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Summary.--The torsional rigidity of solid cylinders of double-wedge section is considered theoretically. Minimum 
energy methods are used to determine close upper and lower limits to the rigidity. The results are presented in graphical 
form. 

1. Introduction.--In this report the torsional rigidity of solid cylinders of double-wedge section 
is considered theoretically. A lower limit for the rigidity has been obtained in a manner similar 
to that  used by Duncan1; a parabolic variation of the stress function across the thickness is 
assumed and the Ritz ~ method is then used in conjunction with a variational technique to deter- 
mine the rigidity. An upper limit has been obtained from the static analogue of Kelvin's theorem 3 ; 
a linear variation of the warping function across the thickness is assumed and a variational 
technique then used to determine the rigidity.~ 

2. List of symbols (see Fig. 1). 

Structure properties 

C Torsional rigidity 
G Shear modulus 
t Maximum thickness of section 
c Chord of section 

Fraction of chord at which maximum thickness occurs 
m = t/c ratio 

Non-dimensional parameters 

m 
m I ~ __ 

2k 

m m2 m 
2 ( 1 -  ~) 

~1 - 4ml + 4/( lo + 6m?) 
r~ - -  4m2 + ~/(10 + 6m22) 

Pl - ml + V(3 + m/) 
p.  - m. + V(3 + rod) 

* R.A.E. Report Structures 163, received 31st May, 1954. 
Since this paper was completed the author's attention was drawn to a similar paper by J. H. Argyris and 

S. Kelsey in Aircraft Engineering, December 1954. 



r 2 rim? ~m~ 5(m~ 4-, m~) 
- -  m l  ~ 4 -  1 - -  m2 ~ 

rl ÷ r~ 4- 5(m, ÷ ms) 

Bt = (m~ 4- m2){ml -- m~ @p~(1 -- mime)} 
(p, 4-  p~ ) (1  - -  m~ ~) (1 - -  m~ ~) 

(Pl 4- p~)(1 -- m~)(1 -- m~ ~) 

3. Lower and Upper Limits for the Torsional Rigidity.--A lower l imit  for the rigidity has been 
found in Appendix  I on the assumption tha t  the  stress function varies parabolically across the  
thickness;  the rigidity is then de te rmined  by  the  Ritz  me thod  and a var ia t ional  technique.  
An upper  l imit for the rigidity has been found in Appendix  II on the assumption tha t  the warping 
function varies l inearly across the thickness;  t h e  rigidity is then  de termined from the static 
analogue of Kelvin 's  theorem and a variat ional  technique.  I t  follows tha t  the torsional rigidity 
satisfies the inequal i ty :  

Clolver < C < Cuppe:r • . . . . . . . . .  ( 1 )  

where 

Clower - -  

and 

r l  t ~ 72 
J L. . f ]  (2) 

"~2  Cuppor~ Gcta12 (ml 14- m2)I ~ + 4mlm2(plB12 4- p~B~ 2) -- 8m, lm2 ( l  --  ml 1 (3) 

These limits have  been plot ted in Fig. 2 for various values of ;t up to t/c = 0-3. I t  will be seen 
tha t  over the  range considered the  limits are close; the m a x i m u m  error tha t  can arise by  taking 
the  mean  of the  two limits is less than  1.6 per cent. 

Equat ions  (2) and (3) may  be simplified for the  special cases in which the  section becomes a 
d iamond or a triangle. 

3.1. Special Case • Diamond Section (,t = 0 . 5 ) . - - F o r  a d iamond section equations (2) and (3) 
reduce to 

and 

Gct 3 [2 -- 9m~(1 @ m 2) 4- 4ma@(lO + 6m2)] 
c~ ..... - 12 (2 + ~ ) ( 1  - m~) ~ 

(4) 

_ _  Gct 3 [-1 --  5m" -- 4m ~ 4- 4 m ~ ( 3  4- m~)7 
C..po~ 

12 k (a - ~ ) ~  ~ " 
(s) 

3.2. Special Case" Triangular Section (~ = 0 or 1) . - -For  a t r iangular  section equations (2) 
and (3) reduce to ., 

C iower - -  

a n d  - 

Cupper  ~ - - ' - - - -  

12 5(4 m~) ~ 

r4{ 2 + + < } q  . . . .  
a 2  L 3 ( 4  - ~)~ J 

.2 

(6) 

(7) 



4. Discussion of Results.--It will be seen from Fig. 2 tha t  when the m a x i m u m  thickness is near  
the mid-chord (i.e., ~ = 0.5) the  torsional rigidity is practically independent  of 4, which is to be 
expected from considerations of symmetry .  For a cylinder for which t/c < 0.05 and 
0 .2  < ~, < 0 .8  the torsional rigidity is approximately  Gc't3/12 which, for materials in which 
v = }, is 1.5 t imes the  flexural rigidity. 

For  a given t/c ratio the  lower and upper  limits are closest when the  section is a d iamond a n d  
are furthest  apart  when the section is a triangle. If t/c = 1 and ~ = 0-5 (corresponding to the 
l imit ing case of a square) and lower and upper  limits are each in error by 3 .6  per cent, and if 
t/c = 2/~/3 and ~ = 0 (corresponding to the l imit ing case of an equilateral  triangle) the lower  
l imit  is correct and the  upper  l imit in error by  12.6 per cent. 

5. Conclusions.--The torsional rigidity of solid cylinders of double-wedge section has been 
considered theoretically.  Minimum energy methods  have been used to de termine  close upper  
and lower limits to the rigidity. The variat ion of the  torsional r igidity wi th  the t/c ratio and with 
the  position at which the  m a x i m u m  thickness occurs has been invest igated and the results 
presented in graphical  form. 
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Ox, 
01xl, O~yl~ 
02x2, O2y2J 

X, y 

¢ 

72) 

Cl z 

C 2 

K , H  

f .  

Additional Symbols used only in Appendices (see Fig. 1) 

Cartesian co-ordinates 

Co-ordinates of centre of twist  

Torsion stress function 

Warping  stress function 

2c 

( 1  - 

Surface integrals 

Funct ions  of xl 

Funct ions  of x,, 



A P P E N D I X  I 

Calculat ion o f  Lower  L i m i t  

In the Ritz method a form for the stress function ¢ is chosen that  vanishes on the boundary of 
the section and which may contain a number of arbitrary parameters. For unit twist per unit 
length the closest approximation to the stress function is tha t  for which the surface integral 

(a¢'/= -- 4G¢] dA  K =  f f E ( ~ f  + ,~y ,  ~ . . . . . . . . . . . .  (8) 
A 

is a minimum. When ¢ satisfies this condition we have 
( . ( "  

CI .... = 2 j j ¢  dA . . . . . . . . . . . . . . . . . . .  (9) 
A 

The Ritz method will now be used in conjunction with a variational technique in a manner 
similar to that  used by Duncan*. The double-wedge section and the position of the origin and 
axes are shown in Fig. 1. In considering the region 0 1 B B '  it is convenient to have the origin at 
01, and similarly at 02 for the region 0=BB'. A parabolic variation of the stress function across 
the thickness of the section is assumed, so that  in the region 0 1 B B '  

¢ = (m,2xi~ 2 - -  yl=)Gfl . . . . . . . . . . . . . . . .  (10) 

and in the region 0~BB' 

2 
¢ = ( m 2 = x 2  2 - -  Y2 )GI2 . . . . . . . . . . . . . . . . .  (11) 

In the above equations f l  and f~ are functions of xl and x2 and they will be chosen to make the 
surface integral K a minimum. 

Substituting equations (10) and (11) in equation (8) and integrating with respect ~:o y across 
the thickness gives K as the sum of two integrals of xl,  ./'1, f l '  and x~, f2, .[2'. Variations 0fl in f l  
and 0f~ inf~ will give rise to a variation OK, and for K to be a minimum aK must vanish, whence 

16 mla[ ~* OK = ~ &a{5(1 - -  ml~)k  - -  lOml=xik  ' - -  2m12xl>" - -  5} af, dx ,  
- -0  

16 m2a[ ~z = 
+ ~ -0 x=a{5(1 m= )f= - -  lOm==xff( - -  2m==&=f( ' - -  5} 0./'2 d& 

t 4 

t ' + ]3 [{Stalk(C,) + tA'(<)} ql(cl) + {5~f~(e~/ + ~ (~)} 0A(c~)] = 0 (12) 

The variations 0fl and 0f2 are quite arbitrary provided there is continuity at BB'.  i.e., 

A¢1) 
. . . . . . . . . .  (13) , , . . , , . . 

0A(cl~ = 0A(e=) 

and the expressions under the integral signs in equation (12) must therefore vanish. Similarly 
the expression in square brackets in equation (12) must vanish subject to condition (la). The 
solution of these equations is" 

L - 1 - m ?  1 ~ - m ? l \ ~ l  1 
( f A - l _ m ~  ~ 1 - m ~  ~ V~ 

(14) 

4 



Substitution of equation (14) in equat!ons (9), (10) and (11) and integrating gives 

C~ ..... _Gct"  a 1 +  - - ( ! + ~ ) m ~ = ~  (: 1 - - 2  "~ ; 1  
m l  2 ! -  + A f + - ="V;L + i 777{7 f ] .  (is) 

A P P E N D I X  II  

Calculat ion o f  Upper  L i m i t  

The method for obtaining an upper limit is based on the static analogue of Kelvin's theorem : - -  
' The strain energy of a structure corresponding to a given deformation is less than if the freedom 
had been limited by the introduction of constraints '. The given deformation is assumed to be a 
unit twist per unit length and the internal constraints are those necessary to impose a chosen 
warping w of the cross-section. The position of the centre of twist is arbitrary since it may be 
altered by a rigid body movement ~, but if it is chosen to be at the point (&9)the strain energy 
per unit length of cylinder 4 is proportional to 

H =  g-~ - -  Y + 9 + J r - x - -  dA  . . . . . . . . . .  (16) 

A 

and the closest approximation to the warping function is that  for which H is a minimum. When 
H satisfies this condition we have 

C,ppo~ = G H  . . . . . . . . . . . . . . . . . . . . . . .  (17) 

The steps in the analysis are similar to those used in calculating the lower limit. I t  is convenient 
to let the section twist about the centre C, but  in considering the region 01BB' it is convenient to 
have the origin at 01, and similarly at 02 for the region 02BB'. A linear variation of the warping 
function across the thickness of the section is assumed, so that  in the region O~BB' 

w = y lg l  . . . . . . . . . . . . . . . . . . . . . .  (18) 

and in the region O=BB' 

w = y=g= . . . . . . . . . . . . . . . . . . . . . . .  (19) 

In the above equations gl and g= are functions of x, and x~ and they will be chosen to make 
the surface integral H a minimum. 

With  the origins at 01 and 02 for the two parts of the double-wedge, equation (16) becomes 

H = ~o~1.~ Uy?(g~' - 1) ~ + (gl + x~ - cl) ~] dxl dr1 
0 ~ - - m l ~  1 

+ ~,~°,2.~ Ey2~(g~,_ 1)2 + (g~ + . 2 -  c2)~ ~x2 dr2 
~ 0  <- -m2*  2 

2m,  f~l [m2&a(gl, _ 1) 2 + 3&(gl + xl --  cl) ~] dxl 
3 o 

+ - 3 -  f~2 [m 2&°(& , _ 1) 2 + 3 & ( & + & _ c 2 ) ~ ] d &  

on integrating with respect to Yl and Y2. 

5 

(20) 



Variations dg, in g, and dg2 in ga will give rise to a variation dH, and for H to be a minimum 
dH must vanish, whence 

~H -- 4m13 S ~ [3x~ a -- 3&c~ 4- 3&g~ --  m~a&~{a(g~ ' - -  1) 4- &g('}l  ~gl cl& 
0 

4m2 ca 
+ ---3-- f [3&a -- 3&c~ + 3xa& --  ma~xa'~{3(ga ' - -  1) 4- &g('}] ~ga d& 

0 

t a 
4- ~ [{g,'(cl) - -  1} 6gl(c,) 4- {&'(c~) - -  1} @a(ca)~ . . . . . . . . .  (21) 

The variations ~g, and 6g~ are quite arbitrary, apart from continuity at BB', so that each of 
the expressions in square brackets under the integral signs in equation (21) vanish. The last 
expression in square brackets in equation (21)will vanish provided there is continuity at BB', 
~.e., provided 

gl(Cl) &(Ca) 
. . . . . . .  . . .  ( 2 2 )  

I 

~ g ~ ( c ~ )  = - ~ g ~ ( c a )  . . . . . . . .  

The minus signs in equation (22) are because of the reversed directions of Yl and Y2. 

The solution of these equations is 

g ~ - - l - - ( 1 1  4- m*a'~ x~ 4- 2m~B~ ( x ~  '~/'~ 
c--, - -  re,a/c--~ ",71/ . . . . . . . . . . . .  (23) 

and 

__ga__ 1 (1 4- ma'~'~x~ 4- 2m2B2(Xa')Pa''2 
c~ 1 - -  maal ca ".c-j 

where 

and 
(pl 4- P a)(1 - ,<a)(1 - m?) 

B,~ = (r~ + ~ ) { m =  - r< + p~(I - u~m~)}. 
(P~' 4- P2)(1 - -  ]/t512)(1 - -  ]/]q,a 2) 

Substitution of equations (23) and (24) in equations (16) and (17) and integrating gives 

Cuppo, - Gcx 3 ( 1 ~F~;(1  _+ 3 ~  a) + ~ , ( 1  + 3 ~ : )  
\ m l  4- m J L  (1 - -  m,a) ~ ~- - -m~) ~ 

. B1 Ba ) ]  
4- 4mlm2(plB~ 2 4- p2B,~ ~) - -  8mlma (1 ~ ] / ~ 1  a 4 -  1 - -  m2 2 . . . . . . .  

(24) 

(2s)  
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FIG. 1. Figure showing notation. 
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FIG. 2. The torsional rigidity of solid cylinders of double-wedge section. 
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