MINISTRY OF SUPPLY

## AERONAUTICAL RESEARCH COUNCIL

 REPORTS AND MEMORANDA
# The Torsional Rigidity of Solid Cylinders of Double-wedge Section 

 ByE. H. Mansfield, M.A.

## LIBRARY

ROYAL AIRCRAFT FSTABLISHMEMT EEDFORD.

Crown Copyright Reserved

LONDON : HER MAJESTY'S STATIONERY OFFICE 1956
Price 2 S $6 d$ net

# The Torsional Rigidity of Solid Cylinders of Double-wedge Section 

By<br>E. H. Mansfield, M.A.<br>Communicated by the Principal Director of Scientific Research (Air), Ministry of Supply

Reports and Memoranda No. 2959*
January, 1954

Summary.-The torsional rigidity of solid cylinders of double-wedge section is considered theoretically. Minimum energy methods are used to determine close upper and lower limits to the rigidity. The results are presented in graphical form.

1. Introduction.--In this report the torsional rigidity of solid cylinders of double-wedge section is considered theoretically. A lower limit for the rigidity has been obtained in a manner similar to that used by Duncan ${ }^{1}$; a parabolic variation of the stress function across the thickness is assumed and the Ritz ${ }^{2}$ method is then used in conjunction with a variational technique to determine the rigidity. An upper limit has been obtained from the static analogue of Kelvin's theorem ${ }^{3}$; a linear variation of the warping function across the thickness is assumed and a variational technique then used to determine the rigidity. $\dagger$
2. List of symbols (see Fig. 1).

Structure properties

| $C$ | Torsional rigidity |
| :---: | :--- |
| $G$ | Shear modulus |
| $t$ | Maximum thickness of section |
| $c$ | Chord of section |
| $\lambda$ | Fraction of chord at which maximum thickness occurs |
| $m=$ | $t / c$ ratio |

Non-dimensional parameters

$$
\begin{aligned}
m_{1} & =\frac{m}{2 \bar{\lambda}} \\
m_{2} & =\frac{m}{2(1-\lambda)} \\
r_{1} & =-4 m_{1}+\sqrt{ }\left(10+6 m_{1}^{2}\right) \\
r_{2} & =-4 m_{2}+\sqrt{ }\left(10+6 m_{2}^{2}\right) \\
p_{1} & =-m_{1}+\sqrt{ }\left(3+m_{1}^{2}\right) \\
p_{2} & =-m_{2}+\sqrt{ }\left(3+m_{2}^{2}\right)
\end{aligned}
$$

[^0]\[

$$
\begin{aligned}
\alpha & =\frac{\frac{r_{1} m_{1}^{2}}{1-m_{1}^{2}}+\frac{r_{2} m_{2}^{2}}{1-m_{2}^{2}}-5\left(m_{1}+m_{2}\right)}{r_{1}+r_{2}+5\left(m_{1}+m_{2}\right)} \\
\beta & =\frac{m_{2}\left(1+3 m_{1}^{2}\right)}{\left(1-m_{1}^{2}\right)^{2}}+\frac{m_{1}\left(1+3 m_{2}^{2}\right)}{\left(1-m_{2}^{2}\right)^{2}} \\
B_{1} & =\frac{\left(m_{1}+m_{2}\right)\left\{m_{1}-m_{2}+p_{1}\left(1-m_{1} m_{2}\right)\right\}}{\left(p_{1}+p_{2}\right)\left(1-m_{1}^{2}\right)\left(1-m_{2}^{2}\right)} \\
B_{2} & =\frac{\left(m_{1}+m_{2}\right)\left\{m_{2}-m_{1}+p_{1}\left(1-m_{2} m_{2}\right)\right\}}{\left(p_{1}+p_{2}\right)\left(1-m_{1}^{2}\right)\left(1-m_{2}^{2}\right)} .
\end{aligned}
$$
\]

3. Lower and Upper Limits for the Torsional Rigidity.-A lower limit for the rigidity has been found in Appendix I on the assumption that the stress function varies parabolically across the thickness; the rigidity is then determined by the Ritz method and a variational technique. An upper limit for the rigidity has been found in Appendix II on the assumption that the warping function varies linearly across the thickness; the rigidity is then determined from the static analogue of Kelvin's theorem and a variational technique. It follows that the torsional rigidity satisfies the inequality:

$$
\begin{equation*}
C_{\text {lower }}<C<C_{\text {upper }} \quad \text {.. .. .. .. .. } \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{\text {lower }}=\frac{G c t^{3}}{12}\left[\left(\frac{\lambda}{1-m_{1}^{2}}\right)\left\{1+\frac{\alpha-(1+\alpha) m_{1}^{2}}{1+\frac{\gamma_{1}}{8 m_{1}}}\right\}+\left(\frac{1-\lambda}{1-m_{2}^{2}}\right)\left\{1+\frac{\alpha-(1+\alpha) m_{2}^{2}}{1+\frac{\gamma_{2}}{8 m_{2}}}\right\}\right] \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{C_{\mathrm{upper}}}=\frac{G c t^{3}}{12}\left(\frac{1}{m_{1}+m_{2}}\right)\left[\beta+4 m_{1} m_{2}\left(p_{1} B_{1}^{2}+p_{2} B_{2}^{2}\right)-8 m_{1} m_{2}\left(\frac{B_{1}}{1-m_{1}^{2}}+\frac{B_{2}}{1-m_{2}^{2}}\right)\right] . \tag{3}
\end{equation*}
$$

These limits have been plotted in Fig. 2 for various values of $\lambda$ up to $t / c=0 \cdot 3$. It will be seen that over the range considered the limits are close; the maximum error that can arise by taking the mean of the two limits is less than $1 \cdot 6$ per cent.

Equations (2) and (3) may be simplified for the special cases in which the section becomes a diamond or a triangle.
3.1. Special Case : Diamond Section ( $\lambda=0.5$ ).-For a diamond section equations (2) and (3) reduce to

$$
\begin{equation*}
C_{\text {lower }}=\frac{G c t^{3}}{12}\left[\frac{2-9 m^{2}\left(1+m^{2}\right)+4 m^{3} \sqrt{ }\left(10+6 m^{2}\right)}{\left(2+m^{2}\right)\left(1-m^{2}\right)^{2}}\right] \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{\text {upper }}=\frac{G c t^{3}}{12}\left[\frac{1-5 m^{2}-4 m^{4}+4 m^{3} \sqrt{ }\left(3+m^{2}\right)}{\left(1-m^{2}\right)^{2}}\right] . \quad . \quad . \quad . \quad . \quad . \tag{5}
\end{equation*}
$$

3.2. Special Case: Triangular Section $(\lambda=0$ or 1$)$.--For a triangular section equations (2) and (3) reduce to

$$
\begin{equation*}
C_{\mathrm{lower}}=\frac{G c t^{3}}{12}\left[\frac{4\left\{20+11 m^{2}-4 m \sqrt{ }\left(40+6 m^{2}\right)\right\}}{5\left(4-m^{2}\right)^{2}}\right] \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{\text {upper }}=\frac{G c t^{3}}{12}\left[\frac{4\left\{12+5 m^{2}-4 m \sqrt{ }\left(12+m^{2}\right)\right\}}{3\left(4-m^{2}\right)^{2}}\right] \cdot . \quad . \quad . \quad . . \quad . \quad . \tag{7}
\end{equation*}
$$

4. Discussion of Results.-It will be seen from Fig. 2 that when the maximum thickness is near the mid-chord (i.e., $\lambda=0.5$ ) the torsional rigidity is practically independent of $\lambda$, which is to be expected from considerations of symmetry. For a cylinder for which $t / c<0.05$ and $0.2<\lambda<0.8$ the torsional rigidity is approximately $G c t^{3} / 12$ which, for materials in which $\nu=\frac{1}{4}$, is 1.5 times the flexural rigidity.

For a given $t / c$ ratio the lower and upper limits are closest when the section is a diamond and are furthest apart when the section is a triangle. If $t / c=1$ and $\lambda=0.5$ (corresponding to the limiting case of a square) and lower and upper limits are each in error by 3.6 per cent, and if $t / c=2 / \sqrt{ } 3$ and $\lambda=0$ (corresponding to the limiting case of an equilateral triangle) the lower limit is correct and the upper limit in error by $12 \cdot 6$ per cent.
5. Conclusions.-The torsional rigidity of solid cylinders of double-wedge section has been considered theoretically. Minimum energy methods have been used to determine close upper and lower limits to the rigidity. The variation of the torsional rigidity with the $t / c$ ratio and with the position at which the maximum thickness occurs has been investigated and the results presented in graphical form.

## REFERENCES

No.

## Author

Title, etc.
1 W. J. Duncan .. .. .. Phil. Mag. Vol. 16. 1933.
2 W. Ritz .. .. .. .. Jour. Reine Angero. Math. Vol. 135. 1908.
3 D. Williams .. .. .. .. The use of the principle of minimum potential energy in problems of static equilibrium. R. \& M. 1827. January, 1938.
4 S. Timoshenko .. .. .. Theory of Elasticity. McGraw-Hill Book Co. 1934.

Additional Symbols used only in Appendices (see Fig. 1)

$$
\begin{aligned}
&\left.\begin{array}{r}
O x, O y \\
O_{1} x_{1}, O_{1} y_{1} \\
O_{2} x_{2}, O_{2} y_{2}
\end{array}\right\} \quad \begin{array}{l}
\text { Cartesian co-ordinates } \\
\bar{x}, \bar{y} \\
\phi \\
w
\end{array} \\
& \begin{array}{l}
\text { Co-ordinates of centre of twist } \\
c_{1}
\end{array} \begin{array}{l}
\text { Torsion stress function } \\
c_{2}
\end{array} \\
& \text { Warping stress function } \\
& K .(1-\lambda) c \\
& K \\
& f_{1}, g_{1} \text { Surface integrals } \\
& f_{2}, g_{2} \text { Functions of } x_{1} \\
& \text { Functions of } x_{2}
\end{aligned}
$$

## APPENDIX I

## Calculation of Lower Limit

In the Ritz method a form for the stress function $\phi$ is chosen that vanishes on the boundary of the section and which may contain a number of arbitrary parameters. For unit twist per unit length the closest approximation to the stress function is that for which the surface integral

$$
\begin{equation*}
K=\iint\left[\left(\frac{\partial \phi}{\partial x}\right)^{2}+\left(\frac{\partial \phi}{\partial y}\right)^{2}-4 G \phi\right] d A \quad . \tag{8}
\end{equation*}
$$

is a minimum. When $\phi$ satisfies this condition we have

$$
\begin{equation*}
C_{\text {lower }}=2 \iint_{A} \phi d A . \ldots \quad \ldots \quad . . \quad . \quad . \quad . \quad . \quad . \quad . \tag{9}
\end{equation*}
$$

The Ritz method will now be used in conjunction with a variational technique in a manner similar to that used by Duncan ${ }^{1}$. The double-wedge section and the position of the origin and axes are shown in Fig. 1. In considering the region $O_{1} \mathrm{BB}^{\prime}$ it is convenient to have the origin at $O_{1}$, and similarly at $O_{2}$ for the region $O_{2} \mathrm{BB}^{\prime}$. A parabolic variation of the stress function across the thickness of the section is assumed, so that in the region $O_{1} \mathrm{BB}^{\prime}$

$$
\begin{equation*}
\phi=\left(m_{1}{ }^{2} x_{1}{ }^{2}-y_{1}{ }^{2}\right) G f_{1} \quad . \quad . . \quad . \quad . . \quad . . \quad . \quad . \tag{10}
\end{equation*}
$$

and in the region $O_{2} \mathrm{BB}^{\prime}$

$$
\begin{equation*}
\phi=\left(m_{2}^{2} x_{2}^{2}-y_{2}^{2}\right) G f_{2} \ldots \quad . . \quad . \tag{11}
\end{equation*}
$$

In the above equations $f_{1}$ and $f_{2}$ are functions of $x_{1}$ and $x_{2}$ and they will be chosen to make the surface integral $K$ a minimum.

Substituting equations (10) and (11) in equation (8) and integrating with respect to $y$ across the thickness gives $K$ as the sum of two integrals of $x_{1}, f_{1}, f_{1}{ }^{\prime}$ and $x_{2}, f_{2}, f_{2}{ }^{\prime}$. Variations $\delta f_{1}$ in $f_{1}$ and $\delta f_{2}$ in $f_{2}$ will give rise to a variation $\delta K$, and for $K$ to be a minimum $\delta K$ must vanish, whence

$$
\begin{align*}
\delta K= & \frac{16}{15} m_{1}^{3} \int_{0}^{c_{1}} x_{1}^{3}\left\{5\left(1-m_{1}{ }^{2}\right) f_{1}-10 m_{1}{ }^{2} x_{1} f_{1}^{\prime}-2 m_{1}{ }^{2} x_{1}^{2} f_{1}^{\prime \prime}-5\right\} \delta f_{1} d x_{1} \\
& +\frac{16}{15} m_{2}{ }^{3} \int_{0}^{c_{2}} x_{2}^{3}\left\{5\left(1-m_{2}^{2}\right) f_{2}-10 m_{2}{ }^{2} x_{2} f_{2}^{\prime}-2 m_{2}{ }^{2} x_{2}^{2} f_{2}^{\prime \prime}-5\right\} \delta f_{2} d x_{2} \\
& +\frac{t^{4}}{15}\left[\left\{5 m_{1} f_{1}\left(c_{1}\right)+t f_{1}^{\prime}\left(c_{1}\right)\right\} \delta f_{1}\left(c_{1}\right)+\left\{5 m_{2} f_{2}\left(c_{2}\right)+t f_{2}^{\prime}\left(c_{2}\right)\right\} \delta f_{2}\left(c_{2}\right)\right]=0 . \tag{12}
\end{align*}
$$

The variations $\delta f_{1}$ and $\delta f_{2}$ are quite arbitrary provided there is continuity at $\mathrm{BB}^{\prime}$. i.e.,

$$
\left.\begin{array}{l}
f_{1}\left(c_{1}\right)=f_{2}\left(c_{2}\right)  \tag{13}\\
\delta f_{1}\left(c_{1}\right)=\delta f_{2}\left(c_{2}\right)
\end{array}\right\} \ldots \quad . \quad .
$$

and the expressions under the integral signs in equation (12) must therefore vanish. Similarly the expression in square brackets in equation (12) must vanish subject to condition (13). The solution of these equations is:

$$
\left.\begin{array}{l}
f_{1}=\frac{1}{1-m_{1}{ }^{2}}+\left(\alpha-\frac{m_{1}{ }^{2}}{1-m_{1}^{2}}\right)\left(\frac{x_{1}}{c_{1}}\right)^{r_{1} / 2 m_{1}}  \tag{14}\\
f_{2}=\frac{1}{1-m_{2}{ }^{2}}+\left(\alpha-\frac{m_{2}{ }^{2}}{1-m_{2}^{2}}\right)\left(\frac{x_{2}}{c_{2}}\right)^{r_{2} / 2 m_{2}}
\end{array}\right\} \cdots
$$

Substitution of equation (14) in equations (9), (10) and (11) and integrating gives

$$
\begin{equation*}
C_{\text {lower }}=\frac{G c t^{3}}{12}\left[\left(\frac{\lambda}{1-m_{1}^{2}}\right)\left\{1+\frac{\alpha-(1+\alpha) m_{1}^{2}}{1+\frac{\gamma_{1}}{8 m_{1}}}\right\}+\left(\frac{1-\lambda}{1-m_{2}^{2}}\right)\left\{1+\frac{\alpha-(1+\alpha) m_{2}^{2}}{1+\frac{\gamma_{2}}{8 m_{2}}}\right\}\right] . \tag{15}
\end{equation*}
$$

## APPENDIX II

## Calculation of Upper Limit

The method for obtaining an upper limit is based on the static analogue of Kelvin's theorem :'The strain energy of a structure corresponding to a given deformation is less than if the freedom had been limited by the introduction of constraints'. The given deformation is assumed to be a unit twist per unit length and the internal constraints are those necessary to impose a chosen warping $w$ of the cross-section. The position of the centre of twist is arbitrary since it may be altered by a rigid body movement ${ }^{4}$, but if it is chosen to be at the point $(\bar{x}, \bar{y})$ the strain energy per unit length of cylinder ${ }^{4}$ is proportional to

$$
\begin{equation*}
H=\iint_{A}\left[\left(\frac{\partial w}{\partial x}-y+\bar{y}\right)^{2}+\left(\frac{\partial w}{\partial y}+x-\bar{x}\right)^{2}\right] d A \quad . \quad . \quad . . \quad . \tag{16}
\end{equation*}
$$

and the closest approximation to the warping function is that for which $H$ is a minimum. When $H$ satisfies this condition we have

The steps in the analysis are similar to those used in calculating the lower limit. It is convenient to let the section twist about the centre C , but in considering the region $O_{1} \mathrm{BB}^{\prime}$ it is convenient to have the origin at $O_{1}$, and similarly at $O_{2}$ for the region $O_{2} \mathrm{BB}^{\prime}$. A linear variation of the warping function across the thickness of the section is assumed, so that in the region $O_{1} \mathrm{BB}^{\prime}$

$$
\begin{equation*}
w=y_{1} g_{1} \tag{18}
\end{equation*}
$$

and in the region $O_{2} \mathrm{BB}^{\prime}$

$$
\begin{equation*}
w=y_{2} g_{2} . \quad . \tag{19}
\end{equation*}
$$

In the above equations $g_{1}$ and $g_{2}$ are functions of $x_{1}$ and $x_{2}$ and they will be chosen to make the surface integral $H$ a minimum.

With the origins at $O_{1}$ and $O_{2}$ for the two parts of the double-wedge, equation (16) becomes

$$
\begin{align*}
H= & \int_{0}^{c_{1}} \int_{-m_{1} m_{1} x_{1}}\left[y_{1}^{2}\left(g_{1}{ }^{\prime}-1\right)^{2}+\left(g_{1}+x_{1}-c_{1}\right)^{2}\right] d x_{1} d y_{1} \\
& +\int_{0}^{c_{2}} \int_{-m_{2} m_{2} x_{2}}^{x_{2}}\left[y_{2}^{2}\left(g_{2}^{\prime}-1\right)^{2}+\left(g_{2}+x_{2}-c_{2}\right)^{2}\right] d x_{2} d y_{2} \\
= & \frac{2 m_{1}}{3} \int_{0}^{c_{1}}\left[m_{1}^{2} x_{1}{ }^{3}\left(g_{1}{ }^{\prime}-1\right)^{2}+3 x_{1}\left(g_{1}+x_{1}-c_{1}\right)^{2}\right] d x_{1} \\
& +\frac{2 m_{2}}{3} \int_{0}^{c_{2}}\left[m_{2}^{2} x_{2}^{3}\left(g_{2}{ }^{\prime}-1\right)^{2}+3 x_{2}\left(g_{2}+x_{2}-c_{2}\right)^{2}\right] d x_{2} \quad \ldots \quad \ldots \tag{20}
\end{align*} \cdots \quad \cdots .
$$

on integrating with respect to $y_{1}$ and $y_{2}$.

Variations $\delta g_{1}$ in $g_{1}$ and $\delta g_{2}$ in $g_{2}$ will give rise to a variation $\delta H$, and for $H$ to be a minimum $\delta H$ must vanish, whence

$$
\begin{align*}
\delta H= & \frac{4 m_{1}}{3} \int_{0}^{c_{1}}\left[3 x_{1}{ }^{2}-3 x_{1} c_{1}+3 x_{1} g_{1}-m_{1}{ }^{2} x_{1}{ }^{2}\left\{3\left(g_{1}{ }^{\prime}-1\right)+x_{1} g_{1}{ }^{\prime \prime}\right\}\right] \delta g_{1} d x_{1} \\
& +\frac{4 m_{2}}{3} \int_{0}^{c_{2}}\left[3 x_{2}{ }^{2}-3 x_{2} c_{2}+3 x_{2} g_{2}-m_{2}{ }^{2} x_{2}{ }^{2}\left\{3\left(g_{2}{ }^{\prime}-1\right)+x_{2} g_{2}{ }^{\prime \prime}\right\}\right] \delta g_{2} d x_{2} \\
& +\frac{t^{3}}{6}\left[\left\{g_{1}{ }^{\prime}\left(c_{1}\right)-1\right\} \delta g_{1}\left(c_{1}\right)+\left\{g_{2}{ }^{\prime}\left(c_{2}\right)-1\right\} \delta g_{2}\left(c_{2}\right)\right] . \quad \ldots \tag{21}
\end{align*}
$$

The variations $\partial g_{1}$ and $\delta g_{2}$ are quite arbitrary, apart from continuity at $\mathrm{BB}^{\prime}$, so that each of the expressions in square brackets under the integral signs in equation (21) vanish. The last expression in square brackets in equation (21) will vanish provided there is continuity at $\mathrm{BB}^{\prime}$, i.e., provided

$$
\left.\begin{array}{c}
g_{1}\left(c_{1}\right)=-g_{2}\left(c_{2}\right)  \tag{22}\\
\delta g_{1}\left(c_{1}\right)=-\delta g_{2}\left(c_{2}\right)
\end{array}\right\} \cdot \quad \ldots \quad . . \quad .
$$

The minus signs in equation (22) are because of the reversed directions of $y_{1}$ and $y_{2}$.
The solution of these equations is

$$
\begin{equation*}
\frac{g_{1}}{c_{1}}=1-\left(\frac{1+m_{1}^{2}}{1-m_{1}^{2}}\right) \frac{x_{1}}{c_{1}}+2 m_{1} B_{1}\left(\frac{x_{1}}{c_{1}}\right)^{p_{1} / m_{1}} \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
-\frac{g_{2}}{c_{2}}=1-\left(\frac{1+m_{2}^{2}}{1-m_{2}^{2}}\right) \frac{x_{2}}{c_{2}}+2 m_{2} B_{2}\left(\frac{x_{2}}{c_{2}}\right)^{p_{2} / m_{2}} \quad . \quad \ldots \quad . . \quad . \quad . . \tag{24}
\end{equation*}
$$

where

$$
B_{1}=\frac{\left(m_{1}+m_{2}\right)\left\{m_{1}-m_{2}+p_{2}\left(1-m_{1} m_{2}\right)\right\}}{\left(p_{1}+p_{2}\right)\left(1-m_{1}^{2}\right)\left(1-m_{2}^{2}\right)}
$$

and

$$
B_{2}=\frac{\left(m_{1}+m_{2}\right)\left\{m_{2}-m_{1}+p_{1}\left(1-m_{1} m_{2}\right)\right\}}{\left(p_{1}+p_{2}\right)\left(1-m_{1}^{2}\right)\left(1-m_{2}^{2}\right)}
$$

Substitution of equations (23) and (24) in equations (16) and (17) and integrating gives

$$
\begin{align*}
C_{\text {upper }}= & \frac{G c t^{3}}{12}\left(\frac{1}{m_{1}+m_{2}}\right)\left[\frac{m_{2}\left(1+3 m_{1}^{2}\right)}{\left(1-m_{1}^{2}\right)^{2}}+\frac{m_{1}\left(1+3 m_{2}^{2}\right)}{\left(1-m_{2}^{2}\right)^{2}}\right. \\
& \left.+4 m_{1} m_{2}\left(p_{1} B_{1}^{2}+p_{2} B_{2}^{2}\right)-8 m_{1} m_{2}\left(\frac{B_{1}}{1-m_{1}^{2}}+\frac{B_{2}}{1-m_{2}^{2}}\right)\right] . \tag{25}
\end{align*}
$$




Fig. 1. Figure showing notation.


Fig. 2. The torsional rigidity of solid cylinders of double-wedge section.

# Publications of the Aeronautical Research Council 

## ANNUAL TECHNIGAL REPORTS OF THE AERONAUTICAL RESEARGH COUNGIL (BOUND VOLUMES)

1939 Vol. I. Aerodynamics General, Performance, Airscrews, Engines. 50s. (5Ir. 9d.).
Vol. II. Stability and Control, Flutter and Vibration; Instruments, Structures, Seaplanes, etc. 63 s . ( 64 s . 9 d .)
1940 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Icing, Stability and Control Structures, and a miscellaneous section. 50s. (5Is. 9d.)
194I Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Stability and Control Structures. 63s. (64s. 9d.)
1942. Vol. I. Aero and Hydrodynamics, Aerofoils, Airscrews, Engines. 75 s. (76s. 9 d )

Vol. II. Noise, Parachutes, Stability and Control, Structures, Vibration, Wind Tunnels. 47s. 6d. (495. 3d.)
1943 Vol. I. Aerodynamics, Aerofoils, Airscrews. 8os. (8is. gd.)
Vol. II. Engines, Flutter, Materials, Parachutes, Performance, Stability and Control, Structures. gos. (92s. 6d.)
1944 Vol. I. Aero and Hydrodynamics, Aerofoils, Aircraft, Airscirews, Controls. 84s. (86s. 3d.)
Vol. II. Flutter and Vibration, Materials, Miscellaneous, Navigation, Parachutes, Performance, Plates and Panels, Stability, Structures, Test Equipment, Wind Tunnels. 84. (86s. 3d.)

1945 Vol. I. Aero and Hydrodynamics, Aerofoils. 1305. (1325. 6d.)
Vol. II. Aircraft, Airscrews, Controls. 1 30s. (132s. 6 d .)
Vol. III. Flutter and Vibration, Instruments, Miscellaneous, Parachutes, Plates and Panels, Propulsion. 130s. (132s. 3 d.)
Vol. IV. Stability, Structures, Wind Tunnels, Wind Tunnel'Technique. r zos. (132s. 3d.)
Annual Reports of the Aeronautical Research Council1937 2s. (2s. 2d.) 1938 rs. 6d. (rs. 8d.) $1939-48$ 3s. (3s. 3 d.)
Index to all Reports and Memoranda published in the Annual Technical Reports, and separatelyApril, 1950 - - - $\quad$ R. \& M. 2600 2s. $6 d$. (2s. 8d.)

## Author Index to all Reports and Memoranda of the Aeronautical Research Council-1909-January, 1954 <br> R. \& M. No. 2570 15s. (1.5s. 6d.)

Indexes to the Technical Reports of the Aeronautical Research

## Council-

December 1, 1936-June 30, 1939
July I, 1939-June 30, 1945
July I , I945-June 30 , 1946
July I, 1946-December 31, 1946
January 1, 1947-June 30, 1947
R. \& M. No. $185^{\circ}$ Is. 3 d. (1s. 5 d.)
R. \& M. No. $195^{\circ}$ Is. (rs. 2 d. )
R. \& M. No. $205^{\circ}$ If. (Is. 2d.)
R. \& M. No. 2150 Is. 3 d. (rs. 5 d.)
R. $\&$ M. No. $225^{\circ}$ Is. $3^{d}$. (Is. $5^{d}$.)

\section*{Published Reports and Memoranda of the Aeronautical Research Council- <br> | etween Nos. 2251-2349 | R. \& M. No. $235^{\circ}$ | If. 9d. (Is. IId.) |
| :---: | :---: | :---: |
| Between Nos. 2351 -2449 | R. \& M. No. $245^{\circ}$ | 2s. (2s. 2d.) |
| Between Nos. $245 \mathrm{I}-2549$ | R. \& M. No. $255^{\circ}$ | 25.6d. (2s. 8d.) |
| Between Nos. $2551 \mathbf{2 6 4 9}$ | R. \& M. No. 2050 | 2s. 6d. (2s. 8d.) | <br> Prices in brackets include postage}

HER MAJESTY'S STATIONERY OFFICE
York House, Kingsway, London W.C. 2 ; 423 Oxford Street, London W.I (Post Orders : P.O. Box 569, London S.E.r). 1 3 a Castle Street, Edinburgh 2; 39 King Street, Mancheater 2; 2 Edmund Street, Birmingham 3 ; ro9 St. Mary Street, Cardiff; Tower Lane, Bristol, r ; 80 Chichester Street, Belfast, or through any bookseller.


[^0]:    * R.A.E. Report Structures 163, received 31st May, 1954.
    $\dagger$ Since this paper was completed the author's attention was drawn to a similar paper by J. H. Argyris and S. Kelsey in Aircraft Engincering, December 1954.

