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PART I 

Wing of Infinite Span 

Summary.--The lift distribution along a wing of infinite span with a central jet of higher velocity is calculated by 
standard methods of aerofoil theory for several values of (jet velocity/stream velocity) and of (jet diameter/wing chord). 
The lift increment and the induced drag are determined and tile application of the results to practical cases is discussed. 

1. lntroduction.--The effect of slipstream on induced drag is of interest in connection with 
the reduction of drag of aircraft cruising at fairly high lift coefficients, and the present calculations 
have been made to get some idea of the magnitude of this effect. The general problem of the 
wing of finite span with a jet passing over it is complicated and the present calculations deal 
only with the infinite-span wing. The results have as far as possible been given in a form which 
enables them to be applied in practice to wings of finite span to estimate the induced-drag 
increment due to slipstream. But it is desirable to obtain the correct solution for the finite span 
wing for comparison; Dr. K. Mitchell has ms de considerable progress with this problem and 
has kindly lent us some auxiliary tables for use in the present calculations. 

2. Mathematical Analysis.--The wing is of infinite span and has a constant chord c and constant 
incidence ~ along the span. The quarter-chord line of the wing is a diameter of the contracted 
slipstream, which is a circular jet of velocity v and radius R. The stream velocity outside this 
jet is denoted by V. 

* Three reports : 

R.A.E. Report No. Aero. 2083A, A.R.C. 9480, October, 1945 (Part I). 
R.A.E. Report No. Aero. 2167, A.R.C. 10,256, November, 1946 (Part II). 

R.A.E. Report No. Aero. 2083B, A.R.C. 9262, October, 1945 (Part III) 

are collected here together under one cover for convenience. Each report is separate as the notations and treatments 
are necessarily different. 
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Lifting-line theory is assumed to be valid, so that  the circulation round the wing is given bTg : - -  

2 k - - - - m c ( v ~ - - w ) ,  for I x l  < R , 7  

2 K : m c ( V c ¢ - -  W) , fo r  [ x l  > R , ~  • . . . . . . . . .  (1) 

where x denotes distance along the span measured from the centre of the jet, 

k, K denote the circulations round the wing at any station inside and outside 
the slipstream respectively, 

w, W denote the downwashes at points inside and outside the slipstream 
respectively, 

and m is the lift-curve slope of the aerofoil section. 

We shall now calculate the downwash at a point P (x) on the wing due to a semi-infinite trailing 
vortex* of strength p, which starts from the point Q (x') on the wing and extends downstream. 
This is an image problem which has been solved by Karman and Burgers ~ and by Koning 2. 
Four cases have to be distinguished as shown in Fig. 1 ; the results are as follows : - -  

Case I. P and Q both inside the slipstream. 

The downwash at P is that  due to a vortex of strength I" at Q (x') plus tha t  due to a 
vortex of strength 12P at the image point Q' (R2/x'), where 2~2 = (v 2 -- V2)/(v 2 + V~). Hence 
the downwash velocity is : - -  

= P 1 + R~/ (2  2_ x) w 4-~ X ' - - x  

Case II. P inside slipstream, Q outside slipstream. 

The downwash at P (x) is that  due to a vortex of strength 2~P at Q (x'), where 
~ = 2vV/(v  2 + V2). Hence the downwash velocity is: 

w = ~ LX -- XJ 

Case III. P outside slipstream, Q inside slipstream. 

The downwash at P (x) is due to a vortex of strength ZiP at Q (x') together with a vortex 
at the origin. The latter can be ignored since we are always concerned with pairs of vortices 
of opposite sign, and for any such pair the images at the origin cancel. Hence the downwash 
velocity is :-- 

W = ~  ' - -  x 

Case IV. P and Q both outside the slipstream. 

The downwash at P (x) is that  due to a vorce_~ of strength F at Q (x') together with a 
vortex of strength -- ,~2P at the image point Q' (R~/x'~ and a vortex at the origin. As 
before, the vortex at the origin can be ignored and the downwash velocity is : - -  

W = ~  x ' -  x (R2/x ') - x 

* The counter-clockwise direction is taken  as positive. 
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The strength of the trailing vortex system at any point Q (x') is equal to - k' (x') per unit 
length inside the slipstream and to --  K'(x ' )  per unit length outside the slipstream, where the 
dash denotes differentiation, and the total downwash is obtained by integration along the wing 
span. For a point inside the slipstream we obtain 

R ~ 2  co 

= - L ÷ x] I f2  + 
In the first integral we put 

x - = B y ,  x ' =  Ry' ,  

and in the second integral 

x =  R y ,  x '  = R / Y ' .  

We also put 

k(y) = 4~R v o~ f(y)  7 

K ( Y )  = 4~R V ~ F ( Y )  ~ . . . . . . . . . . . . . . . . .  (3) 

With these Substitutions (2) becomes 

vo~ - , f ' (Y ' )  '---@ 1 --  yy ' J  v -, 1 --  y Y '  . . . . .  

For a point outside the slipstream the downwash is given by 

4z~W(x) : -- f2R k'(x')[x,2~1__x]dx ' -- [512 + fTR] K ' ( x ' ) I x  , I  G I dx g, (s) 
- -  x R ' /x '  - -  x j 

We make the substitutions (3) and in the first integral put 

x =  R / Y ,  x '  =- R y ' ,  

and in the second integral 

x = R / Y ,  x '  = R / Y ' .  

These lead to the formula 

W ( Y )  _ 21v (~ Y d y '  ~1 F ' ( Y ' )  [ Y Y '  2~Y ] d Y '  . (6) 
Voc V ~-~T'(Y') I : Yy'  ~-~ Y ' - -  Y I - -  YY'd " " 

We now assume that  the circulation functions f (y)  and F(Y)  can be represented by series 
expansions of the form : - -  

f ( y )  = a + b [2 log 2 -- (1 --  y) log (1 -- y) --  (1 + y) log (1 + y)] 

--  ~ .  c. (1 - -y"+~)  
o 2n + 2 . . . . . . . . . . . . . . . .  (7a) 

F ( Y ) = A  + B [ 2 1 o g 2 - - ( 1 - -  Y) l o g ( 1 - -  Y ) - - ( 1  + Y) log(1 + Y)] 

- ~ .  c~ (2 - Y~,~ ~) 
o 2n + 2 . . . . . . . . . . . . . .  (7b) 

The form of these expansions is suggested by the solution of the problem of the wing spanning a 
free jetL With these expressions 

B 

f ' ( y )  = b log ~ + cWo + 

( I - -  Y )  
F ' ( Y )  = B log i + Y + C"Y2"+ I 

0 
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Substitution in (4)and 

w _ f 7)~ -1 
+ 21V 

V 

(6) gives 

[ - ]Ey ] b log 1 y c v'2" + 1 1 =y 
1 + y * +  '~" - - +  dy' ' - - y  1 - ~ y '  

o 1 - - y Y '  "" 

W 
Vc~ 

-- alv~ 1 [blog 1 - - Y '  +1] Ydy '  
v J-1 1 4 - ~  + ~o coy'~ 1 - Y y '  

1 1 -- Y '  
- - f - 1  [B log l +  y ,  + ~ C,~y '2,,+1] I y y Y ' y  0 

To evaluate the integrals we note that 3 

fl log(~ -- y ' )  dy' 

; ('1 log y 'dy '  _ 
-1 + [y~ 1 - - y y '  

With these results and the relations 

2 + ½ low vi-2-- ~ /  

log, (1 + y3 
k ] - - ~ ]  • 

2sY ] d Y '  
1 - - - Y Y ' A  " 

.. (8a) 

.. (Sb) 

yy '  _ y ~ ( f ,  1 ) + y ,  y = y + y S (  y '  ) 
Y '  -- y -- y 1 -- yy '  1 -- y y '  

we obtain 
1 - y"~ yy 'dy '  _ yS f_x log (~ + ~ / 0 7  7 - - ~  [--  ~zs~ -}- 1 logs k ~ / J ( 1  + y'~] 

f l  - y dy' _ ½ logs (1 + yh.  

To determine the other integrals we write, as in Ref  3, 
= (~ y, , , ,+lgy,  = f, y,~.,+say, 

J~(Y) J-1 -y-r_-y , K'dY) J-1-1 - y y '  " 

Also 

-~ ~-yy '  (~ + 1 : } j )~Y '  :y~K, xy), 

51 J'2n+2JdYl'__y2fl yt2n+X(y l ~__ l )  -1 y '  -- y 1 ,~-~-~ • ay' = y= j,,(y) . 

With these values (8a) and (8b) become 

- ~ Y  [ ~ log ~;1 + Y~ - ~ < ~,xy)] " 
v L ~  ~ ~ x  o ' " " "  

W 21v 

I ,7~2 y2 
- - B  2 

.. (~a) 
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We mdst ensure that the downwash does not become infinite at the slipstream boundary, which 
is given b y y =  1 = Y. P u t t i n g y =  1 - - ~ i n ( 9 a )  and Y =  1 - - ~ i n ( 9 b ) , w h e r e ~ i s  a small 
quantity, and equating the coefficients of log ~ ~ to zero gives 

__b(1 _ ~) _ ~ Y  B - -  0 
2 v 2 ' 

& v . b  B ( I + & ) = 0  
V 2 2 

_ 2v V _ v ~ - -  V ~ 
With ~'~ C +  V ~' & v~ + V2,  these two equations are consistent and give 

B = -- b. With this value of B (9a) and (9b) become 

w(y) __ b '~ (.1 -- y2 (1 + y'~'] __ 
v~ 2 [ ~ - -  -~ ) l°g= \ ~ - - ~ / j  ~ c,, [J . (y)  + K . (y ) ]  

+ &V ~ (c,, + C,,)K.(y) . . . . . . . . . . . . .  (lOa) 
7) o 

2 [~2y~ _f_ ( 1 -  Y~)log 2 ( i  ÷ Y ) ] -  y2 ~ C~ K,,( 
- -  0 

w ( Y )  _ 

V~ 

+ y ~ ,  (c,, + c~) K,,(Y), 
0 

where use has been made of the relations, 

1 - - ~ - - & V  1 + & - - ' ~ l v  
V J g ° 

As y and Y tend to unity (J~ + K,) tends to zero and K, tends to infinity. 
where v is small, 

--K.(y) = l o g ( 7 / 2 )  + 2  2n+-----1 + 2 n ~  F- . . . . .  + ~ + ½ +  1 , 

and hence 
(c,, + 

o o o \ 2 n +  1 / "  

In order that the downwash shall be finite at the edges of the jet the relation 

~ .  (c. + c~) = o . . . . . . . . . . . . . . . .  
0 

must therefore be satisfied. When this holds we have the result 

--  ~ ,  (c. + C . ) K . ( 1 ) =  2 [Z  (%+_ C2 / 
o o \ 2 n  + 1 /  . . . . . . . .  

We are now ready to substitute in the basic equations (1) from equation (3), and we get 

~(Y)v~ = 1 - el(y) 1 

w ( Y )  

where ff -- 8~R,  and w, W are given by (10) and f ,  F are given by (7). 
m c  

5 
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3. Boundary conditions.--At large distances from the slipstream the circulation tends to a 
constant value and the downwash tends to zero. The downwash at infinity is obtained by putting 
Y equal to zero in (10b) and it will be seen that  a zero value is obtained. 

At the edge of the slipstream the first condition to be satisfied is the continuity of the lift" 
this is a consequence of the requirement of the continuity of pressure. Hence 

k v = K V f o r y - -  1 = Y ,  
o r  

v~f(1) = V~F(1) ,  

whence, from (7), 

v'a = VM . . . . . . . . . . . . . . . . . . . . .  (14) 

We see that  the circulation and the downwash are discontinuous at the boundary. 
Some of the coefficients have been related to ensure that  the downwash is finite at the edge 

of the slipstream. The further condition that (13) is satisfied fory = 1 = Y will also be imposed ; 

b = 1 - ~ a  ( 1 5 )  
v 1 \2n + 12 . . . . . . . . . . .  

2x v + G 5  = 1 - e A  . . . . .  (16) 
~;b V o \2n-}- 1/ . . . . . .  

this gives 

making use of (12). 

From (15) and (16) we obtain 

b =  2 (v~-- V~) 2 
~ v 2 +  V~ =~-~22 . . . . . . . . . . . . . . .  (17) 

_ 2v w[ ( o+_c,kl 
~av ~= I~AV ~ v~ + V~ 1 + 2 ~ .  \2n + 1// . . . . . . . . . . .  (18) 

Substituting from (10), (17) and (18), equations (13) become 

+ , ~ , V ~  (c, + C,) K,(y) 
V o 

2 Z ~ { 2 1 o g 2 _ ( l _ y )  log (l _ y) _ (1 + y )  tog(1 + y ) }  

_ ~ .  c , , ( I -  y"+')]  
o 2n 2+7~ j . . . . . . . . . . . . . . . .  (19) 

and 

The quantities a and A 

+ y2 ~ (c. + C.) K~(Y) 
0 

---- 1 - - t t [ A  2't' {21og2 Y) log Y) log (1 - - ~  - -  (1 - -  (1 - -  Y) - -  (1 + + Y)}  

_ ~ c,~ (1- Y,~+,)] 
o 2n -[- 2 . . . . . . . . . . . . .  

are given by (18); also (1 l) must be satisfied. 

6 
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4. Range of Solut ions . - -The above equations have been solved approximately by retaining 
only the coefficients Co, cl, c2, Co, C1, C2, C3, the higher coefficients being put equal to zero. These 
coefficients were determined by satisfying equation (19) at y -~ 0, 0 .6 'and 0-9, and equation (20) 
at Y ~ - 0 , 0 . 6 ,  a n d 0 . 9  ; in addition, the equations are satisfied f o r y =  1 and Y---- 1. The 
values of ~ covered were 1.0, 2.5 and 5.0, corresponding approximately to aspect ratios of the 
part of the wing in the slipstream of 0.5, 1.25 and 2.5. The values of v /V  considered were 
1.2, 2.0 and ~ (V -- 0). 

The accuracy to which (19) and (20) were satisfied along the wing was determined by calculating 
the values of the functions appearing at a large number of points. In all cases except one the 
errors were equivalent to changes of wing incidence everywhere less than 1½ per cent. ; for 
l~ = 1. O, v /V  ---- 2.0, the error amounted to an incidence variation of 5 per cent. over a small 
part  of the span, but no reason for the larger error in this case has been discovered. 

5. Results of calculations.--The values of the circulation functions f (y)  and F ( Y )  are given 
in Table 1. The spanwise distributions of lift, circulation, and downwash are shown in Figs. 2, 
3, 4, in which the values of the lift and circulation given by simple strip theory are also shown. 
To show the relati6n between the present calculations and ,those of Koning 2, the lift v a r i a t i o n  
along the span, plotted as a proportion of the lift increment given by simple strip theory, is 
shown in Fig. 5 for ~ = 1. It  will be seen that  Koning's calculations fit in well with those of 
the present report. 

The total lift increment due to the jet, denoted by A L, is given by 

A L  ~ p (vk --  ½eV2mc~) dx + + p ( V K  --  ~eV~mo~) dx 
- - R  R 

- -  J--i " 

The lift increment AL0, which would be obtained on a simple strip theory basis, is given by: 

" :  ALo ~ ½p (v" --  V') 2eR m s  ( 
4.,, 

The ratio AL/ALo was determined for all the cases and the results are given in Table 2 and Fig. 6. 
In drawing Fig. 6, use has been made of Koning's result that,  for slipstream velocities which 
differ only slightly from the stream velocity, the lift increment is equal to that  given by simple 
strip theory, so that  AL/ALo--> 1 as v--+ V. 

The induced drag A D~ is defined by the relation : - -  

;" If:: f;] AD~ = p w k dx + + p W K dx 
- - R  

= 4z~R' pv' ~' - ,  -~-f(y) dy + -~  - ,  V~  y. d Y  

: 4z~R' pv' c~' 1 (1 --  ~f) f dy + -~ - ,  Y '  d Y  , 

making use of (13). The integrals were evaluated numerically and the values of A D J 4 z R  2 pv 2 ~ 
are given in Table 3. Fig. 7 shows the values of (AD~)T/(AL) ~, where T is the jet thrust, defined 
as T ----- pv (v -- V) ~R 2. I t  should be noted that,  in drawing the curve in Fig. 7, no distinction 
is made between the results for different values of/~. The induced drag is the difference between 
drag inside the jet and thrust outside i t ;  these forces tend to equality as the jet and stream 
velocities tend to equality. Consequently a very high standard of numerical accuracy is required 
to determine the induced drag correctly. A sufficiently high standard has not been attained 
in the present calculations to do more than draw a mean curvh through the points in Fig. 7. 

6. Discussion.- -The calculation of the lift distribution of a wing of finite span with slipstream 
present is difficult. We are therefore faced with the problem of applying the calculations for 
the infinite wing as far as possible to the practical case of the finite wing. 
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We note at the outset that  a close agreement between theory and experiment for the lift 
increment due to slipstream is not normally to be expected. The principal reasons for this are : - -  

(1) The jet is not sharply defined, due to mixing at the edges, also it contains periodic com- 
ponents and rotation for ordinary propellers ; 

(2) The aspect ratio of the part of the wing in the slipstream is too small for the assumptions 
of lifting line theory to be really valid. 

(3) In many cases there is an inclination between the propeller axis and the wind direction, 
which introduces an inclination into the jet. 

But the value of the above investigation does not wholly depend on the accuracy to which 
the lift increment can be predicted. For a given lift increment, which can be determined by 
measurement or from generalised data (R. & M. 17884), the distribution of this increment for 
contra-rotating propellers will be similar in shape to the distribution given by calculation. In 
particular the induced drag parameter A D i . T / ( A L )  ~ will probably be nearly correct, and have 
the same value for wings of finite span as for wings of infinite span. 

If the calculated value of the induced drag has a significant influence on the performance of 
an aircraft, then it is worth while to consider whether this induced drag can be eliminated. 
For the case of the wing of infinite span, which has been considered in detail above, the induced 
drag can be reduced to zero by adjusting the incidence of the part of the wing in the slipstream, 
so that  the loading is constant along the wing ; there are then no trailing vortices and the induced 
drag is identically zero. 
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P 

c 

c¢ 

q44 

R 

x 

V 

V 

W 

w 

K 

k 

AL 

ALo 

T 

A D~ 

Y 
Y 

21 

tz 

f(y) 
F(Y) ) 

NOTATION 

density of fluid 

chord of aerofoil 

aerofoil incidence measured from zero lift direction 

slope of lift curve of aerofoil section 

radius of jet representing slipstream 

distance along span measured from centre of jet 

stream velocity outside jet 

velocity inside slipstream jet in contracted condition 

downwash velocity at wing outside jet 

downwash velocity at wing inside jet. 

circulation at section of wing outside jet 

circulation at section of wing inside jet 

lift increment due to slipstream 

lift increment due to slipstream on simple strip theory 

jet thrust, equal to pv (v --  V) zR  2 

induced drag 

x/R for x < R 

R/x for x > R 

2vV 
v 2 + V '  

V ~ _ _  V 2 

v* + V* 

8~R 
~ c  

defined by equation (7). 

No.  Author  

1 K~rm{n and Burgers 

2 Komng . . . .  

3 Squire . . . .  

4 Smelt and Davies..  

R E F E R E N C E S  

Title, etc. 

Aerodynamic Theory (Dnrand). Vol. II, Div. E., pp. 242-245. Julius 
Springer. Berlin. 1935. 

Influence of the Propeller on other parts of the Airplane Structure. Aero- 
dynamic Theory (Durand). Vol. 4, Div. M. Julius Springer. Berlin. 
1935. 

The Lift and Drag of a Rectangular Wing spanning a Free Jet of Circular 
Section. Phil .  2Vfag., Vol. 27, 1939, p. 229. 

Estimation of Increase in Lift due to Slipstream. R. & M. 1788. 1937. 
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T A B L E  1 

Circulation Functions 

V/v  = o 

1.0 2.5 5 .0  

y, Y f(y) F(y) f(y) F(Y) f(y) F(Y) 

0 
0.2 
0.4 
0.6 
0.8 
1"0 

0"1708 
0.1667 
0.1536 
0.1295 
0.0886 
0 N 

0"1378 
0"1349 
0-1256 
0"1068 
0"0762 
0 

0.1038 
0.1021 
0.0963 
0.08455 
0.0623 
0 

(b) V/v = 0 . 5  

g 1 .0  2.5 5.0 

y, Y f(y) F(Y) f(y) F(Y) f(y) F(Y) 

0 
0.2 
0.4 
0.6 
0.8 
1"0 

0'4180 
0"4152 
0.4066 
O- 3907 
O" 3640 
O" 3074 

1-0 
1.0186 
1. 0642 
1.1159 
I '  1643 
1.2294 

0.2237 
0.2219 
0.2158 
0.2044 
0.18~1 
0.1362 

0.4000 
0"4084 
0.4298 
0.4571 
0-4895 
0-5446 

0.1375 
0-1364 
0.1326 
0.1253 
0.1113 
0.0725 

0.2000 
0.2035 
0.2127 
0.2259 
0.2461 
0.2901 

(c) V/v ---- O" 8 3 3  

tt 1 "0 2"5 5"0 

y, Y f(y) F(Y) F(Y) f(y) F(Y) 

0 
0.2 
0.4 
0-6 
0-8 
1.0 

0.7872 
0-7863 
0-7833 
0-7779 
0-7689 
0-7503 

f(y) 

0 0.3394 
C068 0"3388 
0233 0'3368 
0419 0"3330 
0587 0.3265 
0805 0.3111 

0"4000 
0-4029 
0-4102 
0-4194 
0"4302 
0-4480 

0.1794 
0.1790 
0.1778 
0.1755 
0.1710 
0"1589 

0.2000 
0.2012 
0.2042 
0.2085 
0.2150 
0.2288 
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TABLE 2 

Values o f  A L / A L o  

y/v 

0 
0.5 
0.833 

1.0 

0.1257 
0.3062 
0.5685 

/2 

2.5 

o.262s 
0.4880 
0.7861 

5.0 

0.4081 
0.6225 
0.8863 

t,4 
TABLE 3 

Values of  A D~/4z~R ~ pv ~ c¢ 2 

v/v 

0 
0.5 
O. 833 

1"0 

0 '1087 
0"1397 
0"0797 

2"5 

0"1846 
0"1254 
0-0329 

5"0 

0"2231 
0.1172 
0"0151 
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CASE 1'9" P ~ Q B O T H  OUTSIDE SET. 
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FIG. 1. Effect at  a Point  P of a Vor tex  at Q. 
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PART II  

Slipstream Rotation 

Summary.--Calculations are made by lifting-line theory of the distribution of circulation along a wing of infinite 
span which is located in a rotating slipstream. The wing torque and induced thrust are evaluated. The numerical 
values of the wing torque are not entirely reliable because of the approximations introduced into the analysis. The 
induced thrust power is calculated to be between 30 per cent. and 40 per cent. of the rotational power input to the 
PrOpeller. 

1. Introduction.--This is the second part of an investigation of the effect of slipstream on lift 
and induced drag and deals with the effect of slipstream rotation. We make the following as- 
sumptions : - -  

(1) The wing is of infinite span and has a constant chord and incidence. 
7,.' 

(2) Lifting-line theory may be applied although the ratio of propeller diameter to wing 
chord is not laige in practice. 

(3) The axis 5f the cylindrical slipstream is parallel to the direction of the undisturbed 
stream and passes through the quarter-chord point of the wing. 

(4) The axial velocity in the slipstream is equal to the velocity in the free stream. 

(5) Ahead of the wing the slipstream rotates as a rigid cylinder. 

(6) The effect of rotation is equivalent to a change in the stream direction at the wing, 
giving rise to an effectively linear variation of wing incidence inside the slipstream. 

2. General Ana lys i s . - -The  above assumptions make the problem, as far as the circulation 
distribution alofig the wing span is concerned, equivalent to the problem of a wing of infinite 
span with a linear variation of incidence within the slipstream boundary and constant incidence 
outside the boundary. Since a constant increase of incidence along the whole span can be made 
without affecting the slipstream rotation effect, it may be considered that  the wing has zero in- 
cidence outside the slipstream. Hence the wing incidence c¢ is given by 

co(x) = ~y /V ,  f o r -  R < x < R ,  7 

= o ,  for I > R ,  . . . . . . . .  (1) 

where x, is measured along the span from the centre of the jet, R is the jet radius and ~o is the 
angular velocity of rotation in the slipstream. 

To determine the corresponding circulation distribution we start with Prandtl 's result 1 for 
a sinusoidal variation of incidence, which gives for the incidence distribution 

c¢ = c¢0 sin/~x, 

the corresponding circulation distribution 

sin  / 
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where V is the s t ream velocity, c is the  aerofoil chord, m is the  lift curve slope in two dimensional  
flow, and :~0 is a constant.  The downwash w is related to the circulation and incidence by the  
equat ion 

w_= 2K (2) 
- -  . , . . , . . , . . . . . . . , 

o~-- V m c V '  
and hence 

w _ ~K _ ~ So sin ~x .  
V 4V ~ + (8/mc) 

We generalise the  above result by use of Fourier 's double integral  theorem. 
distr ibution o:(x), which is an odd function of x, we have the formula 

For any incidence 

o~(x) ---- 2 sin #x d# c~(t) sin #t dt 
1 7 ~  0 0 

and, making  use of the above results for a simple sinusoidal variation, we can write down the  
value of the  circulation corresponding to the arbitrary incidence distr ibution ~(x) to be 

K(x) 2 f ~° 4V f~ = ~ o /z + (8/mc) sin ~x d/z o c~(t) sin/~t dt. 

With  the specified linear incidence distr ibution inside the rotat ing slipstream, given by  (1), we get 

~(t) sin ~t dt = co t sin tzt dt 
o V o 

- - ~ 2 [ s i n ~ R - - ~ R c o s ~ R ] .  

Hence the circulation distr ibution corresponding to (1) is 

8o~ (*  sin ~x [sin #R  -- ~R cos zR] K(x) at, 
= J0 + 

g 

Put t ing  x/R = y, t ,R = 2, and--8R = a, this becomes 
~44C 

2K(y) 2a f~ (sin Z --  2 cos 2) 
mco)R -- ~ o 2 2 (2 + a) sin(Zy) d2 ,  (3) 

corresponding to the incidence distr ibution 

c~(y)--  V y f o r - -  1 < y <  1 

c~ (y) = 0 for [ y  I > 1 

(4) 

The integral  in (3) can be expressed in terms of the sine and cosine integrals, which have been 
tabula ted  by J ahnke  and Emde.  

Calculations of the  distr ibutions of circulation along the span have been made  for a = 0" 5, 
1.0, 1.5, and 2.0, corresponding to the  following ratios of jet d iameter  to wing chord" 

2R/c = O. 785, 1.57, 2.35, 3.14, 

taking the  section lift-curve slope m to be equal to 2~. The results of the  calculations are shown 
in Fig. 1, which give 2K/mc ~oR as a function of y /R  for the  various values of a or 2R/c. 
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3 .  Torque and Thrust  on the Wi~zg.--The anti-symmetric loading on the wing induced by the 
slipstream rotation produces a torque which opposes the propeller torque. The magnitude of 
the total wing torque is 

Q = (pvK)  x d x ,  
- - ¢ o  

since the lift per unit span is equal to p V K .  It  can be shown that  the wing torque is equal to 
the torque calculated by strip theory, ignoring all downwash effects. The latter torque is given 
by 

; Qo = ~ p V  ~ m e  x dx  = ½ p mc R3~oV 
. - - R  V 

Further the propeller torque Q1 is equal to the rate of increase of angular momentum in the 
slipstream so that  

Q1 = ~ p R '  o V .  

Hence, since Q = Oo, 

Q _ Q o _  2 m c _  16 
- -  _ _  _ _  . 

Q1 Ol 3~ R 3~a 

This leads to the surprising result that  the torque on the wing is greater than the propeller torque 
for 2R/c < 8/3, i.e. for wing chords greater than 0. 375 of the slipstream diameter. The theory 
is however only reliable for values of the wing chord which are less than this amount. 

In addition to the torque on the wing there is an induced thrust, because the stream inside the 
slipstream is inclined to the direction of motion of the wing. Inside the jet the lift vector on 
the wing  is inclined backwards from the local stream direction but forwards relative to the 
general stream direction ; outside the jet the lift vector is inclined forwards because of the upwash 
there. The induced thrust  T is given by the formula 

T =  p ~ - -  d x ,  
--co 

since the lift vector is inclined backwards at the angle w / V  relative to the local stream direction, 
the local stream direction being inclined forwards at the angle 7 relative to the general stream 
direction. Substituting from (2) and making use of the symmetry of the jet we obtain 

o kmc m R /  d y .  

I t  is convenient to relate the induced thrust  to the power expended in generating the rotation 
of the slipstream. The presence of the wing has the effect of recovering a part of this power 
input. We shall therefore express the induced thrust  power as a proportion of the rotational 
power input.* This power input P1 is given by 

P1 = 1~Q1 = ~ pR o ~ V .  

Hence T V  __ 32 f® (__2K___'~' dx 
P1 ~a o \mc  ~o R /  ' 

where, as before, a = 8R/mc.  The values of this quant i ty  for the various cases are given in 
Table 1. It  will be seen that  the efficiency of energy recovery reaches a maximum value of 
37 per cent. 

* The rotational power input P1 is normally about 3 per cent. of the total power input of a propeller. 

17 
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4. Discussion.--If the chord is less than one-third of the jet diameter and the angular velocity 
in the jet is small there is good reason for supposing that the method given above is fairly reliable. 
Unfortunately the practical range corresponds more to wing chords about equal to the jet 
diameter and in this region lifting line theory ceases to be an acceptable approximation. The 
justification for working out examples in this region is that they may give some rough guidance 
until lifting surface theory can be applied, if this is ever done. 

A further weakness in the theory is the assumption that for the purpose of calculating the 
lift distribution, the rotation in the slipstream is equivalent to a twist in the wing. This assump- 
tion will fail if the distortion of the slipstream boundary becomes appreciable and if the wing 
chord is too large a proportion of the jet diameter. Here again we can hardly expect the theory 
to be fully reliable for wing chords greater than one-third of the jet diameter. 

A comparison with ad hoc experimental data has not been made. A reliable comparison 
would require a programme of tests specially arranged to determine the relevant quantities. 

No. Author 

1 Prandtl and Betz .. 

R E F E R E N C E  
Title, etc. 

Vier Abhandlangen zur Hydrodynamik und Aerodynamik, p.29. 
Wilhelm Institute, G6ttingen. 1927. 

NOTATION 
R radius of slipstream 
y distance along wing span measured from tile centre of the slipstream. 
V stream velocity 
w downwash velocity 
~o angular velocity in slipstream 
c wing chord 

wing incidence to local stream direction 
m Section lift curve slope, taken to be equal to 2~ in the calculations 
K circulation along the wing. 
x y / R  
a 8R/mc 
Q torque on wing 

Q0 torque on wing calculated by strip theory 
Q1 propeller torque 
T thrust on wing 

P1 rotational power input to propeller 

Kaiser 

TABLE 1 

lnduced Thrust Power on the Wing as a Fraction of the 

Rotational Power Input by the Propeller 

~g 

2R/c 
TV/P1 

0-5 
O. 785 
O. 280 

1.0 
1.57 
0-350 

1.5 
2.35 
0.369 

2.0 
3.14 
O. 367 
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PART I I I  

Minimum Induced Drag 

Summary.--A proof is given that  minimum induced drag is obtained for constant downwash angle along the wing, 
and the calculation of the span loading of a wing in this condition is considered. Examples of wings with a central 
jet and with a pair of jets are given. I t  is concluded that in practical cases the span loading in the minimum d r a g  
condition is nearly elliptic and that  the minimum induced drag is nearly the same as for a wing with elliptic loading 
in a uniform stream. 

1. Introduction.--Calculations of the increment in lift and of the induced drag for a single 
slipstream on an infinite wing were given in Part  I. It  was there pointed out that  the induced 
drag for an infinite wing could be eliminated by reducing the incidence of the part of the wing 
in the slipstream, so that  the lift should be uniformly distributed along the wing span. This 
suggests (1) that  a similar technique might be used to reduce the induced drag due to slipstream 
for a wing of finite span and (2) that  the span loading giving minimum induced drag with slip- 
stream should be investigated. The latter investigation is described in this part of the report; 
in section 9, the condition for minimum induced drag is determined and in sections 3 and 4 some 
span loadings satisfying this condition are calculated. 

The conclusion of the present investigation is that  the minimum induced drag in practical 
cases is obtained by adjusting the incidence to give elliptic loading along the span and that  the 
induced drag is then equal to the minimum induced drag with slipstream absent. 

2. Condition for Minimum Induced Drag.--It has been shown by K~irm~n and Tsien 1 that ,  
for a wing in a stream of non-uniform velocity, minimum induced drag is obtained if  the downwash 
angle is constant along the span. A simple alternative proof of this result, following the procedure 
used by Betz ~ for the problem of the propeller with minimum energy loss, will now be given: 

Since the induced drag is related to the energy in the wake far downstream, the lifting 
elements can be moved along the wind direction without change in total drag provided 
that  their incidences are adjusted to maintain the lift of the elements unchanged; this is 
Munk's stagger theorem. If a small element giving a lift bL is added some way downsfl-eam 
the induced velocity at the wing is negligible, and the increase in induced drag is equal to 
E6L, where e is the downwash angle at the station where the element is placed; as usual 
the downwash far downstream is equal to twice the downwash at the wing. If two elements 
with lifts ~L1, ~L2, are added to a lifting system the total lift will be unchanged, provided 
that  

~L1 + ~L,. = 0 .  

For a wing in the minimum drag condition a small change in the loading distribution at 
constant total lift produces no change in the induced drag; the condition for this is 

,15L1 + *~6L2 ---- 0 , 

where el and , ,  are the downwash angles due to the wing field far downstream from the 
locations of the two lifting elements. These two equations are only compatible for arbitrary 
lifting elements if the downwash angle is constant along the wing span, both far downstream 
and at the wing itself. This is the required result. 
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The flow round a wing in the minimum induced drag condition is the same as if the wake 
were made into a rigid sheet ; this is, of course, also true for a wing in a stream of uniform velocity. 
Hence, both with and without slipstream, the lift distribution for minimum induced drag on a 
monoplane wing is obtained by solving the two-dimensional potential problem of an infinite 
rigid plate in a s t reamwhich is normal to the plate. At the cylindrical boundaries of the slip- 
streams, the following conditions must be satisfied :3 

v¢ ---- V¢ , (continuity of pressure) 

' 1 06 _ 1 0~ (conservation of mass) ~ . . . . . . . .  (1) 
v On V ~ n '  

where v and V are the axial velocities inside and outside the slipstream respectively, ¢ and ¢ 
are the velocity potentials inside a nd  outside the slipstream respectively, and n is measured 
normal to the boundary of the slipstream. 

Consider now a monoplane with a single centra ! slipstream or with a pair of slipstreams as 
shown in Fig. 1. Take axes as shown in the figure. Let e be the (constant) downwash angle 
along the span at infinity downstream, so that  our potential problem is the determination of 
the flow of a stream which has a velocity e V at infinity and which is normal to the span of the 
wing. The conditions to be satisfied on the boundary of the slipstream are given in equations (1). 

Now the gradient of circulation along the wing span is related to the velocity potential as 
follows: 

_ _  dk = 2 ~¢ (inside), d K  _ 2 ~¢ (outside), and~-~ ~ ,  
dx ~x ' 

where K, k are the circulations outside and inside the slipstream respectively. We now introduce 
second harmonic functions f, F which are  related to the velocity potential by the formulae 

e V F  = ¢ ,  (outside), 

so that  we have, along the wing span, 

d K  2~ V aF (outside) ~ -  -~ ,  

Hence 

K = 2 ~ V F ,  

V and ,Vf  = ~  ¢ ,  (inside), 

d• V 2 a f  and = 2~ - -  (inside): 

y 2 
k = 2 ~ - - f ,  

7) 

if i t  is arranged tha t  F vanishes at the wing tips, where the circulation vanishes, and we note 
tha t  k and f must vanish together. 

On the jet boundary equations (1) are replaced by 

1 ~ f _  1 ~ F  
f = F a n d v  ~ ~n V 2 ~n 

At infinity we shall have 

F = y .  

The wing lift is given by 

L = ~ p (vk, VK) dx .  
d span 

Substituting for k and K in terms o f f  and F, this becomes 

L = 2 p e V 2 f (f, F) , ix .  m ~ o o 

span 
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The induced drag for constant downwash angle ~ at infinity is given by 

D ,  = ½ ~ L ,  . . . . . . . . . . . . . . . . . .  (~)  

since the downwash angle at the wing is one-half the downwash angle at infinity. Eliminating 
between (2) and (3) we obtain 

L 2  

D, = . . . . . .  (4) 
4p V* J [span (f ' F) dx . . . . . . . .  

The problem is thus reduced to the determination of the functions f and F and the evaluation 
of the integral in (4). The distribution of lift along the span is the same as the variation of f 
and F along the span. If no slipstream is present minimum induced drag is obtained with 
elliptic loading along the span; it will be found convenient to compare the loading and induced 
drag with slipstream present with the standard case of elliptic loading. 

3. Single Central Slipstream.--For convenience we shall take the semi-span to be unity, which 
can be done without loss of generality. If we write 

f = a0 + a, cos 2nO , 
1 

(1 ~ p) ( r  ~" (R~"  1 

where r, 0 are measured as shown in Fig. 1, 

R is the jet radius, 

a0, a, are constants, 

and p stands for V~/v ~, 

then f, F are harmonic functions which satisfy tile boundary conditions at the jet boundary. 
For 

c o  

F = ao + ~ .  a, cos 2no = f ,  [ 
1 

o n r =  R .  
0 f  OF _ 2rip ~ ,  a,, cos 2n0 = p ~ .  

Or 1 

If f and F are the real parts of complex potentials h, H, then 

co 

h = ao + ~ ,  a .  ( z / R )  ~" , . . . . . . . . . . . . . .  (S)  
1 

i 2~ (6) 

It  is also possible to express the external potential H in another form ; we must have F tending 
to y at infinity, further H must be real on the y axis and on the x axis between ( +  1, 0) and 
(-- 1, 0), and purely imaginary on the x axis outside this interval. Consideration of these con- 
ditions and of the solution with slipstream absent shows tha t  H must be of the form 

H = (1 - -  z~) ~/~ (1 - -  B~z -~ - -  B~z -~ + .  . ) ,  
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where B~, B~, . . . are constants. 

H = (1 - -  ½~ - -  }z  ~ - -  ~ z  ° + . . )  (1 - -  B <  ~ - -  B ~  -~ q - . . )  

B1 B~ B~ 
= l + ~ - + ~ f f +  1 ~ - - .  • 

B1 z_2 B2 Ba + 

For I z I< 1 we can expand this expression in the form 

B 3  ] ] 
] 

{- • . • • • . . • • • • ° • • 

Equating coefficients in the expansions (6) and (7) we obtain 

B2 Ba 
- g  + 1 - 6 -  " - '  

+ + . . . ;  a~ R e = - B l + - ~ -  + 8 

2 " * * 

, 

B 1  a 0 =  1 -+- -ff + 

B~ 
a l  ( 1  ~ 2  ~ )  R _ _ 2  7 - - -  1 + 8 -  

B1 

aa (  1 -+2 ~b)R-6 = -  

(7) 

Next al, a~, a~ are eliminated from these equations and BI, B2, B8 evaluated by successive approxi- 
mation as series expansions in R. Retaining terms up to R ~ only we get 

BI = ½qR 4 +  ~ qR 8 ( l - q )  + i ½ ~ q  R~2 ( 1 -  q) (3 - q) , 

B~ = ~ q R S +  ¢~ qR ~ (1 - q ) ,  

B 8  = -  ~ q R  I~ , 

1 - -  p _ v ~ - -  V ~ where q - -  - -  

1 + p v ~ + V S" 

With these values of B~, B,, B3 we can calculate the values of ao, a~, as, a, to the same order of 
accuracy and obtain 

ao = 1 + -~ qR ~ + -~:~ qR 8 ( 3 - 2 q )  + ~ q R  12 (5 - 5q + q~) , 

a ~ =  ( 1 + t > )  1 -  ~ qR~ - ~ qRS (2 - q) , 

a~ = 4 ( 1 + t ) )  1 - -  ~ qR  ~ - ~ qR  ~ (9 - 4q) , 

aa = S (1 + p) 
x 
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As an example we shall calculate the span loading giving minimum induced drag for a wing 
for which the slipstream'diameter is one-half the span and the velocity in the jet is twice the 
stream velocity. We therefore put 

and obtain 

VS 1 ' • 1 - - p  _ 0 . 6 ,  R = 0 . 5 ,  v / V = 2 . 0 ,  P - -  v 2 - - ~ '  q - -  1 + p  

a o = 1 - 0 0 9 5 ,  

B 1 = 0 " 0 1 8 8 6 ,  

a 1 = - - 0 . 1 9 9 1 .  

B s = 0 . 0 0 0 2 9 ,  

a ~ =  - - 0 " 0 1 2 5 ,  

B a = 0 . 0 0 0 0 1 .  

a 3 = - - 0 . 0 0 1 6  

The calculated span-loading distribution is given in Fig. 2 and compared with the elliptic 
distribution. I t  will be seen that  the differences are not large, in spite of the extreme values of 
radius and velocity ratio which have been used. The induced drag is 2.7 per cent. greater than 
for the case of elliptic loading with slipstream absent. 

It  may be concluded from the above tha t  minimum induced drag for a single slipstream is 
obtained in all practical cases by making the span loading elliptic, and that  the induced drag 
is then nearly the same as for elliptic loading with slipstream absent. 

4. Pa i r  of  Symmetr ical ly  Placed J e t s . - - W e  again take the semi-span to be uni ty  and adopt 
notation as shown in Fig. 1. Then the funct ionsf  and F are given by 

f = a o +  ~ ,  a" cosnO, 
1 

(' + p) F = a o +  ~ ,  a . [  - - -  ( R y  + ( I ~ - . p ) ( R ) "  1 nO, 

and the associated complex potentials are given by 
o o  

h = ao + X ( S Y  
1 \ R /  ' 

H = ao + a. (&')" + 
1 \ R /  ' , 

where 
Zl = z - b ,  p = V S / v  * , i 

and b is the distance of the jet centres from the mid-point of the wing. As before we can express 
H as 

z S _ b s  (z s - b s ) s  " . .  , 

where A1 and As are real constants. This form satisfies the symmetry conditions and the 
conditions at infinity. 

The procedure for the determination of the constants follows the same lines as befole, but 
it is more complicated and will not be set out here. The results obtained for two examples were : -  

Case I 
b = 0 . 3 ,  R = 0 . 2 ,  V /v  = 0 . 5 ;  

A1 = 0.00536, As = 0.000042 . 

ao  = 0" 976, a~ = -- 0. 104, as 0.037 

Case II  
b = 0 . 5 ,  R = 0 . 2 ,  V / v  . -  0 . 5 .  

A, ----- 0- 01738, A ~ = 0.00085 , 

ao = 0 .  8 8 8 .  a l  = - -  0 .  : 1 8 4 ,  a2  = - -  0 . 0 4 9  
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The corresponding calculated span loadings are given in Fig. 3 ~nd 4. It will be seen that  the 
loadings do not differ greatly from elliptic, although the ratio of jet velocity to stream velocity, 
which has been taken equal to 2.0 in the examples, is high. For the first example with the 
slipstreams nearer towards the centre of the wing (Fig. 3) the induced drag is 1.5 per cent. less 
than for a plain wing with elliptic loading, and for the second example (Fig. 4) the induced drag 
is 2.5 per cent. less than for this standard case. 

It may be concluded also for the case of a pair of jets that  minimum induced drag is obtained 
in all practical cases by making the span loading elliptic, and that  the induced drag is then 
practically the same as for the standard case of a wing with elliptic loading in a uniform stream. 

P 

X 

Y 
Z 

r, 0 

b 

Zl 

R 

v 

V 

P 

q 

¢ 
q~ 

k 

K 

L 

D~ 

NOTATION 
density of fluid '~ 

distance along span measured from centre of wing 

distance from wing measured normal to wing span 

z+iy  
polar coordinates measured from centre of jet 

distance of centre of jets from centre of wing 

z - - b  

radius of jet 

velocity inside jet 

velocity of main stream 

V /v 
1--p 
l + p  

velocity potential inside jet 

velocity potential outside jet 

circulation at section of wing inside jet 

circulation at section of wing outside jet 

downwash angle far downstream 

wing lift 

induced drag 

No. Author 
1 K~rm~n and Tsien 

2 Betz . . . .  

3 K~In~n and Burgers 

R E F E R E N C E S  
Title, etc. 

Lifting Line Theory for a Wing in Non-uniform Flow. Quarterly of Applied 
Mathematics, Vol. 3. April, 1945. p. 1. 

Schraubenpropeller mit geringstem Energieverlust. Vier Abhandlungen 
zur Hydrodynamik und Aerodynamik. Kaiser Wilhelm Institute 
Gottingen. 1927. 

Aerodynamic Theory (ed. Durand). Vol. II, Div. E., pp. 242-245. Julius 
Springer, Berlin. 1935. 
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FIG. 1. Notation for Slipstream Calculations. 
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