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Summary.--Expressions are derived for the sideslip derivatives on the assumptions of the linearised theory of flow 
for a delta wing with small dihedral flying at supersonic speeds. A discussion is included in the Appendix on the relation 
between two methods that  have been evolved for the t reatmenf  of aerodynamic force problems of the delta wing lying 
within its apex Mach cone. 

When the leading edges are within the Mach cone from the apex, the pressure distribution and the rolling moment  
are independent of Mach number but  dependent on aspect ratio. 

When the leading edges are outside the apex Mach cone, the non-dimensional rolling derivative is, in contrast to  
the other case, dependent on Mach number and independent of aspect ratio : the other derivatives and the pressure, 
however, are dependent on both variables. 

1. Introduct ion.--The present paper, in which the aerodynamic derivatives with respect 
to sideslip are calculated, is one of a series dealing with the force coefficients acting on a delta 
wing at supersonic speeds. The investigation will be confined to the case of small deviations 
from the neutral position of a wing at zero incidence, so that  in particular it may be assumed 
that  if the wing is initially wholly within the Mach cone emanating from its apex it will remain 
so in the disturbed condition, and vice versa. 

The problem divides into the two cases in which the wing protrudes through its apex Mach 
cone and in which it is entirely enclosed within it. In the former the task simplifies to integrating 
a uniform distribution of supersonic sources, since the motion ahead of the trailing edge above 
the wing is independent of that  below the wing. In the latter case recourse is made to a method 
based on tha t  introduced by Stewart 1 in his solution of the basic lift problem, except that  the  
expression relating the pressure distribution to the boundary conditions is derived in a different 
manner. 

* College of Aeronautics Report No. 12, received 29th April, 1948. 
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Robinson ~ solved the lift problem by  other  means,  and  a comparison of the  two techniques 
e m p l o y e d  is made  in the Appendix  to this paper.  

2. Notation. 
12 Free s t ream veloci ty  

Sideslip veloci ty  
p Air dens i ty  

M Mach n u m b e r  
fl V ( M  ~ -  1) 
2 fl t an  r 
L Rolling momen t  
N Yawing  m o m e n t  (referred to vertex) 
Y Side force 

Dihedra l  angle 
r Semi-ver tex angle 
c Max imum chord 
S = c s t an  r ; the  wing area 
s ---- c tan  y ; the  semi span 
l, = L/p(~VSs ; the  non-dimensional  rolling der ivat ive  

n~ -= N/p~12Ss ; the  non-dimensional  yawing  der ivat ive  
y~ Y/p~12S ; the  non-dimensional  sideslip derivat ive.  

3. R e s u l t s - - A  th in  flat del ta  wing of small dihedral  is t ravel l ing at supersonic speed 17 wi th  
sideslip ~ wi th  ver tex  into wind (see Fig. 3a). 

T h e  forces due to sideslip at  zero incidence are : -  

Inside Mach Cone (2 < 1) Outside Mach Cone (~ > 1) 

2 2 
L + ~ p~12~c 3 t an  3 ~,. ' + 3-~ p~12(5c3~, s 

N 

Y 

8 p~lTOSc3 tans Y. 
3~ 

4 
- -  - P ~12~'~c~ tans 7 

7/; 

8 p~i2~c 3 tan2y  sec-l~t 
3~ V(). 2 -  1) 

4 sec - 1 
- -  ~ P ~12~scs t an  s ~ %/(a2 --  1 c ) 

T h e  non-dimensional  ae rodynamic  der ivat ives  wi th  respect  to sideslip are : - -  

~u 

n v  

Y~ 

Inside Mach Cone (2 < 1) 

2 
-~ ~ t a n y .  

8 m {~S 

3~ 

4 ~s tan  y" 

Outside Mach Cone (2 > 1) 

2 8  
.-[_ - - - -  

3 ~  

8 sec-12 
_ _  _ _ ( ~ 2  

3= V (2s) _ i  

4 sec - 12 
- - -  $2 t a n r  

-V(2  - 1) 

I t  will be noted  tha t  the above quant i t ies  are cont inuous  on t ransi t ion from one case to the  
o ther .  
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In Fig. 1 the quantities tilde, n~/~2 and 3y~i ~ for zero incidence are plotted against the  
parameter )~. 

In Fig. 2 the quantities ldl} nd~ 2 and y~l~ 2 for zero incidence are plotted against Mach number 
for different aspect ratios. It  will be seen tha t  the values of l~l$ obtained for the higher 
aspect ratios, when the leading edges are within the Mach cone, are comparable with those 
obtained in incompressible flow. 

The pressure distributions are : - -  
(a) leading edges within the Mach cone, 

2 p~lT~ y tan Y 
~/(x~ tan~), --y~) 

(b) leading edges outside the Mach cone 
(i) at a point outside the Mach cone, 

p~lTO tan ~, 
~/(2 ~ - - 1 ) '  

(ii) at a point inside the Mach cone, 

%/(;t ~ -  1) tan-1 y c o t 7  X ~ 2 2 ~  ~ . 

4. Delta Wing Enclosed within the Apex Mach Cone.--4.1. Relating the Pressure Distribution 
to the Boundary Conditions.--In the linearised supersonic theory excess pressure is proportional 
to the induced velocity in the free stream direction. Since the angle of dihedral is small, the 
boundary conditions can be expressed by  equating the velocity normal to the yawing plane 
to the component of the sideslip velocity along the normal to the aerofoil itself. 

Using the cartesian axes indicated in Fig. 3(a), we will establish for the class of problems to 
which our present one belongs that  the induced velocity components u, v and w in the x, y and 
z-directions can be expressed as the real parts of functions U, V and W of a complex variable 
z, and that  there exist relations of the form 

d U dW dV dW 
dz - - f l (z )  ~ and d~ --f2(z) dz 

The problem therefore reduces to determining a suitable transformation from the x, y ,  
z-space to the z-plane, and a suitable function dW/dz, so that  w ---= R(W) takes up the known 
values at the boundaries. This is essentially the method of Stewart 1 but our derivation of the  
relations between U, V and W will be somewhat different. 

The flow at any point ahead of the trailing edge is uninfluenced by the trailing edge, so tha t  
if we replace the aerofoil by  one of the same shape but of different size the flow at such a point 
will be unaltered. Hence the flow at any point along a ray through the vertex is the same. 
The induced velocity is therefore of degree zero in x, y, z ; this type o;f flow is called conical, 
a term introduced by Busemann. 

In the linearised supersonic theory the equation of continuity is the Prandtl-Glauert equation 

8u 8v 8w 
,, - - f l ~ x + ~ y + ~ z  - - 0  • . . . . . . . . . . .  (1) 

For irrotational flow curl (u, v, w) = O, and there exists a velocity potential ¢. 

I t  will therefore be seen tha t  u, v, w and ~ satisfy the equation : - -  

_ 3~ ~ f  a~f 8~f 0 . . . . .  (2) 
+ - . . . . . . . .  
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Under the transformation (x', y ' ,  z') = (x,  i~y,  i~z) every solution of Laplace's equation in 
x ' ,  y ' ,  z ' ,  is also a solution of equation (2) in x, y, z and vice versa. 

I t  was established by Donkin in 1857 that  the most general solution of Laplace's equation of 
zero degree in three dimensions is of the form : - -  

, - --(Y'  + iz"~ + (y.'--__iz"~ 
~ , ~ , +  ; ~  F . ~ , , ~ , + ~ / ,  . . . . . . . . . .  (a)  

whe re r  ~ =  x * + y * + z  *. 

Hence any analytic function of ~ is a solution of equation (2) of degree zero, where 

o, = ~ + i t  = ~ y + i z  , 
x + r  

and where r* = x ~ - -  fl~y~ - -  f l ' z  ~. 
i 

Therefore we take u, v, w to be the real parts of U(o~), V(o~), W(~o), satisfying both equation 
(2) and Laplace s equation in ~, ¢. I t  will be noted that  the velocity potential is not of degree 
zero and cannot therefore be put in this form. 

I t  will be seen that  for conical flow the induced velocity potential is of the form ¢ = r~ (*1, ¢), 
so that  

u = ~ +  ¢ - ~  - 1 _ , ~ , _  ¢ ,v ,  , 

w = -- f l ~ ¢ ~  --  ½fl(1 --  ~ + ¢~) ~ C+ 
The equation of continuity (1) becomes 

Now since u is the real part  of U = 
d U  ~u . ~u 

d o  - -  ~ ~ ~ ' 

and  similarly for V and W. Therefore 

d U  ~- -~ - -  i~o ~ 
d~o - -  ~l b~ ~ ~ ~ 

2fl~ 
1 - - n ~ - -  ~ '~ '  

2 

1 - -  ~ - -  ~ B~°" 

. .  (4) 

U(o~), the Cauchy-Riemann equations give 

(1 - ~ '  - ¢ ~ ) ,  ~ "" (6 )  

.and 

do 

+ /~  1 - -  ~ - - ( ~ - -  oJ O~ / ~  + 2/~ (1 --  ~ --  (~)' (7) 

{ % ) C  ' -  ' " - ' ' '  + a 1 - -  , '  - -  ¢ '  + *°J ~ - -  i ~ - -  2 ia  ( 1 _  , ~  _ ¢ , ) ,  ~ (8) 

4 

2~0 

1 - n~ ¢~ - 

- -  o . . . . . . . .  ( 5 )  



Hence  fl(1 --  ~3) dU d W  

and  

f 0 %p ~ 3V' ~ 8fi~ 
= ~ , ( 1 - - ~ ' - -  ¢~) L ~ + _  ~ - -  1 --  , ~ - -  ¢ 3~° ' 

(1 -- o~ 3) dV d W  

so t ha t  by  equat ion  (5) 

dU 1 2io) dW 
1--o,3" 

d V  1 + o) ~ dW and  --  i .  
do~ 1 --  o~3 doJ 

. .  . .  

1 + ~3 + ¢3 
1 - -* /3- -  ~3~, 

(9) 

(10} 

On the  Mach cone r 2 ---- x 3 _ r3 (3I 3 + z 3) = 0, so t ha t  [co [ 3 = fl ~. ((r y 3++x) 3z 3) = 1. At the aero- 

foil z = 0, so ~ = 0, and  at  a leading edge y = 4- xt an r ,  so n ---- :t: fl t an  r :k k' 
1 + %/(1 - -  fi*tan3~,)--I + k" 

w h e r e k 3 =  1 --  k ' 2 =  1 - - f i 3 t a n 3 ~ .  

T h e  Mach cone and  its inter ior  are, therefore,  represented  in the  co-plane by  the  un i t  circle 
kl and  its interior,  while the aerofoil becomes the  real axis be tween ± /(1 + k). (Fig. 3(b) refers). 

Consider the  t ransformat ion  cn (z, k) = 2i0)/(1 --  co 3) where  cn (z, k) is the Jacob ian  elliptic 
funct ion of modulus  k in Glaisher 's notat ion.  

The inter ior  of the uni t  circle in the  co-plane is t raced  on the z-plane in the  rectangle,  ver t ices  
-4- 2iK'(k), K(k) -4- 2iK'(k). In  Fig. 3(c) the  imaginary  axis AA'  be tween r = -4- 2iK'  represents  
the  Mach cone, while the  aerofoil becomes the parallel  line BB '  be tween  z = K -¢- 2iK',  such 
t ha t  CQ is the  lower surface, z = - -  0, y < 0, QB the  upper  surface z = + 0, y < 0, CQ' t h e  

l o w e r  surface, z ----- --  0, 0 and  'B' 
become the  points  Q, Q'. y > Q the  upper  surface z = + 0, y > 0. The  leading edges 

The point  C corresponds to the  wing axis on the lower surface and  the  
points  B, B'  bo th  to the  axis on the upper  surface. The line OC represents  the  por t ion of t h e  
zx-plane, y = 0, z < 0, be tween  the Mach cone and  the  aerofoil, w h i l e A B ,  A'  B'  bo th  correspond 
to the  similar section above the aerofoil • the line PQ corresponds to tha t  par t  of the  xy-plane,  
y < 0, z = 0 be tween the Mach cone and  the  leading edge, and the  line P '  Q' to the  s imilar  
par t ,  y :> 0, z = 0. 

In  the  z-plane dU 1 d W  
d,  --  fl cnz  d--~- (11) 

dW. and  d--V-V = - -  i sn z - -  
d ,  dz 

4.2. Calculation of Derivatives with respect to S ides l ip . - -As  a l ready indica ted  we assume t h a t  
the  k inemat ic  b o u n d a r y  condit ions are fulfilled at  the  normal  project ion of the  aerofoil on the  
xy-plane ra the r  than  at  the  aerofoil itself. The b o u n d a r y  condit ion for a sideslip ve loci ty  
and  dihedral  ~ reduces to w = ~ for y > 0 and  w = - -  ~ for y < 0. 



F r o m  t h e  a s y m m e t r y  of the  conf igurat ion it follows t h a t  w = 0 at  t he  zx-plane.  I n  add i t i on  
• v = 0 at  t he  Mach cone. 

F r o m  phys ica l  cons idera t ions  dU/dz, dV/d~ and  dW/d, m u s t  be finite at  t he  Mach cone.  
F u r t h e r m o r e  the  a e r o d y n a m i c  forces m u s t  be finite, so t h a t  any  inf ini ty  of u at  t he  aerofoil  m u s t  be  
such  t h a t  t he  in tegra l  of u wi th  respect  to  area is finite. 

We have  to choose dW/d~ so t h a t  dU/dz, dV/d,, u, w fulfil these  condi t ions  and  so t h a t  u, 
v, w are single valued.  

In  order  t h a t  dW/d, m a y  be finite on the  Mach cone and  w zero on the  Mach cone a n d  the  
zx-plane,  dW/d, m u s t  be regular  and  real on AA'  and  be i m a g i n a r y  on OC, AB and  A'B' wi th  
no s ingular i t ies  o the r  t h a n  p o l e s ,  t he  residues of such  poles m u s t  be zero or real excep t  a t  C, 
B a nd  B '  where  the re  are d iscont inui t ies  in w. Since dU/d,(= 1//~ cn~ dW/,:) and  dV/d~(= -- i s n ,  
dW/d,) are to  be also finite on  the  Mach cone, dW/d, m u s t  have  at  least  a s imple  zero at  t he  
po in t s  P and  P '  (7 = 4- i K'). Since w is to be cons t an t  over  the  two  halves  of t he  aerofoil, 
dW/d, m u s t  be real on BB '  and  have  no singular i t ies  which  con t r ibu t e  to w except ,  as before,  
a t  C, B and  B'. In  i n t eg ra t ing  dW/d, along OCB, w m u s t  j u m p  in va lue  by  an" a m o u n t  + ~ 
a t  C and  --  ~ in in teg ra t ing  a long OCB'. Clearly, therefore  dW/d, m u s t  have  a s imple pole at  C 
of  residue of i m a g i n a r y  pa r t  2~ / : t .  Similar ly  dW/d~ m u s t  have  s imple poles of residue of i m a g i n a r y  
p a r t  - -  2~6/a a t  B and  B',  so t h a t  w m a y  r e t u r n  to  zero on AB and  A'B'. In  order  t h a t  u, v, w 
m a y  be single va lued  dU/d,, dV/d, dW/d~ m u s t  be regular  wi th in  the  rectangle .  

F u n c t i o n s  sa t i s fy ing these  condi t ions  and  equa t ion  (11) are : - -  

dW 2i~tk '8 
sc • n d '  

dV 2~k' ~ 
- -  s d  * T n c  T 

dv 

dU 2i~k '3 
- -  s n ~  n d ~  

( 1 2 )  

N o w  dU/dv is regular  except  for a double  pole at  T = K 4- iK' ,  so 

2v~k'3 f~isn~ u - -  ~fl R nd*~d~ 

2 
- -  ~ t a n r R ( - - i c d , )  

O n  the  aerofoil cn • = 
- 

a nd  so cd • = --  iy 
X/(x~tan~r  - -y~)  

a n d  is of oppos i te  sign for z = --  0. 

Therefore  for z = + 0 we have  

2 y 
u = - ~  t an  r .  

~ / ( x  ~ t an  s ~, - -  y ~ )  

6 

on the  xy-plane  for z = + 0 

(13) 



w h e r e  

I n  t h e  l inea r i sed  t h e o r y  t h e  p re s su re  p = cons t .  - -  pu~, so t h a t  t h e  ro l l ing  m o m e n t  d u e  t o  
s ides l ip  is : ~  

L = ff ~uy dy dx, 

where  t h e  i n t e g r a t i o n  is o v e r  t h e  who le  w i n g  

f f  y" dy dx 4 _ p 'Ol2d t a n  7 j j  y,.), 
~/(x* tan*  r - -  

= 8 pfl2~ t a n S 7  fa fx qS ~v/( 1 _ t*) ~-~ dq, 
Y/: 0 0 

%/(1 - -  t s) 
x --- q/t y = q tan 7 

t 

a n d  

a n d  

L = + § p ~ c  3 t a n  8 7. 

H e n c e  t h e  d e r i v a t i v e  

L 
_ _ _2 ~ t a n  7. l~ p ~ S s  -- ~ 

T h e  s ideforce  d u e  to  t h e  p r e s s u r e  d i s t r i b u t i o n  o v e r  t h e  aerofoi l  r e s u l t i n g  f r o m  a s ides l ip  is : - -  

r = - f f  2;,geluldy dx # 

= _ _  l y l a y  dx 
4 p~12~s t a n  7 f f  VI(xS t a n '  9, - -  y ' ) '  7~ 

8 p~717~ t a n ~ 7  f f dt dq, 
0 0 

= -- 4pflT~c* t a n  s y. 

Y = __ 4 _ ~, t a n s  Y. 

T h e  c o r r e s p o n d i n g  y a w i n g  m o m e n t  is s im i l a r l y  : - -  

N = - f f  • ay  

= _ 8 pfl?~2c~ tan* r 
3~ 
8 

no = - - 3 - ~  s. 

5. Delta Wing with Leading Edges Outside Mach Cone.--The b o u n d a r y  c o n d i t i o n  a t  t h e  aerofo i l  
is  w = ~7~ on  one  ha l f  a n d  - -  ~7~ on  t h e  o the r .  W h e n  cons ide r i ng  t h e  u p p e r  sur face ,  y > 0, w h e r e  
w = v~ we m a y  t a k e  w = - -  zT~ on  t h e  c o r r e s p o n d i n g  lower  sur face ,  s ince t h e  f low a b o v e  t h e  
aerofoi l  is i n d e p e n d e n t  of  t h e  f low be low it in  t h e  case u n d e r  cons ide ra t i on .  I n  th i s  ar t i f ic ia l  
c o n d i t i o n  t h e r e  is a j u m p  of - -  2 ~  in t h e  va lue  of O#/~n a t  t h e  sur face ,  so t h a t  t h e  su r face  can  
be  r e p l a c e d  b y  a u n i f o r m  s u p e r s o n i c  sou rce  d i s t r i b u t i o n  of d e n s i t y  - -  zT~/z~ ; t h e  o t h e r  ha l f  of  t h e  
aerofoi l ,  y < 0, whe re  w = - -  ~ ,  can  be  l ikewise  r e p l a c e d  b y  a source  d i s t r i b u t i o n  of d e n s i t y  
~ / = .  

H e n c e  • Cx, y ,  o) = - -  v~ f f v ~ [ (  o. dxo dyo 
= x - x o ) '  - ~ s ( y  _ y o )  s] 

w h e r e a  = + 1, w h e n y > 0 ,  a n d a  = - -  1, w h e n y  < 0. 

so ----. -- - o dp d~,, w h e r e  xo = x - -  3p cosh  ~o, a n d  Yo = y - -  p s inh  ~0. 
7~ 
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I n  F ig .  3(d) P is t h e  p o i n t  (x,y), OL~ a n d  OL~ are t h e  l ead ing  edges,  a n d  PL~ a n d  P L ,  are t he  
b o u n d a r i e s  whe re  (x - -  xo) ~ - -  fl ~(y - -  Yo) ' = 0. 

T h e  v a l u e s  of p, V' v a r y  as fol lows : ~  

w h e n  (Xo, yo)is on  (i) P L y ,  ~o = -  m 

(ii) P L , ,  ~ = + oo 

(iii) O P  , V' = t a n  h -1  fly- = e 
x 

(iv) O X ,  p = p o = y cosech  ~, 

x t a n  ~, - -  y 
(v) OLx, p ---- ~ = ~ c o s h  ~p - -  s inh  

x t a n r  + y  
(vi) OLd, ~ = ~ ~ =  2 cosh  ~ + s inh  ~o 

W h e n  P is ins ide  t h e  M a c h  

so that 

s ince  

w h e r e  

cone  f r o m  t h e  apex ,  we h a v e  

-- g _ f ,dw + ,e°dw-- (p,--po) dw 
$ 

u = - -  d w  - -  d ~  

~)Po 0 and po =p~ =pz, when ~ = e. 
~x 

~ f ,  t a n  7 d~ 
U = - -  ) = -~  a cosh  ~p - -  s inh  ~0 

2~0 (" t a n  r dt 
= J_,a(1 + t  * ) - 2 t  

t = t a n h  ½w, ~ = t a n h  ½, 

2 g ~ t a n 7  f a ~ - -  1 
u = = V ( a  ~ 1) " l . t an-~  

- g(a' - 1 )  

275~ t a n  r 

= g ( a ' -  1) 

~0 f *  t a n  r d~ 
- -  ~- . a c o s h ~ 7 - k - ~ n h  1o 

277~ f~ t a n  r dt 
vr , a ( 1  + t*) + 2 t  

~ T +  1 > 
+ t a n - ~  ~/(a* - -  1) 

f t a n  -1 cot~ 
W h e n  P is o u t s i d e  t h e  a p e x  M a c h  cone  

• -~- V a f  °~ _ p ld~2,  y > 0 

~a t a n  y 
so t h a t  u - -  ~/(~z _ 1) '  b y  p u t t i n g ,  = m in  t h e  above .  

H e n c e  t h e  ro l l ing  m o m e n t  d u e  to  s idesl ip  is 

L = ff2p ,,y ay a .  

- -  V(~t 2 - -  1) joot_½r ~ s i n 0  dOdr 

r ] 2_ ~Booh~ t i t a n - '  ~ 8 _  1) 
= J o o ~ s inh  ~ q~ s inh  

w h e r e  x = r cos O, y = r sin 0 in  t h e  first  i n t eg ra l  

8 

W h e n  y < O, u c h a n g e s  sign.  

,e av, aq) ,  



and x = q/~ cosh % y = q sinh ~o in the second integral 

4p~12~c 3 tan 9, f ' f f  2 ® s _ 
L = ~ ~ _ ~  i Joot_latanOsecSO dO +~fotan-l[C(t t 1)sinh~]tanh~sech3~od~ ) 

2p~717~cStany{ 1 2 [~_ ~l~v/(t ~ -- 1)cosh~;o t anhSvJd~] )  
= 3 V ' 0 7 - -  1) tanSg,--~-s+=/~---TL2--/o ~v / ( tZ_l ) s inhSw+2s  

2 p g ~ c  ~ tan 9, { t a n  s 2 ~ t~/(2 s + 1)t~dt. 

= sinh ~o 

2~717~c' tan 9, { 2 1 V ' ( 2 ' -  1)[tan_it 2 t v/(~ s -  1 ) ] ; )  
3V'(~ 2 - - I )  tansy + ~/~ V'(~ 1 ~  tan-1 - 

- -  1 

where t 

_ 2#vlT~c 8 tan z 
3~ 

L 28 
Hence l, --  p ~ ' S s - -  + 

The side force due to sideslip is 

Y = --ff2pV'lul~dydx 
,=,=o+,-,- I ) = ~-~-' -~ I) f L - '  ; f o f o  = ta=- '  sinh ~o qd~o dq 

= -  ~ / ( = ' - - I )  ' - - i  =$fo t an - '  s i n h , I s e c h = ,  d~o ) 

an,{==,_' + 3 Ii m,==h,,==, =,i) 
= -- ~¢/(2" -- 1) i =fl ' - -Jo i(-~-- 1)sinh=~ -}-22 

~V(~ = - 1)dr \ 2p~7126 =c 2 tan r -- ~-fl 1 
= - -  V'(1 s -  1) tang, 2 f¢o i ' 2 s -  1 ) t S + l f  ' t = c ° s h v '  

s e c -  11 
= __.~4p~7128Sc, tan 2 9, ~¢/(2s -- 1 i 

Y 4 O s tan 9' sec- 1t 
Y ' =  pzTFS-- - -~  ~/(ls--  1) 

The yawing moment due to sideslip is similarly 

N = - f f z ,  el-l.~ ay a .  

s e c -  12 
= -- P~717~sc* tans 9, ~(a  * -  1) 

N 8~ s sec-~l 
n , =  p ~ e S s -  3~, " ~ ( a  s - 1) 
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APPENDIX 

The Relation between Two Methods of Treating Aerodynamic Force Problems 
of a Delta Wing at Supersonic Speeds 

1. Introduction.--Solutions to the problem of the lift at supersonic speeds of a flat delta wing 
lying within its apex Mach cone were obtained independently by Stewart 1 and by Robinson* 
by methods which at first sight appear very different. A transformation will be derived that  links 
the two under conditions of conical flow. 

2. Hyperboloido-conal Co-ordinates.--The co-ordinates developed in Ref. 2 were as follows : - -  

rl~v x - -  
k 

y = 

Z 

r V { ( ~ '  - k*) ( , , * -  k*)} 
13kk' 

r V ( ( ~  * - 1 ) ( 1  - ~*)} 
/~k'  

(1) 

where k'* = 1 --  k s ---- fl*tan*r 

0 ~ < r < o o  

1 ~ < / , <  oo 

k ~ < v < l  

The family of surfaces constituting the system are : - -  

x ~ - t ~ ( y  ~ + z ~) = r *  

x * ~*y* ~ z  ~ 
~ #~ - -  k ~ ~ * - -  1 0 

x * ~ * y ,  / ~ z  * 
v" v * -  k ~ + l - v * - 0  

(2)  

It  will be observed that  these co-ordinates are analogous to sphero-conal co-ordinates ; in fact 
they correspond under the transformation (x', y', z') = (x, ifly, i~z). 

As # -+  1, the cones of the second family of surfaces approximate to the delta wing from both 
sides, and as/~ -+  ~ they tend to the Mach cone. 
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The equation - - / ~ a - ~  + - -  + - -  0 
a y '  az ~ 

now becomes : ~  

(8) 

V.{(,u' - -  ka)(~u * -  1)). ~--~ 

{~{(,,~ k ~) (1 ~,,)} + V'.((~,~ --  k~) (1 --  ~,~)} ~ _ _ _ . . . .  ( 4 )  

3 ! 

.J 

Wri t ing  P = f®~ ~/( ( t"  --  ~ )  (t * --  1 ) ) '  e = , ,  V ( ( t  * - -  k ')  (1 --  t ' )}  

i.e. ~ = ns(~, k) 

= kna(~, k') ~ . . . . . . . . . . . . . .  (s) 

weh vo ' ~-~ + a~ ~ (~*  - ~ ) ~r  r~ = 0 . . . . . . . . . .  (6) 

a~__ ~ + a~---*a 3¢ = 0, where ~ is a velocity. Hence  for conical flow 

As ~ varies from 0 to K(k), t* varies from oo to 1. As ~ varies from --  2 K '  (k) to --  K '  (k), 
varies from k to 1 and back to k as ~ continues th rough  to zero, repeat ing as ~ increases to 2k'. 
Equa t ions  (1) and  (5) give 

x = r ns (~, k) nd  (~, k') 

y = fl- ds (fi,k) sd (e, k') . . . . . . . . . . . .  (7) 

~, 

z = ~ cs (~, k) cd (~, k') 

To each value of fi, 5 in the  specified intervals  of var ia t ion  there corresponds jus t  one tr iplet  
x, y, z for cons tant  r on the r igh t -hand  sheet of the  hyperboloid x 2 --  fl*y* --  fl*z 2 = r*. Pre- 

viously we traced the (x, y,  z)-plane on the  co-plane (o~ ~ + i ~  f l y  + iz) = = so tha t  ev ident ly  
+ r '  

there  is a one to one correspondence between the points inside ]o~] ----- 1 in the  o~-plane and the 
points  in the  7-plane (7 = f i +  i~) wi thin  the  specified intervals  of var ia t ion  of ~ and ~. 

Equa t ion  (6) shows tha t  a funct ion ¢ which satisfies equat ion (3) and is of degree zero in x, 
y ,  z satisfies Laplace 's  equat ion in ~, ~, but  a n y  funct ion which satisfies Laplace 's  equat ion in 
the  ~o-plane is of zero degree in x, y ,  z and satisfies equat ion (3). Hence every potent ia l  funct ion 
in the  ~o-plane is a potent ia l  funct ion in the ~-plane, provided the o~-plane is t raced on the  
la t te r  by  means  of the  t ransformat ions  given by  o~ = ~ (y + iz)/(x + r) and equat ions (1) and (5). 
Therefore the  t ransformat ion  is conformal.  

B y  a t ransformat ion  based on Stewar t ' s  method  we previously t ransformed a set of points  
in the  ~o-plane into the  rectangle,  v e r t i c e s ,  = ± 2ik', K -4- 2iK', but  tha t  set of points  corres- 
ponds to the  points  in the  (x, y,  z)-plane which become, by  the t ransformat ion  of the  previous 
paragraph,  the  " same " rectangle in the , -p lane  wi th  the  vertices corresponding. I t  therefore 
follows from the  general theory  of conformal representat ions  tha t  the two t ransformat ions  
are identical.  

We have  shown tha t  S tewar t ' s  , -p lane  is connected to the sys tem of hyperboloido-conal  
co-ordinates by  the simple relations of equat ions (5). Fur thermore  we have given at  equat ions 
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(7) a direct  co-ordinate  t r ans format ion  be tween  (x, y,  z) and  (p, ~), b y  which Stewar t ' s  relat ion 
be tween U, V and  W as funct ions of ~ could be established in the same manne r  as the relat ion 
be tween  t h e m  as funct ions of the in te rmedia te  variable o, was established. 
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FIG. 1. Var ia t ion  of der iva t ive  lv, nv, y~, at  zero incidence with  the  pa rame te r  )~. 
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