(15,695)
A.R.C. Techricen Report

Crown Copyright Reserved

LONDON : HER MAJESTY'S STATIONERY OFFICE
1956
price 6s 6d net

Calculation of Stability Derivatives for Oscillating Wings

By
Doris E. Lehrian, B.Sc., of the Aerodynamics Division, N.P.L.

Reports and Memoranda No. 2922*
February, 1953

Summary.-A method of calculating stability derivatives for wings oscillating at low frequencies is developed from the modified vortex-lattice method outlined in R. \& M. 24701. Derivatives are obtained for the following wings describing plunging (vertical translational) and pitching oscillations:
(i) Delta wings of aspect ratio $A_{r}=1 \cdot 2,2$ and 3 with a taper ratio $1 / 7$.
(ii) Arrowhead wing of aspect ratio $1 \cdot 32$ with a taper ratio $7 / 18$ and angle of sweep of $63 \cdot 4$ deg at quarter chord.
(iii) Circular plate.

Comparison is made with measured values of the derivatives for the delta wing of aspect ratio 1.2 and the arrowhead wing oscillating in incompressible flow. Satisfactory agreement is obtained with experiment, and also with values calculated by the Multhopp-Garner method ${ }^{4}$.

For the delta wing $A_{r}=3$, derivatives are also obtained for particular (small) values of the mean frequency parameter ω_{m}. These results were calculated by using the $\omega_{m} \rightarrow 0$ solution, which is accurate to first order in frequency, with a correction to allow for the oscillatory wake. Comparison with values from Ref. 2, in which all frequency effects are taken into account, indicates that the present method is adequate for small values of ω_{m}.

The theory of Ref. 3 for wings oscillating in compressible flow is applied to the delta wing $\bar{A},=3$, and the stability derivatives for pitching oscillations are calculated for $M=0.745$ and 0.917 . The values of - $m_{\dot{\alpha}}$ are compared with values estimated by the Multhopp-Garner method and with high-speed experimental results, for two positions of the axis of oscillation. For the front axis, the estimated values of $-m_{\dot{\alpha}}$ are in agreement but are higher than the experimental results. For the rear axis, the Multhopp-Garner values are closer to experiment than the values obtained by the vortex-lattice method, and only differ appreciably from the measured values at the higher Mach numbers. It is thought that the accuracy of the vortex-lattice results would be improved by taking more collocation points in the solution.

1. Introduction.-A method is developed from the theory of Ref. 1, by the use of a modification suggested by W. P. Jones, and it is applied in this note to the calculation of stability derivatives for wings of various plan-form. The method of Ref. 1 is satisfactory for values of the frequency parameter ω_{m} in the flutter range ${ }^{5}$, but it does not appear to be suitable for lower values of ω_{m} since it gives infinite limiting values for $l_{\dot{\alpha}}$ and $-m_{\dot{\alpha}}$ for a finite wing as $\omega_{n} \rightarrow 0$. This difficulty is avoided if the lift distribution is assumed to be a combination of simple functions, such that the corresponding doublet distributions are expressible as polynomials in ω_{m}. The doublet distribution over the wing and wake is then interpreted so that the main contribution to the

[^0]downwash is obtained generally in ter ms of ω_{m}, with a correction to the downwash to allow for the effect of the oscillatory wake. The Falkner lattice scheme ${ }^{6}$ is used for the downwash calculation and this reduces the latter to a simple routine which avoids the use of complex numbers. The solution for $\omega_{m} \rightarrow 0$ is limited to first-order terms in frequency, and the present calculations for particular (small) values of ω_{m} are based on this solution, with a correction to allow for the higher order frequency effects due to the oscillatory wake. The method is extended in Ref. 2 to take into account all frequency effects, and this can be used as an alternative to the method of Ref. 1 for values of ω_{m} in the flutter range.

The results given in this note are based on 21×6 lattice solutions. The use of 6 chordwise vortices on a highly swept low-aspect-ratio wing may appear to be an inadequate representation of the chordwise loading, especially when the solutions are required for the calculation of pitchingmoment derivatives. However, in Ref. 7, this lattice is used to calculate the lift on delta wings of aspect ratio $1 \cdot 0$ to $2 \cdot 5$, and it gives results which agree well with the experimental values. The present results for incompressible flow are also in satisfactory agreement with the measured values and the Multhopp-Garner values, so that the 21×6 lattice does seem to give reasonable accuracy for swept wings of low aspect ratio. Solutions based on a finer lattice would give further information on accuracy, but for oscillatory problems the calculation would be rather laborious.

The stability and flutter derivatives for compressible flow can be calculated, as suggested in Ref. 3, by relating the oscillatory motion of a wing in subsonic flow to that of a wing of reduced plan-form in incompressible flow. The present incompressible solutions for the delta wings $A_{r}=2$ and $1 \cdot 2$ are used, in conjunction with the transformation formulae given in section 5.2 , to calculate the stability derivatives of the delta wing $\bar{A}_{r}=3$ at $M=0.745$ and 0.917 . The values of the derivative $-m_{\dot{\alpha}}$ are plotted in Fig. 6 and, for comparison, the values of $-m_{\dot{\alpha}}$ obtained in recent tests at the N.P.L. and the results given by the Multhopp-Garner method ${ }^{4}$ are also plotted. It should be noted that the agreement between the vortex-lattice and the Multhopp-Garner values, for the incompressible flow solutions for the delta wings $A_{r}=1.2$ and 2 ; is quite good. The discrepancy in the compressible flow results for - $m_{\dot{\Delta}}$ seems to occur because relatively small numbers in the incompressible solution are multiplied by β^{-3} as can be seen in equation (27). The effect of the β^{-3} terms is to magnify inaccuracies occurring in the incompressible solution and so it is apparent that a very reliable method is required for the latter solution. The difference between the theoretical and experimental values may be partly due to the effects of thickness and boundary layer which are not allowed for in the theories, and partly due to wind-tunnel interference effects.

LIST OF SYMBOLS

V	Velocity of flow
$\therefore \quad \therefore \quad 3$	$\left.\begin{array}{l} R(y)-\frac{c}{2} \cos \theta \\ R(y)+\frac{c}{2} \xi \end{array}\right\} \begin{aligned} & \text { Definitions of chordwise parameters } \theta \text { and } \xi \text { where } \\ & R(y) \text { is the mid-chord line } \end{aligned}$
x_{t}	Trailing-edge co-ordinate
y	$s \eta$, definition of spanwise co-ordinate η
$\cdots \ldots . . c(y)$	Local chord
c_{0}	Root chord
c_{m}	Mean chord

$$
\begin{aligned}
& s \quad \text { Semi-span } \\
& S \quad \text { Area of wing } \\
& A_{r} \quad \text { Aspect ratio }=4 s^{2} / S \\
& p / 2 \pi \quad \text { Frequency } \\
& \omega=2 \omega^{\prime}=p c / V, \text { local frequency parameter } \\
& \omega_{m}=p c_{m} / V \text {, mean frequency parameter } \\
& K \mathrm{e}^{i p t} \quad \text { Doublet distribution (discontinuity in velocity potential) } \\
& r \mathrm{e}^{i p t} \quad \text { Bound vorticity } \\
& E \mathrm{e}^{i p t} \quad \text { Free vorticity } \\
& W \mathrm{e}^{i p t} \quad \text { Induced downward velocity } \\
& z^{\prime} \mathrm{e}^{i p t} \quad \text { Normal downward displacement } \\
& \Gamma_{0}=2 \cot \frac{\theta}{2} \\
& \Gamma_{1}=\therefore-2 \sin \theta+\cot \frac{\theta}{2}+i \omega^{\prime}\left[\sin \theta+\frac{1}{2} \sin 2 \theta\right] \\
& \Gamma_{n}=-2 \sin n \theta+i \omega^{1}\left[\frac{\sin \overline{n+1} \theta}{n+1}-\frac{\sin \overline{n-1} \theta}{n-1}\right] \\
& \text { when } n \geqslant 2 \\
& K_{0}=K_{a}(\theta)+i \omega^{\prime} K_{b}(\theta)+O\left(\omega^{2}\right) \quad 0 \leqslant \theta \leqslant \pi \\
& =K_{0}(\pi) \cdot \exp \left\{-i p\left(x-x_{t}\right) / V\right\} \quad x \geqslant x_{t} \\
& K_{1}=\frac{c}{2}\left[\sin \theta+\frac{1}{2} \sin 2 \theta\right] \\
& K_{n}=\frac{c}{2}\left[\frac{\sin \overline{n+1} \theta}{n+1}-\frac{\sin \overline{n-1} \theta}{n-1}\right] \text { when } n \geqslant 2
\end{aligned}
$$

Definition of Derivatives for Translational and Pitching Oscillations.

(i) Delta and arrowhead wings :

$$
\frac{\text { Lift }}{\rho V^{2} S \mathrm{e}^{i \phi t}}=\left(l_{z}+i \omega_{m b} l_{\vec{z}}\right) z+\left(l_{\alpha}+i \omega_{m} l_{\dot{\alpha}}\right) \alpha
$$

$\frac{\text { Pitching moment }}{\rho V^{2} S c_{m} \mathrm{e}^{i \phi t}}=\left(m_{z}+i \omega_{m} m_{\bar{z}}\right) z+\left(m_{a}+i \omega_{m} m_{a}\right) \alpha$
where $\omega_{m}=p c_{m} / V$, and $c_{m} z$ and α are the amplitudes of the translational and angular displacements of the oscillation.
(ii) Circular plate :

$$
\frac{\text { Lift }}{\rho V^{2} S \mathrm{e}^{i p t}}=\left(l_{z}+i \omega, l_{z}\right) z+\left(l_{\alpha}+i \omega, l_{\alpha}\right) \alpha
$$

$\frac{\text { Pitching Moment }}{\rho V^{2} S r \mathrm{e}^{i \neq l}}=\left(m_{z}+i \omega_{r} m_{z}\right) z+\left(m_{a}+i \omega_{,} m_{a}\right) \alpha$
where $\omega_{r}=p r / V$ and $r=$ radius of circle, and where γz and α are the amplitudes of the translational and angular displacements of the oscillation.
(iii) Transformation formulae :

If the definitions above are for a reference axis $O Y$, as shown in Fig. 1, then the derivatives referred to an axis at a distance $h^{\prime} c_{m}$ (or $h^{\prime} r$ in the case of the circular plate) back from $O Y$, are obtained by the usual transformation formulae

$$
\begin{aligned}
l_{z}^{\prime} & =l_{z} \\
l_{a}^{\prime} & =l \alpha-h^{\prime} l_{z} \\
-m_{z}^{\prime} & =-m_{z}-h^{\prime} l_{z} \\
-m_{a}^{\prime} & =-m_{a}-h^{\prime}\left(l_{a}-m_{z}\right)+h^{\prime 2} l_{z}, \quad \text { etc. }
\end{aligned}
$$

2. Theory.-In the general linearized theory given in Refs. 1 and 8 for a thin wing describing simple harmonic oscillations of small amplitude in incompressible inviscid flow, it is shown that the discontinuity in the velocity potential can be represented by a doublet distribution $K \mathrm{e}^{i \phi t}$ over the wing and wake, where $K \mathrm{e}^{i p t}$ is related to the bound vorticity $I \mathrm{e}^{i p t}$ and the free vorticity $E \mathrm{e}^{i p t}$ by the equations

$$
\left.\begin{array}{l}
V \Gamma=i p K+V \frac{\partial K}{\partial x} \tag{1}\\
V E=-i p K
\end{array}\right\} \quad . \quad . \quad: . . \quad . . \quad . \quad . \quad .
$$

where the time exponential terms are omitted for convenience. Since Γ is a function of the chordwise parameter θ, the doublet distribution over the wing can be expressed as

$$
\begin{array}{lll}
K(\text { wing }) & =K(\theta)=\frac{c}{2} \mathrm{e}^{-i \omega^{\prime} \xi} \int_{-1}^{-\frac{\xi}{5}} \Gamma \mathrm{e}^{i \omega^{\prime} \frac{5}{5}} d \xi & -1 \leqslant \xi \leqslant 1 \\
\text { where } \xi & =-\cos \theta . \quad . \quad . \quad . \quad . \quad . \tag{2}
\end{array}
$$

Also $\Gamma=0$ in the wake, hence the doublet distribution over the wake is

$$
\begin{align*}
K(\text { wake }) & =K(\pi) \mathrm{e}^{-i \omega^{\prime}(\xi-1)} \\
& =K(\pi) \mathrm{e}^{-i p\left(x-x_{i} / / V\right.} \tag{3}
\end{align*}
$$

$$
\xi \geqslant 1
$$

$$
x \geqslant x_{i}
$$

The downwash W e $\mathrm{e}^{i \phi l}$ induced at a point $\left(x_{1}, y_{1}\right)$ on the wing, by the distribution $K \mathrm{e}^{i \phi t}$ over the wing and wake is known to be

$$
\begin{equation*}
4 \pi W=\iint K \frac{\partial^{2}}{\partial z_{1}^{2}}\left(\frac{1}{r}\right) d x d y \quad . . \tag{4}
\end{equation*}
$$

where $r^{2}=\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}+z_{1}{ }^{2}$ and $z_{1} \rightarrow 0$. Then W has to satisfy the tangential flow condition, which for simple harmonic oscillations is

$$
\begin{equation*}
W=i p z^{\prime}+V \frac{\partial z^{\prime}}{\partial x_{1}} \quad . . \quad . . \quad . \quad . . \quad . . \quad . \quad \text {.. .. } \tag{5}
\end{equation*}
$$

where $z^{\prime} \mathrm{e}^{i p t}$ is the normal downward displacement of the point $\left(x_{1}, y_{1}\right)$ at time t. The problem is to find a distribution K which will satisfy equations (4) and (5).
2.1. It is assumed that the bound vorticity over the finite wing can be represented by

$$
\begin{equation*}
\Gamma=V \Sigma \Sigma \Gamma_{n} C_{n m} A_{n n} \tag{6}
\end{equation*}
$$

where $C_{n m}$ are arbitrary coefficients. In Ref. 1, the chordwise distribution Γ_{0} is defined in terms of the lift function $C\left(\omega^{\prime}\right)$. The latter tends to $\left[1+i \omega^{\prime}\left(\gamma+\log _{9} \frac{1}{2} \omega^{\prime}\right)\right]$ as $\omega^{\prime} \rightarrow 0$, so that infinite limiting values are obtained for the derivatives $l_{\dot{\alpha}}$ and $-m_{\dot{\alpha}}$. This difficulty is avoided in the present method by assuming

$$
\begin{equation*}
\Gamma_{0}=2 \cot \frac{1}{2} \theta \tag{7}
\end{equation*}
$$

The Γ_{n} distributions, $n \geqslant 1$, are the same as in Ref. 1 and are defined in the list of symbols. The spanwise function A_{m} is defined as

$$
\begin{equation*}
c A_{m}=s T_{m}=s \eta^{m-1} \sqrt{ }\left(1-\eta^{2}\right) \tag{8}
\end{equation*}
$$

where m takes odd or even values according as symmetrical or antisymmetrical motion of the wing is considered.

The corresponding distribution K over the wing and wake is then

$$
\begin{equation*}
K=V \Sigma \Sigma K_{n} C_{n m} A_{m} \tag{9}
\end{equation*}
$$

where K_{n} corresponds to the chordwise distribution Γ_{n}. Consider the distribution $K_{0}(\theta)$ over the wing defined by equations (2) and (7). Since the present method is to be used only for small values of the frequency parameter $\omega=2 \omega^{\prime}$, it is permissible to expand (2) with respect to ω^{\prime} and obtain $K_{0}(\theta)$ in the form

$$
\left.\begin{array}{rl}
K(\text { wing }) & =K_{0}(\theta)=K_{a}(\theta)+i \omega^{\prime} K_{b}(\theta)+O\left(\omega^{\prime 2}\right) \tag{10}\\
\text { where } K_{a}(\theta) & =c[\theta+\sin \theta] \\
K_{b}(\theta) & =c\left[-\frac{\theta}{2}-\sin \theta+\frac{\sin 2 \theta}{4}+\theta \cos \theta\right]
\end{array}\right\}
$$

Then, by (3), the distribution K_{0} over the wing and wake can be regarded as the sum of two distributions $K_{0}{ }^{\prime}$ and $K_{0}{ }^{\prime \prime}$ such that

$$
\left.\begin{array}{rlrl}
K_{0}{ }^{\prime} & =K_{0}(\theta) \text { over the wing } & & 0 \leqslant \theta \leqslant \pi \tag{11}\\
& =K_{0}(\pi) \text { over the walke } & x \geqslant x_{i} \\
K_{0}{ }^{\prime \prime} & =K_{0}(\pi)\left[\mathrm{e}^{-i \phi\left(x-x_{i}\right) / V}-1\right] & & \\
& \text { over the wake } & x \geqslant x_{i}
\end{array}\right\} . \quad \ldots \quad \ldots \quad . .
$$

It follows, by (10), that distributions $K_{a}{ }^{\prime}, K_{a}{ }^{\prime \prime}$ and $K_{b}{ }^{\prime}, K_{b}{ }^{\prime \prime}$ can be similarly defined in terms of K_{a} and K_{b}. It should be noted that there is, in general, a spanwise variation in the local parameter ω^{\prime} in equation (10), and this is allowed for in the calculation by writing

$$
\begin{equation*}
\omega^{\prime}=\omega_{n i}\left(\frac{c}{2 c_{m}}\right)=\omega_{m} \cdot f(|\eta|) . \quad . . \quad . \quad . \quad . . \quad . \quad . \tag{12}
\end{equation*}
$$

The distributions K_{m}, for $n \geqslant 1$, are the same as in Ref. 1 and are defined in the List of Symbols. They are independent of the frequency and zero in the wake.

The downwash W induced by the K distribution (9), is obtained from integral (4) in the form

$$
\begin{equation*}
W=V\left[\sum_{n}\left(W_{0, m}{ }^{\prime}+W_{0 m}{ }^{\prime \prime}\right) C_{0 m}+\sum_{n=1} \sum_{m} W_{m n} C_{n m}\right] \tag{13}
\end{equation*}
$$

where $W_{0 m}{ }^{\prime}, W_{0 m}{ }^{\prime \prime}$, and $W_{n m}$ are the normal induced velocities due to the doublet distributions $K_{0}{ }^{\prime} A_{m}, K_{0}{ }^{\prime \prime} A_{m}$ and $K_{n} A_{m}$ respectively. Furthermore, by (10) and (12), the downwash $W_{o m}{ }^{\prime}$ will be in the form

$$
\begin{equation*}
W_{0, m}{ }^{\prime}=W_{a, n}^{\prime}+i \omega_{m} W_{b, n}{ }^{\prime}+0\left(\omega_{m n}{ }^{2}\right), \quad . \quad . . \quad . \quad . . \quad . \tag{14}
\end{equation*}
$$

where ' $W_{a n \prime}{ }^{\prime}, W_{b m}{ }^{\prime} \ldots$, the downwash corresponding to the doublet distributions $K_{a}{ }^{\prime} A_{m}$, $K_{b}^{\prime} A_{m} f(|\eta|) \ldots \ldots . .$. , are independent of the frequency.
3. The Calculation of the Downwash:-Since $W_{\text {am }}{ }^{\prime}, W_{b m}{ }^{\prime} \ldots$ are integrals of the simple type such as occur in steady-motion problems, they can be evaluated approximately by the ordinary vortex-lattice method. The downwash $W_{o m}{ }^{\prime \prime}$, induced by the doublet distribution $K_{0 m}{ }^{\prime \prime} A_{m}$ over the wake, is evaluated for the general case $\omega_{m} \rightarrow 0$ as shown in section 3.2 , or for a particular value of ω_{m} by the modified vortex-lattice method as indicated in section 3.3. The downwash $W_{n m}$, for $n \geqslant 1$, is also independent of the frequency and is calculated by the ordinary lattice method.
3.1. The Falkner vortex-lattice method is described in detail in Ref. 6. A steady doublet distribution $K(\theta) \cdot A_{m}(\eta)$, to which corresponds a vorticity distribution $\partial K(\theta) / \partial x \cdot A_{m}(\eta)$, is replaced by a lattice of rectangular vortices each of width $2 s_{1}$, and strength $c L(k) \cdot A_{m}\left(\eta_{1}\right)=s L(k): T_{m}\left(\eta_{1}\right)$ as shown in Fig. 1. The chordwise factors $c L(k)$ are chosen on the usual two-dimensional basis, to give the same downwash at selected points on the chord, as the continuous distribution* $c K(\theta)$. The total downwash $W_{n m}$ at a collocation point $\left(x_{1}, y_{1}\right)$ is then obtained, by summation, by using the downwash factors given in Ref. 9 for a rectangular vortex of unit strength.

The results given in this note are based on a 21×6 lattice with 6 collocation points placed on the $\frac{1}{2}$ and $5 / 6$ chord, at the spanwise positions $\eta=0 \cdot 2,0 \cdot 6$ and $0 \cdot 8$. It is usual, in applying this lattice, to use fewer chordwise vortices when the spanwise parametert $Y \geqslant 10$; for example, with a steady doublet distribution $K=V c(\theta+\sin \theta)$, that is a vorticity distribution $\partial K / \partial x=2 \dot{V} \cot \frac{1}{2} \theta$, the lattice is reduced to one vortex at the quarter-chord position. It is thought that the accuracy of solutions for low aspect-ratio wings may be improved by taking two chordwise vortices at one-quarter and three-quarter chord position, when $Y \geqslant 10$, for all the K_{n} distributions considered. In the case of the delta wing $A_{\nu}=3$, this modification decreases the lift-slope coefficient from $3 \cdot 13$ to $3 \cdot 08$ which agrees better with the value of $3 \cdot 05$ given by the Multhopp-Garner (2 chordwise, $m=15$ solution) and the experimental value of $3 \cdot 05$.

The chordwise factors $L_{a}{ }^{\prime}(k), L_{b}{ }^{\prime}(k)$ and $L_{1}(k)$ corresponding to the two-dimensional doublet distributions $K_{a}^{\prime}, K_{b}^{\prime}$ and K_{1}, are given in Table 1 for $k=1,2 \ldots .6$ with the lattice positions at $1 / 12,3 / 12 \ldots 11 / 12$ chord, and for $k=1,2$ with the lattice at one-quarter and three-quarter chord.
3.2. If a solution is required for $\omega_{m} \rightarrow 0$, the calculation can be kept quite general throughout by considering only first order terms in ω_{m} and by evaluating $W_{0, n}$ " numerically from equation (15) given below.

Since the point $\left(x_{1}, y_{1}\right)$ is outside the range of integration, the in tegral $W_{\text {om }}{ }^{\prime \prime}$ obtained from (4), reduces to

$$
4 \pi W_{0 m}{ }^{\prime \prime}=-\int_{-s}^{s} \int_{x_{t}}^{\infty} \frac{K_{0}{ }^{\prime \prime} A_{m}}{r_{1}{ }^{3}} d x d y
$$

where $r_{1}^{2}=\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}$ and $K_{0}^{\prime \prime}$ is defined by (10) and (11). If the exponential term is expanded and only first-order terms in p are retained, it may be shown that

$$
\begin{aligned}
W_{o_{m}}{ }^{\prime \prime} & =\frac{1}{4 \pi} \int_{-s}^{s} \int_{x_{t}}^{\infty} i \frac{p}{V} \cdot \frac{K_{a}(x) A_{m}\left(x-x_{t}\right)}{r_{1}{ }^{3}} d x d y \\
& =i \omega_{m} \frac{s^{2}}{4 c_{m}} \int_{-1}^{1} T_{m} \int_{x_{t}}^{\infty}\left[\frac{x-x_{1}}{r_{1}{ }^{3}}-\frac{x_{t}-x_{1}}{r_{1}{ }^{3}}\right] d x d \eta \\
& =i \omega_{m} \frac{s^{2}}{4 c_{m}} \int_{-1}^{1} T_{m}\left[\frac{r_{t}-\left(x_{t}-x_{1}\right)}{\left(y-y_{1}\right)^{2}}\right] d \eta
\end{aligned}
$$

[^1]where $T_{m}=\eta^{m-1} \sqrt{ }\left(1-\eta^{2}\right)$ and $r_{t}^{2}=\left(x_{t}-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}$, and where, in general, x_{i} is a function of the spanwise parameter η. The integral may be written as
\[

$$
\begin{equation*}
W_{0 m}^{\prime \prime}=i \omega_{m} \frac{s}{4 c_{m}} \int_{-1}^{1} \frac{\eta^{m-1} \frac{\sqrt{\left(1-\eta^{2}\right)}}{e+\sqrt{e^{2}+\left(\eta-\eta_{1}\right)^{2}}} d \eta \quad \ldots \quad \ldots \quad \cdots \quad \therefore}{\because} \tag{15}
\end{equation*}
$$

\]

where $\quad e=\left(\frac{x_{t}-x_{1}}{s}\right)$.
The total downwash W at a point $\left(x_{1}, y_{1}\right)$ is then given by equations $(13)-(15)$, where for the $\omega_{m} \rightarrow 0$ solution, only first-order terms in ω_{m} are retained. When W is known at a sufficient number of collocation points, the arbitrary coefficients $C_{n m m}$ are determined so that W satisfies equation (5) at each point. The downwash equations can be written in matrix notation as

$$
\begin{equation*}
\left[A+i \omega_{m} B\right]\{C\}=\{h\} \tag{16}
\end{equation*}
$$

where the elements A and B of the matrix are real and independent of $\omega_{m} ;[A]$ is the matrix corresponding to the $\omega_{m}=0$ solution and the column matrix

$$
\{C\}=\left\{C_{01}, C_{11}, C_{21} \ldots C_{0 i m}, C_{1 m}, C_{2 m} \ldots\right\} .
$$

The column matrix on the right-hand side of (16) is

$$
\{h\}=\left\{\frac{W\left(x_{1}, y_{1}\right)}{V}, \frac{W\left(x_{2}, y_{2}\right)}{V}, \frac{W\left(x_{3}, y_{3}\right)}{V}, \cdots\right\}
$$

with the values W / V obtained from equation (5).
3.3. If a solution is required for a particular value of ω_{m}, frequency effects higher than first order may also be allowed for in the calculation of $W_{0,{ }^{\prime \prime}}{ }^{\prime \prime}$, by using the modified lattice scheme of Ref. 1. The continuous doublet distribution $K_{0}{ }^{\prime \prime} A_{m}$ is defined by equations (10) to (12) as

$$
\begin{equation*}
A_{m}\left[K_{a}(\pi)+i \omega_{m} K_{b}(\pi) f(|\eta|)+O\left(\omega_{m}{ }^{2}\right)\right]\left[\mathrm{e}^{-i p\left(x-x_{i} / / V\right.}-1\right] . \tag{4}
\end{equation*}
$$

This is replaced by doublet strips of width $2 s_{1}$ and strength proportional to $s_{1}\left[e^{-i p\left(x_{0} x_{t} / T /-1\right] ;}\right.$, extending from $x=x_{t}$ to $x=\infty$. The downwash $W_{0, m}{ }^{\prime \prime}$ is calculated by summation by using the tables of Ref. 10, which give the downwash due to a doublet strip of strength $s_{1} \mathrm{e}^{-i \dot{p} \xi / W}$ oscillating at a frequency $p / 2 \pi$, together with the tables of Ref. 9.

The total downwash W at a point $\left(x_{1}, y_{1}\right)$ is then obtained from equations (13) and (14) for the particular value ω_{m}. In this case, the set of downwash equations can be solved directly or by the approximate method suggested in section 4.1 if the value of ω_{m} is small. The equations in matrix notation are

$$
\begin{equation*}
[A+(a+i b)]\{C\}=\{h\}, \quad \therefore \quad \cdots \quad \cdots \quad \cdots \quad \cdots \ddots \tag{17}
\end{equation*}
$$

where A, a and b are real, and the column matrices. $\{C\}$ and $\{h\}$ are as defined above for equation (16).
4. Solution of Equations.-The equations for the $\omega_{m} \rightarrow 0$ solution are given by (16), and in this; case the values of $\{h\}$ are obtained from equation (5) in the form

$$
\begin{equation*}
\{h\}=\left\{h^{\prime}+i \omega_{m} h^{\prime \prime}\right\} . . . \quad . \quad . . \quad . \quad . \quad . \quad \tag{18}
\end{equation*}
$$

Let

$$
\{C\}=\left\{C^{\prime}+i \omega_{m} C^{\prime \prime}\right\}
$$

so that equation (16) becomes

$$
\begin{equation*}
\left[A+i \omega_{m b} B\right]\left\{C^{\prime}+i \omega_{m} C^{\prime \prime}\right\}=\left\{h^{\prime}+i \omega_{m} h^{\prime \prime}\right\} . \quad . \quad \cdots \quad \cdots \tag{19}
\end{equation*}
$$

Then if terms $O\left(\omega_{m}{ }^{2}\right)$ are neglected

$$
\begin{aligned}
{[A]\left\{C^{\prime}\right\} } & =\left\{h^{\prime}\right\} \\
{[B]\left\{C^{\prime}\right\}+[A]\left\{C^{\prime \prime}\right\} } & =\left\{h^{\prime \prime}\right\}
\end{aligned}
$$

and hence the solution is

$$
\begin{align*}
\left\{C^{\prime}\right\} & =[A]^{-1}\left\{h^{\prime}\right\} \tag{20}\\
\left\{C^{\prime \prime}\right\} & \left.=[A]^{-1}\left\{h^{\prime \prime}\right\}-[A]^{-1}[B][A]^{-1}\left\{h^{\prime}\right\}\right\} \ldots
\end{align*} \ldots \ldots
$$

4.1. The equations for a particular value of ω_{m} are given by (17). For small values of ω_{m}, a and b are small compared with A and the following approximate solution is suggested which avoids the solution of complex simultaneous equations and reduces the amount of computing when several values of ω_{m} are considered.

Let C_{1} be a first approximation to C, such that

$$
\begin{equation*}
[A]\left\{C_{1}\right\}=\{h\} \tag{21}
\end{equation*}
$$

Let $C_{2}=C_{1}+\varepsilon$ be a second approximation to C, where ε is assumed small compared with C_{1}, so that the term $[a+i b]\{\varepsilon\}$ can be neglected. Then, substituting in equation (17),
and, by (21)

$$
[A]\left\{C_{1}\right\}+[a+i b]\left\{C_{1}\right\}+[A]\{\varepsilon\}=\{h\}
$$

Hence

$$
[A]\{\varepsilon\}=-[a+i b][A]^{-1}\{h\} .
$$

$$
\begin{equation*}
\left\{C_{2}\right\}=\left\{C_{1}+\varepsilon\right\}=[A]^{-1}\{h\}-[A]^{-1}[a+i b][A]^{-1}\{h\} . \tag{22}
\end{equation*}
$$

This process can be continued if C_{2} is not a sufficiently accurate solution.
5. Application of the Method.-5.1. Incompressible Flow. -The method is used to calculate the aerodynamic coefficients of the following wings, which are describing plunging (vertical translational) and pitching oscillations for $\omega_{m} \rightarrow 0$.
(i) Delta wings of aspect ratio $A_{\rho}=1 \cdot 2,2$ and 3, with a taper ratio $1 / 7$. Values of the derivatives for the axis position at $0 \cdot 556 c_{0}$ are given in Table 2(A) and values of the derivative - $m_{\dot{\alpha}}$ are tabulated in Table 2(в) for various axis positions. The latter results are plotted in Figs. 2 and 3.
(ii) Arrowhead wing of aspect ratio $1 \cdot 32$, with a taper ratio 7/18, and angle of sweep of $63 \cdot 4 \mathrm{deg}$ at quarter-chord. Derivatives are given in Table 3 and the variation of $-m_{\dot{a}}$ with axis position is shown in Fig. 4.
(iii) Circular plate, aspect ratio $4 / \pi$. Derivatives are given in Table 4 and the variation of - $m_{\dot{a}}$ with axis position is shown in Fig. 5.

For the delta wing $A_{\gamma}=3$, derivatives are also obtained for $\omega_{n}=0 \cdot 13$ and $0 \cdot 26$. The values are given in Table 2 and Fig. 2.

The results are based on solutions in which the general distributions Γ and K, defined by (6) and (9) were limited to the chordwise terms $n=0$ and 1 , with the $K_{0}(\theta)$ distribution limited to first-order terms in ω_{m}, and the spanwise terms $m=1,3$ and 5 . For $\omega_{m} \rightarrow 0$, all terms $O\left(\omega_{m}{ }^{2}\right)$ were neglected throughout the solution and the downwash values were calculated by the modified vortex-lattice method described in section 3; the downwash values $W_{m n}=\left[A+i \omega_{m} B\right]$ are tabulated in Tables 5A to 5 D for the wings (i) and (ii) and the values $W_{n m}=\left[A+i \omega_{r} B\right]$ are given in Table 6 for wing (iii). The solutions for the particular (small) values of ω_{m} considered in this note were also based on the first-order method, but higher order frequency effects due to the oscillatory wake were allowed for in the calculation of $W_{0 m}{ }^{\prime \prime}$. The unknown coefficients
$C_{n m}$ were determined by solving the simultaneous equations obtained from (5) and (13). For plunging and pitching oscillations the displacement $z^{\prime} \mathrm{e}^{i p t}$ is defined as follows :

$$
z^{\prime}=c_{m} z+x_{1} \alpha \text { for wings (i) and (ii) }
$$

where $c_{m} z$ and α are the amplitudes of the translational and angular displacements :

$$
z^{\prime}=\gamma z+x_{1} \alpha \text { for the circular plate }
$$

where $y=$ radius, $r z$ and α are the amplitudes of the translational and angular displacements.
When the coefficients $C_{m, n}$ have been determined, the lift distribution $\rho V F$ defined by (6) is integrated to give the total lift and the pitching moment for the axis $O Y$. The aerodynamic derivatives are then computed according to the definitions given in the List of Symbols.
5.2. Compressible Flow.-In Ref. 3, W. P. Jones has shown that stability and flutter derivatives for a finite wing oscillating in compressible flow, can be estimated by considering a wing of related plan-form in incompressible flow. If the original wing of aspect ratio \bar{A} at Mach number $M=\sqrt{\left(1-\beta^{2}\right)}$, is describing simple harmonic oscillations at a frequency $\bar{p} / 2 \pi$, then a solution for stability derivatives, to first-order accuracy in frequency, can be obtained by calculating the incompressible flow solution of a wing of reduced aspect ratio $A_{r}=\beta \bar{A}$ (reduced laterally by the factor β), with a changed mode of oscillation and a frequency $p / 2 \pi=\bar{p} / 2 \pi \beta^{2}$.

If \bar{l}, k, w refer to the lift, circulation and downwash of the original wing \bar{A}, then
where Γ, K, W are the distributions defined in section 2 for the reduced wing A_{r} at $M=0$, oscillating at a mean frequency parameter value $\omega_{m z}=p c_{m} \mid V \rightarrow 0$, and where

$$
\begin{aligned}
& \bar{\omega}_{n t}=\frac{\bar{\phi} c_{m}}{V}, \lambda_{m} \\
&=\left(\frac{1-\beta^{2}}{\beta^{2}}\right) \bar{\omega}_{m} \\
& \bar{\omega}_{m} T=\bar{p} t, \quad X=x / c_{m}
\end{aligned}
$$

For plunging and pitching oscillations of amplitude $c_{m} z$ and α, the tangential flow condition for the original wing \bar{A} is

$$
\begin{equation*}
w=V\left[i \bar{\omega}_{m}(z+X \alpha)+\alpha\right] \mathrm{e}^{i \omega_{m} T} . \tag{24}
\end{equation*}
$$

Hence, by (23), the flow condition for the reduced wing A_{r} is

$$
\begin{align*}
W & =\frac{w}{\beta} \exp \left\{-i\left(\lambda_{m} X+\bar{\omega}_{m} T\right)\right\} \\
& =\frac{V}{\beta}\left[i \bar{\omega}_{m}(z+X \alpha)+\alpha\right] \mathrm{e}^{-i i_{m} X} . \ldots \quad . . \quad \ldots \quad \ldots \tag{25}
\end{align*} .
$$

It is shown in Ref. 7 that to first-order accuracy in frequency

$$
4 \pi W=\iint_{z_{1} \rightarrow 0} K \frac{\partial^{2}}{\partial z_{1}^{2}}\left(\frac{1}{r}\right) d x d y, \text { where integration is over wing } A_{r} \text { and wake. }
$$

Thus the downwash W at a point $\left(X_{1}, Y_{1}\right)$ on the reduced wing A_{r} in incompressible flow, may be calculated by the method for $\omega_{m} \rightarrow 0$ outlined in section 3. The set of downwash equations may be expressed in matrix notation as

$$
\begin{equation*}
\left[A+i \omega_{m} B\right]\{C\}=\left\{\frac{W\left(X_{j}, Y_{j}\right)}{V}\right\} \quad \ldots \quad \quad . \quad . \quad . \quad . . \tag{26}
\end{equation*}
$$

where $\omega_{p m}=\bar{\omega}_{m} / \beta^{2}$.

The columin matrix $\{C\}=\left\{C_{01}, C_{11}, C_{21} \ldots C_{0 m}, C_{1 m}, C_{2 m} \ldots\right\}$, where the $C_{m m}$'s are the arbitrary coefficients assumed in the Γ distribution. The column matrix $\left\{W\left(X_{j}, Y_{j}\right) / V\right\}$ denotes the values of W / V at collocation points $\left(X_{j}, Y_{j}\right)$ as given by equation (25). If these values are expanded in terms of $\bar{\omega}_{m}$ and only terms of first order are retained, then equations (26) can be solved by the method given in section 4 . The coefficients $\{C\}$ for plunging and pitching oscillations are obtained in the form

$$
\begin{aligned}
&\{C\}=\left\{C^{\prime}+i \bar{\omega}_{m} C^{\prime \prime}\right\} \\
&\left\{C^{\prime}\right\}=\alpha \cdot \frac{1}{\beta}[A]^{-1}\{1\} \\
&\left\{C^{\prime \prime}\right\}=z \cdot \frac{1}{\beta}[A]^{-1}\{1\}-\alpha\left(\frac{1-2 \beta^{2}}{\beta^{3}}\right)[A]^{-1}\left\{X_{j}\right\}
\end{aligned}
$$

and $[A]^{-1}$ is the inverse matrix of $[A]$.
The amplitude of the lift distribution for the original wing \bar{A} is, by (23) and (6),

$$
\begin{equation*}
=\bar{l} \mathrm{e}^{-i \bar{\omega}_{m} T}=\rho V^{2}\left[\sum_{n} \sum_{m} \Gamma_{n} C_{n m} A_{m}\right] \mathrm{e}^{i \lambda_{m} X} \tag{28}
\end{equation*}
$$

where $c A_{m}=s T_{m}=s \eta^{m_{i}-1} \sqrt{ }\left(1-\eta^{2}\right)$,
semi-span of wing $A_{r}=s=\beta \bar{s}$ and $\bar{s}=$ semi-span of wing \bar{A}.
The stability derivatives for the original wing at Mach number M, are then obtained by integration, only terms of first order in frequency being refained.

In the :present report the incompressible flow solutions for the delta wings $A_{r}=1 \cdot 2$ and 2 were used to calculate the stability derivatives for pitching oscillations of the delta wing $\bar{A}=3$ at $M=0.745$ and 0.917 . The values are tabulated in Table 7 , and the derivative - $m_{\dot{\alpha}}$ is plotted against M in Fig. 6 .
6. Results Quoted for Comparison.-Low-speed tests on the delta wing $A_{r}=1 \cdot 2$ have recently been made at the N.P.L. for axis positions at $0.431 c_{0}$ and $0.556 c_{0}$ (Ref. 11). Values of the pitching derivatives are given in Table 2 for the $0.556 c_{0}$ axis and values of - \dot{m}_{i} are plotted in Fig. 2 for both axis positions. The results quoted are for zero mean incidence and the tests show no amplitude effects. The derivatives were measured for frequency parameter values $\omega_{m}=0.06$ to 0.60 and were approximately constant over this range.

Tests on the arrowhead wing of aspect ratio 1.32 have recently been made at the N.P.L. Measurements for zero mean incidence, made by Scruton, Woodgate and Alexander ${ }^{11}$, indicate that the damping derivative $-m_{\dot{\alpha}}$ for an axis at $0.738 c_{0} \equiv 1 \cdot 063 c_{m}$, decreases approximately linearly from 0.196 to 0.135 for the range $0.027 \leqslant \omega_{m} \leqslant 0.2$ and has a nearly constant value 0.135 for the range $0.2 \leqslant \omega_{m} \leqslant 0.6$. The value $-m_{\dot{a}}=0.21$ which is plotted in Fig. 4 , was obtained by extrapolating these results to $\omega_{m}=0$.

Values of $-m_{\dot{\alpha}}$, for the delta wing $\bar{A}=3$, have recently been measured by Bratt in a highspeed wind tunnel at the N.P.L.; the results given in Figs. 2 and 3 are for $M=0.4$ and those plotted in Fig. 6 are for the subsonic flow range $0.4<M<0.9$. The values quoted for the two axis positions $0.431 c_{0}$ and $0.556 c_{0}$ are for a mean frequency parameter value $\omega_{m}=0.07$ and zero mean incidence.

The Multhopp subsonic lifting-surface theory for steady motion is extended, in Ref. 4, to deal with harmonic oscillations of low frequency. Values of - $m_{\dot{a}}$ calculated by this method for the delta wing $A_{r}=3$, the arrowhead wing 1.32 and the circular plate in incompressible flow, are plotted in Figs. 3 to 5 . The effect of compressibility on the derivatives of the delta wing $\bar{A}=3$, is also estimated in Ref. 4 and the values of $-m_{\dot{d}}$ are plotted against Mach number in Fig. 6. These results were obtained from solutions based on 2 chordwise and \bar{m} spanwise terms.
7. Concluding Remarks.-A comparison of the vortex-lattice results and experimental values indicates that the present method is satisfactory for the calculation of stability derivatives for incompressible flow. Solutions based on a 21×6 lattice with 6 collocation points give reasonable accuracy even for wings of very low aspect ratio. The wings are assumed to be rigid in the present calculations, but the effects of distortion could readily be taken into account ; the method of Ref. 1 has been applied to the case of a delta wing oscillating in elastic modes in Ref. 12.

For compressible flow, the present solutions give values of $-m_{\dot{\alpha}}$ for the delta wing $\bar{A}=3$, which are not in such good agreement with the measured values. This indicates that a very reliable method is required for the equivalent wing in incompressible flow. It is possible that the accuracy of the vortex-lattice solutions would be improved by taking more collocation points in the calculation, and further information on accuracy might also be provided by solutions based on a finer lattice. The difference between theory and experiment may also be partly due to the effects of thickness, boundary layer and wind-tunnel interference, since these are not allowed for in the calculation.

Acknowledgment.-The numerical results given in this report were calculated by Mrs. S. D. Burney of the Aerodynamics Division.

No.	Author	REFERENCES Title, etc.
1	W. P. Jones	The calculation of aerodynamic derivative coefficients for wings of any plan-form in non-uniform motion. R. \& M. 2470. December, 1946.
2	D. E. Lehrian	Calculation of flutter derivatives for wings of general plan-form. A.R.C. 16,445. January, 1954.
3	W. P. Jones	Oscillating wings in compressible subsonic flow. R. \& M. 2855. October, 1951.
4	H. C. Garner	Multhopp's subsonic lifting surface theory of wings in slow pitching oscillations. R. \& M. 2885. July, 1952.
5	D. E. Lehrian	Aerodynamic coefficients for an oscillating delta wing. R. \& M. 2841. July, 1951.
6	V. M. Falkner	The solution of lifting plane problems by vortex-lattice theory R. \& M. 2591. September, 1947.
7	S. B. Berndt and K. Orlik-Rüchemann.	Comparison between theoretical and experimental lift distributions of plane delta wings at low speeds and zero yaw. K.T.H. Aero. T.N. 10. 1949.
8	W. P. Jones	Aerodynamic forces on wings in simple harmonic motion. R. \& M. 2026. February, 1945.
9	Staff of Maths. Divn., N.P.L. with Preface by V. M. Falkner	Tables of complete downwash due to a rectangular vortex. R. \& M. 2461. July, 1947.
10	Staff of Maths. Divn., N.P.L. ..	Downwash tables for the calculation of aerodynamic forces on oscillating wings. R. \& M. 2956. July, 1952.
11	C. Scruton, L. Woodgate and A. J. Alexander	Measurements of the aerodynamic derivatives for swept wings of low aspect ratio describing pitching and plunging oscillations in incompressible flow. R. \& M. 2925. October, 1953.
12	D. L. Woodcock	Aerodynamic derivatives for a delta wing oscillating in elastic modes. R.A.E. Report Structures 132. A.R.C. 15,349. July, 1952.

TABLE 1
Chordwise Factors of the Rectangular Vortices Representing the Doublet Distributions $K_{a}^{\prime}, K_{b}^{\prime}$ and K_{1}

k	$L_{a}^{\prime}(k)$	$L_{b}^{\prime}(k)$.	$L_{1}(k)$
1	0.4512π	$-0 \cdot 1143 \pi$	$0 \cdot 1709 \pi$	Position of vortex, on chord
2	0.2051π	-0.2025π	0.0114π	$1 / 12$
3	0.1367π	-0.2537π	-0.0358π	$3 / 12$
4	0.0976π	-0.2895π	-0.0553π	$5 / 12$
5	0.0684π	-0.3149π	-0.0570π	$7 / 12$
6	0.0410π	-0.3251π	-0.0342π	$9 / 12$

When the spanwise parameter $Y \geqslant 10$, the 6 -step lattice is replaced by a 2 -step lattice with the following factors:

k	$L_{a}^{\prime}(k)$	$L_{b}^{\prime}(k)$	$L_{1}(k)$	Position of vortex, on chord
1	$0 \cdot 750 \pi$	$-0 \cdot 5767 \pi$	$0 \cdot 125 \pi$	$1 / 4$
2	$0 \cdot 250 \pi$	$-0 \cdot 9233 \pi$	$-0 \cdot 125 \pi$	$3 / 4$

TABLES 2A and 2B

Aerodynamic Derivatives for a Family of Delta Wings of Taper Ratio 1/7

A Derivatives for axis position $h c_{0}=0 \cdot 556 c_{0}$

* The method of Ref. 2 takes into account all frequency effects.

B Variation of the pitching-moment damping coefficient - $m_{\dot{a}}$ with axis position

Axis position		$A_{\text {r }}=1 \cdot 2$	$A_{r}=2$	$A_{r}=3$		
h	h^{\prime}	$\omega_{m} \rightarrow 0$	$\omega_{m} \rightarrow 0$	$\omega_{m} \rightarrow 0$	$=0 \cdot 13$	$=0.26$
0	-0.750	1.789	$2 \cdot 313$	$2 \cdot 623$	$2 \cdot 654$	$2 \cdot 685$
0:1	-0.575	1.401	1.787	1.998	$2 \cdot 023$	2.051
$0 \cdot 2$	-0.400	1.064	1.334	1.468	1.487	1.510
$0 \cdot 3$	-0.225	$0 \cdot 777$	$0 \cdot 954$	$1 \cdot 032$	$1 \cdot 045$	1.062
$0 \cdot 4$	-0.050	$0 \cdot 539$	$0 \cdot 646$	$0 \cdot 691$	$0 \cdot 697$	$0 \cdot 707$
$0 \cdot 5$	$0 \cdot 125$	$0 \cdot 352$	$0 \cdot 412$	$0 \cdot 443$	0.442	$0 \cdot 446$
$0 \cdot 6$	$0 \cdot 300$	$0 \cdot 214$	$0 \cdot 251$	$0 \cdot 290$	$0 \cdot 281$	$0 \cdot 277$
0.7	0.475	$0 \cdot 126$	$0 \cdot 163$	$0 \cdot 231$	$0 \cdot 215$	0.202
$0 \cdot 8$	$0 \cdot 650$	$0 \cdot 088$	$0 \cdot 147$	$0 \cdot 267$	$0 \cdot 242$	$0 \cdot 220$
0.9	$0 \cdot 825$	$0 \cdot 100$	$0 \cdot 205$	$0 \cdot 397$	$0 \cdot 363$	$0 \cdot 330$
$1 \cdot 0$	1.000	$0 \cdot 162$	$0 \cdot 335$	$0 \cdot 621$	$0 \cdot 578$	0.534

$A_{r}=$ Aspect ratio. $h c_{0}=$ Distance back from apex. $h^{\prime} c_{m}=$ Distance back from leading edge at mean chord

TABLES 3 A and 3 B

Aerodynamic Derivatives for $\omega_{m} \rightarrow 0$, for the Arrowhead
 Wing of Aspect Ratio 1-32

A Derivatives for axis through wing apex

$$
\begin{aligned}
\therefore \quad l_{z} & =0 \\
l_{z} & =0.833 \\
l_{\alpha} & =0.833 \\
l_{\alpha} & =1.491 \\
-m_{z} & =0 \\
-m_{\dot{z}} & =0.795 \\
-m_{\alpha} & =0.795 \\
-m_{\alpha}^{\bullet} & =1.653
\end{aligned}
$$

B Variation of - m_{a} with the axis position $h^{\prime} c_{m}$

h^{\prime}	$-m_{\alpha}^{*}$	h^{\prime}	$-m_{\alpha}$
0	1.653	$1 \cdot 2$	$0 \cdot 110$
$0 \cdot 2$	$1 \cdot 230$	$1 \cdot 4$	0.085
$0 \cdot 4$	$0 \cdot 872$	$1 \cdot 6$	$0 \cdot 128$
$0 \cdot 6$	0.582	$1 \cdot 8$	0.237
$0 \cdot 8$	$0 \cdot 358$	$2 \cdot 0$	0.413
$1 \cdot 0$	$0 \cdot 200$	$2 \cdot 1$	0.525
Distance back from apex			

TABLES 4 A and 4 B

Aerodynamic Derivatives for $\omega_{r} \rightarrow 0$, for the Circular Plate

A Derivatives for mid-chord axis position

$$
\begin{aligned}
l_{z} & =0 \\
l_{\dot{z}} & =0.891 \\
l_{a} & =0 \cdot 891 \\
l_{\dot{\alpha}} & =1 \cdot 196 \\
-m_{x} & =0 . \\
-m_{\dot{z}} & =-0.462 \\
-m_{a} & =-0.462 \\
-m_{a} & =0 \cdot 279
\end{aligned}
$$

в Variation of - $m_{\dot{\alpha}}$ with the position $h^{\prime} r$

h^{\prime}	$-m_{\dot{\alpha}}^{*}$	h^{\prime}	$-m_{\dot{a}}$
0	$1 \cdot 904$	$1 \cdot 2$	$0 \cdot 168$
$0 \cdot 2$	$1 \cdot 437$	$1 \cdot 4$	0.128
$0 \cdot 4$	1.040	$1 \cdot 6$	0. 160
$0 \cdot 6$	0.715	$1 \cdot 8$	0.262
$0 \cdot 8$	0.462	$2 \cdot 0$	$0 \cdot 436$
$1 \cdot 0$	0.279		
Distance back from axis $O Y$			

N.B. For the circular plate, the derivatives are defined in terms of radius r and the frequency parameter $\omega_{r}=p r / V$

TABLE 5

Values of the Downwash $W_{n m}$ at Collocation Points (ξ, η), as $\omega_{m} \rightarrow 0:$ Matrix $\left[W_{n m}\right]=\left[A+i \omega_{m} B\right]$

A Delta wing, $A_{r}=1 \cdot 2$, taper ratio $1 / 7$
Values of A

(ξ, η)	(n, m)					
	(0, 1)	$(0,3)$	$(0,5)$	(1, 1)	(1,3)	(1, 5)
(0, 0.2)	2. 108514 .	-0. 192982	-0.097694	+0.376591	-0.049566	-0.018831
$(0, .0 \cdot 6)$	1.869389	+1.229127	+0.323397	+0.527714	+0.188470	$+0.020035$
($0 \cdot 0.0 \cdot 8$)	$1 \cdot 460079$	$+2 \cdot 153558$	+1.600454	$+0.647579$	+0.475148	+0.290190
($0 \cdot \dot{6}, 0 \cdot 2$)	1.858905	-0.450832	-0.204099	-0.035192	-0.035352	-0.013248
($0 \cdot \dot{6}, 0.6)$	1.821870	+1.042284	$+0.090942$	-0.034863	-0.023507	-0.032319
$(0 \cdot \dot{6}, 0 \cdot 8)$	1.791262	+2.329668	+1.622047	-0.024056	$+0.004907$	-0.005391

Values of B

$(0,0.2)$	-0.902452	+0.037571	+0.043006	0	0	0
$(0,0.6)$	+0.590266	-0.337046	-0.146324	0	0	0
$(0,0.8)$	+1.189472	-0.092964	-0.226604	0	0	0
$(0 . \dot{6}, 0.2)$	-1.746289	+0.208218	+0.123541	0	0	0
$(0 . \dot{6}, 0.6)$	+0.105414	-0.636394	-0.186398	0	0	0
$(0 . \dot{6}, 0.8)$	+0.822195	-0.538394	-0.537242	0	0	0

Matrix $[A]^{-1}=$ Inverse $[A]$

$$
=\left|\begin{array}{llllll}
-0.024799 & +0.022579 & +0.024209 & +0.443605 & +0.060215 & +0.022560 \\
+0.180849 & -0.264924 & +0.113464 & -0.959311 & +1.181661 & -0.235201 \\
-0.152872 & +0.297337 & -0.167934 & +0.812630 & -1.719792 & +0.912387 \\
+2.204322 & +0.160846 & -0.011079 & -2.147829 & -0.380839 & -0.137279 \\
-7.604031 & +7.100503 & -1.242028 & +7.171327 & -5.351964 & +0.554261 . \\
+7.157274 & -11.772497 & +5.466740 & -6.543621 & +10.025678 & -4.001210
\end{array}\right|
$$

[^2]
TABLE 5-continued

Values of the Dowwwash $W_{n m}^{*}$ at Collocation Points (ξ, η), as $\omega_{m} \rightarrow 0:$ Matrix $\left[W_{m m}\right]=\left[A+i \omega_{m} B\right]$

Values of A
B Delta wing, $A_{+}=2$, taper ratio $1 / 7$

(ξ, η)	(n, m)					
	$(0,1)$	$(0,3)$	$(0,5)$	(1, 1)	$(1,3)$	$(1,5)$
(0, 0.2)	$2 \cdot 246360$	-0.198365	-0.109259	+0.491625	-0.039526	-0.017030
(0, 0.6)	2.075138	+1.276306	+0.333906	+0.673876	+0.247882	+0.047694
(0, 0.8)	1.841571	$+2 \cdot 347650$	+1.720971	+0.789012	+0.572563	+0.360294
$(0 \cdot \dot{6}, 0 \cdot 2)$	2.058579	-0.418811	-0.193909	-0.073434	-0.033248	-0.010680
$(0 \cdot \dot{6}, 0 \cdot 6)$	2. 100124	+1.143870	+0.142683	-0.097033	-0.042369	-0.037870
$(0 \cdot \dot{6}, 0 \cdot 8)$	2-105804	+2.495959	+1.730210	-0.102412	-0.038766	-0.032003

Values of B

$(0,0.2)$	-0.577420	+0.087529	+0.065797	0	0	0
$(0,0.6)$	+0.884008	-0.239310	-0.098152	0	0	0
$(0,0.8)$	+1.386536	-0.006636	-0.172537	0	0	0
$(0 . \dot{6}, 0.2)$	-1.541114	+0.251686	+0.145470	0	0	0
$(0 . \dot{6}, 0.6)$	+0.308518	-0.576252	-0.156581	0	0	0
$(0 . \dot{6}, 0.8)$	+1.008446	-0.464492	-0.494361	0	0	0

Matrix $[A]^{-1}=$ Inverse $[A]$

$$
=\left|\begin{array}{llllll}
+0.004305 & +0.031684 & +0.012656 & +0.382884 & +0.031939 & +0.021845 \\
+0.115475 & -0.1735355 & +0.095157 & -0.904595 & +1.097641 & -0.245764 \\
-0.100315 & +0.169963 & -0.095475 & +-.770748 & -1.585657 & +0.850936 \\
+1.735261 & -0.009304 & +0.010876 & -1.656416 & -0.160768 & -0.071822 \\
-6.373714 & +6.373417 & -1.414931 & +-6.006561 & -4.988878 & +0.859485 \\
+6.033481 & -9.951018 & +4.771559 & -5.662248 & +8.538777 & -3.783405
\end{array}\right|
$$

TABLE 5-continued
Values of the Downwash $W_{n m}$ at Collocation Points (ξ, η), as $\omega_{m} \rightarrow 0:$ Matrix $\left[W_{n m}\right]=\left[A+i \omega_{m} B\right]$
c Delta wing, $A_{r}=3$, taper ratio 1/7
Values of A

(ξ, η)	(n, m)					
	$(0,1)$	$(0,3)$	$(0,5)$	$(1,1)$	$(1,3)$	(1, 5)
$(0,0 \cdot 2)$	$2 \cdot 458756$	-0.195188	$-0 \cdot 115555$	+0.645743	-0.025716	-0.013964
(0, 0.6)	$2 \cdot 414351$	+1.374274	$+0.365665$	+0.869258	$+0.324655$	$+0.082044$
(0, 0.8)	$2 \cdot 330373$	$+2 \cdot 610238$	+1.882558	$+1.003016$	$+0.712047$	$+0.456151$
$(0 \cdot \dot{6}, 0 \cdot 2)$	$2 \cdot 330578$	-0.386435	$-0 \cdot 185827$	-0.126059	-0.033164	-0.009490
- $(0 . \dot{6}, 0.6)$	$2 \cdot 484706$	$+1.280207$	$+0 \cdot 205682$	-0.180251	-0.066988	-0.044739
$\therefore(0 \cdot \dot{6}, 0.8)$	$2 \cdot 555151$	$+2 \cdot 742383$	$+1 \cdot 889420$	-0.205678	-0.099858	-0.068765

Values of B

$(0,0 \cdot 2)$	-0.103935	+0.163728	+0.098566	0	0	0
$(0,0 \cdot 6)$	+1.324390	-0.102120	-0.032462	0	0	0
$(0,0 \cdot 8)$	+1.749240	+0.144602	-0.080946	0	0	0
$(0 \cdot \dot{6}, 0 \cdot 2)$	$-1 \cdot 216082$	+0.318155	+0.177002	0	0	0
$(0 \cdot \dot{6}, 0 \cdot 6)$	+0.618644	-0.480253	-0.108708	0	0	0
$(0 \cdot \dot{6}, 0 \cdot 8)$	$+1 \cdot 300771$	-0.350863	-0.427588	0	0	0

Matrix $[A]^{-1}=$ Inverse $[A]$

$$
=\left|\begin{array}{llllll}
+0.023749 & +0.030203 & +0.006559 & +0.328850 & +0.014627 & +0.019822 \\
+0.055675 & -0.083183 & +0.061865 & -0.843274 & +0.999144 & -0.233840 \\
-0.059792 & +0.058528 & -0.023527 & +0.727855 & -1.446895 & +0.766814 \\
+1.363347 & -0.090436 & +0.021499 & -1.282768 & -0.033984 & -0.042999 \\
-5.266358 & +5.472015 & -1.338337 & +4.938347 & -4.428781 & +0.920182 \\
+5.029755 & -8.262751 & +3.943692 & -4.746507 & +7.167276 & -3.269687
\end{array}\right|
$$

TABLE 5-continued
V alues of the Downwash $W_{\text {min }}$ at Collocation Points (ξ, η), as $\omega_{m} \rightarrow 0:$ Matrix $\left[W_{n m}\right]=\left[A+i \omega_{m} B\right]$

D Arrowhead wing, $A_{r}=1.32$
Values of A

(ξ, η)	(n, m)					
	$(0,1)$	$(0,3)$	$(0,5)$	$(1,1)$	$(1,3)$	$(1,5)$
(0, 0.2)	$2 \cdot 455413$	-0.094812	-0.072411	+0.508700	-0.046908	-0.016548
(0, 0.6)	1-709472	$+1.246541$	$+0.350006$	+0.681309	+0.207564	$+0.019803$
(0, 0.8)	1-155726	+1.991932	+1.493441	+0.697997	$+0.470449$	$+0.274126$
$(0 \cdot \dot{6}, 0 \cdot 2)$	2.177069	$-0 \cdot 347152$	$-0 \cdot 160035$	$-0 \cdot 142266$	-0.059275	-0.017160
$(0 \cdot \dot{6}, 0 \cdot 6)$	1-880055	$+1 \cdot 131840$	+0.152661	-0.071080	-0.085286	-0.074402
$(0 \cdot \dot{6}, 0 \cdot 8)$	$1 \cdot 661872$	$+2 \cdot 304480$	+1.627161	$+0 \cdot 042384$	+0.006498	-0.023228

Values of B

$(0,0 \cdot 2)$	-0.618615	-0.002877	+0.031718	0	0	0
$(0,0.6)$	+0.840746	-0.326405	-0.149544	0	0	0
$(0,0.8)$	+1.275811	-0.183516	-0.309744	0	0	0
$(0 . \dot{6}, 0.2)$	-1.575591	+0.123108	+0.090074	0	0	0
$(0 . \dot{6}, 0.6)$	+0.199694	-0.701210	-0.220355	0	0	0
$(0 . \dot{6}, 0.8)$	+0.878692	-0.740021	-0.709154	0	0	0

Matrix $[A]^{-1}=$ Inverse $[A]$

$$
=\left|\begin{array}{llllll}
-0.005644 & +0.065950 & +0.020567 & +0.397716 & +0.001075 & +0.005702 \\
+0.044716 & -0.340813 & +0.300989 & -0.769294 & +1.310483 & -0.399569 \\
+0.011434 & +0.227656 & -0.344788 & +0.616710 & -1.698750 & +1.102595 \\
+1.631330 & -0.052604 & -0.049933 & -1.601837 & -0.188179 & -0.010150 \\
-6.176317 & +7.181906 & -1.858422 & +6.123068 & -5.281307 & +0.983731 \\
+6.082440 & -11.233294 & +6.569049 & -5.876145 & +9.270489 & -4.789940
\end{array}\right|
$$

TABLE 6

Circular Plate: Values of the Downwash* $W_{n m}$ at Collocation Points (ξ, η), as $\omega_{r}=p r \mid V \rightarrow 0$. Matrix $\left[W_{n m}\right]=\left[A+i \omega_{r} B\right]$

Values of A

(ξ, η)	(n, m)						
	$(0,1)$	$(0,3)$	$(0,5)$	$(1,1)$	$(1,3)$	$(1,5)$	
$(0,0.2)$	1.588024	-0.392250	-0.182390	+0.399294	-0.049289	-0.022845	
$(0,0.6)$	1.573808	+0.827946	+0.045484	+0.394206	+0.183869	+0.024514	
$(0.0 .8)$	1.581476	+1.912974	+1.315291	+0.394538	+0.394107	+0.268244	
$(0.6,0.2)$	1.729384	-0.524945	-0.244644	+0.006680	-0.018514	-0.007363	
$(0.6,0.6)$	1.772298	+0.927496	+0.008054	-0.011469	+0.031570	+0.006630	
$(0.6,0.8)$	1.839798	+2.225071	+1.506252	-0.046641	+0.064554	+0.065947	

Values of B

$(0,0 \cdot 2)$	-0.683272	+0.333750	+0.156084	0	0	0
$(0,0 \cdot 6)$	-0.272188	-0.462896	-0.062111	0	0	0
$(0,0.8)$	+0.234933	-0.663879	-0.569026	0	0	0
$(0 \cdot \dot{6}, 0 \cdot 2)$	-1.771717	+0.653911	+0.308148	0	0	0
$(0 \cdot \dot{6}, 0.6)$	$-1 \cdot 113127$	-0.946461	-0.080023	0	0	0
$(0.6,0.8)$	-0.314434	$-1 \cdot 440170$	$-1 \cdot 101193$	0	0	0

Matrix $[A]^{-1}=$ Inverse $[A]$

$$
=\left|\begin{array}{llllll}
-0.014807 & +0.031298 & -0.012862 & +0.439196 & +0.050040 & +0.079559 \\
+0.234863 & -0.229869 & +0.023623 & -1.021814 & +1 \cdot 132930 & -0.157266 \\
-0.235226 & +0.520231 & -0.236785 & +0.889188 & -1.926126 & +0.981190 \\
+2.222748 & +0.109719 & +0.180027 & -1.947160 & -0.134917 & -0.206900 \\
-6.397469 & +7.473457 & -1 \cdot 153862 & +5.434107 & -6.134857 & +0.922633 \\
+5.695743 & -12.237549 & +6.226831 & -4.782236 & +10.281807 & -5.209850
\end{array}\right|
$$

*Values of the downwash computed using a 21×6 lattice, see section $5.1: \gamma=$ radius of circle.

TABLE 7

Effect of Compressibility on the Derivatives of the Delta Wing $\bar{A}=3$, for Pitching Oscillations as $\bar{\omega}_{m} \rightarrow 0$

M	$h c_{0}$	l_{α}	$l_{\dot{\alpha}}$	$-m_{a}$	$-m_{\dot{\alpha}}$
0	$0.431 c_{0}$	1.539	1.262	0.253	0.604
0.745		1.786	1.014	0.326	0.847
0.917		2.036	0.066	0.425	1.129
0	$0.556 c_{0}$	1.539	0.926	-0.083	0.346
0.745		1.786	0.623	-0.065	0.640
0.917	2.036	-0.379	-0.021	1.119	

Fig. 1. Layout for 21/6 vortex lattice.

Fig. 2. Variation of $-m_{\dot{\alpha}}$ with axis position-family of delta wings with taper ratio $1 / 7$.

Fig. 3. Values of $-m_{\dot{d}}$ for delta wing of aspect ratio 3 as $\omega_{m} \rightarrow 0$.

Fig. 4. Values of $-m_{\dot{a}}$ for arrowhead wing of aspect ratio $1 \cdot 32$, as $\omega_{m} \longrightarrow 0$.

Fig. 5. Values of $-m_{\dot{\alpha}}$ for circular plate as $\omega_{r} \rightarrow 0$.

Fig. 6a.

Figs. 6 a and 6b. Effect of compressibility on the derivative $-m_{\dot{\alpha}}$ for delta wing $\bar{A}=3$ as $\bar{\omega}_{m} \rightarrow 0$.

Publications of the Aeronautical Research Council

ANNUAL TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL (BOUND VOLUMES)

1938 Vol. I. Aerodynamics General, Performance, Airscrews. 5cs. (51s. 8d.)
Vol. II. Stability and Control, Flutter, Structures, Seaplanes, Wind Tunnels, Materials. 30s. (3Is. 8d.)
1939 Vol. I. Aerodynamics General, Performance, Airscrews, Engines. 50s. (5Is. 8d.)
Vol. II. Stability and Control, Flutter and Vibration, Instruments, Structures, Seaplanes, etc. 63 s. ($64 s .8 d$.)
1940 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Icing, Stability and Control, Structures, and a miscellaneous section. 50s. (5Is. 8d.)
I94I Aero and Hydrodynamics, Acrofoils, Airscrews, Engines, Flutter, Stability and Control, Structures. 63 s. ($645.8 d$.)
1942 Vol. I. Aero and Hydrodynamics, Aerofoils, Airscrews, Engines. 75s. (76s. 8d.)
Vol. II. Noise, Parachutes, Stability and Control, Structures, Vibration, Wind Tunnels. 47s. $6 d$. (49s. 2d.)
1943 Vol. I. Aerodynamics, Aerofoils, Airscrews. 8os. (81s. 8d.)
Vol. II. Engines, Flutter, Materials, Parachutes, Performance, Stability and Control, Structures. 9os. (9rs. xid.)
1944 Vol. I. Aero and Hydrodynamics, Aerofoils, Aircraft, Airscrews, Controls. 84s. (86s. 9 d .)
Vol. II. Flutter and Vibration, Materials, Miscellaneous, Navigation, Parachutes, Performance, Plates and Panels, Stability, Structures, Test Equipment, Wind Tunnels. 84s. (86s. 9d.)
ANNUAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL-

$1933-34$	$1 s .6 d .\left(1 s .8 \frac{1}{2} d.\right)$	1937	2s. (2s. $\left.2 \frac{1}{2} d.\right)$
$1934-35$	$1 s .6 d .\left(1 s .8 \frac{1}{2} d.\right)$	1938	Is. $6 d .\left(1 s .8 \frac{1}{2} d.\right)$
April $\mathrm{I}, 1935$ to Dec. $3 \mathrm{I}, 19364 s$.	$\left(4 s .5 \frac{1}{2} d.\right)$	$1939-48$	$3 s .\left(3 s .3 \frac{1}{2} d.\right)$

INDEX TO ALL REPORTS AND MEMORANDA PUBLISHED IN THE ANNUAL TECHNICAL
REPORTS, AND SEPARATELY-
April, 1950 - - - - R. \& M. No. 2600. 2s. 6d. (2s. 71 d.)
AUTHOR INDEX TO ALL REPORTS AND MEMORANDA OF THE AERONAUTICAL RESEARCH COUNCIL-r909-January, I954 - - - R. \& M. No. 2570. I5s. (15s. $5 \frac{1}{2} d$.)
INDEXES TO THE TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCI-

December I, 1936 - June 30, 1939.	R. \& M. No. 1850.	Is. 3 d. (1s. $4 \frac{1}{2}$ d.)
July 1, 1939 - June 30, 1945.	R. \& M. No. 1950.	xs. (Is. $1 \frac{1}{2} d$.)
July I, 1945 - June 30, 1946.	R. \& M. No. 2050.	IS. (IS. $1 \frac{1}{2} d$.)
July r, 1946-December 31, 1946.	R. \& M. No. 2150.	Is. 3 d. (1s. $4 \frac{1}{2} d$.)
January I, 1947 - June 30, 1947. -	R. \& M. No. 2250.	Is. 3 d. (1s. $4 \frac{1}{2}$ d.)

PUBLISHED REPORTS AND MEMORANDA OF THE AERONAUTICAL RESEARCH COUNCIL-

Between Nos, 2251-2349.	-		R. \& M. No. 2350.	is. 9 d. (Is . $10 \frac{1}{2}$ d.)
Between Nos. 2351 -2449.	-		R. \& M. No. 2450.	2s. (2s. $\left.\mathrm{I} \frac{1}{2} d.\right)$
Between Nos. 245×-2549.	-	-	R. \& M. No. 2550.	2s. 6 d. (2s. $\left.7 \frac{1}{2} d.\right)$
Between Nos. 255i-2649.	-	-	R. \& M. No. 2650.	2s. $6 d$. (2s. $7 \frac{1}{2} d$.)

Prices in brackets include postage

HER MAJESTY'S STATIONERY OFFICE

York House, Kingsway, London W.C.2; 423 Oxford Street, London W. 1 (Post Orders: P.O. Box 569, London S.e.1); 13a Castle Street, Edinburgh 2; 39 King Street, Manchester 2; 2 Edmund Street, Birmingham 3; 109 St. Mary Sireet, Cardiff; Tower Lame, Bristol 1; 80 Chichester Street, Belfast, or through any bookseller

[^0]: * Published with permission of the Director, National Physical Laboratory.

 The oscillatory tables referred to in section 3.3 of this report will be published as R. \& M. 2956 ${ }^{\mathbf{1 0}}$.

[^1]: * The two-dimensional downwash corresponding to the distribution $c K_{0}{ }^{\prime}$ is
 $W_{0}{ }^{\prime}=W_{a}{ }^{\prime}+i \omega^{\prime} W_{b}{ }^{\prime}+O\left(\omega^{\prime 2}\right)$
 where $\quad W_{a}{ }^{\prime}=1, W_{b}{ }^{\prime}=\cos \theta+\log _{e} 2|1+\cos \theta|$
 $\dagger Y$ is the spanwise distance from the centre-line of a rectangular vortex to the collocation point $\left(x_{1}, y_{1}\right)$, in terms of
 the semi-vortex width s_{1}.

[^2]: * Values computed using a 21×6 lattice, see section 5.1.

