lambda^{2}-z_{3}^{2}\right\}\left[1+\frac{\lambda^{2}}{2 \mu^{2}+2 \mu z_{3}+\lambda^{2}}\right] .} \tag{17}\\
& z_{1}=x+\frac{1}{2}\left(z_{3}+\mu\right)\left[1-\frac{\lambda^{2}}{2 \mu^{2}+2 \mu z_{3}+\lambda^{2}}\right] \tag{18}\\
& y=\frac{1}{2}\left[y_{1} \pm \sqrt{\left.\left\{\frac{1}{2}\left(y_{1}{ }^{2}-z_{1}{ }^{2}+4 R^{2}+\sqrt{ }\left\{\left(y_{1}{ }^{2}-z_{1}{ }^{2}+4 R^{2}\right)^{2}+4 y_{1}{ }^{2} z_{1}^{2}\right\}\right)\right\}\right] .}\right. \tag{19}
\end{align*}
$$

In equation (16) the positive sign has to be taken throughout, if $(\varrho-\sigma) / 2>\sqrt{ }\left(\mu^{2}+\lambda^{2}\right)$, i.e., if the mid-point of $A_{3} G_{3}$ lies below D_{3} (see Table 1). Points on the upper side of the tailplane (EF) are obtained for:

$$
\begin{equation*}
\sqrt{ }\left[-\mu^{2}-\lambda^{2}-\sqrt{ }\left\{\mu^{2}+\lambda^{2}\right\}(\varrho-\sigma)+\varrho \sigma\right]<\left|y_{4}\right|<\sqrt{ }\left[-\mu^{2}+(\varrho-\sigma) \mu+\varrho \sigma\right] \quad . \tag{20}
\end{equation*}
$$

and points on the lower side (DE) for:

$$
\begin{equation*}
\sqrt{ }\left[-\mu^{2}+(\varrho-\sigma) \mu+\varrho \sigma\right]<\left|y_{4}\right|<\dot{\sqrt{\prime}}\left[-\mu^{2}-\lambda^{2}+\sqrt{ }\left\{\mu^{2}+\lambda^{2}\right\}(\varrho-\sigma)+\varrho \sigma\right] . . \tag{21}
\end{equation*}
$$

If

$$
\mu<\frac{\varrho-\sigma}{2}<\sqrt{ }\left(\mu^{2}+\lambda^{2}\right),
$$

i.e., if the mid-point of $A_{3} G_{3}$ lies between D_{3} and E_{3}, the points corresponding to the tailplane lie partly on the upper side of the slit along the y_{4}-axis and partly on the lower side. Points on the upper side of the tailplane are again obtained for y_{4}-values corresponding to equation (20), for which the positive sign in equation (16) is taken. For y_{4}-values in the range

$$
\begin{equation*}
\sqrt{ }\left[-\mu^{2}+(\varrho-\sigma) \mu+\varrho \sigma\right]<\left|y_{4}\right|<\frac{\varrho+\sigma}{2} \tag{22}
\end{equation*}
$$

and the positive sign in equation (16) part of the lower side of the tailplane is obtained. The remaining part corresponds to

$$
\begin{equation*}
\sqrt{ }\left[-\mu^{2}-\lambda^{2}+\sqrt{ }\left\{\mu^{2}+\lambda^{2}\right\}(\varrho-\sigma)+\varrho \sigma\right]<\left|y_{4}\right|<\frac{\varrho+\sigma}{2} \quad \cdots \tag{23}
\end{equation*}
$$

and the negative sign taken in equation (16).

With all transformations the behaviour at infinity is unchanged, this means that in the ζ_{4}-plane the flow at infinity is the same parallel flow with velocity $-v_{y_{\infty}}$ as in the original ζ-plane. Since the slit in the ζ_{4}-plane lies along the parallel flow, the potential function for the flow around the fixed wake contour is

$$
F_{1}(\zeta)=\phi_{1}+i \psi_{1}=-v_{y \infty} h \zeta_{4} .
$$

To obtain the flow around the moving wake we superimpose the potential for a parallel flow of velocity $v_{y_{\infty}}$ in the ζ-plane

$$
F_{2}(\zeta)=v_{y_{\infty}} h \zeta,
$$

so that the total potential function for the wake moving with a velocity $v_{y_{\infty}}$ is given by

$$
\begin{equation*}
\phi(y, z)=\phi_{1}+\phi_{2}=-\left[y_{4}(y, z)-y\right] v_{y_{\omega}} h \tag{24}
\end{equation*}
$$

where equations (13) to (15) give the relations between (y, z) and y_{1} for points on the body and fin and equations (16) to (19) the relations between y and y_{4} for the tailplane.
3. The Side-force Distribution on Fin and Body and the Overall Side-force Coefficient.-From the known flow in the Trefftz-plane the strength of the trailing vortices can be determined. The trailing vortices are related to the bound vortices on fin, fuselage and tailplane. Thus the latter can be calculated from the flow in the Trefftz-plane. The local side-force and lift are proportional to the difference of the potential function at corresponding points on the two surfaces of the vortex sheet in the Trefftz-plane.

The local coefficient of the side-force on the fin and body is given by the difference of the potential function in the wake, taken at two points of the same height:

$$
\begin{equation*}
C_{Y}=\frac{F_{Y}}{\frac{1}{2} \varrho V_{0}{ }^{2} C}=\frac{2}{c V_{0}}\left(\phi_{\text {left }}-\phi_{\mathrm{rght}}\right) \quad \ldots \tag{25}
\end{equation*}
$$

where c is the local chord, used as reference chord for the local side-force coefficient C_{Y}, and V_{0} is the velocity of the main flow. From equations (24) and (25) for the fin, $R<z<R+h$:

$$
\begin{equation*}
C_{Y F}(z) c(z)=4 \frac{v_{y_{\infty}}}{V_{0}}\left|y_{4}(z)\right| h \quad \ldots \tag{26}
\end{equation*}
$$

and for the body, $|z|<R$:

$$
\begin{equation*}
C_{Y B}(z) \cdot c=4 \frac{v_{y \infty}}{V_{0}} h\left[\left|y_{4}(z)\right|-\sqrt{ }\left\{\left(\frac{R}{h}\right)^{2}-\left(\frac{z}{h}\right)^{2}\right\}\right] \tag{27}
\end{equation*}
$$

The coefficient of the overall side-force on the fin $\vec{C}_{Y_{F}}$ is obtained by integration. Referring $\bar{C}_{Y F}$ to the fin area $h \bar{c}_{F}$, where \bar{c}_{F} is the mean fin chord:

$$
\begin{equation*}
\bar{C}_{Y_{F}} \bar{c}_{F}=\int_{R / h}^{(R / h i)+1} C_{Y F} c d\left(\frac{Z}{h}\right) \tag{28}
\end{equation*}
$$

we find

$$
\begin{equation*}
\bar{C}_{Y_{F}}=\frac{v_{y_{\infty}}}{V_{0}} A_{F} J_{Y F} \quad . \tag{29}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{F}=\frac{h}{\overline{c_{F}}} \tag{30}
\end{equation*}
$$

is the aspect ratio of the fin, and

$$
\begin{equation*}
J_{Y F}=4 \int_{R / b}^{(R / / 3)+1}\left|y_{4}(z)\right| d\left(\frac{z}{h}\right) . \tag{31}
\end{equation*}
$$

$J_{Y_{F}}$ is a function of $R / h, b / h$ and h_{1} / h but independent of the aspect ratio. Values of $J_{Y F}$ are plotted in Figs. 4 a to 4 d .

The overall side-force on the body, also referred to the fin area $h \bar{c}_{F}$, is

$$
\begin{equation*}
\bar{C}_{Y_{B}}=\frac{v_{y \infty}}{V_{0}} A_{F} J_{Y B} \quad \ldots \quad . . \quad . \quad . \quad . \quad . \quad . \quad . \tag{32}
\end{equation*}
$$

with

$$
\begin{align*}
J_{Y B} & =4 \int_{-R / h}^{R / h}\left[\left|y_{4}(z)\right|-\sqrt{ }\left\{\left(\frac{R}{h}\right)^{2}-\left(\frac{z}{h}\right)^{2}\right\}\right] d\left(\frac{z}{h}\right) \\
& =4 \int_{-R / h}^{R / h}\left|y_{4}(z)\right| d\left(\frac{z}{h}\right)-2 \pi\left(\frac{R}{h}\right)^{2} . \quad \ldots \tag{33}
\end{align*}
$$

$J_{Y_{B}}$ also is a function of $R / h, b / h$ and h_{1} / h and independent of A_{F}. Values of $J_{Y_{B}} / J_{Y_{F}}$ are plotted in Fig. 5.

The shape of the spanwise force distribution on the fin is by equations (26) to (33):

$$
\begin{equation*}
\frac{C_{Y F}(z) c(z)}{\bar{C}_{Y F} \bar{c}_{F}}=\frac{4\left|y_{4}(z)\right|}{J_{Y F}} \quad \text {. } \tag{34}
\end{equation*}
$$

and for the body

$$
\begin{equation*}
\frac{C_{Y: B}(z) c}{\bar{C}_{Y F} \bar{c}_{F}}=4 \frac{\left|y_{4}(z)\right|-\sqrt{\left\{\left(\frac{R}{h}\right)^{2}-\left(\frac{z}{h}\right)^{2}\right\}}}{J_{Y F}} \tag{35}
\end{equation*}
$$

A few distributions of the side-force are plotted in Figs. 6a to 6c. For the fin, values of $C_{Y \dot{F}} c / \bar{C}_{Y F} \bar{c}_{F}$ for various tailplane positions, body diameters and tailplane spans are given in Table 2. For the body the local side-force divided by the value at the fin-fuselage junction $C_{Y B} c /\left(C_{Y B} c\right)_{\text {junction }}$ is tabulated in Table 3.

The flow in the Trefftz-plane and from that the local and the total side-force are known if the side-wash velocity $v_{y_{\infty}}$ at infinity is known. The value of $v_{y_{\infty}}$ cannot be determined from the conditions in the Trefftz-plane alone, but has to be related to the conditions at fin, body and tailplane. This will be done in the following section.
4. The Induced Side-wash Velocity.-The next step in the calculation procedure is to relate the induced velocity $v_{y_{o \infty}}$ in the wake to the sideways component βV_{0} of the main stream at the actual fin-tailplane position. For this purpose, the boundary condition at the fin can be used, which states that the sum of the induced side-wash and the effective side-wash produced by the bound vortices is equal and opposite to the geometric side-wash at the fin. The latter is the sum of $-\beta V_{0}$ and of - $\beta_{B} V_{0}$ which results from the cross-flow component of the flow around the isolated fuselage and which depends on the cross-sectional shape of the fuselage. The induced side-wash angle β_{i} at the fin-tailplane arrangement can be related to $v_{y_{\infty}}$, whereas the effective side-wash angle β_{ε} can be determined from the known distribution of the bound vortices. At this stage, the condition of constant induced side-wash can be expressed as requiring a certain 'plan-form ' of the fin.

The strength of the bound vortices and therefore the local side-force coefficient of the fin are proportional to the sectional lift slope $a(z)$, as defined in Ref. 12, and hence also to the effective side-wash angle β_{e} :

$$
\begin{equation*}
C_{Y F}(z)=\beta_{e}(z) a(z) \tag{36}
\end{equation*}
$$

The boundary condition gives

$$
\begin{equation*}
\beta_{e}=\beta+\beta_{B}-\beta_{i} \tag{37}
\end{equation*}
$$

where β is the geometric side-wash angle of the fin. The additional side-wash angle β_{B} which is produced by the flow around the isolated body, is as explained in Ref. 13,

$$
\beta_{B}=\beta \frac{1}{(z / R)^{2}} .
$$

In relating the induced side-wash $v_{y \infty} / V_{0}$ in the Trefftz-plane to the induced side-wash angle β_{i} on the actual fin-tailplane arrangement, we have to decide where the streamwise position of the Trefftz-plane is, since this has not yet been fixed. For fins of very large aspect ratio, the Trefftzplane is obviously infinitely far behind the arrangement and $\beta_{i}=\frac{1}{2} v_{y \infty} / V_{0}$. For fin-tailplanes of very small aspect ratio, the Trefftz-plane may be considered as a section through the actual fin-tailplane arrangement, following R. T. Jones ${ }^{14}$, and therefore $\beta_{i}=v_{y_{\infty} /} / V_{0}$. Generally, the side-wash angle β_{i} which the trailing vortices induce at the fin can be taken as proportional to the side-wash far downstream:

$$
\begin{equation*}
\beta_{i}=\frac{v_{y}}{V_{0}}=\frac{\omega}{2} \frac{v_{y \infty}}{V_{0}} . \tag{39}
\end{equation*}
$$

The value of ω depends on the chordwise load distribution and therefore mainly on the effective aspect ratio of the wing; $\omega=1$ for wings of large aspect ratio, $\omega=2$ for $A \rightarrow 0$. A method for calculating ω for isolated wings is given in Ref. 12. As discussed in Ref. 1, the same value of ω is taken for that part of the vorticity which is dependent on the geometric side-wash angle β as for the vorticity derived from the additional side-wash angle β_{B}, though the corresponding chordwise side-force distributions are different. A relation from which ω can be determined is given by equation (123) in section 8 of the present report.

Thus we obtain from equations (36) to (39) the following equation for the side-force coefficient:

$$
\begin{equation*}
\frac{C_{Y F}(z)}{\beta}=a(z)\left[1+\frac{1}{(z / R)^{2}}-\frac{\omega}{2} \frac{v_{y_{\infty}} / V_{0}}{\beta}\right] . \tag{40}
\end{equation*}
$$

This is another relation between $C_{Y F}$ and $v_{y_{\infty}}$ besides equation (26). The two relations together imply that, in order to obtain an arrangement which gives constant side-wash along the fin, the fin must have a certain planform. The variation of chord along the height of the fin which satisfies the condition of producing a constant side-wash distribution in the presence of fuselage and tailplane is found by combining equations (26) and (40):

$$
\begin{align*}
\frac{c(z)}{h} & =\frac{4 \frac{v_{y_{0} / V_{0}}^{\beta}}{\beta}\left|y_{4}(z)\right|}{a(z)\left[1+\frac{1}{(z / R)^{2}}-\frac{\omega}{2} \frac{v_{y{ }_{c o}} / V_{0}}{\beta}\right]} \\
& =\frac{\frac{8}{\omega} \frac{\beta_{i}}{\beta}\left|y_{4}(z)\right|}{a(z)\left[1+\frac{1}{(z / R)^{2}}-\frac{\beta_{i}}{\beta}\right]} . \tag{41}
\end{align*}
$$

The chord distribution is a function of β_{i} / β and known quantities. Integrating $c(z)$ along the fin height gives a relation between the unknown β_{i} / β and the known quantities $A_{F}, a(z), R / h$, b / h, and h_{1} / h :

$$
\begin{equation*}
\frac{\bar{c}_{F}}{h}=\frac{1}{A_{F}}=\frac{8}{\omega} \frac{\beta_{i}}{\beta} \int_{R / \hbar}^{[R / h i+1} \frac{\left|y_{4}(z)\right|}{a(z)\left[1+\frac{1}{(z / R)^{2}}-\frac{\beta_{i}}{\beta}\right]} d\left(\frac{z}{h}\right) \tag{42}
\end{equation*}
$$

To permit the evaluation of the integral in equation (42) we must know $a(z)$. For isolated wings the sectional lift slope is a function of the aspect ratio and for swept wings of the angle of sweep φ and the spanwise position (see Ref. 12). The attachment of a body to the wing alters not only the spanwise loading on the wing, but also the chordwise load distribution. This implies that the sectional lift slope is different from that of the wing alone. With fin-body-tailplane arrangements with straight fin the chordwise distribution of the side-force on the fin will be similar to that on an isolated fin of larger aspect ratio-the 'effective aspect ratio' $A_{e F}$-because the bound vortices are less curved on the fin in the presence of body and tailplane than on the fin alone.

This is due to the fact that some vortices continue along body and tailplane and less trailing vortices are leaving the fin. An estimate of the effective aspect ratio is given in section 8. For isolated swept wings the value of a is smaller at the centre and larger at the tips than the value $a_{s}=a_{0} \cos \varphi$ for an infinite sheared wing which holds at that part of the wing which is unaffected by centre and tip effects. On fin-body-tailplane arrangements with swept-back fin, the chordwise load distributions near the fin-fuselage and fin-tailplane junctions are similar to those at the centre of swept-back and swept-forward wings, i.e., the sectional lift slope is decreased near the body, increased at the tailplane junction near the body, decreased at the far side junction and increased at the tip compared with the value a_{s} that holds away from the junctions. The value a_{s} can therefore be taken as a mean value of $a(z)$.

The aim of this note is also to give calculated examples which are generally applicable. We require therefore a value of the integral in equation (42) which is independent of any special $a(z)$ variation. An approximate value is obtained by replacing $a(z)$ by a mean value a, for which a_{s} is appropriate. With $a_{s}=$ const.,

$$
\begin{equation*}
\frac{\omega a}{A_{F}}=8 \frac{\beta_{i}}{\beta} \int_{R / h}^{(R / h)+1} \frac{\left|y_{4}(z)\right|}{1+\frac{1}{(z / R)^{2}}-\frac{\beta_{i}}{\beta}} d\left(\frac{z}{h}\right) \tag{43}
\end{equation*}
$$

By this equation $\omega a / A_{F}$ is a function of $\beta_{i} / \beta, R / h, b / h, h_{1} / h$, all of which are given quantities, except β_{i} / β which is thus determined as a function of $\omega a / A_{F}$. The equation does not allow β_{i} / β to be expressed explicitly as a function of $\omega a / A_{F}, R / h, b / h, h_{1} / h$, but numerical values of the integral in equation (43) can be determined for various β_{i} / β and graphs prepared, from which β_{i} / β can be read when $\omega a / A_{F}, R / h, b / h$ and h_{1} / h are known. Such diagrams are given in Figs. 7a to 7 n .

For the side-force distribution over the body the discussion in Ref. 1 indicated that a side-wash factor $\omega_{B}=2$ seems generally more appropriate, and that as an approximation the two different values of ω and ω_{B} could be taken into account by subtracting from the side-force distribution in equation (35) the term:

$$
\begin{equation*}
\frac{\Delta C_{Y B} c}{\bar{C}_{Y F} \bar{c}_{F}}=-\frac{\omega_{B}-\omega}{\omega} \frac{4 R / h}{J_{Y F}} \sqrt{\left\{1-\left(\frac{z}{R}\right)^{2}\right\}} \tag{44}
\end{equation*}
$$

and from the overall side-force on the body

$$
\begin{equation*}
\frac{\Delta \bar{C}_{Y B}}{\beta}=-\frac{\omega_{B}-\omega}{\omega} \frac{2}{\omega} \frac{\beta_{i}}{\beta} \cdot 2 \pi A_{F}\left(\frac{R}{h}\right)^{2} . \quad . . \quad . \quad . . \quad . \quad . \tag{45}
\end{equation*}
$$

There remains the question whether the above equations give the total side-force on the body or the part of the side-force induced by the fin, i.e., whether the forces on nose and rear end of the body are included.

The determination of C_{Y} from the difference in potential on the two surfaces of the vortex sheet in the Trefftz-plane by equation (25) is based on the assumption $\phi(x=-\infty)=0$. This is true if the cylinder representing the body does not reach to infinity far forward, i.e., the nose of the body is taken as of finite length. Hence, some nose load is included.

The next question concerns the forces at the rear end of the body. We consider first the extreme case, $h \rightarrow 0, b \rightarrow 0$, i.e., an isolated circle as the wake contour in the Trefftz-plane. This can be regarded as a cross-section through an isolated body.

The transformation of equation (2) leads to the potential function

$$
F_{1}(\zeta)=-v_{y \infty}\left(\zeta+\frac{R^{2}}{\zeta}\right)
$$

For points on the body

$$
\phi_{1}=-v_{y_{\infty}} .2 y
$$

and after superimposing a parallel flow in the ζ-plane:

$$
\begin{aligned}
\phi=\phi_{1}+\phi_{2} & =-v_{y_{\infty}} \cdot y \\
& =-v_{y_{\infty}} R \sqrt{\left\{1-\left(\frac{z}{R}\right)^{2}\right\} .}
\end{aligned}
$$

Thus for the local side-force

$$
C_{Y B} c=\frac{2}{V_{0}} \Delta \phi=4 \frac{v_{y_{\infty}}}{V_{0}} R \sqrt{\left\{1-\left(\frac{z}{R}\right)^{2}\right\}}
$$

and for the total side-force referred to the area $\bar{c} .2 R$:

$$
\begin{align*}
\bar{C}_{Y B} & =\frac{\bar{F}_{Y B}}{\frac{1}{2} e V_{0}{ }^{2} \bar{C} \cdot 2 R}=\frac{1}{2 R} \int_{-R}^{+R} C_{Y B} \frac{c}{\bar{c}} d z \\
& =\frac{v_{y \infty}}{V_{0}} \pi \frac{R}{\bar{c}} \cdot \ldots \quad \ldots \quad \ldots \tag{46}
\end{align*}
$$

With

$$
\frac{v_{y_{\infty}}}{V_{0}}=\beta \text { we obtain }
$$

$$
\begin{equation*}
\bar{C}_{Y B}=\pi \frac{R}{\bar{c}} \beta \quad \text {.. } \tag{47}
\end{equation*}
$$

which equals the nose load on the body resulting from the momentum theorem. This implies that in this case the force on the rear end of the body is not included. In this case there is no side-force on the body induced by the fin, i.e., the fin induced side-force is equal to the one calculated, reduced by $\pi . R / \bar{c} . v_{y \infty} / V_{0}$.

In the other extreme case of a body at one end of a large aspect ratio fin, the calculation gives zero side-force on the body, in agreement with the fact that the fin induces no side-force on the body.

As a general approximation for the side-force on the body induced by the fin, excluding forces on the nose and rear end of the body, we take the one calculated above in equation (32), with $\omega_{B}=\omega$, and reduce it by

$$
\begin{align*}
\Delta \bar{C}_{Y B} & =-\frac{\Delta \bar{F}_{Y}}{\frac{1}{2} \varrho V_{0}{ }^{2} h \bar{h}}=-\frac{v_{y_{\infty}}}{V_{0}} \cdot 2 \pi A_{F}\left(\frac{R}{h}\right)^{2} \\
& =-\frac{2}{\omega} \beta_{i} \cdot 2 \pi A_{F}\left(\frac{R}{h}\right)^{2} . \quad . \quad . \tag{48}
\end{align*}
$$

The reduction is the same as in equation (45) for $\omega_{B}=2, \omega=1$. Correspondingly, the side-force distribution of equation (35) is reduced by

This procedure is confirmed by experimental pressure distributions on a cylindrical body attached to one tip of 45 -deg swept-back wings of different aspect ratios (see Ref. 9). The measured side-force distributions agree fairly well with those calculated from equations (35) and (49).

If calculated total side-forces are to be compared with experimental force measurements the forces at the nose and rear-end of the body have to be added. With the isolated body in inviscid flow, the nose and rear force are equal and of opposite sign. For a body attached to a fin the effective incidence at the rear end of the body is smaller than at the nose, which means a smaller force at the rear-end. A further reduction of the rear-end force can be caused by viscosity effects.
5. The Lift Distribution on Tailplane and Body.-Some of the bound vortices on the fin continue along the tailplane and the body. The component of these bound vortices normal to the main flow of velocity V_{0} produces a force normal to the tailplane, i.e., a lift. For the left part of the tailplane, as drawn in Fig. 1, the lift is negative, that is directed towards the body, for the righthand part of the tailplane it is directed away from the body. The total lift on the tailplane is zero, but the lift forces produce a moment about the tail-fin junction. There is also a lift distribution produced along the body, with positive lift on the left-hand side and negative lift on the right.

To calculate the lift $L(y)$ as a function of the geometric side-wash angle β, we first determine it as a function of $v_{y_{\infty}}$. This can be obtained from the difference of the potential function on upper and lower surfaces of the vortex sheet in the Trefftz-plane:

$$
\begin{align*}
C_{L} & =\frac{L}{\frac{1}{2} \varrho V_{0}{ }^{2} c}=\frac{2}{c V_{0}}\left(\phi_{U S}-\phi_{L S}\right) \quad \ldots \quad \ldots \tag{50}
\end{align*} \quad \ldots \quad \ldots . \quad \ldots
$$

For the right-hand part of the tailplane:

$$
\begin{equation*}
C_{L T} c=2 \frac{v_{y \infty}}{V_{0}}\left|\Delta y_{4}(y)\right| h \ldots \tag{51}
\end{equation*}
$$

From equations (16) to (19) the function $y\left(y_{4}\right)$ can be calculated and from this $\Delta y_{4}(y)$ can be determined graphically. Referring the local lift coefficient to the coefficient of the total side-force, as was done for the side-force coefficient in equation (34), we obtain:

$$
\begin{equation*}
\frac{C_{L T} c}{\bar{C}_{Y F} \bar{c}_{F}}=\frac{2\left|\Delta y_{4}(y)\right|}{J_{Y F}}, \quad . \quad . \quad . . \quad . \quad . \quad . . \quad . \tag{52}
\end{equation*}
$$

A few tailplane lift distributions are plotted in Fig. 8. The lift coefficients are tabulated in Table 4.

The coefficient of the total lift acting on the right-hand side of the tailplane, referred to the fin area $h \bar{c}_{F}$, is obtained by integration:

$$
\begin{align*}
& \bar{C}_{L T}=\frac{\bar{L}_{T}}{\frac{1}{2} \varrho V_{0} \bar{c}_{F} \bar{h}}=\frac{v_{y \infty}}{V_{0}} \cdot 2 \frac{h}{\bar{c}_{F}} \int_{0}^{b / 2 h}\left|\Delta y_{4}(y)\right| d\left(\frac{y}{h}\right) \\
& =\frac{v_{y_{\infty}}}{V_{0}} A_{F} J_{L T} . \quad . \quad . . \quad . \quad . \quad . \quad . \quad . \quad \text {. } \tag{53}
\end{align*}
$$

where

$$
\begin{equation*}
J_{L T}=2 \int_{0}^{b / 2 \hbar}\left|\Delta y_{4}(y)\right| d\left(\frac{y}{h}\right) . \quad . \quad . \quad . \quad . \quad . \quad . \tag{54}
\end{equation*}
$$

The ratio of the total lift on one half of the tailplane to the total side-force is therefore:

$$
\begin{equation*}
\frac{\bar{C}_{L T}}{\bar{C}_{Y F}}=\frac{J_{L T}}{J_{\mathrm{Y} F}} \tag{55}
\end{equation*}
$$

This ratio is plotted in Figs. 9a to 9d.

From the known lift distribution, equation (52), both the moment \mathscr{M} of the lift about the fin-tailplane junction and the arm $y_{0} . h / 2$ of the lift force can be determined:

$$
\begin{align*}
\mathscr{M} & =\int_{0}^{b / 2} L \cdot y d y \\
& =y_{0 T} \bar{L}_{T} \\
\frac{y_{0 T}}{h} & =\frac{\int_{0}^{b / 2 h}\left|\Delta y_{4}(y)\right| \frac{y}{h} d\left(\frac{y}{h}\right)}{\int_{0}^{b / 2 h}}\left|\Delta y_{4}(y)\right| d\left(\frac{y}{h}\right) \tag{56}
\end{align*}
$$

$y_{0 T}$ is plotted in Fig. 10.
In the same way, the lift distribution over the body, and the total lift acting on the right-hand side of the body

$$
\begin{equation*}
\bar{C}_{L B}=\frac{v_{y \infty}}{V_{0}} A_{F} J_{L B} \quad \ldots . \quad . \quad . . \quad . \quad . \quad \ldots \quad \ldots \tag{57}
\end{equation*}
$$

are obtained. The ratio of the total lift on the right-hand side to the total side-force

$$
\begin{equation*}
\frac{\bar{C}_{L B}}{\bar{C}_{Y F}}=\frac{J_{L B}}{J_{Y F}} \quad . . \quad . \quad . \quad . \quad . . \quad . . \quad . \quad . \quad . \tag{58}
\end{equation*}
$$

is plotted in Fig. 11. Lift distributions and the moment arm of the lift are plotted in Fig. 12. The lift coefficients on the body are tabulated in Table 5. Since the pressures act normally to the body surface there results no moment of the body forces with respect to the body axis.

In the same way as on the fin, certain boundary conditions have to be fulfilled on the tailplane. The bound vortices produce a velocity $-\alpha_{e} V_{0}$ normal to the tailplane whilst the assumed system of trailing vortices does not produce a normal velocity. To satisfy the streamline condition, the tailplane must therefore be twisted in such a way as to produce a normal velocity $\alpha_{e} V_{0}$; neglecting the generally small velocity component $v_{z_{B}}$ which the flow around the isolated body produces at the position of the tailplane. The local angle of twist is related to the local lift coefficient by the sectional lift slope

$$
\begin{equation*}
C_{L}(y)=a(y) \cdot \alpha_{e}(y) . \quad . \tag{59}
\end{equation*}
$$

To obtain an estimate of the angle of twist, we may assume that the sectional lift slope of the tailplane in the presence of fin and body is the same as for the isolated tailplane. The tailplane is twisted to positive incidences on the right-hand side and to negative incidences on the left. For the body the condition of zero total normal velocity must hold. It is, however, not yet possible to determine from this condition the required shape of the body.

Similar conditions for the bound vortices and therewith for the shape of the bodies attached to a wing hold for all arrangements producing constant induced velocities as, e.g., wings with endplates and fin-fuselage combinations. The fulfilment of these conditions, however, does not seem to be important for the load distribution on the wing as is shown by comparing the experimental results on wings with untwisted plates with those calculated for plates so twisted as to achieve zero induced side-wash at the plates (see Ref. 8).
6. The Limiting Cases $b \rightarrow 0$ and $R \rightarrow 0$.-In order to be able to compare the present results with those for a body and fin without tailplane and for a fin and tailplane without body, and to facilitate the plotting of diagrams it is useful to consider the cases $b \rightarrow 0$ and $R \rightarrow 0$.

For small b, expanding in powers of b,

$$
\begin{align*}
& x=\frac{h_{1}^{2}+2 h_{1} R+2 R^{2}}{h_{1}+R}-\frac{R^{2}}{\left(h_{1}+R\right)^{3}}\left(\frac{b}{2}\right)^{2}+\ldots \quad . \quad . \quad . \quad \tag{60}\\
& =x_{0}+x_{2}\left(\frac{b}{2}\right)^{2}+\ldots, \quad \ldots \quad . . \tag{61}\\
& \lambda=\frac{h_{1}{ }^{2}+2 h_{1} R}{\left(h_{1}+R\right)^{2}} \frac{b}{2}+\ldots \quad . . \quad . \quad . \quad . \tag{62}\\
& =\lambda_{1} \frac{b}{2}+\cdots, \tag{63}\\
& \mu=\frac{R^{2}}{\left(h_{1}+R\right)^{3}}\left(\frac{b}{2}\right)^{2}+\ldots \quad . \quad . \quad . \quad . \quad . \quad \text {.. } \tag{64}\\
& =-\varkappa_{2}\left(\frac{b}{2}\right)^{2}+\ldots, \quad . \quad . \quad . . \quad . \quad . \quad . . \tag{65}\\
& \varrho=\left[2 R+x_{0}+\frac{1}{2} \kappa_{2}\left(\frac{b}{2}\right)^{2}+\frac{\lambda_{1}{ }^{2}}{2\left(2 R+\varkappa_{0}\right)}\left(\frac{b}{2}\right)^{2}+\ldots\right] . \tag{66}
\end{align*}
$$

If $h_{1} \neq 1$, i.e., if the tailplane is not at the end of the fin,

$$
\begin{equation*}
\sigma=\left[\tau-x_{0}-\frac{1}{2} \varkappa_{2}\left(\frac{b}{2}\right)^{2}+\frac{\lambda_{1}^{2}}{2\left(\tau-\varkappa_{0}\right)}\left(\frac{b}{2}\right)^{2}+\ldots\right] \tag{67}
\end{equation*}
$$

In this case, both the expansions for z_{3} and for y_{4} from equations (13), (14), (15) for points on the body and on the fin, except $z=h_{1}+R$, contain no linear order term in b, which implies that graphs of $\left|y_{4}\right|$, its integral, and therefore $C_{Y F} c / \bar{C}_{Y F} \bar{c}_{F}, C_{Y B} c /\left(C_{Y B} c\right)_{j u n c t i o n,} J_{Y F}$ and $J_{Y B}$ plotted against b have a horizontal tangent at $b=0$. For points on the body where $-R<z<R$:

$$
\begin{equation*}
y_{4}(z)= \pm \sqrt{ }\{(2 z+2 R)(\tau-2 z)\}+\text { term in }(b / 2)^{2} . . \tag{68}
\end{equation*}
$$

For points on the fin where $R \leqslant z<R+h$:

$$
\begin{equation*}
y_{4}(z)=\frac{z+R}{z} \sqrt{ }\left(\tau z-z^{2}-R^{2}\right)+\text { term in }(b / 2)^{2} \tag{69}
\end{equation*}
$$

For $y=h_{1}+R$, there is a linear term:

$$
\begin{aligned}
& z_{3}=\mp \lambda_{1} \frac{b}{2} \\
& y_{4}=\sqrt{ }\left\{\left(2 R+x_{0}\right)\left(\tau-x_{0}\right)\right\} \pm \frac{b}{4} \lambda_{1} \frac{2 x_{0}+2 R-\tau}{\sqrt{ }\left\{\left(2 R+x_{0}\right)\left(\tau-x_{0}\right)\right\}}+\ldots
\end{aligned}
$$

The lift distribution over a tailplane of small span is obtained by putting

$$
\zeta=y+i\left(h_{1}+R\right)
$$

into equations (2), (6), (8), (15) and neglecting all higher order terms in y and $b / 2$:

$$
\left.\begin{array}{l}
\zeta_{1}=\lambda_{1} y+i x_{0}+\ldots \\
\zeta_{2}=\frac{\lambda_{1}}{2}\left[y \mp i \sqrt{ }\left\{(b / 2)^{2}-y^{2}\right\}\right]+\ldots \\
z_{3}=\mp \lambda_{1} \sqrt{ }\left\{(b / 2)^{2}-y^{2}\right\}+\ldots \tag{70}\\
y_{4}=\sqrt{ }\left\{\left(2 R+x_{0}\right)\left(\tau-x_{0}\right)\right\} \pm \frac{b}{4} \lambda_{1} \frac{2 x_{0}+2 R-\tau}{\sqrt{ }\left\{\left(2 R+x_{0}\right)\left(\tau-x_{0}\right)\right\}} \sqrt{ }\left\{1-\left(\frac{y}{b / 2}\right)^{2}\right\}+\ldots
\end{array}\right\}
$$

where the upper sign holds for the lower surface of the tailplane.

By equation (52):

$$
\left.\begin{array}{rl}
\frac{C_{L T} c}{\bar{C}_{Y F} \bar{c}_{F}}= & \frac{2}{\left(J_{\mathrm{Y} F}\right)_{b=0}} \frac{b}{2} \lambda_{1} \frac{2 x_{0}+2 R-\tau}{\sqrt{ }\left\{\left(2 R+x_{0}\right)\left(\tau-\varkappa_{0}\right)\right\}} \sqrt{ }\left\{1-\left(\frac{y}{b / 2}\right)^{2}\right\} \\
\frac{\cdot C_{L T} c}{\left(C_{L T} c\right)_{\text {junction }}}=\sqrt{ }\left\{1-\left(\frac{y}{b / 2}\right)^{2}\right\} . \quad \ldots & \ldots \tag{71}
\end{array} \ldots \quad \ldots \quad \ldots\right\}
$$

The lift distribution on small tailplanes is therefore elliptic, and the moment arm is:

$$
\begin{equation*}
\frac{y_{0 T}}{b / 2}=\frac{4}{3 \pi} . \tag{72}
\end{equation*}
$$

For $h_{1}=1$, i.e., the tailplane at the end of the fin:

$$
\begin{align*}
\varkappa_{0} & =\tau \quad . \tag{73}\\
\sigma & =\lambda_{1} \frac{b}{2}+\ldots \tag{74}
\end{align*}
$$

The expansions for y_{4} now contain a linear term in $b / 2$. From equations (13), (14) and (15) for the body

$$
\begin{align*}
z_{3} & =2 z-\tau \\
y_{4}(z) & =\sqrt{ }\{(2 z+2 R)(\tau-2 z)\}+\frac{b}{4} \lambda_{1} \sqrt{ }\left\{\frac{2 z+2 R}{\tau-2 z}\right\}+\ldots \tag{75}
\end{align*}
$$

and for the fin,

$$
\begin{align*}
z_{3} & =\frac{z^{2}+R^{2}}{z}-\tau \\
y_{4}(z) & =\frac{z+R}{z} \sqrt{ }\left(\tau z-z^{2}-R^{2}\right)+\frac{b}{4} \lambda_{1} \cdot \frac{z+R}{\sqrt{ }\left(\tau z-z^{2}-R^{2}\right)}+\ldots \tag{76}
\end{align*}
$$

except for the top of the fin, $z=1+R$, where $\frac{z^{2}+R^{2}}{z}-\tau=0$.
Integrating these relations,

$$
\begin{align*}
J_{Y B}= & -\frac{1-4 R-4 R^{2}}{1+R} \sqrt{\left\{\frac{R}{1+R}\right\}+\left[\frac{(1+2 R)^{2}}{2(1+R)}\right]^{2}\left[\frac{\pi}{2}-\sin ^{-1} \frac{1-4 R-4 R^{2}}{(1+2 R)^{2}}\right]-2 \pi R^{2}} \\
& +b \frac{1+2 R}{(1+R)^{2}}\left\{-\sqrt{\left.\left\{\frac{R}{1+R}\right\}+\frac{(1+2 R)^{2}}{4(1+R)}\left[\frac{\pi}{2}-\sin ^{-1} \frac{1-4 R-4 R^{2}}{(1+2 R)^{2}}\right]\right\}+\ldots}\right. \tag{77}\\
J_{Y F}= & \frac{1-4 R-4 R^{2}}{1+R} \sqrt{\left\{\frac{R}{1+R}\right\}+\left[\frac{(1+2 R)^{2}}{2(1+R)}\right]^{2}\left[\pi+2 \sin ^{-1} \frac{1}{1+2 R}\right]+4 \pi R^{2}} \\
& +b \frac{1+2 R}{(1+R)^{2}}\left\{\sqrt{\left.\left\{\frac{R}{1+R}\right\}+\frac{(1+2 R)^{2}}{4(1+R)}\left[\pi+2 \sin ^{-1} \frac{1}{1+2 R}\right]\right\}+\ldots \ldots}\right. \tag{78}
\end{align*}
$$

For $R=0$:

$$
\begin{equation*}
J_{Y F}=\frac{\pi}{2}(1+b+\ldots) \tag{79}
\end{equation*}
$$

For points on the tailplane we obtain from equations (70), (15), (62), (63), (73), (74) and (52)

$$
\begin{align*}
& y_{4}(y)=\frac{1+2 R}{1+R} \sqrt{\left\{\left.\frac{1+2 R}{1+R} \right\rvert\, \sqrt{2}\right.} \sqrt{\frac{b}{2}} \sqrt{1} \pm \sqrt{\left.\left\{1-\left(\frac{y}{b / 2}\right)^{2}\right\}\right]} \\
& \frac{C_{L T} c}{\bar{C}_{X_{F} F} \bar{c}_{F}}=\frac{2}{\left(J_{Y F}\right)_{b=0}} \frac{1+2 R}{1+R} \sqrt{\left\{\frac{1+2 R}{1+R}\right\} \sqrt{ } b \sqrt{ }\left\{1-\frac{y}{b / 2}\right\} . \quad . \quad \ldots \quad . .} \tag{80}\\
& \frac{C_{L T} c}{\left(C_{L T} c\right)_{\text {junction }}}=\sqrt{\left\{1-\frac{y}{b / 2}\right\} \quad \ldots \quad . . \quad . \quad . .} \text {. } \tag{81}\\
& \frac{y_{0 T}}{\bar{b} / 2}=0.4 . \quad . \quad . \quad . \quad . \quad \text {.. } \tag{82}
\end{align*}
$$

For small R, expanding in powers of R,

$$
\begin{aligned}
& \varkappa=h_{1}+R+\ldots \\
& \lambda=\frac{b}{2}+\text { term in } R^{2} \\
& \mu=0+\text { term in } \mathrm{R}^{2} \\
& \varrho=\sqrt{ }\left\{h_{1}^{2}+(b / 2)^{2}\right\}+\frac{3 h_{1}}{\sqrt{ }\left\{h_{1}^{2}+(b / 2)^{2}\right\}} R+\ldots \\
& \left.\sigma=\sqrt{ }\left\{\left(1-h_{1}\right)^{2}+b / 2\right)^{2}\right\}+ \text { term in } R^{2} .
\end{aligned}
$$

For the fin:

$$
\begin{align*}
& z_{3}= \text { 干 } \sqrt{ }\left\{\left(z-h_{1}-R\right)^{2}+(b / 2)^{2}\right\} \\
& y_{4}= {\left[\begin{array}{l}
-\left(z-h_{1}\right)^{2}-\left(\frac{b}{2}\right)^{2}+\sqrt{ }\left(\left[h_{1}{ }^{2}+\left(\frac{b}{2}\right)^{2}\right]\left[\left(1-h_{1}\right)^{2}+\left(\frac{b}{2}\right)^{2}\right]\right\} \\
\pm \sqrt{ }\left\{\left(z-h_{1}\right)^{2}+\left(\frac{b}{2}\right)^{2}\right\}\left[\sqrt{\left.\left.\left\{h_{1}{ }^{2}+\left(\frac{b}{2}\right)^{2}\right\}-\sqrt{ }\left\{\left(1-h_{1}\right)^{2}+\left(\frac{b}{2}\right)^{2}\right\}\right]\right]}\right]^{1 / 2} \\
\end{array}\right.} \\
& {\left[\begin{array}{l}
2\left(z-h_{1}\right)+3 h_{1}\left[\sqrt{ }\left\{\frac{\left(1-h_{1}\right)^{2}+(b / 2)^{2}}{h_{1}{ }^{2}+(b / 2)^{2}}\right\} \pm \sqrt{\left.\left\{\frac{\left(z-h_{1}\right)^{2}+(b / 2)^{2}}{h_{1}{ }^{2}+(b / 2)^{2}}\right\}\right]}\right. \\
\pm\left(z-h_{1}\right)\left[\sqrt{ }\left\{\frac{\left(1-h_{1}\right)^{2}+(b / 2)^{2}}{\left(z-h_{1}\right)^{2}+(b / 2)^{2}}\right\}-\sqrt{ }\left\{\frac{h_{1}{ }^{2}+(b / 2)^{2}}{\left(z-h_{1}\right)^{2}+(b / 2)^{2}}\right\}\right]
\end{array}\right] } \tag{83}\\
& {\left[\begin{array}{l}
-\left(z-h_{1}\right)^{2}-\left(\frac{b}{2}\right)^{2}+\sqrt{2}\left\{\left[h_{1}{ }^{2}+\left(\frac{b}{2}\right)^{2}\right]\left[\left(1-h_{1}\right)^{2}+\left(\frac{b}{2}\right)^{2}\right]\right\} \\
\left. \pm \sqrt{\left\{\left(z-h_{1}\right)^{2}+\left(\frac{b}{2}\right)^{2}\right\}}\right\}\left[\sqrt{\left.\left\{h_{1}{ }^{2}+\left(\frac{b}{2}\right)^{2}\right\}-\sqrt{\left.\left\{\left(1-h_{1}\right)^{2}+\left(\frac{b}{2}\right)^{2}\right\}\right]}\right]}\right]
\end{array}\right.}
\end{align*}
$$

where the upper signs hold for points of the fin between body and tailplane $R \leqslant z \leqslant R+h_{1}$ and the lower signs for $R+h_{1} \leqslant z<R+h$. For $b \rightarrow 0, R \rightarrow 0$ equation (83) gives

$$
\begin{equation*}
y_{4} \rightarrow \sqrt{ }\left(z-z^{2}\right) \quad . \quad \quad . \quad . . \tag{84}
\end{equation*}
$$

as for an elliptic fin.

For the body, $-R<z<R, R$ and z are of the same order, so that for small R :

$$
z_{3}=-\mathcal{V}\left\{\left(2 z-h_{1}-R\right)^{2}+(b / 2)^{2}\right\}
$$

$$
\begin{align*}
& \qquad y_{4}(z)=\sqrt{ }\left[(z + R) 2 h _ { 1 } \left\{1+\frac{\sqrt{ }\left\{\left(1-h_{1}\right)^{2}+(b / 2)\right.}{\sqrt{ }\left\{h_{1}^{2}+(b / 2)^{2}\right\}}\right.\right. \tag{85}\\
& \text { At the fin-body junction, } z=R: \\
& \qquad y_{4}(R)=\sqrt{ }\left[4 R h_{1}\left\{1+\frac{\sqrt{ }\left\{\left(1-h_{1}\right)^{2}+(b / 2)^{2}\right\}}{\sqrt{ }\left\{h_{1}^{2}+(b / 2)^{2}\right\}}\right\}\right] . \tag{86}
\end{align*}
$$

In equation (27)

$$
C_{Y B}(z) c=4 \frac{v_{y_{\infty}}}{V_{0}} h\left[y_{4}(z)-\sqrt{ }\left\{\left(\frac{R}{h}\right)^{2}-\left(\frac{z}{h}\right)^{2}\right\}\right]
$$

the second term is negligible compared with the first one for small R. Thus for small R

$$
\begin{equation*}
\frac{C_{Y B} c}{\left(C_{Y B} c\right)_{\text {junction }}}=\sqrt{\left\{\frac{1+z / R}{2}\right\} \quad \ldots} \quad \ldots \quad . . \quad . \quad . . \quad . \quad . \quad . \quad . \tag{87}
\end{equation*}
$$

independent of b.
It follows from equation (85):

For the tailplane, from equations (2), (6), (8), (15)

$$
\begin{align*}
\zeta= & y+i\left(R+h_{1}\right) \\
z_{3}= & \mp \sqrt{ }\left\{\left(\frac{b}{2}\right)^{2}-y^{2}\right\} \\
y_{4}= & {\left[\begin{array}{l}
-(b / 2)^{2}+y^{2}+\sqrt{ }\left\{h_{1}{ }^{2}+(b / 2)^{2}\right\} \sqrt{ }\left\{\left(1-h_{1}\right)^{2}+(b / 2)^{2}\right\} \\
\pm \sqrt{ }\left\{(b / 2)^{2}-y^{2}\right\}\left[\sqrt{ }\left\{h_{1}{ }^{2}+(b / 2)^{2}\right\}-\sqrt{ }\left\{\left(1-h_{1}\right)^{2}+(b / 2)^{2}\right\}\right]
\end{array}\right]^{1 / 2} } \\
& +R \frac{3 h_{1}\left[\sqrt{ }\left\{\left(1-h_{1}\right)^{2}+(b / 2)^{2}\right\} \pm \sqrt{ }\left\{\left(\frac{b}{2}\right)^{2}-y^{2}\right\}\right]}{2 \sqrt{ }\left\{h_{1}{ }^{2}+(b / 2)^{2}\right\}} \\
& {\left[\begin{array}{l}
-(b / 2)^{2}+y^{2}+\sqrt{ }\left\{h_{1}{ }^{2}+(b / 2)^{2}\right\} \sqrt{ }\left\{\left(1-h_{1}\right)^{2}+(b / 2)^{2}\right\} \\
\pm \sqrt{ }\left\{(b / 2)^{2}-y^{2}\right\}\left[\sqrt{ }\left\{h_{1}{ }^{2}+(b / 2)^{2}\right\}-\sqrt{ }\left\{\left(1-h_{1}\right)^{2}+(b / 2)^{2}\right\}\right]
\end{array}\right]^{1 / 2} } \tag{89}
\end{align*}
$$

In the special case $h_{1}=0.5$

$$
\begin{equation*}
\left.\frac{C_{L T}(y) c(y)}{\left(C_{L T} c\right)_{\text {junction }}}=\sqrt{\left[\frac{1-\left(\frac{y}{b / 2}\right)^{2}}{1+\left(\frac{b}{h}\right)^{2}\left(\frac{y}{b / 2}\right)^{2}}\right]}\right] \tag{90}
\end{equation*}
$$

$$
\begin{align*}
& \frac{C_{L B} c}{\left(C_{L B} c\right)_{\text {junction }}}=\frac{\Delta y_{4}(y)}{\Delta y_{4}(y=0)} \\
& =\frac{1}{\sqrt{ } 2}\left[\sqrt{ }\left\{1+\sqrt{ }\left[1-(y / R)^{2}\right]\right\}-\sqrt{ }\left\{1-\sqrt{ }\left[1-(y / R)^{2}\right]\right\}\right] \\
& =\sqrt{ }(1-y / R) \text {. } \tag{88}
\end{align*}
$$

7. The Special Case of the Tailplane in the Symmetry Line of the Body. When the tailplane passes through the centre of the body, i.e., when $h_{1}=-R$, the conformal transformation takes a slightly simpler form. It is therefore convenient to consider this case separately.

The transformation of equation (1)

$$
\zeta_{1}=\zeta-\frac{R^{2}}{\zeta}
$$

transforms the body ADC into the z_{1}-axis from A_{1} to C_{1} (see Fig. 3), the fin CG into the z_{1}-axis from C_{1} to G_{1} and the tailplane into the y_{1}-axis from J_{1} to E_{1}. This transform of the tailplane can be transformed without an approximation into a full circle, by the transformation

$$
\begin{equation*}
\zeta_{2}=\frac{1}{2}\left[\zeta_{1} \mp \sqrt{ }\left(\zeta_{1}^{2}-\bar{\lambda}^{2}\right)\right] \quad . \quad . . \quad . \quad . \quad . . \tag{91}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{\lambda}=\frac{b}{2}-\frac{R^{2}}{b / 2} . \quad . \quad . \quad . \quad . . \quad . . \quad . . \quad . \quad . \tag{92}
\end{equation*}
$$

The negative sign holds for $z<0$ and the positive sign for $z>0$. The centre of the circle $\mathrm{D}_{2} \mathrm{E}_{2} \mathrm{~F}_{2}$ is at the origin, and its radius is $\bar{\lambda} / 2$. The z_{1}-axis from A_{1} to D_{1} and F_{1} to G_{1} is transformed into the z_{2}-axis from A_{2} to D_{2} and F_{2} to G_{2}.

We then transform the circle $D_{2} \mathrm{E}_{2} \mathrm{~F}_{2}$ into the z_{3}-axis from D_{3} to F_{3}, and the z_{2}-axis from A_{2} to D_{2} and F_{2} to G_{2} into the z_{3}-axis from A_{3} to D_{3} and F_{3} to G_{3} by the transformation

$$
\begin{equation*}
\zeta_{3}=\zeta_{2}-\frac{\bar{\lambda}^{2}}{4 \zeta_{2}} . . \quad \ldots \quad . \quad . . \quad . \quad . \quad . \quad . \tag{93}
\end{equation*}
$$

Finally, the slit in the ζ_{3}-plane is transformed as before into a slit along the y_{4}-axis by the transformation of equation (9)

$$
\begin{equation*}
\zeta_{4}=\sqrt{ }\left\{\left(\zeta_{3}+i \frac{\bar{\varrho}-\bar{\sigma}}{2}\right)^{2}+\left(\frac{\overline{\underline{q}}+\bar{\sigma}}{2}\right)^{2}\right\} \quad \ldots \quad \ldots \quad \ldots \quad \ldots \tag{94}
\end{equation*}
$$

where

$$
\begin{align*}
& \bar{\varrho}=-z_{\mathrm{A} 3}=\sqrt{ }\left(4 R^{2}+\bar{\lambda}^{2}\right) \tag{95}\\
& \bar{\sigma}=z_{\mathrm{G} 3}=\sqrt{ }\left(\tau^{2}+\bar{\lambda}^{2}\right) \tag{96}\\
& \tau=z_{\mathrm{G} 1}=\frac{1+2 R+2 R^{2}}{1+R} \tag{12}
\end{align*}
$$

Thus the relation between points on the wake contour and the slit in the ζ_{4}-plane is known. Points on the body, $-R<z<R$, are related to points on the z_{3}-axis, by the relation

$$
\begin{equation*}
z_{3}(z)=\mp \sqrt{ }\left\{(2 z)^{2}+\bar{\lambda}^{2}\right\} \quad . \quad . . \quad . \quad . \quad . \tag{97}
\end{equation*}
$$

with the minus sign for $-R<z<0$ and the positive sign for $0<z<R$; points on the fin, $R<z<R+1$ by the relation:

$$
\begin{equation*}
z_{3}(z)=\sqrt{\left\{\left(\frac{z^{2}+R^{2}}{z}\right)^{2}+\bar{\lambda}^{2}\right\} \quad \ldots \quad \ldots \quad \ldots \quad . . \quad .} \tag{98}
\end{equation*}
$$

and points on the tailplane, $R<|y|<b / 2$, by the relation

$$
z_{3}(y)= \pm \sqrt{\left\{\bar{\lambda}^{2}-\left(\frac{y^{2}-R^{2}}{y}\right)^{2}\right\} \ldots \quad . \quad . \quad . \quad . .} \begin{gather*}
17 \tag{99}
\end{gather*}
$$

with the minus sign for the lower surface of the tailplane and the positive sign for the upper surface. For all points the relation between points on the z_{3}-axis and the y_{4}-axis reads:

$$
\begin{equation*}
y_{4}= \pm \sqrt{ }\left\{-z_{3}{ }^{2}-(\bar{\varrho}-\bar{\sigma}) z_{3}+\bar{\varrho} \bar{\sigma}\right\} . \tag{100}
\end{equation*}
$$

The calculation of the force distributions on fin, body and tailplane proceeds in the same way as before and the results are included in the charts.

We consider again the limiting case of small tailplane span and body diameter. Expanding in powers of $b-2 R$:

$$
\begin{aligned}
& \bar{\lambda}=b-2 R+\ldots \\
& \bar{\varrho}=2 R+\ldots \\
& \bar{\sigma}=\tau+\ldots
\end{aligned}
$$

For points on the body, except $z=0$,
for $z=0$

$$
\begin{equation*}
y_{4}(z)=\sqrt{ }\{(\tau-2 z)(2 R+2 z)\}+\text { term in }(b-2 R)^{2} ; . \tag{101}
\end{equation*}
$$

$$
\begin{equation*}
y_{4}(0)=\sqrt{ }(2 R \tau) \mp \frac{b-2 R}{2} \frac{\tau-2 R}{\sqrt{ }(2 R \tau)}+\ldots . \quad . \quad . \tag{102}
\end{equation*}
$$

For points on the fin:

$$
\begin{equation*}
y_{4}(z)=\frac{z+R}{z} \sqrt{ }\left(\tau z-R^{2}-z^{2}\right)+\text { term in }(b-2 R)^{2} . \tag{103}
\end{equation*}
$$

This means that curves of $J_{Y F}, J_{Y B}, C_{Y F} c / \bar{C}_{Y F} \bar{C}_{F}$ and $C_{Y B} c /\left(C_{Y B} c\right)_{\text {junction }}$ plotted against b have a horizontal tangent at $b=2 R$.

For points on the tailplane we obtain by expanding in powers of $(y-2 R)$ and $(b-2 R)$:

$$
\begin{align*}
y_{4}(y) & =\sqrt{ }(2 R \tau) \mp \frac{b-2 R}{2} \frac{\tau-2 R}{\sqrt{ }(2 R \tau)} \sqrt{ }\left\{1-\left(\frac{2 y-2 R}{b-2 R}\right)^{2}\right\} \quad \ldots \tag{104}\\
\frac{C_{L T} c}{\bar{C}_{Y F} c_{F}} & =-\frac{2}{\left(J_{Y F}\right)_{b=2 R}}(b-2 R) \frac{\tau-2 R}{\sqrt{ }(2 R \tau)} \sqrt{ }\left\{1-\left(\frac{2 y-2 R}{b-2 R}\right)^{2}\right\} \ldots \tag{105}\\
\frac{C_{L T} c}{\left(C_{L T} c\right)_{\text {junction }}} & =\sqrt{ }\left\{1-\left(\frac{2 y-2 R}{b-2 R}\right)^{2}\right\} \quad \ldots \tag{106}
\end{align*} \ldots \quad \ldots \quad \ldots \quad \ldots .
$$

and the moment arm is

$$
\begin{equation*}
\frac{y_{0}}{b / 2}=\frac{R}{b / 2}+\frac{4}{3 \pi}\left(1-\frac{R}{b / 2}\right) \tag{107}
\end{equation*}
$$

For small R, expanding in powers of R,

$$
\begin{aligned}
& \bar{\lambda}=\frac{b}{2}+\ldots \\
& \bar{\varrho}=\frac{b}{2}+\ldots \\
& \bar{\sigma}=\sqrt{ }\left\{1+(b / 2)^{2}\right\}+\frac{R}{\sqrt{ } 11+(b / 2)^{2}}+\ldots \\
& 18
\end{aligned}
$$

For points on the fin

$$
\begin{align*}
y_{4}(z)= & \sqrt{\left\{-\dot{z}^{2}-\left(\frac{b}{2}\right)^{2}+\frac{b}{2} \sqrt{ }\left\{1+\left(\frac{b}{2}\right)^{2}\right\}+\sqrt{\left.\left\{z^{2}+\left(\frac{b}{2}\right)^{2}\right\}\left[\sqrt{ }\left\{1+\left(\frac{b}{2}\right)^{2}\right\}-\frac{b}{2}\right]\right\}}\right.} \begin{aligned}
& \sqrt{\left\{1+\left(\frac{b}{2}\right)^{2}\right\}} {\left[-\frac{R}{2} \frac{b}{2}+\sqrt{\left\{z^{2}+\left(\frac{b}{2}\right)^{2}\right\}}\right.} \\
&+\left(\frac{b}{2}\right)^{2}+\frac{b}{2} \sqrt{\left\{1+\left(\frac{b}{2}\right)^{2}\right\}} \\
&\left.\quad+\sqrt{\left\{z^{2}+\left(\frac{b}{2}\right)^{2}\right\}\left[\sqrt{ }\left\{1+\left(\frac{b}{2}\right)^{2}\right\}-\frac{b}{2}\right]}\right]^{1 / 2}
\end{aligned}
\end{align*}
$$

$y_{4}(z, R=0)$ from equation (108) agrees with $y_{4}(z, R=0)$ from equation (83), for $h_{1}=0$.
For points on the body, R and z are of the same order, so that for small R :

$$
z_{3}(z)=\mp \frac{b}{2}+\ldots
$$

for $-R<z<0$:

$$
\begin{equation*}
y_{4}(z)=0+\text { terms in } R^{2} \text { and } z^{2}, \quad . \quad . . \quad . . \quad . \quad \text {.. } \tag{109}
\end{equation*}
$$

for $0<z<R$

$$
\begin{equation*}
y_{4}(z)=\sqrt{\left[2 \frac{b}{2} \sqrt{\left.\left\{1+\left(\frac{b}{2}\right)^{2}\right\}-2\left(\frac{b}{2}\right)^{2}\right]}+\frac{R \cdot \frac{b}{2} / 2}{\sqrt{\left\{1+\left(\frac{b}{2}\right)^{2}\right\}} \sqrt{[2} \frac{b}{2} \sqrt{\left.\left\{1+\left(\frac{b}{2}\right)^{2}\right\}-2\left(\frac{b}{2}\right)^{2}\right]}}\right.} \tag{110}
\end{equation*}
$$

Thus for small R

$$
\begin{equation*}
\frac{C_{Y B} c}{\left(C_{Y B} c\right)_{\text {junction }}}=1 . . . \quad . \quad . . \quad . . \quad . . \quad . \quad . . \quad . \quad . \tag{111}
\end{equation*}
$$

8. The Calculation Procedure.-The above calculations have been made for those arrangements which produce a system of trailing vortices giving constant v_{y}-velocities at the fin and zero v_{z}-velocities at the tailplane. This implies a restriction on the geometry (plan-forms of the fin and the tailplane, twist of the tailplane, and shape of the body). However, in the limit $A \rightarrow 0$ (i.e., aspect ratios of fin and tailplane $\rightarrow 0$) the flow in the Trefftz-plane can be interpreted as representing the flow in sections through the actual fin-tailplane so that $\beta_{i}=\beta=$ const. whatever the given shape as long as fin and tailplane are plane surfaces. This implies that the twist of the tailplane tends to zero as $A \rightarrow 0$ and that the body tends to a cylindrical shape. Hence, the calculation is exact in the limiting case $A \rightarrow 0$, and differences between any given arrangement and the constant induced side-wash arrangement appear only when the aspect ratio is not small. However, an approximate calculation can be made even for arrangements with large aspect ratio when the differences between a given arrangement and the constant induced side-wash arrangement can be expected to be appreciable.

An estimate of the side-force distribution on a given arrangement is obtained by dividing the force distribution calculated by equation (34) by the given c / \bar{c}_{F} values. A better approximation is generally obtained by adding the difference between the side-force on the fin calculated for the fin-body-tailplane arrangement and the side-force for an elliptic fin to the side-force on the given fin alone, which can be calculated by the usual methods (see Ref. 12) :

$$
\begin{align*}
\frac{\Delta C_{Y F}}{\beta} \frac{c}{\bar{c}_{F}}= & \frac{2}{\omega} \frac{\beta_{i}}{\beta} A_{F} J_{Y F}\left[\frac{C_{Y F} c}{\bar{C}_{Y F} \dot{c}_{F}}\right] \\
& -\left(\frac{2}{\omega} \frac{\beta_{i}}{\beta}\right)_{\substack{R=0 \\
b=0}} A_{F} \frac{\pi}{2} \frac{4}{\pi} \sqrt{ }\left\{1-\left(\frac{z-(R+h / 2)}{h / 2}\right)^{2}\right\} \quad \ldots \tag{112}
\end{align*}
$$

where the first term on the right-hand side is obtained from equations (29) and (31), and the second term is simply the elliptic load distribution over the height of the fin. This procedure has proved successful in similar cases (see Refs. 6, 7, 8 and 9).

The known quantities for a given fin-body-tailplane combination are: the aspect ratio A_{F} of the fin outside the body, the angle of sweep φ of the mid-chord line of the fin, and the ratios of the body radius R, the total tailplane span b and the vertical distance h_{1} of the tailplane from the fin-body junction to the height h of the fin. The first value to be determined is $\omega a / 2 \pi A_{F}$.

The side-wash factor ω and the sectional lift slope a are related to the chordwise load distribution. They are, therefore, different for the fin-body-tailplane arrangement and the isolated fin. For isolated wings ω and a have been expressed in Ref. 12 as functions of the aspect ratio A. The change in a and ω due to the presence of body and tailplane can thus be taken into account by introducing an 'effective aspect ratio ' $A_{\epsilon F}$ and calculating a and ω by the formulae for an isolated wing of aspect ratio $A_{e F}$.

The effect of the tailplane on the chordwise side-force distribution on the fin depends of course on the span of the tailplane. It depends also on the chord of the tailplane and the position of the tailplane leading edge with respect to the leading edge of the fin. The change in effective aspect ratio increases with increasing tailplane span and tailplane chord; it is greater for tailplanes which have their leading edge forward of the fin leading edge than for tailplanes in rearward positions.

To obtain an estimate of $A_{e F} \mid A_{F}$, we consider some limiting cases. With zero span of the tailplane, $b=0$, the relation of Ref. 1 is applicable:

$$
\begin{equation*}
b=0: \quad A_{c F} / A_{F}=1+\frac{R / h}{1+R / h} \tag{113}
\end{equation*}
$$

With a large tailplane on top of the fin, $h_{1}=h$, the arrangement is equivalent to Hartley's case of two bodies at the tips of a wing ${ }^{6}$. In this case an effective aspect ratio

$$
\begin{equation*}
h_{1}=h, \quad b \rightarrow \infty: \quad A_{e F} / A_{F}=2(1+R / h) \quad . \quad . \quad . . \quad . \tag{114}
\end{equation*}
$$

has proved reasonable in practice. The tailplane at the middle of the fin, $h_{1}=0.5 h$, has no effect for zero body diameter

$$
\begin{equation*}
h_{1}=0 \cdot 5 h, \quad R=0: \quad A_{e F} / A_{F}=1 \tag{115}
\end{equation*}
$$

A reasonable estimate for $R \neq 0$ is

$$
\begin{equation*}
h_{1}=0.5 h, \quad R \neq 0: \quad A_{c F} / A_{F}=1+\frac{1}{2} \frac{R / h}{1+R / h} \tag{116}
\end{equation*}
$$

An interpolation formula which includes the limiting cases is:

$$
\begin{align*}
0 \cdot 5<h_{1} / \dot{h}<1: \frac{A_{e_{F}}}{A_{F}}=1 & +\frac{h_{1}}{h} \frac{R / h}{1+R / h} \\
& +\left(2 \frac{h_{1}}{h}-1\right) \frac{b / h}{2+b / h}\left[1+2 \frac{R}{h}-\frac{R / h}{1+R / h}\right] \tag{117}
\end{align*}
$$

A corresponding formula for the case where the tailplane is at the centre of the body is

$$
\begin{equation*}
h_{1}=-R: \frac{A_{e F}}{A_{F}}=1+\frac{R / h}{1+R / h}+\frac{b / h-2 R / h}{2+b / h-2 R / h}\left[1+2 \frac{R}{h}-\frac{R / h}{1+R / h}\right] \ldots \tag{118}
\end{equation*}
$$

For tailplanes where the leading edge is appreciably behind the fin leading edge so that a smaller change in $A_{e F}$ is to be expected, the calculations can be done for $A_{e F}$ from equations (117), (118) to give one limiting case, and for $A_{o F}=A_{F}$ for the other limiting case. Any given case can then be calculated with $A_{c F}$ taken between these two limits.

The sectional lift slope a depends also on the two-dimensional lift slope a_{0} and the angle of sweep. A good approximation is given by

$$
\begin{equation*}
a_{0}=k .2 \pi\left(1+0.8 \frac{t / c}{\cos \varphi_{e}}\right) \ldots \tag{119}
\end{equation*}
$$

where t / c is the thickness/chord ratio of the fin, k is a factor for the lift reduction due to the boundary layer, which changes with Reynolds number ($k=0.92$ for $R_{e} \bumpeq 2 \times 10^{6}$ and $t / 0 \bumpeq 0.1$) and φ_{e} is an effective angle of sweep (see Ref. 12).

$$
\begin{equation*}
\varphi_{c}=\frac{\varphi}{\left\{1+\left(\frac{a_{0} \cos \varphi}{\pi A_{e F}}\right)^{2}\right\}^{1 / 4}} \cdot \quad \cdots \quad . . \quad . \quad . . \quad \cdots \quad . \tag{120}
\end{equation*}
$$

With the defined values of $a_{0}, A_{e F}, \varphi_{e}$ the values of a and ω can be calculated:

$$
\begin{equation*}
a_{s}=\frac{2 a_{0} n \cos \varphi_{e}}{1-\pi n \cot \pi n} \quad . . \quad . . \quad . \quad . . \quad . \quad . \tag{121}
\end{equation*}
$$

where

$$
\begin{equation*}
n=1-\frac{1}{2\left\{1+\left[\frac{a_{0} \cos \varphi_{e}}{\pi A_{c F}}\right]^{2}\right\}^{\left.\frac{1}{4\left(1+\frac{\left|\varphi_{e}\right|}{\pi / 2}\right.}\right)}} \tag{122}
\end{equation*}
$$

and

$$
\omega=2 n . \quad . . \quad \text {.. }
$$

For the special case $a_{0}=2 \pi$, the term $\omega a / 2 \pi A_{F}$ is plotted in Fig. 13 for various values of the geometric angle of sweep of the mid-chord line.

With the calculated $\omega \alpha / 2 \pi A_{F}$ the induced side-wash β_{i} / β for given values of $R / h, h_{1} / h, b / h$ can be found by plotting the values interpolated from Figs. 7a to 7 n against R / h. There are no curves given for $h_{1}=0.5 h, R=0$ and $R=0 \cdot 1 h$, since for small $R / h \beta_{i} / \beta$ is practically independent of b / h and equal to the values for $h_{1}=h, b=0$. The value of $J_{Y F}$ for given R / h, $h_{1} / h,{ }^{\prime} b / h$ can be found from. Figs. 4 a to 4 d , and the coefficient for the total side-force on the fin from

$$
\begin{equation*}
\frac{\bar{C}_{Y F}}{\beta}=\frac{2}{\omega} \frac{\beta_{i}}{\beta} A_{F} J_{Y F}, \quad . \quad \quad . \quad \quad . \quad . . \quad . . \quad . \quad . \tag{124}
\end{equation*}
$$

The ratio $J_{Y B} / J_{Y F}$ for $\omega_{B}=\omega$ is interpolated from Fig. 5 and the overall side-force coefficient, excluding the forces on the nose and rear end of the body is

$$
\begin{aligned}
& \frac{\bar{C}_{Y}}{\beta}=\frac{2}{\omega} \frac{\beta_{i}}{\beta} A_{F}\left[J_{Y F}+J_{Y B}-2 \pi\left(\frac{R}{h}\right)^{2}\right] . \quad . \quad . \quad . \quad \text { (125) } \\
& \text {-force distributions are obtained from equation (112) where } C_{Y F} c / \bar{C}_{Y F} \bar{C}_{F} \text { is } \\
& \text { ble 2. : The value }\left(\frac{2}{\omega} \frac{\beta_{i}}{\beta}\right)_{\substack{R=0 \\
b=0}} \text { for the fin alone can be determined from } \\
& \text { lues of. } \omega \text { and } a \text { which correspond to the wing alone. These can first be }
\end{aligned}
$$ Fig. 7a, using the values of ω and a which correspond to the wing alone. These can first be

calculated by equations (119) to (123) using the given A_{F} and φ. These additional distributions are to be added to the side-force of the fin alone. Otherwise, the total side-force distribution can be approximated by

$$
\begin{equation*}
\frac{C_{Y F}(z)}{\beta} \frac{c(z)}{\bar{c}_{F}}=\frac{\bar{C}_{Y F}}{\beta}\left[\frac{C_{Y F} c}{\bar{C}_{Y F} \bar{c}_{F}}\right] . \tag{126}
\end{equation*}
$$

The side-force distribution on the body with nose and tail forces excluded is

$$
\begin{equation*}
\frac{C_{Y B}}{\beta} \frac{c}{\overline{c_{F}}}=\left(\frac{C_{Y F}}{\beta} \frac{c}{\bar{c}_{F}}\right)_{z=R} \cdot \frac{C_{Y B} c}{\left(C_{Y B} c\right)_{\text {junction }}}-\frac{2}{\omega} \frac{\beta_{i}}{\beta} A_{F} \cdot 4 \frac{R}{\hbar} \sqrt{\left\{1-\left(\frac{z}{R}\right)^{2}\right\} \quad \ldots} \tag{127}
\end{equation*}
$$

where $\frac{C_{Y B} c}{\left(C_{Y B} c\right)_{\text {junction }}}$ can be interpolated from Table 3.
Finally, the coefficient of the total lift acting on one half of the tailplane or body, referred to the fin area, can be calculated from

$$
\begin{array}{lllllllll}
\bar{C}_{L T} & =\frac{\bar{C}_{L T}}{\bar{C}_{Y F}} \bar{C}_{Y F} & \ldots \\
\bar{C}_{L B}= & \frac{\bar{C}_{L B}}{\bar{C}_{Y F}} \bar{C}_{Y F} & \ldots \tag{129}\\
\hline
\end{array}
$$

where $\bar{C}_{L_{T} T} / \bar{C}_{Y_{F}}$ and $\bar{C}_{L_{B}} / \bar{C}_{Y_{F}}$ are read from Figs. 9 and 11. The lift distributions can be interpolated from Tables 4 and 5 . The lift coefficient $\left(C_{L T} c\right)_{\text {junction }}$ at the fin-tailplane junction, by which the lift coefficients have been divided, is equal to half the difference of the side-force ($C_{Y}{ }_{F} c$) at the two sides of the tailplane, and the lift coefficient $\left(C_{L B} c\right)_{\text {junction }}$ is equal to half the side-force coefficient $\left(C_{Y F} c\right)$ at the body-fin junction $z=R$. The moment arm of the lift forces can be determined from Fig. 10.

To facilitate the estimate of the tailplane effect for varying tailplane position by interpolating between the calculated examples, the shapes and positions of ' neutral' tailplanes are given in Fig. 14. They are stagnation streamlines in the flow around body and fin and thus do not affect the side-force distributions on fin and body nor do they take any lift forces.

For arrangements that give constant side-wash v_{y} along fin and body, the relation between induced drag and total side-force is:

$$
\begin{equation*}
\bar{C}_{D i}=\frac{1}{2} \frac{v_{y \infty}}{V_{0}} \bar{C}_{Y} \tag{130}
\end{equation*}
$$

With

$$
\begin{equation*}
\bar{C}_{Y}=\frac{v_{y \infty}}{V_{0}} A_{F}\left[J_{Y F}+J_{Y B}-2 \pi\left(\frac{R}{h}\right)^{2}\right] \quad . \quad \ldots \quad \ldots \tag{131}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\bar{C}_{D i}=\frac{\bar{C}_{Y}^{2}}{\pi A_{F}} \frac{\pi}{2\left[J_{Y F}+J_{Y B}-2 \pi\left(\frac{R}{h}\right)^{2}\right]} \tag{132}
\end{equation*}
$$

The factor $\frac{\pi}{2\left[J_{Y_{F}}+J_{Y_{B}}-2 \pi\left(\frac{R}{h}\right)^{2}\right]}$ giving the reduction of the induced drag compared with that of the fin alone is plotted in Fig. 15. Experience has shown that the reduction factor is not very different for non-constant induced side-wash arrangements, especially if the aspect ratio is small, as is usually the case for fin-fuselage arrangements.

As an example the side-force on the fin has been calculated for an arrangement where experimental results are available for a systematic variation of the tailplane position. Calculated results are given in Table 6. The total side-force on the fin can be determined in a quarter of an hour, and the side-force distribution in about an hour. The experimental and theoretical results are plotted together in Fig. 16; they show good agreement. The position of the tailplane, for which the side-force on the fin is the same with or without tailplane, is taken as the position of the junction between tailplane and fin or body for neutral tailplanes, as plotted in Fig. 14. The side-force distributions on fin and fuselage, calculated by equations (126) and (127), are plotted in Fig. 17; the distributions on the fuselage differ from those in Fig. 6 by the term

$$
\frac{2 \beta_{i}}{\omega \beta} A_{R} \cdot 4 \frac{R}{\bar{h}} \int\left\{1-\left(\frac{z}{R}\right)^{2}\right\} .
$$

The figure illustrates how large is the effect of fuselage and tailplane on the side-force on the fin. The fuselage increases the total side-force on the fin by a factor 1.6 and for the tailplane on top of the fin, tailplane and fuselage together increase it by a factor $2 \cdot 2$. The effect of the tailplane on the side-force of the fin-fuselage arrangement depends of course not only on the position of the tailplane but also on the other parameters: aspect ratio and sweep of the fin, diameter of the body, span of the tailplane, so that it cannot strictly be described by one single curve as given in Ref. 9.

LIST OF SYMBOLS

x, y, z	Rectangular system of co-ordinates, x in the wind direction, y spanwise, z positive upwards; origin on the body axis
ζ	$y+i z$, complex co-ordinate in the Trefftz-plane
ζ_{v}	$y_{v}+i z_{v}$, complex co-ordinate in one of the transformed Trefftz-planes
c	Local chord
\bar{c}_{F}	Mean chord of the fin outside the body
h	Height of the fin outside the body
R	Body radius
b	Tailplane span
h_{1}.	Distance of tailplane from wing-body junction
A_{F}	h / \bar{c}_{F}, aspect ratio of the fin outside the body
$A_{e F}$	Effective aspect ratio
φ	Angle of sweep of the mid-chord line on the fin
φ e	Effective angle of sweep (see equation (120))
β	Geometric side-wash angle.

LIST OF SYMBOLS-continued

$\beta_{B} \quad$ Additional side-wash angle produced by the flow around the isolated body
$\beta_{i} \quad$ Induced side-wash angle at the fin
$\beta_{e} \quad$ Effective side-wash angle
$V_{0} \quad$ Velocity of the main flow
$v_{y \infty} \quad$ Side-wash velocity in the Trefftz-plane
中 Velocity potential
$C_{Y F}$. Side-force coefficient on the fin
$\bar{C}_{Y F}$. Coefficient of the total side-force on the fin
$C_{Y B} \quad$ Side-force coefficient on the body
$\bar{C}_{Y B} \quad$ Coefficient of the total side-force on the body referred to the fin area $h \bar{c}_{F}$
$\bar{C}_{Y}=\bar{C}_{Y F}+\bar{C}_{Y B}$, coefficient of the total side-force
$C_{L T} \quad$ Lift coefficient on the tailplane
$\bar{C}_{L T} \quad$ Coefficient of the total lift on one half of the tailplane referred to the fin area $h \bar{c}_{F}$.
$C_{L B} \quad$ Lift coefficient on the body
$\bar{C}_{L B} \quad$ Coefficient of the total lift on one half of the body referred to the fin area $h \bar{c}_{F}$
$\bar{C}_{D i} \quad$ Coefficient of the total induced drag referred to the fin area $h \bar{c}_{F}$
$J_{Y F}=\bar{C}_{Y_{F}} /\left(A_{F} v_{y \infty} / V_{0}\right)$
$a=d C_{Y} / d \beta_{e}=d C_{L} / d \alpha_{e}$, local sectional lift slope
$a_{0} \quad$ Lift slope coefficient of the two-dimensional aerofoil
$\omega=\beta_{i} / \frac{1}{2}\left(v_{y \infty} / V_{0}\right)$, side-wash factor
$\omega_{B} \quad$ Side-wash factor for the body
$y_{0 T}=\mathscr{M} \mid \bar{L}_{T}$, moment arm of the lift on the tailplane

Suffices

F	Fin
B	Body
${ }_{T}$	Tailplane
C	Effective
i	Induced

REFERENCES

No. Author
Title, etc.
1 J. Weber Theoretical load distribution on a wing with a cylindrical body at one end. R. \& M. 2889. June, 1952.
W. Mangler The distribution of lift over an aerofoil with end-plates. L.F.F. Vol. 14, p. 564. A.R.C. 3414.1938.

3 W. Mangler and J. Rotta A. Aerofoils with tip plates. AVA Monograph $\mathrm{F}_{1}, 1$.6. Reports and Translations. 1023. 1947.

4 V. M. Falkner and Sir Charles Darwin

5 J. Rotta Luftkräfte am Tragflügel mit einer seitlichen Scheibe. Ing. Arch., Vol. 13, p. 119. 1942.

6 D. E. Hartley Theoretical load distributions on wings with cylindrical bodies at the tips. C.P. 147. June, 1952.

7 J. Weber Theoretical load distribution on a wing with vertical plates. R. \& M. 2960. March, 1954.

8 D. Küchemann and D. J. The effect of endplates on swept wings. C.P.104. June, 1951.
Kettle
9 J. A. Lawford Low-speed wind-tunnel measurements of the lift on a 45 -deg sweptback half wing and cylindrical body. R.A.E. Tech. Note Aero. 2243. July, 1953.

10 A. E. Bryson, jr. . .. Stability derivatives for a slender missile with application to a wing-body-vertical-tail configuration. J. Ae. Sci. Vol. 20, No. 5, p. 297.1953.

11 M. T. Landahl Analysis of some wing-body-vertical tail interference problems for nonsymmetric steady flow using slender-body theory. K.T.H. Aero. Tech. Note 32. July, 1953.

12 D. Küchemann A simple method of calculating the span and chordwise loading on straight and swept wings of any given aspect ratio at subsonic speeds. R. \& M. 2935. August, 1952.

13 J. Weber, D. A. Kirby and D. J. Kettle

An extension of Multhopp's method of calculating the spanwise loading of wing fuselage combinations. R. \& M. 2872. November, 1951.

Properties of low-aspect-ratio pointed wings at speeds below and above the speed of sound. N.A.C.A. Report 835. 1946.

TABLE 1
Position of Certain Points in the Various ζ-planes

	$\zeta=$	$\zeta_{1}=$	$\zeta_{2}=$		
A	$-i R$	$-i .2 R$	$\left.-i \cdot \frac{1}{2}\left[2 R+x+\sqrt{ }\{2 R+x)^{2}+\lambda^{2}\right\}\right]$		
B	R	0	$-i \cdot \frac{1}{2}\left[x+\sqrt{ }\left(x^{2}+\lambda^{2}\right)\right]$		
C	${ }^{\text {i }}$	$i .2 R$	i. $\left.\frac{1}{2}\left[2 R-x-\sqrt{ }(2 R-x)^{2}+\lambda^{2}\right\}\right]$		
D.	$i\left(h_{1}+R\right)$	$i \frac{h_{1}{ }^{2}+2 h_{1} R+2 R^{2}}{h_{1}+R}$	$i \cdot \frac{1}{2}\left[\mu-\sqrt{ }\left(\mu^{2}+\lambda^{2}\right)\right]$		
E	$\frac{b}{2}+i\left(h_{1}+R\right)$	$\lambda+i x$	$\frac{\lambda}{2}$		
F	$i\left(h_{1}+R\right)$	$i \frac{h_{1}{ }^{2}+2 h_{1} R+2 R^{2}}{h_{1}+R}$	$i . \frac{1}{2}\left[\mu+\sqrt{ }\left(\mu^{2}+\lambda^{2}\right)\right]$		
G	$i(1+R)$	${ }^{\text {ir }}$	i. $\frac{1}{2}\left[\tau-x+\sqrt{ }\left\{(\tau-x)^{2}+\lambda^{2}\right\}\right]$		
	$\zeta_{3}=$				$\zeta_{4}=$
A	-i.e			0	
B	$-i \cdot \frac{1}{2}\left[\varkappa+\mu+\sqrt{ }\left(\varkappa^{2}+\lambda^{2}\right)+\frac{\mu^{2}+\lambda^{2}}{x+\mu+\sqrt{ }\left(x^{2}+\lambda^{2}\right)}\right]$				
C	$-i \cdot \frac{1}{2}\left[\begin{array}{c} -2 \mathrm{R}+\kappa+\mu+\sqrt{ }\left\{(2 R-x)^{2}+\lambda^{2}\right\} \\ +\frac{\mu^{2}+\lambda^{2}}{-2 R+x+\mu \sqrt{ }\left\{(2 R-x)^{2}+\lambda^{2}\right\}} \end{array}\right]$.	
D	$-i \sqrt{ }\left(\mu^{2}+\lambda^{2}\right)$			$\sqrt{ }\left[-\mu^{2}-\lambda^{2}+\sqrt{ }\left\{\mu^{2}+\lambda^{2}\right\}(\varrho-\sigma)+\varrho \sigma\right]$	
E	$-i . \mu$			$\sqrt{ }\left[-\mu^{2}+(\varrho-\sigma) \mu+\varrho \sigma\right]$	
F	$i \sqrt{ }\left(\mu^{2}+\lambda^{2}\right)$			$\sqrt{ }\left[-\mu^{2}-\lambda^{2}-\sqrt{ }\left\{\mu^{2}+\lambda^{2}\right\}(\varrho-\sigma)+e^{\sigma}\right]$	
G	$i . \sigma$			0	

TABLE 2
Values of $\frac{C_{Y F}(z) c(z)}{\bar{C}_{Y} \bar{C}_{F}}$

$$
h_{1}=h
$$

$\frac{z-R}{h}$	$\frac{R}{h}=0$	$b=0$			$\frac{R}{h}=0$	$b=h$			$\frac{R}{\bar{h}}=0$	$b=2 h$			$\frac{R}{\bar{h}}=0$	$b=3 h$			$\begin{aligned} & b=\infty \\ & R=0 \end{aligned}$
		$0 \cdot 1$	$0 \cdot 25$	$0 \cdot 5$		0:1	$0 \cdot 25$	$0 \cdot 5$		$0 \cdot 1$	$0 \cdot 25$	$0 \cdot 5$		$0 \cdot$	$0 \cdot 25$	$0 \cdot 5$	
0	0	1.088	$1 \cdot 254$	1-306	0	$0 \cdot 841$	0.986	1.038	0	$0 \cdot 809$	$0 \cdot 948$	$0 \cdot 996$	0	$0 \cdot 803$	0.940	0.988	0
$0 \cdot 05$	$0 \cdot 555$	$1 \cdot 100$	$1 \cdot 253$	1-303	$0 \cdot 417$	$0 \cdot 854$	$0 \cdot 988$	1.037	$0 \cdot 403$	$0 \cdot 828$	0.951	0.997	$0 \cdot 399$	0.822	0.942	0.989	$0 \cdot 398$
$0 \cdot 1$	$0 \cdot 764$	1-122	1-249	$1 \cdot 296$	$0 \cdot 580$	$0 \cdot 877$	0.991	1.036	$0 \cdot 562$	$0 \cdot 846$	$0 \cdot 954$	0.997	$0 \cdot 558$	$0 \cdot 841$	0.945	0.990	$0 \cdot 555$
$0 \cdot 2$	$1 \cdot 019$	1-160	$1 \cdot 234$	$1 \cdot 267$	$0 \cdot 788$	0.928	0.998	1.031	$0 \cdot 771$	0.901	0.968	0.998	$0 \cdot 767$	$0 \cdot 897$	0.959	0.992	$0 \cdot 764$
$0 \cdot 3$	-1.167	1-179	$1 \cdot 207$	$1 \cdot 224$	0.930	$0 \cdot 972$	$1 \cdot 004$	1.024	0.916	0.951	0.982	0.999	0.912	0.948	0.979	0.995	0.909
$0 \cdot 4$	$1 \cdot 248$	$1 \cdot 175$	1-165	1.167	1.032	1.006	$1 \cdot 007$	1.014	1.024	0.994	0.996	1.000	1.020	0.993	0.994	0.999	1.019
$0 \cdot 5$	$1 \cdot 273$	$1 \cdot 144$	1-106	1.095	$1 \cdot 106$	1.031	1.008	$1 \cdot 005$	$1 \cdot 107$	1.028	$1 \cdot 007$	1.001	1. 104	1.029	$1 \cdot 008$	$1 \cdot 002$	1.103
$0 \cdot 6$	$1 \cdot 248$	1.084	1.027	1.006	$1 \cdot 160$	1.048	1.006	0.991	1-168	1.055	1.017	1.001	$1 \cdot 168$	1.058	1-020	$1 \cdot 005$	$1 \cdot 167$
$0 \cdot 7$	1-167	$0 \cdot 988$	$0 \cdot 921$	0.892	1.195	1.058	$1 \cdot 002$	0.978	$1 \cdot 216$	1.077	1.024	1.002	$1 \cdot 215$	1.081	1.029	1.007	$1 \cdot 215$
$0 \cdot 8$	$1 \cdot 019$	$0 \cdot 846$	$0 \cdot 777$	$0 \cdot 746$	$1 \cdot 218$	$1 \cdot 064$	0.997	0.968	$1 \cdot 247$	1.090	1.029	1.002	$1 \cdot 248$	1.097	1.036	1-009	$1 \cdot 248$
$0 \cdot 9$	$0 \cdot 764$	$0 \cdot 625$	$0 \cdot 566$	$0 \cdot 539$	$1 \cdot 231$	1.066	0.994	0.962	$1 \cdot 266$	1.099	1.032	1.002	$1 \cdot 267$	1-105	1.039	1.010	1.267
0.95	$0 \cdot 555$	$0 \cdot 450$	$0 \cdot 406$	$0 \cdot 385$	$1 \cdot 234$	1.067	0.993	0.960	1.270	$1 \cdot 100$	1.032	1.002	$1 \cdot 271$	1-107	1.041	1.010	1.272
$1 \cdot 0$	0	0	0	0	$1 \cdot 235$	$1 \cdot 067$	0.993	0.959	$1 \cdot 272$	1-102	1.033	1.001	$1 \cdot 273$	1-108	1.041	$1 \cdot 010$	$1 \cdot 273$

TABLE 2-continued
Values of $\frac{C_{Y F}(z) c(z)}{\bar{C}_{Y F} \bar{c}_{F}}$

$$
h_{1}=0 \cdot 75 h
$$

	$b=0$				$b=h$				$b=2 h$				$b=3 h$			
$\frac{z-R}{h .}$	$\frac{R}{h}=0$	$0 \cdot 1$	$0 \cdot 25$	$0 \cdot 5$	$\frac{R}{h}=0$	$0 \cdot 1$	$0 \cdot 25$	$0 \cdot 5$	$\frac{R}{h}=0$	$0 \cdot 1$	$0 \cdot 25$	0.5	$\frac{R}{h}=0$	$0 \cdot 1$	$0 \cdot 25$	$0 \cdot 5$
0	0	1.088	$1 \cdot 254$	$1 \cdot 306$	0	1.058	1.219	1-268	0	1.058	$1 \cdot 216$	$1 \cdot 270$	0	1.060	$1 \cdot 221$	$1 \cdot 278$
$0 \cdot 05$	$0 \cdot 555$	$1 \cdot 100$	$1 \cdot 253$	$1 \cdot 303$	$0 \cdot 543$	$1 \cdot 073$	$1 \cdot 221$	$1 \cdot 267$	$0 \cdot 545$	1.075	$1 \cdot 219$	$1 \cdot 270$	$0 \cdot 547$	$1 \cdot 076$	1-225	$1 \cdot 278$
$0 \cdot 1$	$0 \cdot 764$	$1 \cdot 122$	1.249	$1 \cdot 296$	$0 \cdot 752$	$1 \cdot 100$	$1 \cdot 224$	1-265	$0 \cdot 756$	1.104	1.223	1.270	0.759	$1 \cdot 107$	$1 \cdot 230$	1. 279
$0 \cdot 2$	1.019	-1.160	$1 \cdot 234$	$1 \cdot 267$	1.020	1.158	1-230	1.259	1.029	$1 \cdot 170$	$1 \cdot 238$	$1 \cdot 272$	$1 \cdot 033$	1-177	$1 \cdot 246$	1.281
$0 \cdot 3$	1-167	1-179	$1 \cdot 207$	$1 \cdot 224$	1-194	$1 \cdot 207$	$1 \cdot 235$	1.249	$1 \cdot 210$	$1 \cdot 228$	$1 \cdot 253$	1.272	$1 \cdot 216$	$1 \cdot 233$	1.263	$1 \cdot 284$
$0 \cdot 4$	$1 \cdot 248$	$1 \cdot 175$	$1 \cdot 165$	$1 \cdot 167$	1-324	. 1.244	$1 \cdot 237$	$1 \cdot 238$	$1 \cdot 337$. $1 \cdot 274$	1-266	$1 \cdot 274$	$1 \cdot 344$.	$1 \cdot 280$	1.278	$1 \cdot 288$
$0 \cdot 5$	$1 \cdot 273$	$1 \cdot 144$	1-106	$1 \cdot 095$	$1 \cdot 391$	1-268	$1 \cdot 237$	$1 \cdot 228$	1.424	$1 \cdot 307$	$1 \cdot 277$	$1 \cdot 274$	$1 \cdot 432$	1-316	1.291	$1 \cdot 291$
$0 \cdot 6$	$1 \cdot 248$	$1 \cdot 084$	1-027	1.006	$1 \cdot 440$	1-283	$1 \cdot 236$	$1 \cdot 219$	1-479	1-329	1.284	$1 \cdot 275$	1.488	1-339	1.299	1.292
$0 \cdot 7$	1-167	0.988	0.921	$0 \cdot 892$	1.463	$1 \cdot 290$	1.235	1.214	$1 \cdot 506$	$1 \cdot 340$	$1 \cdot 287$	$1 \cdot 275$	$1 \cdot 515$	$1 \cdot 349$	1.303	1.294
$0 \cdot 75$	1-103	$0 \cdot 924$	$0 \cdot 854$	$0 \cdot 824$	$1 \cdot 466$	1.291	$1 \cdot 235$	$1 \cdot 214$	1.509	$1 \cdot 342$	'1. 288	$1 \cdot 275$	1.518	$1 \cdot 350$	$1 \cdot 304$	1.294
				$0 \cdot 824$	$0 \cdot 646$	$0 \cdot 480$	$0 \cdot 399$	$0 \cdot 355$	0. 558	$0 \cdot 382$	$0 \cdot 288$	$0 \cdot 231$	$0 \cdot 533$	$0 \cdot 351$	$0 \cdot 249$	$0 \cdot 185$
$0 \cdot 8$	1.019	$0 \cdot 846$	$0 \cdot 777$	$0 \cdot 746$	0.633	$0 \cdot 470$	$0 \cdot 391$	$0 \cdot 347$	$0 \cdot 546$	0.374	$0 \cdot 282$	$0 \cdot 227$	$0 \cdot 522$	$0 \cdot 345$	$0 \cdot 244$	$0 \cdot 182$
$0 \cdot 9$	$0 \cdot 764$	$0 \cdot 625$	$0 \cdot 566$	$0 \cdot 539$	$0 \cdot 516$	$0 \cdot 383$	$0 \cdot 318$	$0 \cdot 282$	$0 \cdot 446$	$0 \cdot 306$	$0 \cdot 230$	$0 \cdot 185$	$0 \cdot 426$	$0 \cdot 280$	$0 \cdot 200$	0.149
$0 \cdot 95$	$0 \cdot 555$	$0 \cdot 450$	$0 \cdot 406$	$0 \cdot 385$	$0 \cdot 386$	$0 \cdot 286$	$0 \cdot 249$	$0 \cdot 211$	$0 \cdot 335$	$0 \cdot 229$	0.172	$0 \cdot 139$	$0 \cdot 320$	$0 \cdot 210$	$0 \cdot 150$	$0 \cdot 112$
$1 \cdot 0$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

TABLE 2-continued

$$
\begin{gathered}
\text { Values of } \frac{C_{Y F}(z) c(z)}{\bar{C}_{Y F} \bar{c}_{F}} \\
h_{1}=0.5 h
\end{gathered}
$$

0

	$b=0$				$b=h$				$b=2 h$				$b=3 h$			
$\frac{z-R}{h}$	$\frac{R}{h}=0$	$0 \cdot 1$	$0 \cdot 25$	$0 \cdot$	$\frac{R}{h}=0$	$0 \cdot 1$	$0 \cdot 25$	$0 \cdot 5$	$\frac{R}{h}=0$	$0 \cdot 1$	$0 \cdot 25$	$0 \cdot 5$	$\frac{R}{h}=0$	$0 \cdot 1$	$0 \cdot 25$	$0 \cdot 5$
0	0	$1 \cdot 088$	$1 \cdot 254$	$1 \cdot 306$	0	1.138	1.352	$1 \cdot 433$	0	$1 \cdot 174$	$1 \cdot 425$	$1 \cdot 560$	0	1.191	1.468	1.625
$0 \cdot 05$	$0 \cdot 555$	$1 \cdot 100$	$1 \cdot 253$	$1 \cdot 303$	$0 \cdot 555$	1-159	$1 \cdot 354$	$1 \cdot 433$	$0 \cdot 555$	1-188	$1 \cdot 430$	$1 \cdot 560$	$0 \cdot 555$	$1 \cdot 215$	$1 \cdot 474$	$1 \cdot 626$
$0 \cdot 1$	$0 \cdot 764$	1-122	$1 \cdot 249$	$1 \cdot 296$	$0 \cdot 764$	1-180	1-356	$1 \cdot 432$	$0 \cdot 764$	$1 \cdot 220$	1.434	$1 \cdot 560$	$0 \cdot 764$	1-238	$1 \cdot 479$	$1 \cdot 626$
$0 \cdot 2$	$1 \cdot 019$	$1 \cdot 160$	$1 \cdot 234$	$1 \cdot 267$	$1 \cdot 019$	$1 \cdot 234$	1-362	$1 \cdot 426$	$1 \cdot 019$	$1 \cdot 279$	$1 \cdot 444$	$1 \cdot 561$	$1 \cdot 019$	1. 298	$1 \cdot 491$	$1 \cdot 628$
$0 \cdot 3$	$1 \cdot 167$	1-179	$1 \cdot 207$	$1 \cdot 224$	1-167	$1 \cdot 276$	$1 \cdot 367$	1.421	$1 \cdot 167$	$1 \cdot 325$	$1 \cdot 453$	$1 \cdot 562$	$1 \cdot 167$	1-346	$1 \cdot 503$	1.630
$0 \cdot 4$	1-248	$1 \cdot 175$	1-165	1-167	$1 \cdot 248$	$1 \cdot 301$	1-370	$1 \cdot 414$	$1 \cdot 248$	1-353	$1 * 460$	$1 \cdot 562$	$1 \cdot 248$	$1 \cdot 374$	1.513	1.631
$0 \cdot 5$	$1 \cdot 273$	1-144	1-106	$1 \cdot 095$	$1 \cdot 273$	$1 \cdot 309$	$1 \cdot 371$	$1 \cdot 414$	1-273	$1 \cdot 362$	1-466	$1 \cdot 562$	1-273	1.385	$1 \cdot 516$	1.632
$0 \cdot 5$	$1 \cdot 273$	$1 \cdot 144$	$1 \cdot 106$	1.095	$1 \cdot 273$	0.966	$0 \cdot 819$	$0 \cdot 742$	$\int^{1} \cdot 273$	0.899	$0 \cdot 686$	$0 \cdot 560$	$\int^{1 \cdot 273}$	0.882	$0 \cdot 638$	$0 \cdot 476$
$0 \cdot 6$	$1 \cdot 248$	$1 \cdot 084$	$1 \cdot 027$	1-006	$1 \cdot 248$	0.946	0.800	$0 \cdot 726$	$1 \cdot 248$	0.880	$0 \cdot 676$	$0 \cdot 550$	1.248	$0 \cdot 862$	$0 \cdot 624$	$0 \cdot 467$
$0 \cdot 7$	$1 \cdot 167$	0.988	0.921	0.892	$1 \cdot 167$	$0 \cdot 883$	$0 \cdot 747$	$0 \cdot 676$	1-167	$0 \cdot 824$	$0 \cdot 636$	$0 \cdot 514$	1-167	0.805	$0 \cdot 585$	$0 \cdot 438$
$0 \cdot 8$	1.019	$0 \cdot 846$	$0 \cdot 777$	$0 \cdot 746$	$1 \cdot 019$	0.769	$0 \cdot 648$	$0 \cdot 585$	1-019	$0 \cdot 719$	$0 \cdot 550$	$0 \cdot 448$	$1 \cdot 019$	$0 \cdot 701$	$0 \cdot 511$	$0 \cdot 384$
$0 \cdot 9$	$0 \cdot 764$	$0 \cdot 625$	$0 \cdot 566$	$0 \cdot 539$	$0 \cdot 764$	$0 \cdot 575$	$0 \cdot 482$	$0 \cdot 434$	$0 \cdot 764$	$0 \cdot 537$	$0 \cdot 412$	$0 \cdot 338$	$0 \cdot 764$	$0 \cdot 523$	$0 \cdot 384$	$0 \cdot 289$
0.95	$0 \cdot 555$	$0 \cdot 450$	$0 \cdot 406$	$0 \cdot 385$	$0 \cdot 555$	$0 \cdot 417$	$0 \cdot 350$	$0 \cdot 313$	$0 \cdot 555$	$0 \cdot 388$	$0 \cdot 299$	$0 \cdot 246$	$0 \cdot 555$	$0 \cdot 372$	$0 \cdot 275$	$0 \cdot 210$
$1 \cdot 0$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

TABLE 2-continued
V alues of $\frac{C_{Y F}(z) c(z)}{\bar{C}_{Y F} \bar{c}_{F}}$

$$
h_{1}=-R
$$

	$b=2 R$				$b=h$				$b=2 h$				$b=3 / 2$			
$\frac{z-R}{h}$	$\frac{R}{h}=0$	$0 \cdot 1$	0.25	$0 \cdot 5$	$\frac{R}{h}=0$	$0 \cdot 1$	$0 \cdot 25$	$0 \cdot 5$	$\frac{R}{h}=0$	$0 \cdot 1$	$0 \cdot 25$	$0 \cdot 5$	$\frac{R}{h}=0$	$0 \cdot 1$	$0 \cdot 25$	$0 \cdot 5$
0	0	1.088	$1 \cdot 254$	$1 \cdot 306$	$1 \cdot 235$	$1 \cdot 253$	$1 \cdot 278$	$1 \cdot 306$	1.280	1-292	$1 \cdot 307$	$1 \cdot 313$	$1 \cdot 273$	$1 \cdot 296$	$1 \cdot 313$	$1 \cdot 319$
$0 \cdot 05$	$0 \cdot 555$	$1 \cdot 100$	$1 \cdot 253$	$1 \cdot 303$	1.234	$1 \cdot 250$	$1 \cdot 275$	$1 \cdot 303$	$1 \cdot 273$	1-289	$1 \cdot 305$	1-310	$1 \cdot 271$	1.292	1-306	$1 \cdot 316$
$0 \cdot 1$	$0 \cdot 764$	1-122	$1 \cdot 249$	$1 \cdot 296$	$1 \cdot 231$	$1 \cdot 246$	1-268	$1 \cdot 296$	$1 \cdot 266$	1. 281	1-294	1:300	1-267	$1 \cdot 284$	1.299	1-307
$0 \cdot 2$	1.019	1-160	$1 \cdot 234$	$1 \cdot 267$	$1 \cdot 218$	1-238	1-246	$1 \cdot 267$	$1 \cdot 247$	1.256	$1 \cdot 263$	1.271	1-248	$1 \cdot 257$	1-267	1.276
$0 \cdot 3$	$1 \cdot 167$	$1 \cdot 179$	1-207	$1 \cdot 224$	1-195	$1 \cdot 202$	1-212	$1 \cdot 224$	1.216	1. 218	1.222	1.226	1.215	1.219	1-224	1. 229
$0 \cdot 4$	$1 \cdot 248$	1. 175	$1 \cdot 165$	I-167	1-160	1-161	1-164	$1 \cdot 167$	1-168	1-166	1-165	1-168	1-168	1-166	$1 \cdot 166$	1-169
$0 \cdot 5$	$1 \cdot 273$	1.144	1-106	$1 \cdot 095$	$1 \cdot 106$	1-103	1-101	1.095	$1 \cdot 107$	$1 \cdot 100$	1.096	1.093	1-104	1-104	1.095	1.092
$0 \cdot 6$	$1 \cdot 248$	1-084	$1 \cdot 027$	$1 \cdot 006$	1.032	1.026	1.018	1.006	1.024	1.014	$1 \cdot 007$	1-002	1.020	1.011	1.004	1.001
$0 \cdot 7$	$1 \cdot 167$	0.988	0.921	$0 \cdot 892$	0.930	$0 \cdot 922$	0.909	0.892	0.916	0.904	0.896	$0 \cdot 888$	0.912	$0 \cdot 900$	$0 \cdot 891$	0.886
$0 \cdot 8$	1.019	0.846	$0 \cdot 777$	$0 \cdot 746$	$0 \cdot 788$	$0 \cdot 779$	$0 \cdot 765$	$0 \cdot 746$	$0 \cdot 771$	$0 \cdot 761$	$0 \cdot 749$	$0 \cdot 741$	$0 \cdot 767$	$0 \cdot 755$	$0 \cdot 746$	$0 \cdot 738$
$0 \cdot 9$	$0 \cdot 764$	$0 \cdot 625$	$0 \cdot 566$	0.539	$0 \cdot 580$	0.570	$0 \cdot 558$	0.539	$0 \cdot 562$	$0 \cdot 553$	$0 \cdot 544$	$0 \cdot 538$	$0 \cdot 558$	$0 \cdot 546$	$0 \cdot 540$	$0 \cdot 532$
0.95	$0 \cdot 555$	$0 \cdot 450$	$0 \cdot 406$	$0 \cdot 385$	$0 \cdot 417$	$0 \cdot 407$	$0 \cdot 399$	$0 \cdot 385$	$0 \cdot 403$	$0 \cdot 396$	$0 \cdot 389$	$0 \cdot 385$	$0 \cdot 399$	$0 \cdot 391$	$0 \cdot 387$	$0 \cdot 378$
$1 \cdot 0$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

TABLE 3
Values of $\frac{C_{Y_{B}}(z) c(z)}{\left(C_{Y B} c\right)_{\text {junotion }}}$ for $\omega_{B}=\omega$

$$
h_{1}=h
$$

$z / R 0$	$b=0$				$b=h$				$b=2 h$				$b=3 h$			
	$\frac{R}{h}=0$	$0 \cdot 1$	$0 \cdot 25$	$0 \cdot 5$	$\frac{R}{h}=0$	$0 \cdot 1$		$0 \cdot 5$	$\frac{R}{h}=0$	$0 \cdot 1$	$0 \cdot 25$	$0 \cdot$	$\frac{R}{h}=0$	$0 \cdot 1$	$0 \cdot 25$	$0 \cdot 5$
$-1 \cdot 0$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-0.9	$0 \cdot 224$	0-194	$0 \cdot 209$	$0 \cdot 250$	$0 \cdot 224$	$0 \cdot 193$	$0 \cdot 195$	$0 \cdot 215$	$0 \cdot 224$	$0 \cdot 191$	$0 \cdot 190$	$0 \cdot 198$	$0 \cdot 224$	$0 \cdot 190$	$0 \cdot 188$	$0 \cdot 192$
-0.8	$0 \cdot 316$	$0 \cdot 274$	$0 \cdot 293$	$0 \cdot 348$	$0 \cdot 316$	$0 \cdot 273$	$0 \cdot 275$	$0 \cdot 300$	$0 \cdot 316$	$0 \cdot 272$	$0 \cdot 268$	$0 \cdot 278$	$0 \cdot 316$	$0 \cdot 270$	$0 \cdot 267$	$0 \cdot 271$
-0.6	$0 \cdot 447$	$0 \cdot 387$	$0 \cdot 409$	0.478	$0 \cdot 447$	$0 \cdot 386$	$0 \cdot 387$	$0 \cdot 416$	$0 \cdot 447$	$0 \cdot 385$	$0 \cdot 379$	$0 \cdot 389$	0.447	$0 \cdot 387$	$0 \cdot 379$	$0 \cdot 380$
-0.4	$0 \cdot 548$	$0 \cdot 474$	$0 \cdot 494$	0.568	$0 \cdot 548$	$0 \cdot 474$	$0 \cdot 471$	$0 \cdot 499$	$0 \cdot 548$	$0 \cdot 475$	$0 \cdot 464$	$0 \cdot 470$	$0 \cdot 548$	$0 \cdot 477$	$0 \cdot 465$	$0 \cdot 462$
-0.2	$0 \cdot 633$	$0 \cdot 549$	$0 \cdot 563$	$0 \cdot 634$	$0 \cdot 633$	$0 \cdot 550$	$0 \cdot 542$	$0 \cdot 566$	$0 \cdot 633$	$0 \cdot 551$	$0 \cdot 536$	$0 \cdot 536$	0.633	$0 \cdot 554$	$0 \cdot 538$	$0 \cdot 529$
0	$0 \cdot 707$	$0 \cdot 615$	$0 \cdot 622$	$0 \cdot 685$	$0 \cdot 707$	0.619	$0 \cdot 605$	$0 \cdot 621$	$0 \cdot 707$	$0 \cdot 622$	0.601	$0 \cdot 596$	$0 \cdot 707$.	$0 \cdot 625$	$0 \cdot 604$	0.591
$0 \cdot 2$	$0 \cdot 775$	$0 \cdot 678$	$0 \cdot 675$	$0 \cdot 725$	$0 \cdot 775$	$0 \cdot 684$	$0 \cdot 664$	$0 \cdot 669$	$0 \cdot 775$	$0 \cdot 688$	$0 \cdot 661$	$0 \cdot 649$	$0 \cdot 775$	$0 \cdot 692$	$0 \cdot 667$	$0 \cdot 648$
$0 \cdot 4$	0.837	$0 \cdot 738$	$0 \cdot 725$	$0 \cdot 756$	0.837	$0 \cdot 747$	$0 \cdot 721$.	$0 \cdot 715$	0.837	$0 \cdot 752$	$0 \cdot 722$	$0 \cdot 702$	$0 \cdot 837$	$0 \cdot 755$	$0 \cdot 728$	$0 \cdot 704$
$0 \cdot 6$	$0 \cdot 894$	$0 \cdot 800$	$0 \cdot 776$	$0 \cdot 786$	0.894	0.811	$0 \cdot 781$	$0 \cdot 762$	0.894	$0 \cdot 816$	$0 \cdot 786$	$0 \cdot 758$	$0 \cdot 894$	$0 \cdot 820$	0.792	$0 \cdot 764$
$0 \cdot 8$	0.949	$0 \cdot 870$	$0 \cdot 839$	$0 \cdot 822$	0.949	0.881	0.850	$0 \cdot 822$	0.949	0.886	0.858	$0 \cdot 829$	0.949	0.889	0.863	$0 \cdot 837$
$0 \cdot 9$	$0 \cdot 975$	0.913	0.883	$0 \cdot 856$	0.975	0.923	0.896	$0 \cdot 868$	$0 \cdot 975$	0.927	0.903	0.879	0.975	0.929	0.909	0.886
$1 \cdot 0$	$1 \cdot 0$	1:0	$1 \cdot 0$													

TABLE 3-continued
Values of $\frac{C_{Y_{B}}(z) c(z)}{\left(C_{Y_{B}} c\right)_{\text {junction }}}$ for $\omega_{B}=\omega$

$$
h_{1}=0 \cdot 5 h
$$

	$b=0$				$b=h$				$b=2 h$				$b=3 h$			
z / R	$\frac{R}{h}=0$	$0 \cdot 1$		$0 \cdot 5$	$\frac{R}{h}=0$	$0 \cdot 1$	$0 \cdot 25$	$0 \cdot 5$	$\frac{R}{\hbar}=0$	$0 \cdot 1$	$0 \cdot 25$	$0 \cdot 5$	$\frac{R}{\bar{h}}=0$	$0 \cdot 1$	$0 \cdot 25$	$0 \cdot 5$
-1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-0.9	$0 \cdot 224$	$0 \cdot 194$	$0 \cdot 209$	$0 \cdot 250$	$0 \cdot 224$	0.192	$0 \cdot 195$	$0 \cdot 219$	$0 \cdot 224$	$0 \cdot 194$	$0 \cdot 190$	$0 \cdot 199$	$0 \cdot 224$	$0 \cdot 196$	$0 \cdot 191$	0.195
-0.8	$0 \cdot 316$	$0 \cdot 274$	$0 \cdot 293$	$0 \cdot 348$	$0 \cdot 316$	$0 \cdot 271$	$0 \cdot 276$	$0 \cdot 306$	0.316	$0 \cdot 272$	$0 \cdot 270$	$0 \cdot 279$	$0 \cdot 316$	$0 \cdot 274$	$0 \cdot 271$	0.273
$-0 \cdot 6$	0.447	$0 \cdot 387$	$0 \cdot 409$	$0 \cdot 478$	$0 \cdot 447$	$0 \cdot 384$	$0 \cdot 387$	$0 \cdot 423$	$0 \cdot 447$	$0 \cdot 385$	$0 \cdot 380$	$0 \cdot 387$	$0 \cdot 447$	$0 \cdot 387$	$0 \cdot 383$	$0 \cdot 380$
-0.4	$0 \cdot 548$	$0 \cdot 474$	$0 \cdot 494$	$0 \cdot 568$	$0 \cdot 548$	$0 \cdot 471$	0.469	$0 \cdot 504$	$0 \cdot 548$	$0 \cdot 472$	$0 \cdot 463$	$0 \cdot 467$	$0 \cdot 548$	$0 \cdot 475$	$0 \cdot 465$	$0 \cdot 462$
$-0 \cdot 2$	0.633	$0 \cdot 549$	$0 \cdot 563$	$0 \cdot 634$	0.633	$0 \cdot 545$	0.538	$0 \cdot 568$	$0 \cdot 633$	$0 \cdot 547$	$0 \cdot 533$	0.531	$0 \cdot 633$	0.548	$0 \cdot 537$	$0 \cdot 528$
0	$0 \cdot 707$	$0 \cdot 615$	$0 \cdot 622$	$0 \cdot 685$	$0 \cdot 707$.	$0 \cdot 613$	$0 \cdot 599$	$0 \cdot 619$	$0 \cdot 707$	$0 \cdot 616$	$0 \cdot 596$	$0 \cdot 586$	$0 \cdot 707$	0.618	$0 \cdot 601$	$0 \cdot 588$
$0 \cdot 2$	$0 \cdot 775$	$0 \cdot 678$	$0 \cdot 675$	$0 \cdot 725$	0.775	$0 \cdot 676$	$0 \cdot 657$	$0 \cdot 662$	$0 \cdot 775$	0.679	0.654	$0 \cdot 636$	$0 \cdot 775$	0.681	$0 \cdot 661$	$0 \cdot 640$
$0 \cdot 4$	$0 \cdot 837$	$0 \cdot 738$	$0 \cdot 725$	$0 \cdot 756$	0.837	$0 \cdot 739$	$0 \cdot 710$	0.701	$0 \cdot 837$	$0 \cdot 742$	0.711	$0 \cdot 687$	$0 \cdot 837$	$0 \cdot 743$	$0 \cdot 719$	0.694
$0 \cdot 6$	$0 \cdot 894$	$0 \cdot 800$	$0 \cdot 776$	$0 \cdot 786$	$0 \cdot 894$	$0 \cdot 802$	$0 \cdot 767$	$0 \cdot 743$	$0 \cdot 894$	$0 \cdot 805$	$0 \cdot 773$	$0 \cdot 742$	$0 \cdot 894$	$0 \cdot 807$	$0 \cdot 781$	0.753
$0 \cdot 8$	0.949	0.870	0.839	$0 \cdot 822$	0.949	0.872	0.838	$0 \cdot 803$	0.949	0.875	0.845	0.813	0.949	0.876	0.852	$0 \cdot 825$
0.9	$0 \cdot 975$	0.913	$0 \cdot 883$	$0 \cdot 856$	0.975	0.916	0.887	0.852	0.975	0.919	0.893	$0 \cdot 866$	$0 \cdot 975$	0.920	$0 \cdot 899$	0.877
$1 \cdot 0$																

TABLE 3-continued
Values of $\frac{C_{Y_{B}}(z) c(z)}{\left(C_{X B} c\right)_{\text {junction }}}$ for $\omega_{B}=\omega$.
for $h_{1}=-R$

z / R	$b=2 R$			$b=h$				$b=2 h$				$b=3 h$			
	$\frac{R}{h}=0 \cdot 1$. $0 \cdot 25$	$0 \cdot 5$	$\frac{R}{h}=0$	$0 \cdot 1$	$0 \cdot 25$	$0 \cdot 5$	$\frac{R}{h}=0$		$0 \cdot 25$	$0 \cdot 5$	$\frac{R}{h}=0$	$0 \cdot 1$	$0 \cdot 25$	$0 \cdot 5$
$-1 \cdot 0$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-0.9	$0 \cdot 194$	$0 \cdot 209$	$0 \cdot 250$	0	$0 \cdot 081$	$0 \cdot 175$	$0 \cdot 250$	0	$0 \cdot 058$	$0 \cdot 131$	$0 \cdot 224$	0	$0 \cdot 055$	$0 \cdot 104$	$0 \cdot 201$
-0.8	$0 \cdot 274$	$0 \cdot 293$	$0 \cdot 348$	0	$0 \cdot 113$	$0 \cdot 243$	$0 \cdot 348$	0	$0 \cdot 074$	$0 \cdot 175$	$0 \cdot 309$	0	0.067	0.147	$0 \cdot 276$
-0.6	$0 \cdot 387$	$0 \cdot 409$	$0 \cdot 478$	0	$0 \cdot 151$	$0 \cdot 330$	$0 \cdot 478$	0	$0 \cdot 100$	$0 \cdot 233$	$0 \cdot 415$	0	$0 \cdot 091$	0.197	$0 \cdot 369$
-0.4	$0 \cdot 474$	$0 \cdot 494$	$0 \cdot 568$	0	$0 \cdot 174$	$0 \cdot 385$	$0 \cdot 568$	- 0	$0 \cdot 115$	$0 \cdot 268$	0.479	0	$0 \cdot 106$	$0 \cdot 227$	$0 \cdot 423$
-0:2	$0 \cdot 549$	$0 \cdot 563$	$0 \cdot 634$	0	$0 \cdot 186$	$0 \cdot 417$	$0 \cdot 634$	0	$0 \cdot 123$	$0 \cdot 287$	$0 \cdot 517$	0	$0 \cdot 114$	$0 \cdot 245$	$0 \cdot 460$
				$\{0$	0. 190	$0 \cdot 427$		$\{0$	$0 \cdot 125$	$0 \cdot 292$	$0 \cdot 528$	$\left\{\begin{array}{l}0 \\ 1\end{array}\right.$	$0 \cdot 115$	$0 \cdot 249$	$0 \cdot 462$
0	$0 \cdot 615$	$0 \cdot 622$	$0 \cdot 685$	$\{1.0$	0.894	$0 \cdot 775$	$0 \cdot 685$	$\{1.0$	0.914	0.842	$0 \cdot 798$	$\{1.0$	$0 \cdot 920$	$0 \cdot 859$	$0 \cdot 840$
$0 \cdot 2$	$0 \cdot 678$	$0 \cdot 675$	$0 \cdot 725$	1.0	0.896	$0 \cdot 780$	$0 \cdot 725$	$1 \cdot 0$	0.915	$0 \cdot 845$	0.806	1.0	0.922	$0 \cdot 861$	0.839
$0 \cdot 4$	$0 \cdot 738$	$0 \cdot 725$	$0 \cdot 756$	$1 \cdot 0$	0.903	$0 \cdot 795$	$0 \cdot 756$	$1 \cdot 0$	0.920	0.851	0.811	$1 \cdot 0$	0.926	$0 \cdot 864$	0.838
$0 \cdot 6$	$0 \cdot 800$	0.776	$0 \cdot 786$	$1 \cdot 0$	0.915	$0 \cdot 820$	$0 \cdot 786$	$1 \cdot 0$	0.929	0.863	$0 \cdot 820$	1.0	0.933	$0 \cdot 874$	$0 \cdot 840$
$0 \cdot 8$	0.870	0.839	$0 \cdot 822$	$1 \cdot 0$	0.936	$0 \cdot 861$	$0 \cdot 822$	$1 \cdot 0$	0.945	0.888	$0 \cdot 841$	$1 \cdot 0$	0.948	0.896	0.853
0.9	0.913	$0 \cdot 883$	$0 \cdot 856$	1.0	0.954	$0 \cdot 897$	$0 \cdot 856$	$1 \cdot 0$	0.958	0.914	$0 \cdot 868$	$1 \cdot 0$	0.961	0.919	0.875
$1 \cdot 0$															

TABLE 4
Values of $\frac{C_{L T}(y) c(y)}{\left(C_{L T} c c_{\text {junction }}\right.}$

$$
h_{1}=h
$$

$\frac{y}{b / 2}$	$. b=0$	$b=h$				$b=2 h$				$b=3 h$			
		$\frac{R}{h}=0$	$0 \cdot 1$	$0 \cdot 25$	$0 \cdot 5$	$\frac{R}{h}=0$	$0 \cdot 1$	$0 \cdot 25$	$0 \cdot 5$	$\frac{R}{h}=0$	$0 \cdot 1$	$0 \cdot 25$	$0 \cdot 5$
0	1.0	$1 \cdot 0$	1.0	$1 \cdot 0$									
$0 \cdot 2$	$0 \cdot 894$	$0 \cdot 85$	$0 \cdot 86$	0.87	0.875	$0 \cdot 77$	$0 \cdot 81$	0.835	$0 \cdot 855$	$0 \cdot 715$	$0 \cdot 755$	$0 \cdot 795$	$0 \cdot 84$
$0 \cdot 4$	$0 \cdot 775$	$0 \cdot 685$	$0 \cdot 71$	$0 \cdot 735$	$0 \cdot 74$	$0 \cdot 59$	$0 \cdot 63$	0.675	$0 \cdot 705$	0:505	$0 \cdot 56$	$0 \cdot 615$	$0 \cdot 675$
$0 \cdot 6$	$0 \cdot 632$	$0 \cdot 525$	$0 \cdot 555$	$0 \cdot 585$	$0 \cdot 595$	$0 \cdot 43$	$0 \cdot 47$	0.515	$0 \cdot 55$	$0 \cdot 345$	$0 \cdot 395$	$0 \cdot 45$	$0 \cdot 50$
$0 \cdot 8$	$0 \cdot 447$	$0 \cdot 35$	$0 \cdot 375$	$0 \cdot 40$	$0 \cdot 41$	$0 \cdot 27$	0:30	$0 \cdot 34$	$0 \cdot 37$	$0 \cdot 21$	$0 \cdot 245$	$0 \cdot 28$	$0 \cdot 325$
$1 \cdot 0$	0	0	0	0	0	0	0	0	0	0	0	0	0

$$
h_{1}=0 \cdot 5 h
$$

$\frac{y}{b / 2}$	$b=0$	$b=h$				$b=2 h$				$b=3 h$			
		$\frac{R}{h}=0$	$0 \cdot 1$	$0 \cdot 25$	$0 \cdot 5$	$\frac{R}{h}=0$	$0 \cdot 1$	$0 \cdot 25$	$0 \cdot 5$	$\frac{R}{h}=0$	$0 \cdot 1$	$0 \cdot 25$	$0 \cdot 5$
0	$1 \cdot 0$	1.0	$1 \cdot 0$	$1 \cdot 0$	$1 \cdot 0$	$1 \cdot 0$							
$0 \cdot 2$	$0 \cdot 980$	0.961	0.965	0.965	0.97	$0 \cdot 910$	0.93 .	0.94	0.95	$0 \cdot 840$	$0 \cdot 88$	0.915	0.94
$0 \cdot 4$	0.917	$0 \cdot 851$	0.87	$0 \cdot 885$	$0 \cdot 895$	$0 \cdot 716$	$0 \cdot 765$	$0 \cdot 805$	$0 \cdot 835$	$0 \cdot 587$	$0 \cdot 65$	$0 \cdot 715$	$0 \cdot 785$
$0 \cdot 6$	$0 \cdot 800$	$0 \cdot 686$	$0 \cdot 71$	$0 \cdot 735$	0.755	$0 \cdot 512$	$0 \cdot 56$	0.605	$0 \cdot 66$	$0 \cdot 389$	$0 \cdot 435$	$0 \cdot 500$	$0 \cdot 575$
$0 \cdot 8$	$0 \cdot 600$	$0 \cdot 469$	$0 \cdot 495$	$0 \cdot 515$	$0 \cdot 535$	$0 \cdot 318$	$0 \cdot 345$	$0 \cdot 385$	0.435	$0 \cdot 231$	$0 \cdot 265$	$0 \cdot 295$	$0 \cdot 335$
$1 \cdot 0$	0	0	0 .	0	0	0		0	0	0	0	0	0

TABLE 4-continued

Values of $\frac{C_{L T}(y) c(y)}{\left(C_{L T} c\right)_{\text {junction }}}$

$$
h_{1}=0.75 h ; \quad R=0
$$

$\frac{y}{b / 2}$	$b=0$	$b=h$	$b=2 h$	$b=3 h$
1.0	1.0	1.0	$1 \cdot 0$	$1 \cdot 0$
0.8	0.980	0.945	0.875	0.805
0.6	0.917	0.825	0.68	0.56
0.4	0.800	0.650	0.49	0.375
0.2	0.600	0.445	0.31	0.235
0	0	0	0	0

$$
h_{1}=-R
$$

$\underline{y-R}$	$b=2 R$	$b=h . \quad \cdots$				$b=2 h$				$b=3 h$			
$\frac{b}{2}-R$		$\frac{R}{h}=0$	$0 \cdot 1$	$0 \cdot 25$	$0 \cdot 5$	$\frac{R}{h}=0$	$0 \cdot 1$	$0 \cdot 25$	$0 \cdot 5$	$\frac{R}{h}=0$	$0 \cdot 1$	$0 \cdot 25$	$0 \cdot 5$
0	$1 \cdot 0$												
$0 \cdot 2$	$0 \cdot 980$	$0 \cdot 85$	$0 \cdot 92$	0.945	$0 \cdot 980$	$0 \cdot 77$	$0 \cdot 86$	0.92	0.96	$0 \cdot 715$	$0 \cdot 80$	$0 \cdot 875$	0.93
$0 \cdot 4$	0.917	$0 \cdot 685$	$0 \cdot 79$	0.865	0.917	$0 \cdot 59$	$0 \cdot 68$	$0 \cdot 775$	0.86	$0 \cdot 505$	$0 \cdot 59$	0.69	$0 \cdot 79$
$0 \cdot 6$	$0 \cdot 800$	$0 \cdot 525$	$0 \cdot 625$	$0 \cdot 72$	$0 \cdot 800$	$0 \cdot 43$	$0 \cdot 505$	$0 \cdot 60$	$0 \cdot 71$	$0 \cdot 345$	$0 \cdot 42$	$0 \cdot 51$	$0 \cdot 625$
$0 \cdot 8$	$0 \cdot 600$	$0 \cdot 35$	$0 \cdot 43$	$0 \cdot 515$	$0 \cdot 600$	$0 \cdot 27$	$0 \cdot 33$. $0 \cdot 405$	$0 \cdot 50$	$0 \cdot 21$	$0 \cdot 26$	$0 \cdot 325$	$0 \cdot 42$
$1 \cdot 0$	0	0	0	0	0	0	0 -	0 .	0	0	0	0	0

TABLE 5

Values of $\frac{C_{L B}(y) c(y)}{\left(C_{L_{B} B}\right)_{\text {junction }}}$

$$
h_{1}=h
$$

y / R	$b=0$				$b=h$				$b=2 h$				$b=3 h$			
	$\frac{R}{h}=0$	$0 \cdot 1$	$0 \cdot 25$	$0 \cdot 5$	$\frac{R}{\hbar}=0$	$0 \cdot 1$	$0 \cdot 25$	$0 \cdot 5$	$\frac{R}{h}=0$	$0 \cdot 1$	$0 \cdot 25$	$0 \cdot 5$	$\frac{R}{\hbar}=0$	$0 \cdot 1$	$0 \cdot 25$	$0 \cdot 5$
0	$1 \cdot 0$	1.0	$1 \cdot 0$	1.0	$1 \cdot 0$	1.0										
$0 \cdot 2$	$0 \cdot 894$	$0 \cdot 874$	$0 \cdot 850$	$0 \cdot 812$	$0 \cdot 894$	$0 \cdot 877$	$0 \cdot 861$	$0 \cdot 840$	0.894	$0 \cdot 879$	$0 \cdot 868$	$0 \cdot 855$	$0 \cdot 894$	$0 \cdot 881$	0.873	$0 \cdot 862$
$0 \cdot 4$	$0 \cdot 775$	$0 \cdot 742$	$0 \cdot 702$	0.639	0.775	$0 \cdot 749$	$0 \cdot 724$	$0 \cdot 680$	$0 \cdot 775$	$0 \cdot 752$	$0 \cdot 735$	$0 \cdot 705$.	$0 \cdot 775$	$0 \cdot 754$	0.744	$0 \cdot 715$
$0 \cdot 6$	$0 \cdot 632$	$0 \cdot 595$	$0 \cdot 546$	$0 \cdot 474$	0.632	$0 \cdot 607$	$0 \cdot 575$	$0 \cdot 522$	$0 \cdot 632$	$0 \cdot 613$	$0 \cdot 588$	$0 \cdot 551$	$0 \cdot 632$	$0 \cdot 617$	$0 \cdot 597$.	$0 \cdot 565$
$0 \cdot 8$	$0 \cdot 447$	$0 \cdot 414$	$0 \cdot 369$	$0 \cdot 307$	$0 \cdot 447$	$0 \cdot 425$	$0 \cdot 394$	$0 \cdot 345$	$0 \cdot 447$	$0 \cdot 430$	$0 \cdot 406$	$0 \cdot 370$	$0 \cdot 447$.	$0 \cdot 432$	$0 \cdot 412$	$0 \cdot 383$
$1 \cdot 0$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

$$
h_{1}=0 \cdot 5 h
$$

y / R	$\frac{R}{h}=0$	$b=0$			$b=h$				$b=2 h$				$b=3 h$			
		$0 \cdot 1$	$0 \cdot 25$	- $0 \cdot 5$	$\frac{R}{h}=0$	$0 \cdot 1$	$0 \cdot 25$	$0 \cdot 5$	$\frac{R}{h}=0$	$0 \cdot 1$	$0 \cdot 25$	$0 \cdot 5$	$\frac{R}{h}=0$	$0 \cdot 1$	$0 \cdot 25$	$0 \cdot 5$
0	$1 \cdot 0$	1.0	1.0	$1 \cdot 0$	$1 \cdot 0$	$1 \cdot 0$	1.0	$1 \cdot 0$	$1 \cdot 0$	$1 \cdot 0$	$1 \cdot 0$	1.0	$1 \cdot 0$	$1 \cdot 0$	$1 \cdot 0$	$1 \cdot 0$
$0 \cdot 2$	$0 \cdot 894$	$0 \cdot 874$	$0 \cdot 850$	0.812	$0 \cdot 894$	$0 \cdot 871$	0.857	0.827	$0 \cdot 894$	$0 \cdot 869$	$0 \cdot 863$	$0 \cdot 847$	$0 \cdot 894$	0.869	$0 \cdot 867$	$0 \cdot 855$
$0 \cdot 4$	$0 \cdot 775$	$0 \cdot 742$	$0 \cdot 702$	$0 \cdot 639$	$0 \cdot 775$	$0 \cdot 741$	$0 \cdot 714$	0.665	$0 \cdot 775$	$0 \cdot 739$	$0 \cdot 725$	$0 \cdot 693$	$0 \cdot 775$	$0 \cdot 738$	$0 \cdot 732$	$0 \cdot 704$
$0 \cdot 6$	$0 \cdot 632$	$0 \cdot 595$	$0 \cdot 546$	$0 \cdot 474$	$0 \cdot 632$	$0 \cdot 600$	$0 \cdot 561$	$0 \cdot 496$	$0 \cdot 632$	$0 \cdot 602$	$0 \cdot 575$	$0 \cdot 534$	$0 \cdot 632$	$0 \cdot 602$	$0 \cdot 582$	$0 \cdot 553$
$0 \cdot 8$	$0 \cdot 447$	$0 \cdot 414$	$0 \cdot 369$	$0 \cdot 307$	$0 \cdot 447$	0.418	$0 \cdot 381$	$0 \cdot 321$	$0 \cdot 447$	$0 \cdot 420$	0:394	$0 \cdot 354$	$0 \cdot 447$	$0 \cdot 420$	0.398	$0 \cdot 372$
$1 \cdot 0$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

TABLE 5-continued
Values of $\frac{C_{L B}(y) c(y)}{\left(C_{L B} C\right)_{\text {junction }}}$

$$
h_{1}=-R
$$

y / R	$b=2 R$			$b=h$				$b=2 h$				$b=3 h$			
	$\frac{R}{h}=0 \cdot 1$	$0 \cdot 25$	$0 \cdot 5$	$\frac{R}{h}=0$	$0 \cdot 1$	$0 \cdot 25$	$0 \cdot 5$	$\frac{R}{h}=0$	$0 \cdot 1$	$0 \cdot 25$	$0 \cdot 5$	$\frac{R}{h}=0$	(). 1	$0 \cdot 25$	$0 \cdot 5$
0	$1 \cdot 0$														
$0 \cdot 2$	$0 \cdot 874$	$0 \cdot 850$	$0 \cdot 812$	$1 \cdot 0$	0.938	$0 \cdot 872$	$0 \cdot 812$	$1 \cdot 0$	$0 \cdot 956$	$0 \cdot 898$	$0 \cdot 820$	$1 \cdot 0$	$0 \cdot 958$	0.914	$0 \cdot 833$
$0 \cdot 4$	$0 \cdot 742$	$0 \cdot 702$	0.639	$1 \cdot 0$	$0 \cdot 880$	$0 \cdot 742$	0.639	$1 \cdot 0$	0.913	$0 \cdot 800$	$0 \cdot 665$	$1 \cdot 0$	0.917	0.831	0.695
$0 \cdot 6$	$0 \cdot 595$	$0 \cdot 546$	$0 \cdot 474$	1.0	$0 \cdot 823$	$0 \cdot 618$	$0 \cdot 474$	$1 \cdot 0$	0.870	0.711	$0 \cdot 531$	$1 \cdot 0$	0.877	$0 \cdot 751$	0.575
$0 \cdot 8$	$0 \cdot 414$	$0 \cdot 369$	$0 \cdot 307$	$1 \cdot 0$	$0 \cdot 765$	$0 \cdot 490$	$0 \cdot 307$	$1 \cdot 0$	$0 \cdot 828$	$0 \cdot 629$	$0 \cdot 405$	$1 \cdot 0$	$0 \cdot 840$	$0 \cdot 676$	$0 \cdot 471$
$1 \cdot 0$	0	0	0	$1 \cdot 0$	$0 \cdot 705$	$0 \cdot 347$	0	$1 \cdot 0$	$0 \cdot 788$	$0 \cdot 550$	$0 \cdot 270$	$1 \cdot 0$	$0 \cdot 804$	$0 \cdot 610$	$0 \cdot 378$

TABLE 6

Calculation Example

$$
A_{F}=1 \cdot 37, \varphi=0, R / h=0 \cdot 22, b / h=1 \cdot 93, h_{1} / h=1 \cdot 0, a_{0}=2 \pi
$$

	From	Fin Alone	Fin and Body	Fin-Body-Tailplane
$A_{\theta F}$	Equation (117)	1.37	1.62	2.46
n	Equation (122)	0.624	0.604	0.560
ω	Equation (123)	1.248	1.208	1.12
a	Equation (121)	4.35	4.62	5.27
$\frac{\omega a}{2 \pi A_{F}}$		0.631	0.648	0.685
β_{i} / β	Figs. 7a to 7d	0.558	0.498	0.332
$J_{Y F}$	Figs. 4a to 4d	1.57	2.73	5.25
$\bar{C}_{Y F}$	Equation (124)	1.92	3.08	4.26
β				

Fig. 1. Sketch of the conformal transformations of the Trefftz-plane.

Fig. 2. Tailplane shapes which lead to circular arcs in the ζ_{1}-plane.

Fig. 3. Sketch of the conformal transformations of the Trefftz-plane for the special case $h_{1}=-R$.

Fig. 4a. Coefficient for calculating the side-force on the fin; $\bar{C}_{Y F}=\frac{2}{\omega} \frac{\beta_{i}}{\beta} A_{F} J_{Y F}$.

Fig. 4b. Coefficient for calculating the side-force on the fin;

$$
\bar{C}_{Y F}=\frac{2}{\omega} \frac{\beta_{i}}{\beta} A_{F} J_{Y F}
$$

Fig. 4c. Coefficient for calculating the side-force on the fin;

$$
\bar{C}_{Y F}=\frac{2}{\omega} \frac{\beta_{i}}{\beta} A_{F} J_{Y F}
$$

Fig. 4d. Coefficient for calculating the side-force on the fin;
$\bar{C}_{T F}=\frac{2}{\omega} \frac{\beta_{i}}{\beta} A_{F} J_{Y F}$.

Fig. 5. Ratio between the side-forces on body and fin, $\omega_{B}=\omega$.

FIG. 6a. Side-force distributions for $\omega_{B}=\omega$.

Fig. 6b. Side-force distributions for $\omega_{B}=\omega$.

Fig. 6c. Side-force distributions for $\omega_{B}=\omega$.

Fig. 7b. Induced side-wash.

Fig. 7c. Induced side-wash.

Fig. 7d, Induced side-wash.

Fig. 7e. Induced side-wash.

Fig. 7f. Induced side-wash.

Fig. 7g. Induced side-wash.

Fig. 7h. Induced side-wash.

Fig. 7i. Induced side-wash.

FIG. 7k. Induced side-wash.

Fig. 7l. Induced side-wash.

Fig. 7m. Induced side-wash.

Fig. 7n. Induced side-wash.

Fig. 8. Lift distribution on the tailplane.

Fig. 9a. Ratio between the lift on one half of the tailplane and the side-force on the fin.

Fig. 9b. Ratio between the lift on one half of the tailplane and the side-force on the fin.

Fig. 9c. Ratio between the lift on one half of the tailplane and the side-force on the fin.

Fig. 9d. Ratio between the lift on one half of the tailplane and the side-force on the fin.

Fig. 10. Moment arm of the lift distribution on the tailplane.

Fig. 11. Ratio between the lift on one half of the body and the side-force on the fin.

厅

Fig. 12. Lift distribution on the body.

Fig. 13. The parameter $\omega a / 2 \pi A_{F}$.

Fig. 14. Neutral tailplanes.
57

Fig. 15a. Induced drag reduction.

$$
\bar{C}_{D i}=\pi \cdot \bar{C}_{Y}^{2} / \pi A_{p .}
$$

Fig. 15b. Induced drag reduction.

$$
\bar{C}_{D i}=x \cdot \bar{C}_{r^{2}}^{2} / \pi A_{F} .
$$

$A_{F}=1.37, \varphi=0, R / h=0.22$
$b / h=1.93$ FOR $h_{1}>0$
$b / h=2.28$ FOR $h_{1}<0$

$A_{F}=1.37, \varphi=0, R / h=0.22$
Fig. 17. Side-force distributions.

Fig. 16. Comparison of experimental and calculated side-force coefficients.

Publications of the Aeronautical Research Council

ANNUAL TECHNIGAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL (BOUND VOLUMES)

1939 Vol. I. Aerodynamics General, Performance, Airscrews, Engines. 50s. (5If. gd.).
Vol. II. Stability and Control, Flutter and Vibration, Instruments, Structures, Seaplanes, etc. 63 s. (64s. 9d.)
1940 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Icing, Stability and Control Structures, and a miscellaneous section. 50s. (5 Is .9 gd .)
1941 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Stability and Control Structures. 63 s. (645.9 d .)
1942 Vol. I. Aero and Hydrodynamics, Aerofoils, Airscrews, Engines. 75s. (76s. 9d.)
Vol. II. Noise, Parachutes, Stability and Control, Structures, Vibration, Wind Tunnels. 47s. 6 d. (49s. 3 d.)
1943 Vol. I. Aerodynamics, Aerofoils, Airscrews. 8os. (8is. gd.)
Vol. II. Engines, Flutter, Materials, Parachutes, Performance, Stability and Control, Structures. 90s. (92s. $6 d$.)
1944 Vol. I. Aero and Hydrodynamics, Aerofoils, Aircraft, Airscrews, Controls. :84s. (86s. 3 d.)
Vol. II. Flutter and Vibration, Materials, Miscellaneous, Navigation, Parachutes, Performance, Plates and Panels, Stability, Structures, Test Equipment, Wind Tunnels. 84s. (86s. 3d.)
1945 Vol. I. Aero and Hydrodynamics, Aerofoils. 130s. (132s. 6d.)
Vol. II. Aircraft, Airscrews, Controls. 1 30s. ($1325.6 d$.)
Vol: III. Flutter and Vibration, Instruments, Miscellaneous, Parachutes, Plates and Panels, Propulsion. 1305. (1325. 3 d.)
Vol. IV. Stability, Structures, Wind Tunnels, Wind Tunnel Technique. r 305 . (132s. 3d.)
Annual Reports of the Aeronautical Research Council-
1937 2s. (2s. 2d.) 1938 is. 6 d. (is. 8d.) $1939-48$ 3s. (3s. 3d.)
Index to all Reports and Memoranda published in the Annual Technical Reports, and separately-

April, 1950 - - - R. \& M. 2600 2s. $6 d$. (2s. 8d.)
Author Index to all Reports and Memoranda of the Aeronautical Research Council-
r909-January, $1954 \quad$ R. \& M. No. 2570 155. (15s. 6d.)
Indexes to the Technical Reports of the Aeronautical Research Council-

December 1, 1936-June 30, 1939
July 1, 1939-June 30, 1945
July 1, 1945-June 30, 1946
July I, 1946-December 31, 1946
January I, 1947-June 30, 1947
R. \& M. No. 1850 Is. 3 d. (1s. 5 d.)
R. \& M. No. 195°
R. \& M. No. 2050

1s. (1s. 2d.)
R.\& M. No. 2150 Is. 3 d. (Is. 5 d.)
R. \& M. No. 2250 1s. 3 d. (Is. 5 d.)

Published Reports and Memoranda of the Aeronautical Research Council-
 Between Nos. $225 \mathrm{I}-2349 \quad$ R. \& M. No. 2350 Is. 9 d. (Is. IId.)
 Between Nos. 2351-2449
 Between Nos. 2451-2549
 R. \& M. No. 2450 2s. (2s. 2d.)
 Between Nos. 2551 -2649
 R. \& M. No. 2550 2s. $6 d$. (2s. $8 d$.
 R. \& M. No. $2650 \quad 25.6$ d. (25. 8d.)
 HER MAJESTY'S STATIONERY OFFICE
 York House, Kingsway, London W.C. $2 ; 423$ Oxford Street, London W.i (Post Orders: P.O. Box 569 , London S.E.I) ${ }^{13}{ }^{\text {a Castle Strect, Edinburgh 2; } 39 \text { King Street, Manchester 2; } 2 \text { Edmund Street, Birmingham 3; ro9 St. Mary }}$ Street, Cardiff; Tower Lane, Bristol, I; 80 Chichester Strect, Belfast, or through any bookseller.

[^0]: * R.A.E. Report Aero. 2518, received 1st March, 1955.

