R. & M. No. 2882 (13,655, 14,139) A.R.C. Technical Report

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL REPORTS AND MEMORANDA

Low-Speed Tests on 45-deg Swept-back Wings

PART I. PRESSURE MEASUREMENTS ON WINGS OF ASPECT RATIO 5

By

J. WEBER, Dr.rer.nat. and

G. G. BREBNER, M.A.

PART II. BALANCE AND PRESSURE MEASUREMENTS ON WINGS OF DIFFERENT ASPECT RATIOS

By

D. KÜCHEMANN, Dr.rer.nat., J. WEBER, Dr.rer.nat. and

G. G. BREBNER, M.A.

Crown Copyright Reserved

LONDON : HER MAJESTY'S STATIONERY OFFICE

1958

PRICE f_1 12s. 6d. NET

Low-Speed Tests on 45-deg Swept-back Wings Parts I and II

By

J. WEBER, Dr.rer.nat.,

D. KÜCHEMANN, Dr.rer.nat.

and

G. G. BREBNER, M.A.

Communicated by the Principal Director of Scientific Research (Air), Ministry of Supply

> Reports and Memoranda No. 2882* May, 1951

PART I

Pressure Measurements on Wings of Aspect Ratio 5

By

J. WEBER, Dr.rer.nat.

and

G. G. BREBNER, M.A.

Summary.—This report contains the results of pressure measurements on three 45-deg swept-back wings with constant chord and aspect ratio 5, over an incidence range up to 10 deg. Chordwise and spanwise lift distributions are given, mostly near the centre where, on two of the wings, modifications had been made to the section shape. It was found that altering the thickness distribution in the centre did not affect the loading but that approximately straight isobars could be obtained at values of C_L below about 0.1. By the incorporation of twist and camber in the central part the distortion of the lift distribution in the centre could be avoided at one particular incidence, and thus the same chordwise distribution obtained over most of the span.

Twist and camber alone do not improve the isobar pattern and therefore a thickness modification would be needed to give the desired lift distribution and isobar pattern at one particular incidence.

1. Introduction.—This report deals with part of the work done in an investigation of the chordwise and spanwise lift distribution of swept-back wings, and gives results of pressure measurements on three wings of aspect ratio 5 at incidences up to 10 deg. One wing had the same symmetrical section throughout the span. Another had a modification to its thickness distribution in the central part designed to straighten the isobars near the centre at zero incidence.

^{*} R.A.E. Report Aero. 2374, received 4th January, 1951. R.A.E. Report Aero. 2419, received 13th July, 1951.

The tests were made to find out how far this could be achieved, and whether there were any effects on the lift distribution. The third wing was designed with twist and camber in the central part to give approximately the same chord and spanwise lift distribution up to about mid-semispan at a C_L value of about 0.15. The test was intended to check the design method and to show the influence of such modifications on the isobar pattern.

2. Details of Models and Tests.—Pressure measurements have been made on three wings of 45-deg sweep and aspect ratio 5 in the No. 2, $11\frac{1}{2}$ -ft $\times 8\frac{1}{2}$ -ft Wind Tunnel at the Royal Aircraft Establishment during October and November 1949. All the wings had an identical plan-form, with constant chord up to 0.90 semispan. The wing tip had a curved leading edge and a straight trailing edge swept at 45 deg (Fig. 1). The wing chord was 20 inches and the span 98 inches, *i.e.*, 0.71 of the tunnel breadth.

The three wings will be called A, B and C. Wing A had the same section along wind throughout its span. This section was RAE 101, 12 per cent thickness/chord ratio, which has its maximum thickness at 0.31 chord. Co-ordinates are given in Table 1.

Wing B had the same basic section as wing A but the thickness distribution was modified in the central part of the wing. The thickness/chord ratio remained 12 per cent but the position of maximum thickness was moved forward to 0.20 chord on the centre-line where the modification was greatest. At y/c = 0.06 and y/c = 0.14, the shift of maximum thickness was respectively 0.50 and 0.25 times the shift at the centre, and it decreased to zero at y/c = 0.40. The profile section at the centre was calculated from Ref. 1 to give at zero incidence the same pressure distribution as that at about mid-semispan. The co-ordinates of the modified section at two spanwise stations are given in Table 1.

Wing C also had the same basic section as wing A beyond 1.00 chord from the centre. Inboard of this section the thickness distribution remained the same, but the chord-line had a negative camber and a positive twist designed by the formulae given in Ref. 2, in order to give a chordwise load distribution approximately the same as that at mid-semispan at an incidence of about 2.8 deg. The camber and twist were greatest at the centre, decreasing to 0.50 and 0.25 their centre values at y/c = 0.13 and y/c = 0.30 respectively, and to zero at y/c = 1.00; the co-ordinates of two spanwise positions are given in Table 1.

On all three wings, pressure measurements were made by means of flush holes on both upper and lower wing surfaces at several spanwise stations, (see Fig. 1). The copper tubes from these holes were led out through perspex tips. To complete the spanwise distribution up to the tip, another set of measurements was made at the section $y/c = 2 \cdot 20$ with a plain wooden tip, using a perforated copper tube sunk below the wing surface and covered with wax. This was the section at which the leading edge started to curve. The fairing for the tubes coming from the wing tip was not present for these readings; so that they are not strictly comparable with the other sections.

The range of incidence covered was from 0 deg to ± 10 deg for wings A and B, and from $-3.8 \text{ deg to } \pm 10.2 \text{ deg for wing C}$. Since the ratio of wing span to tunnel breadth was 0.71, the tunnel correction to incidence varies along the span, being different at the various pressure measuring lines. Account has been taken of this by using the calculations of Bazjanac³ (1943). These apply to an elliptical tunnel of ratio $1:\sqrt{2}$ in which a wing of span $1/\sqrt{2}$ times the major axis is represented by a single horseshoe vortex. The corrections given by this method for $\alpha = 10 \text{ deg (measured)}$ are $\pm 0.77 \text{ deg at the tip and } \pm 0.47 \text{ deg at the centre.}$

The wind speed was 163 ft/sec throughout the tests, giving a Reynolds number of 1.68×10^6 based on wing chord,

3. Results.—3.1. Wing with Constant Section (Tables 2 to 4, Figs. 2 to 7).—Table 2 gives the measured values of C_p on upper and lower surfaces. It will be seen that the values for $\alpha = 0$ deg are not the same on both surfaces, but this small variation is not systematic and cannot be corrected by a shift of incidence. When evaluating the pressure differences between upper and lower surfaces, the pressure differences at zero incidence were subtracted from the corresponding pressure differences at non-zero incidences.

The chordwise load distributions are plotted in Figs. 2 and 3. Fig. 2, in conjunction with Fig. 6, shows how this distribution varies along the span. Three distinct regions are apparent, one from about 0.2 to 0.8 semispan in which the type of chordwise distribution is the same, the central part where the local lift decreases near the nose and increases in the rear part of the section, and the part near the tip where the local lift is concentrated towards the nose. The chordwise lift distribution is also influenced by the finite thickness of the wing as can be seen from the comparison of calculated distributions for thin and thick profiles in Fig. 3. The pressure distribution of the given thick profile was calculated by the method of Riegels^{5,6} which replaces the wing by a distribution of sources and vortices. Finite thickness tends to increase the local lift coefficient.

The local values of the normal force and tangential force coefficients have been worked out by integrating graphically the chordwise pressure distribution and from these values the local lift and drag coefficients have been calculated.

The spanwise distribution of local lift coefficient, C_L , is given in Table 3 and in Figs. 4 and 5. Compared with the spanwise distribution for an unswept wing of the same plan-form and aspect ratio, there is a marked decrease of C_L at the centre and an increase near the tip. Fig. 5 also shows the additional lift near the tip, increasing with incidence (see also Fig. 13). This is due to the end-plate effect mentioned in Ref. 4. The values of local lift coefficient plotted against incidence (Fig. 4) do not lie on a straight line, the divergence increasing with distance from the centre. This is due to the effect of the boundary layer which also affects the type of spanwise loading as shown in Fig. 5. Fig. 5 shows that the boundary layer reduces the loading across the whole span. The reduction is smallest at the centre section.

The position of the aerodynamic centre is plotted in Fig. 6 and shows clearly the three regions already mentioned. Incidence has little effect on this position within the range tested.

The total lift coefficient obtained by graphical integration is given in Table 4. The value, $3 \cdot 40$, of the total lift slope is nearly that calculated (Ref. 2) for a wing with constant sectional lift slope, which corresponds to omitting centre and tip effects. The distributions of drag coefficients derived from the pressure measurements are given in Fig. 7, along with the spanwise distribution of induced drag, C_{Di} , calculated from the measured C_L distribution. A comparison of C_D and C_{Di} shows that C_D is greater than C_{Di} at the centre and less near the tip. This effect exists at zero lift (Ref. 7), and, due to the distorted chordwise lift distributions (Figs. 2 and 3), it increases with incidence. These positive and negative drag forces occur even in potential flow where they counterbalance each other and give no contribution to the total drag. Since the boundary layer also affects the pressure distribution, C_D will contain a positive contribution due to the boundary layer. The total drag \overline{C}_D is therefore different from the total induced drag \overline{C}_{Di} .

3.2. Wing with Modified Thickness Distribution.—(Tables 5 and 6, Figs. 8 to 10).—The pressure distribution at several sections in the central part of the wing at zero incidence, and the corresponding isobar patterns are shown in Figs. 8 and 9. It can be seen that the isobars remain straight up to about 0.1 chord from the centre-line but they continue to curve at the centre. This is mainly because the profile of the centre section was calculated on the assumption that neighbouring sections would have the same profile, whereas in fact it changes gradually to the

 \sim

basic section shape. In the front part of the chord the thickness decreases in a spanwise direction until the basic section is reached, and in the rear part it increases. This accounts for the differences between the measured pressure distribution and the calculated distribution at the centre. It is doubtful whether there exists a profile shape which gives the 'sheared wing' distribution up to the centre section, and therefore even a more exact three-dimensional calculation in the central part might not achieve the required result. Since the peak suction line is straight up to the centre, the present approximation might be sufficient for practical purposes.

There is still a considerable improvement in the isobar pattern at small incidences, for example $\alpha = 2$ deg in Fig. 9. At higher incidences, from 4 deg upwards, the isobars are distorted near the centre because of the change in chordwise lift distribution there. The chordwise lift distribution at the centre is influenced only very slightly by the thickness modification (Fig. 8). Therefore the local lift coefficient, spanwise lift distribution and aerodynamic centre position are the same as for the wing with constant section.

3.3. Wing with Camber and Twist.—(Tables 7 and 8, Figs. 11 to 14).—Incidence in this case refers to the incidence of the unmodified part of the wing. At zero incidence there is a lift at the centre (Fig. 11), the resultant effect of the positive twist and negative camber, producing a sharp peak in the lift distribution at the front and a flat section of small negative lift behind. The change of lift for a given change of incidence is the same for this wing as for the uncambered wings (Fig. 11). This means that the lift components due to incidence, twist, and camber are additive. At the design incidence of $2 \cdot 8$ deg the total chordwise lift distribution at the centre is similar to that at mid-semispan (Fig. 12). The spanwise load distribution is nearly constant up to about 0.60 semispan. At higher incidences, the decrease in local lift coefficient in the inner part of the wing would be expected to reappear. Fig. 13 shows that this is delayed, the local lift near mid-semispan being reduced by the boundary-layer effects previously mentioned (see also Fig. 5).

The camber and twist move the position of the aerodynamic centre further forward than that of the constant section wing (Fig. 13). At $2 \cdot 8$ deg incidence the chordwise position of the aerodynamic centre is nearly the same for all spanwise stations. At higher incidences the chordwise position in the central part moves back towards that for the constant section wing.

The sharp peak in the lift distribution at zero incidence mentioned above (Fig. 11) is due to an increase in negative pressure on the upper surface near the nose, but this is not sufficient to compensate for the distortion at the centre due to thickness (Fig. 14) and the isobar pattern is not improved.

It was shown in section 3.2 that the lift effects are nearly independent of the pressure distribution at no lift, which can be modified near the centre by altering the chordwise position of the maximum thickness of the section. Similarly, from Fig. 11, the twist and camber applied near the centre of the wing affect the no-lift curve, but the pressure distribution due to change of α is unchanged.

It would therefore appear that a wing could be designed in which both types of variable are used to get a wing with the desired isobar pattern and lift distribution at some given C_L .

4. Further Work.—This wing was cut down successively to aspect ratios 3 and 2, and the results of the tests on aspect ratio effects follow in Part II of this paper.

 c_{ij}

NOTATION

- Rectangular co-ordinates; x-axis in direction of the main flow, y-axis x, y, zspanwise; z-axis upwards; origin at leading edge
- Local wing chord c(y)
 - ī Mean chord
 - bSpan
 - Angle of sweep φ
 - Angle of incidence α

 C_{ϕ} $(p - p_0)/q_0$, pressure coefficient =

Difference of pressure coefficients on upper and lower surface ΔC_{ϕ}

 $C_N(y)$ Coefficient of local normal force

$$= -\int_0^1 \Delta C_p(x,y) \ d\left(\frac{x}{c(y)}\right)$$

 $C_{T}(y)$ Coefficient of local tangential force

$$= \int_{\text{around} \atop \text{profile}} C_p(x, y) \ d\left(\frac{z(x)}{c(y)}\right)$$

 $C_L(y)$ Local lift coefficient

_

==

=

$$= C_N \cos \alpha - C_T \sin \alpha$$

Local drag coefficient

 $= C_N \sin \alpha + C_T \cos \alpha$

Coefficient of induced drag

Coefficient of total lift $= \int_0^1 C_L(y) \frac{c(y)}{\bar{c}} d\left(\frac{y}{\bar{b}/2}\right)$

 \bar{C}_{D}

 $C_D(y)$

 C_{Di}

 \bar{C}_L

Coefficient of total drag as integrated from pressure measurements
=
$$\int_{0}^{1} C_{D}(y) \frac{c(y)}{\bar{c}} d\left(\frac{y}{b/2}\right)$$

 $C_m(y)$

Coefficient of local pitching moment with respect to the local quarter-chord point

$$= \int_{0}^{1} \Delta C_{p}(x, y) \left(\frac{x}{c(y)} - 0 \cdot 25\right) d\left(\frac{x}{c(y)}\right) \\ + \int_{\text{around profile}} C_{p}(x, y) \frac{z(x)}{c(y)} d\left(\frac{z(x)}{c(y)}\right)$$

h

x co-ordinate of local aerodynamic centre

$$= \left(0 \cdot 25 - \frac{C_m(y)}{C_N(y)}\right) c(y)$$

REFERENCES

No.	Ŀ	luthor				Title, etc.
1	D. Küchemann		••		•••	Design of wing junction, fuselage and nacelles to obtain the full benefit of sweptback wings at high Mach number. A.R.C. 11,035. 1947. (To be published.)
2	D. Küchemann		••	••	•••	A simple method of calculating the spanwise and chordwise loadings on thin swept wings. A.R.C. 13,758. 1950.
3	D. Bazjanac	•••			••	Investigations by means of the electrical analogy on the influence of the jet boundaries in wind tunnels on aerofoil measurements. Diss. Zürich, 1943. Summary in: F. W. Riegels: Wind tunnel corrections for incompressible flow. M.O.S. Göttingen Monograph D_3 4.1. M.A.P. Völkenrode R and T 958.
4	J. Weber	•••	•••	•••	•••	Low speed measurements of the pressure distributions and overall forces on wings of small aspect ratio and 53 deg sweepback. A.R.C. 12,878. 1949.
5	F. W. Riegels	••	••	•••	••	The pressure distribution along an aerofoil profile. M.O.S. Göttingen Monograph E.3. M.A.P. Völkenrode, R and T 925.
6	J. Weber		••• •	••	••	A simple method for calculating the chordwise pressure distribution on two-dimensional and swept wings for aerofoil sections of finite thickness. A.R.C. 13,757. 1950.
7	J. Weber	•••	•••	•••	•••	Low speed measurements of the pressure distribution near the tips of swept back wings at no lift. A.R.C. 12,421. 1949. (To be published.)

TABLE 1

Co-ordinates of Profile Sections

(Co-ordinates in per cent chord and referred to chord-line of unmodified aerofoil)

	Original section (Wing A)	Wing B wit thickness c	th modified listribution	Wing C with twisted and cambered centre section				
X	(0 /	y/c = 0	$y/c = 0 \cdot 1$	y/c	= 0	y/c = 0.13		
				upper surface	lower surface	upper surface	lower surface	
$\begin{array}{c} 0\\ 1\cdot 25\\ 2\cdot 50\\ 5\\ 7\cdot 5\\ 10\\ 15\\ 20\\ 30\\ 40\\ 50\\ 60\\ 70\\ 80\\ 90\\ 100\end{array}$	$\begin{array}{c} 0\\ 1 \cdot 64\\ 2 \cdot 30\\ 3 \cdot 19\\ 3 \cdot 83\\ 4 \cdot 33\\ 5 \cdot 06\\ 5 \cdot 56\\ 6 \cdot 00\\ 5 \cdot 76\\ 5 \cdot 12\\ 4 \cdot 24\\ 3 \cdot 22\\ 2 \cdot 15\\ 1 \cdot 07\\ 0\end{array}$	$\begin{array}{c} 0\\ 2\cdot 72\\ 3\cdot 53\\ 4\cdot 45\\ 5\cdot 03\\ 5\cdot 43\\ 5\cdot 86\\ 6\cdot 00\\ 5\cdot 73\\ 4\cdot 92\\ 3\cdot 80\\ 2\cdot 72\\ 1\cdot 80\\ 1\cdot 00\\ 0\cdot 40\\ 0\end{array}$	$\begin{array}{c} 0\\ 1 \cdot 86\\ 2 \cdot 61\\ 3 \cdot 58\\ 4 \cdot 20\\ 4 \cdot 69\\ 5 \cdot 39\\ 5 \cdot 83\\ 5 \cdot 96\\ 5 \cdot 52\\ 4 \cdot 76\\ 3 \cdot 70\\ 2 \cdot 64\\ 1 \cdot 62\\ 0 \cdot 72\\ 0\end{array}$	$5 \cdot 48$ $6 \cdot 60$ $7 \cdot 03$ $7 \cdot 59$ $7 \cdot 96$ $8 \cdot 23$ $8 \cdot 57$ $8 \cdot 73$ $8 \cdot 58$ $7 \cdot 84$ $6 \cdot 75$ $5 \cdot 47$ $4 \cdot 09$ $2 \cdot 69$ $1 \cdot 32$	$+5\cdot48 \\ 3\cdot32 \\ 2\cdot43 \\ 1\cdot21 \\ +0\cdot30 \\ -0\cdot43 \\ -1\cdot55 \\ -2\cdot39 \\ -3\cdot42 \\ -3\cdot68 \\ -3\cdot49 \\ -3\cdot01 \\ -2\cdot35 \\ -1\cdot61 \\ -0\cdot82 \\ 0$	$2 \cdot 74 \\ 4 \cdot 12 \\ 4 \cdot 67 \\ 5 \cdot 39 \\ 5 \cdot 90 \\ 6 \cdot 28 \\ 6 \cdot 82 \\ 7 \cdot 15 \\ 7 \cdot 29 \\ 6 \cdot 80 \\ 5 \cdot 94 \\ 4 \cdot 86 \\ 3 \cdot 66 \\ 2 \cdot 42 \\ 1 \cdot 20 \\ 0$	$\begin{array}{c} +2\cdot 74\\ 0\cdot 84\\ +0\cdot 07\\ -0\cdot 99\\ -1\cdot 76\\ -2\cdot 38\\ -3\cdot 30\\ -3\cdot 97\\ -4\cdot 71\\ -4\cdot 72\\ -4\cdot 30\\ -3\cdot 62\\ -2\cdot 78\\ -1\cdot 88\\ -0\cdot 94\\ \end{array}$	

TABLE 2

Pressure Coefficients on Wing A with Constant Section Shape

y = 0

 C_{p}

 $\varphi = 45 \deg$

 $A = 5 \cdot 0$

Upper surface

	\propto (deg)							
x/c	0	2.1	4.2	6.2	8.3	10•4		
$\begin{array}{c} 0 \\ 0 \cdot 01 \\ 0 \cdot 03 \\ 0 \cdot 08 \\ 0 \cdot 15 \\ 0 \cdot 225 \\ 0 \cdot 35 \\ 0 \cdot 50 \\ 0 \cdot 65 \\ 0 \cdot 75 \\ 0 \cdot 85 \\ 0 \cdot 95 \end{array}$	$\begin{array}{r} +1\cdot010\\ 0\cdot450\\ 0\cdot200\\ +0\cdot020\\ -0\cdot105\\ -0\cdot175\\ -0\cdot250\\ -0\cdot225\\ -0\cdot165\\ -0\cdot110\\ -0\cdot075\\ -0\cdot010\\ \end{array}$	$\begin{array}{c} +1 \cdot 010 \\ 0 \cdot 330 \\ +0 \cdot 095 \\ -0 \cdot 085 \\ -0 \cdot 195 \\ -0 \cdot 260 \\ -0 \cdot 315 \\ -0 \cdot 275 \\ -0 \cdot 205 \\ -0 \cdot 140 \\ -0 \cdot 025 \end{array}$	$\begin{array}{c} +0.980\\ +0.190\\ -0.035\\ -0.185\\ -0.275\\ \hline \\ -0.380\\ -0.325\\ -0.240\\ -0.170\\ \hline \\ -0.035\\ \end{array}$	$\begin{array}{r} +0.935\\ +0.020\\ -0.180\\ -0.290\\ -0.375\\ -0.415\\ -0.455\\ -0.380\\ -0.285\\ -0.205\\ -0.150\\ -0.055\end{array}$	$\begin{array}{c} +0.865\\ -0.165\\ -0.315\\ -0.400\\ \hline \\ -0.475\\ -0.520\\ -0.435\\ -0.325\\ -0.240\\ -0.175\\ -0.070\\ \end{array}$	$\begin{array}{c} +0.785\\ -0.340\\ -0.460\\ -0.505\\ -0.550\\ -0.550\\ -0.590\\ -0.475\\ -0.350\\ -0.250\\ -0.185\\ -0.065\end{array}$		

Lower surface

 C_{p}

	lpha (deg)									
x/c	0	2.1	4.2	6.2	8.3	10.4				
$\begin{array}{c} 0 \cdot 01 \\ 0 \cdot 03 \\ 0 \cdot 08 \\ 0 \cdot 15 \\ 0 \cdot 225 \\ 0 \cdot 35 \\ 0 \cdot 50 \\ 0 \cdot 65 \\ 0 \cdot 65 \\ 0 \cdot 75 \\ 0 \cdot 85 \\ 0 \cdot 95 \end{array}$	$\begin{array}{c} +0.520\\ 0.230\\ +0.005\\ -0.095\\ -0.155\\ -0.245\\ -0.220\\ -0.165\\ -0.120\\ -0.060\\ -0.030\end{array}$	$\begin{array}{c} +0.640\\ 0.350\\ +0.110\\ -0.005\\ -0.080\\ -0.170\\ -0.160\\ -0.110\\ -0.080\\ -0.035\\ 0\end{array}$	$\begin{array}{c} +0.745\\ 0.460\\ 0.210\\ 0.090\\ +0.005\\ -0.095\\ -0.095\\ -0.060\\ -0.035\\ -0.005\\ +0.025\end{array}$	$\begin{array}{c} +0.825\\ 0.565\\ 0.305\\ 0.180\\ +0.090\\ -0.020\\ -0.035\\ -0.020\\ +0.005\\ 0.025\\ +0.045\end{array}$	$\begin{array}{c} 0.885\\ 0.650\\ 0.380\\ 0.260\\ 0.170\\ 0.055\\ 0.025\\ 0.025\\ 0.025\\ 0.045\\ 0.060\\ 0.065\end{array}$	$\begin{array}{c} 0.945\\ 0.745\\ 0.745\\ 0.345\\ 0.250\\ 0.130\\ 0.090\\ 0.080\\ 0.090\\ 0.100\\ 0.090\\ 0.090\\ \end{array}$				

 $y/c = 0 \cdot 1$

2y/b = 0.041

Upper surface

			α(
x/c	0	2 · 1	4.2	6.2	8.3	10.4
$\begin{array}{c} 0\\ 0\cdot 01\\ 0\cdot 03\\ 0\cdot 08\\ 0\cdot 15\\ 0\cdot 225\\ 0\cdot 35\\ 0\cdot 50\\ 0\cdot 65\\ 0\cdot 75\\ 0\cdot 85\\ 0\cdot 95\end{array}$	$\begin{array}{c} +0\cdot 545\\ +0\cdot 180\\ -0\cdot 015\\ -0\cdot 120\\ -0\cdot 195\\ -0\cdot 245\\ -0\cdot 245\\ -0\cdot 185\\ -0\cdot 115\\ -0\cdot 065\\ -0\cdot 010\\ +0\cdot 060\end{array}$	$\begin{array}{c} +0.525\\ -0.015\\ -0.185\\ -0.250\\ -0.305\\ -0.340\\ -0.310\\ -0.250\\ -0.145\\ -0.090\\ -0.025\\ +0.055\end{array}$	$\begin{array}{c} +0\cdot 425\\ -0\cdot 235\\ -0\cdot 370\\ -0\cdot 375\\ -0\cdot 400\\ -0\cdot 415\\ -0\cdot 385\\ -0\cdot 280\\ -0\cdot 180\\ -0\cdot 120\\ -0\cdot 040\\ +0\cdot 050\end{array}$	$\begin{array}{c} +0\cdot 250\\ -0\cdot 505\\ -0\cdot 585\\ -0\cdot 515\\ -0\cdot 510\\ -0\cdot 510\\ -0\cdot 445\\ -0\cdot 325\\ -0\cdot 220\\ -0\cdot 140\\ -0\cdot 055\\ +0\cdot 045\end{array}$	$\begin{array}{c} +0\cdot 025\\ -0\cdot 800\\ -0\cdot 805\\ -0\cdot 660\\ -0\cdot 600\\ -0\cdot 580\\ -0\cdot 515\\ -0\cdot 375\\ -0\cdot 250\\ -0\cdot 170\\ -0\cdot 075\\ +0\cdot 040\end{array}$	$\begin{array}{c} -0.260\\ -1.155\\ -1.055\\ -0.790\\ -0.690\\ -0.660\\ -0.575\\ -0.415\\ -0.275\\ -0.185\\ -0.080\\ +0.040\\ \end{array}$

Lower surface

 C_{p}

	α (deg)								
x/c	0	2.1	4.2	6.2	8.3	10 • 4			
0.01 0.03 0.08 0.15 0.225 0.35 0.65 0.65 0.75 0.85 0.95	$\begin{array}{c} +0\cdot 220\\ +0\cdot 040\\ -0\cdot 110\\ -0\cdot 200\\ -0\cdot 225\\ -0\cdot 250\\ -0\cdot 205\\ -0\cdot 125\\ -0\cdot 060\\ -0\cdot 025\\ +0\cdot 050\end{array}$	$\begin{array}{c} +0\cdot 375 \\ 0\cdot 190 \\ +0\cdot 020 \\ -0\cdot 105 \\ -0\cdot 140 \\ -0\cdot 185 \\ -0\cdot 150 \\ -0\cdot 100 \\ \hline \\ 0 \\ +0\cdot 060 \end{array}$	$\begin{array}{c} +0\cdot 480\\ 0\cdot 315\\ +0\cdot 130\\ -0\cdot 005\\ -0\cdot 055\\ -0\cdot 115\\ -0\cdot 095\\ -0\cdot 095\\ -0\cdot 050\\ \hline \\ +0\cdot 030\\ +0\cdot 060\\ \end{array}$	$\begin{array}{c} +0\cdot 540\\ 0\cdot 420\\ 0\cdot 235\\ 0\cdot 095\\ +0\cdot 035\\ -0\cdot 040\\ -0\cdot 035\\ -0\cdot 010\\ +0\cdot 035\\ 0\cdot 050\\ +0\cdot 080\end{array}$	$\begin{array}{c} 0.565\\ 0.490\\ 0.325\\ 0.180\\ 0.115\\ 0.030\\ 0.020\\ 0.040\\ 0.065\\ 0.075\\ 0.090\\ \end{array}$	$\begin{array}{c} 0.535\\ 0.565\\ 0.420\\ 0.285\\ 0.195\\ 0.105\\ 0.085\\ 0.085\\ 0.085\\ 0.105\\ 0.100\\ 0.110\\ \end{array}$			

 $y/c = 0 \cdot 2$

2y/b = 0.082

Upper	surface
11	

 C_{p}

		α (deg)							
x/c	0	2.1	4.2	6·2	8.3	10.4			
$\begin{array}{c} 0\\ 0\cdot01\\ 0\cdot03\\ 0\cdot08\\ 0\cdot15\\ 0\cdot225\\ 0\cdot35\\ 0\cdot50\\ 0\cdot65\\ 0\cdot75\\ 0\cdot85\\ 0\cdot95\\ \end{array}$	$\begin{array}{c} +0\cdot 490 \\ +0\cdot 155 \\ -0\cdot 055 \\ -0\cdot 170 \\ -0\cdot 240 \\ -0\cdot 265 \\ -0\cdot 260 \\ -0\cdot 195 \\ -0\cdot 090 \\ -0\cdot 040 \\ +0\cdot 015 \\ +0\cdot 065 \end{array}$	$\begin{array}{c} +0\cdot 440 \\ -0\cdot 080 \\ -0\cdot 260 \\ -0\cdot 315 \\ -0\cdot 355 \\ -0\cdot 365 \\ -0\cdot 335 \\ -0\cdot 245 \\ -0\cdot 130 \\ -0\cdot 065 \\ -0\cdot 005 \\ +0\cdot 060 \end{array}$	$\begin{array}{c} +0\cdot 270\\ -0\cdot 355\\ -0\cdot 485\\ -0\cdot 465\\ -0\cdot 465\\ -0\cdot 455\\ -0\cdot 400\\ -0\cdot 275\\ -0\cdot 155\\ -0\cdot 090\\ -0\cdot 020\\ +0\cdot 060\end{array}$	$\begin{array}{c} -0\cdot020\\ -0\cdot705\\ -0\cdot740\\ -0\cdot630\\ -0\cdot590\\ -0\cdot550\\ -0\cdot450\\ -0\cdot320\\ -0\cdot190\\ -0\cdot100\\ -0\cdot025\\ +0\cdot055\end{array}$	$\begin{array}{c} -0.375\\ -1.085\\ -1.015\\ -0.795\\ \hline \\ -0.615\\ -0.520\\ -0.370\\ -0.215\\ -0.115\\ -0.035\\ +0.050\\ \end{array}$	$\begin{array}{c} -0.870 \\ -1.510 \\ -1.335 \\ -0.930 \\ -0.780 \\ -0.695 \\ -0.570 \\ -0.395 \\ -0.235 \\ -0.235 \\ -0.135 \\ -0.040 \\ +0.050 \end{array}$			

Lower surface

 C_{p}

	α (deg)								
x/c	0	2.1	4.2	6.2	8.3	10.4			
$\begin{array}{c} 0 \cdot 01 \\ 0 \cdot 03 \\ 0 \cdot 08 \\ 0 \cdot 15 \\ 0 \cdot 225 \\ 0 \cdot 35 \\ 0 \cdot 50 \\ 0 \cdot 65 \\ 0 \cdot 75 \\ 0 \cdot 85 \\ 0 \cdot 95 \end{array}$	$\begin{array}{c} +0.205\\ 0\\ -0.175\\ -0.240\\ -0.260\\ -0.265\\ -0.205\\ -0.080\\ -0.055\\ +0.005\\ +0.060\end{array}$	$\begin{array}{c} +0.375\\ +0.170\\ -0.035\\ -0.135\\ -0.170\\ -0.200\\ -0.145\\ -0.045\\ -0.020\\ +0.025\\ +0.070\end{array}$	$\begin{array}{c} +0.480\\ 0.310\\ +0.085\\ -0.025\\ -0.080\\ -0.120\\ -0.085\\ -0.020\\ 0\\ +0.040\\ +0.075\end{array}$	$\begin{array}{c} +0.525\\ 0.415\\ 0.200\\ 0.075\\ +0.005\\ -0.055\\ -0.030\\ +0.010\\ 0.020\\ 0.050\\ +0.075\end{array}$	$\begin{array}{c} 0.530 \\ 0.500 \\ 0.310 \\ 0.170 \\ 0.090 \\ 0.015 \\ 0.015 \\ 0.035 \\ 0.055 \\ 0.075 \\ 0.080 \end{array}$	$\begin{array}{c} 0.485\\ 0.550\\ 0.395\\ 0.265\\ 0.180\\ 0.095\\ 0.085\\ 0.090\\ 0.095\\ 0.105\\ 0.105\\ 0.100\end{array}$			

t

 $y/c = 0 \cdot 4$

2y/b = 0.163

Upper surface

 C_{p}

	α (deg)								
x/c	0	2.1	4.2	6.2	8.3	10.4			
$\begin{array}{c} 0\\ 0\cdot 01\\ 0\cdot 03\\ 0\cdot 08\\ 0\cdot 15\\ 0\cdot 225\\ 0\cdot 35\\ 0\cdot 50\\ 0\cdot 65\\ 0\cdot 75\\ 0\cdot 85\\ 0\cdot 95\end{array}$	$\begin{array}{c} +0\cdot 490\\ +0\cdot 125\\ -0\cdot 060\\ -0\cdot 200\\ -0\cdot 265\\ -0\cdot 265\\ -0\cdot 265\\ -0\cdot 265\\ -0\cdot 080\\ -0\cdot 030\\ +0\cdot 010\\ +0\cdot 065\end{array}$	$\begin{array}{c} +0\cdot 400\\ -0\cdot 155\\ -0\cdot 300\\ -0\cdot 365\\ -0\cdot 390\\ -0\cdot 370\\ -0\cdot 335\\ -0\cdot 190\\ -0\cdot 095\\ -0\cdot 095\\ -0\cdot 005\\ +0\cdot 060\\ \end{array}$	$\begin{array}{c} +0\cdot 165\\ -0\cdot 485\\ -0\cdot 550\\ -0\cdot 540\\ -0\cdot 520\\ -0\cdot 465\\ -0\cdot 400\\ -0\cdot 235\\ \hline \\ -0\cdot 005\\ +0\cdot 060\\ \end{array}$	$\begin{array}{c} -0.250\\ -0.920\\ -0.865\\ -0.735\\ -0.665\\ -0.530\\ -0.465\\ -0.275\\ -0.160\\ -0.075\\ -0.010\\ +0.055\end{array}$	$\begin{array}{c} -0.770 \\ -1.415 \\ -0.925 \\ -0.775 \\ -0.635 \\ -0.535 \\ -0.315 \\ -0.015 \\ +0.045 \end{array}$	$\begin{array}{c} -1\cdot 450 \\ -1\cdot 990 \\ -1\cdot 570 \\ -1\cdot 080 \\ -0\cdot 920 \\ -0\cdot 725 \\ -0\cdot 580 \\ -0\cdot 340 \\ -0\cdot 190 \\ -0\cdot 095 \\ -0\cdot 020 \\ +0\cdot 040 \end{array}$			

Lower surface

 C_p

	α (deg)								
x/c	0	2.1	4.2	6.2	8.3	10.4			
$\begin{array}{c} 0 \cdot 01 \\ 0 \cdot 03 \\ 0 \cdot 08 \\ 0 \cdot 15 \\ 0 \cdot 225 \\ 0 \cdot 35 \\ 0 \cdot 50 \\ 0 \cdot 65 \\ 0 \cdot 75 \\ 0 \cdot 85 \\ 0 \cdot 95 \end{array}$	$\begin{array}{c} +0\cdot 130\\ -0\cdot 075\\ -0\cdot 215\\ -0\cdot 260\\ -0\cdot 275\\ -0\cdot 265\\ -0\cdot 165\\ -0\cdot 165\\ -0\cdot 070\\ -0\cdot 025\\ 0\\ +0\cdot 060\end{array}$	$\begin{array}{c} +0.330\\ +0.125\\ -0.055\\ -0.145\\ -0.185\\ -0.200\\ -0.135\\ -0.035\\ 0\\ +0.030\\ +0.065\end{array}$	$\begin{array}{c} +0.455\\ 0.280\\ +0.085\\ -0.030\\ -0.085\\ -0.125\\ -0.070\\ -0.010\\ +0.020\\ 0.040\\ +0.065\end{array}$	$\begin{array}{c} +0.505\\ 0.405\\ 0.210\\ 0.075\\ +0.005\\ -0.055\\ -0.025\\ +0.025\\ 0.040\\ 0.050\\ +0.070\end{array}$	$\begin{array}{c} 0.480\\ 0.485\\ 0.310\\ 0.175\\ 0.090\\ 0.015\\ 0.030\\ 0.055\\ 0.065\\ 0.065\\ 0.060\end{array}$	$\begin{array}{c} 0.365\\ 0.530\\ 0.405\\ 0.265\\ 0.180\\ 0.090\\ 0.080\\ 0.095\\ 0.095\\ 0.095\\ 0.085\\ 0.080\end{array}$			

 C_{p}

y/c = 0.6

2y/b = 0.245

Upper surface

	α (deg)								
x/c	0	2.1	4.2	6.2	8.3	10.4			
$\begin{array}{c} 0\\ 0\cdot01\\ 0\cdot03\\ 0\cdot08\\ 0\cdot15\\ 0\cdot225\\ 0\cdot35\\ 0\cdot50\\ 0\cdot65\\ 0\cdot75\\ 0\cdot85\\ 0\cdot95\\ \end{array}$	$\begin{array}{c} - \\ +0\cdot125 \\ -0\cdot065 \\ -0\cdot195 \\ -0\cdot260 \\ -0\cdot270 \\ -0\cdot250 \\ -0\cdot145 \\ -0\cdot055 \\ -0\cdot020 \\ +0\cdot025 \\ +0\cdot070 \end{array}$	$\begin{array}{c} +0\cdot 425\\ -0\cdot 165\\ -0\cdot 305\\ -0\cdot 360\\ -0\cdot 385\\ -0\cdot 370\\ -0\cdot 315\\ -0\cdot 160\\ -0\cdot 075\\ -0\cdot 035\\ +0\cdot 020\\ +0\cdot 070\end{array}$	$\begin{array}{c} +0\cdot 220\\ -0\cdot 505\\ -0\cdot 615\\ -0\cdot 535\\ -0\cdot 505\\ -0\cdot 465\\ -0\cdot 370\\ -0\cdot 205\\ -0\cdot 100\\ -0\cdot 050\\ +0\cdot 015\\ +0\cdot 070\\ \end{array}$	$\begin{array}{c} -0.185\\ -0.960\\ -0.905\\ -0.745\\ -0.655\\ -0.535\\ \hline \\ -0.250\\ -0.115\\ -0.060\\ +0.015\\ +0.070\\ \end{array}$	$\begin{array}{c} -0.740 \\ -1.475 \\ -1.280 \\ -0.950 \\ -0.755 \\ -0.655 \\ -0.460 \\ -0.275 \\ -0.130 \\ -0.060 \\ +0.010 \\ +0.080 \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			

Lower surface

 C_{p}

	lpha (deg)								
x/c	. 0	2.1	4.2	6.2	8.3	10.4			
$\begin{array}{c} 0\cdot 01 \\ 0\cdot 03 \\ 0\cdot 08 \\ 0\cdot 15 \\ 0\cdot 225 \\ 0\cdot 35 \\ 0\cdot 50 \\ 0\cdot 65 \\ 0\cdot 75 \\ 0\cdot 85 \\ 0\cdot 95 \end{array}$	$\begin{array}{c} +0\cdot 090\\ -0\cdot 065\\ -0\cdot 220\\ -0\cdot 260\\ -0\cdot 265\\ -0\cdot 250\\ -0\cdot 175\\ -0\cdot 060\\ -0\cdot 005\\ +0\cdot 070\end{array}$	$\begin{array}{c} +0\cdot 325\\ +0\cdot 150\\ -0\cdot 055\\ -0\cdot 135\\ -0\cdot 165\\ -0\cdot 180\\ -0\cdot 125\\ -0\cdot 020\\ +0\cdot 020\\ 0\cdot 040\\ +0\cdot 075\end{array}$	$\begin{array}{c} +0.450\\ 0.300\\ +0.085\\ -0.025\\ -0.075\\ -0.110\\ -0.065\\ 0\\ +0.035\\ +0.085\end{array}$	$\begin{array}{c} +0.510\\ 0.425\\ 0.225\\ 0.090\\ +0.030\\ -0.035\\ -0.005\\ +0.020\\ 0.060\\ 0.070\\ +0.085\end{array}$	$\begin{array}{c} & 0 \cdot 480 \\ & 0 \cdot 500 \\ & 0 \cdot 325 \\ & 0 \cdot 195 \\ & 0 \cdot 120 \\ & 0 \cdot 035 \\ & 0 \cdot 045 \\ & 0 \cdot 045 \\ & 0 \cdot 060 \\ & 0 \cdot 080 \\ & 0 \cdot 080 \\ & 0 \cdot 075 \end{array}$	$\begin{array}{c} 0.370\\ 0.530\\ 0.410\\ 0.275\\ 0.210\\ 0.105\\ 0.090\\ 0.095\\ 0.100\\ 0.090\\ 0.095\\ 0.100\\ 0.090\\ 0.075\\ \end{array}$			

y/c = 0.9

2y/b = 0.367

Uþþer	surface
V PPV	010. 90000

 C_{p}

	$lpha ({ m deg})$								
x/c	0	2.1	4.2	6.3	8.4	10.5			
$\begin{array}{c} 0\\ 0\cdot 01\\ 0\cdot 03\\ 0\cdot 08\\ 0\cdot 15\\ 0\cdot 225\\ 0\cdot 35\\ 0\cdot 50\\ 0\cdot 65\\ 0\cdot 75\\ 0\cdot 85\\ 0\cdot 95\end{array}$	$\begin{array}{c} +0\cdot 505\\ +0\cdot 115\\ -0\cdot 055\\ -0\cdot 185\\ -0\cdot 250\\ -0\cdot 260\\ -0\cdot 245\\ -0\cdot 145\\ -0\cdot 145\\ -0\cdot 055\\ \end{array}$	$\begin{array}{c} +0.450\\ -0.200\\ -0.315\\ -0.360\\ -0.385\\ -0.360\\ -0.315\\ -0.080\\ +0.015\\ +0.080\end{array}$	$\begin{array}{c} +0\cdot 270\\ -0\cdot 565\\ -0\cdot 595\\ -0\cdot 545\\ -0\cdot 545\\ -0\cdot 460\\ -0\cdot 345\\ -0\cdot 185\\ -0\cdot 100\\ -0\cdot 030\\ +0\cdot 015\\ +0\cdot 080\\ \end{array}$	$\begin{array}{c} -0\cdot100\\ -1\cdot055\\ -0\cdot960\\ -0\cdot765\\ -0\cdot650\\ -0\cdot540\\ -0\cdot410\\ -0\cdot230\\ -0\cdot115\\ -0\cdot035\\ +0\cdot020\\ +0\cdot080\\ \end{array}$	$\begin{array}{c} -0.635 \\ -1.660 \\ -1.375 \\ -0.945 \\ -0.780 \\ -0.650 \\ -0.470 \\ -0.255 \\ -0.125 \\ -0.040 \\ +0.010 \\ +0.060 \end{array}$	$\begin{array}{c} -1\cdot 305\\ -2\cdot 305\\ -1\cdot 715\\ -1\cdot 205\\ -0\cdot 935\\ -0\cdot 740\\ -0\cdot 525\\ -0\cdot 275\\ -0\cdot 125\\ -0\cdot 055\\ -0\cdot 020\\ +0\cdot 015\\ \end{array}$			

Lower surface

 C_{p}

	α (deg)							
x/c	0	2.1	· 4·2	6.3	8.4	10.5		
$\begin{array}{c} 0 \cdot 01 \\ 0 \cdot 03 \\ 0 \cdot 08 \\ 0 \cdot 15 \\ 0 \cdot 225 \\ 0 \cdot 35 \\ 0 \cdot 50 \\ 0 \cdot 65 \\ 0 \cdot 75 \\ 0 \cdot 85 \\ 0 \cdot 95 \end{array}$	$\begin{array}{c} +0\cdot 100\\ -0\cdot 090\\ -0\cdot 200\\ -0\cdot 255\\ -0\cdot 260\\ -0\cdot 240\\ -0\cdot 140\\ -0\cdot 050\\ -0\cdot 020\\ +0\cdot 035\\ +0\cdot 070\end{array}$	$\begin{array}{c} +0\cdot 325\\ +0\cdot 135\\ -0\cdot 035\\ -0\cdot 130\\ -0\cdot 160\\ -0\cdot 170\\ -0\cdot 095\\ -0\cdot 030\\ +0\cdot 005\\ 0\cdot 050\\ +0\cdot 075\end{array}$	$\begin{array}{c} +0\cdot 465\\ 0\cdot 295\\ +0\cdot 115\\ -0\cdot 015\\ -0\cdot 065\\ -0\cdot 105\\ -0\cdot 035\\ +0\cdot 005\\ 0\cdot 025\\ 0\cdot 025\\ 0\cdot 060\\ +0\cdot 080\end{array}$	$\begin{array}{c} +0\cdot 515\\ 0\cdot 425\\ 0\cdot 240\\ 0\cdot 105\\ +0\cdot 035\\ -0\cdot 030\\ +0\cdot 010\\ 0\cdot 040\\ 0\cdot 050\\ 0\cdot 075\\ +0\cdot 080\end{array}$	$\begin{array}{c} 0.480\\ 0.505\\ 0.355\\ 0.200\\ 0.120\\ 0.040\\ 0.060\\ 0.065\\ 0.065\\ 0.085\\ 0.070\\ \end{array}$	$\begin{array}{c} 0\cdot 360\\ 0\cdot 535\\ 0\cdot 435\\ 0\cdot 285\\ 0\cdot 195\\ 0\cdot 100\\ 0\cdot 100\\ 0\cdot 100\\ 0\cdot 085\\ 0\cdot 075\\ 0\cdot 085\\ 0\cdot 075\\ 0\cdot 085\\ 0\cdot 055\\ \end{array}$		

 C_{p}

$$y/c = 1 \cdot 25$$

٠

$$2y/b = 0.510$$

Upper surface

α (deg)

x/c	0	2.1	4.2	6.3	8.4	10.5
$\begin{array}{c} 0\\ 0\cdot01\\ 0\cdot03\\ 0\cdot08\\ 0\cdot15\\ 0\cdot225\\ 0\cdot35\\ 0\cdot50\\ 0\cdot65\\ 0\cdot75\\ 0\cdot85\\ 0\cdot95\end{array}$	$\begin{array}{r} +0\cdot 495 \\ +0\cdot 155 \\ -0\cdot 065 \\ -0\cdot 200 \\ -0\cdot 240 \\ -0\cdot 250 \\ -0\cdot 235 \\ -0\cdot 140 \\ -0\cdot 055 \\ -0\cdot 010 \\ +0\cdot 035 \\ +0\cdot 080 \end{array}$	$\begin{array}{c} +0.510\\ -0.150\\ -0.330\\ -0.380\\ -0.380\\ -0.355\\ -0.310\\ -\\ -0.080\\ -0.025\\ +0.030\\ +0.085\end{array}$	$\begin{array}{r} +0.380\\ -0.515\\ -0.620\\ -0.575\\ -0.505\\ -0.445\\ -0.345\\ -0.190\\ -0.095\\ -0.030\\ +0.025\\ +0.085\end{array}$	$\begin{array}{c} +0\cdot095\\-1\cdot015\\-0\cdot990\\-0\cdot800\\-0\cdot650\\-\\-0\cdot410\\-0\cdot225\\-0\cdot110\\-0\cdot035\\+0\cdot030\\+0\cdot085\end{array}$	$\begin{array}{c} -0.365 \\ -1.650 \\ -1.385 \\ -1.015 \\ -0.770 \\ -0.610 \\ -0.470 \\ -0.250 \\ -0.115 \\ -0.035 \\ +0.025 \\ +0.060 \end{array}$	$\begin{array}{c} -0.995\\ -2.335\\ -1.885\\ -1.235\\ -0.915\\ -0.710\\ -0.520\\ -0.260\\ -0.115\\ -0.055\\ -0.025\\ -0.025\\ -0.025\\ \end{array}$
		· · · · · · · · · · ·			• • • • • • • • • • • • • • • • • • •	

Lower surface

 C_p

	lpha (deg)							
x/c	0	2 · 1	4.2	6.3	8.4	10.5		
$\begin{array}{c} 0 \cdot 01 \\ 0 \cdot 03 \\ 0 \cdot 08 \\ 0 \cdot 15 \\ 0 \cdot 225 \\ 0 \cdot 35 \\ 0 \cdot 50 \\ 0 \cdot 65 \\ 0 \cdot 75 \\ 0 \cdot 85 \\ 0 \cdot 95 \end{array}$	$\begin{array}{c} +0\cdot110\\ -0\cdot040\\ -0\cdot185\\ -0\cdot245\\ -0\cdot255\\ -0\cdot235\\ -0\cdot150\\ -0\cdot060\\ -0\cdot010\\ +0\cdot030\\ +0\cdot070\\ \end{array}$	$\begin{array}{c} +0.350\\ +0.180\\ -0.015\\ -0.115\\ -0.155\\ -0.165\\ -0.105\\ -0.025\\ +0.015\\ 0.045\\ +0.070\\ \end{array}$	$\begin{array}{c} +0.480\\ 0.355\\ +0.130\\ 0\\ -0.060\\ -0.095\\ -0.035\\ 0\\ +0.030\\ 0.055\\ +0.075\end{array}$	$\begin{array}{c} +0.525\\ 0.460\\ 0.265\\ 0.120\\ +0.045\\ -0.010\\ +0.020\\ 0.030\\ 0.055\\ 0.070\\ +0.070\\ +0.070\end{array}$	$\begin{array}{c} 0.490\\ 0.525\\ 0.370\\ 0.220\\ 0.125\\ 0.045\\ 0.065\\ 0.060\\ 0.065\\ 0.070\\ 0.055\end{array}$	$\begin{array}{c} 0 \cdot 325 \\ 0 \cdot 530 \\ 0 \cdot 445 \\ 0 \cdot 295 \\ 0 \cdot 200 \\ 0 \cdot 100 \\ 0 \cdot 090 \\ 0 \cdot 075 \\ 0 \cdot 080 \\ 0 \cdot 070 \\ 0 \cdot 040 \end{array}$		

 $y/c = 1 \cdot 6$

2y/b = 0.653

· Upper surface

 C_{p}

	a (deg)								
x/c	0.	2.1	4.2	6.3	8.5	10.6			
$\begin{array}{c} 0 \\ 0 \cdot 01 \\ 0 \cdot 03 \\ 0 \cdot 08 \\ 0 \cdot 15 \\ 0 \cdot 225 \\ 0 \cdot 35 \\ 0 \cdot 50 \\ 0 \cdot 65 \\ 0 \cdot 75 \\ 0 \cdot 85 \\ 0 \cdot 95 \end{array}$	$\begin{array}{c} +0\cdot 500\\ +0\cdot 130\\ -0\cdot 090\\ -0\cdot 225\\ -0\cdot 250\\ -0\cdot 255\\ -0\cdot 240\\ -0\cdot 140\\ -0\cdot 060\\ 0\\ +0\cdot 030\\ +0\cdot 080\end{array}$	$\begin{array}{c} +0\cdot 410\\ -0\cdot 200\\ -0\cdot 345\\ -0\cdot 405\\ -0\cdot 385\\ -0\cdot 355\\ -0\cdot 300\\ -0\cdot 175\\ -0\cdot 080\\ -0\cdot 010\\ +0\cdot 025\\ +0\cdot 085\end{array}$	$\begin{array}{c} +0\cdot 170\\ -0\cdot 575\\ -0\cdot 640\\ -0\cdot 595\\ -0\cdot 510\\ -0\cdot 445\\ -0\cdot 355\\ -0\cdot 205\\ -0\cdot 090\\ -0\cdot 015\\ +0\cdot 025\\ +0\cdot 085\end{array}$	$\begin{array}{c} -0\cdot 290 \\ -1\cdot 125 \\ -1\cdot 010 \\ -0\cdot 820 \\ -0\cdot 640 \\ -0\cdot 545 \\ -0\cdot 420 \\ -0\cdot 230 \\ -0\cdot 100 \\ -0\cdot 020 \\ +0\cdot 025 \\ +0\cdot 085 \end{array}$	$\begin{array}{c} -0.920\\ -1.750\\ -1.420\\ -1.000\\ -0.770\\ -0.645\\ -0.465\\ -0.245\\ -0.110\\ -0.035\\ +0.010\\ +0.060\\ \end{array}$	$\begin{array}{c} -1\cdot 685 \\ -2\cdot 445 \\ -1\cdot 795 \\ -1\cdot 255 \\ -0\cdot 915 \\ -0\cdot 725 \\ -0\cdot 490 \\ -0\cdot 245 \\ -0\cdot 120 \\ -0\cdot 065 \\ -0\cdot 020 \\ +0\cdot 060 \end{array}$			

Lower surface

 C_{p}

	α (deg)								
x/C	0	2.1	4.2	6-3	8.5	10.6			
$\begin{array}{c} 0 \cdot 01 \\ 0 \cdot 03 \\ 0 \cdot 08 \\ 0 \cdot 15 \\ 0 \cdot 225 \\ 0 \cdot 35 \\ 0 \cdot 50 \\ 0 \cdot 65 \\ 0 \cdot 75 \\ 0 \cdot 85 \\ 0 \cdot 95 \end{array}$	$\begin{array}{c} +0\cdot 135 \\ -0\cdot 045 \\ -0\cdot 180 \\ -0\cdot 230 \\ -0\cdot 255 \\ -0\cdot 240 \\ -0\cdot 145 \\ -0\cdot 040 \\ -0\cdot 005 \\ +0\cdot 035 \\ +0\cdot 075 \end{array}$	$\begin{array}{c} +0.355\\ +0.180\\ -0.010\\ -0.100\\ -0.160\\ -0.175\\ -0.110\\ -0.010\\ +0.005\\ 0.045\\ +0.080\\ \end{array}$	$\begin{array}{c} +0\cdot475\\ 0\cdot335\\ 0\cdot125\\ +0\cdot010\\ -0\cdot065\\ -0\cdot110\\ -0\cdot040\\ +0\cdot010\\ 0\cdot025\\ 0\cdot055\\ +0\cdot085\end{array}$	$\begin{array}{c} +0.520\\ 0.460\\ 0.255\\ 0.130\\ +0.030\\ -0.035\\ +0.005\\ 0.035\\ 0.045\\ 0.070\\ +0.085\end{array}$	$\begin{array}{c} 0\cdot 470\\ 0\cdot 515\\ 0\cdot 350\\ 0\cdot 220\\ 0\cdot 110\\ 0\cdot 025\\ 0\cdot 045\\ 0\cdot 055\\ 0\cdot 055\\ 0\cdot 055\\ 0\cdot 055\\ 0\cdot 070\\ 0\cdot 075\\ \end{array}$	$\begin{array}{c} 0.335\\ 0.530\\ 0.435\\ 0.300\\ 0.190\\ 0.090\\ 0.085\\ 0.075\\ 0.065\\ 0.070\\ 0.070\\ 0.070\\ \end{array}$			

$$y/c = 2 \cdot 20$$

$$2y/b = 0.898$$

Lower surface

 C_{p}

Upper surface
$$C_p$$

	α (deg)							
x/c	0	4.3	10.7					
$\begin{array}{c} 0\\ 0\cdot 01\\ 0\cdot 03\\ 0\cdot 08\\ 0\cdot 15\\ 0\cdot 225\\ 0\cdot 35\\ 0\cdot 50\\ 0\cdot 65\\ 0\cdot 75\\ 0\cdot 85\end{array}$	$\begin{array}{c} +0.430 \\ -0.015 \\ -0.150 \\ -0.195 \\ -0.220 \\ -0.230 \\ -0.205 \\ -0.120 \\ -0.030 \\ 0 \\ +0.050 \end{array}$	$\begin{array}{c} +0.250 \\ -0.425 \\ -0.530 \\ -0.510 \\ -0.440 \\ -0.380 \\ -0.300 \\ -0.045 \\ 0 \\ +0.050 \end{array}$	$-1 \cdot 375 \\ -1 \cdot 835 \\ -1 \cdot 480 \\ -0 \cdot 895 \\ -0 \cdot 715 \\ -0 \cdot 600 \\ -0 \cdot 385 \\ -0 \cdot 180 \\ -0 \cdot 055 \\ 0 \\ +0 \cdot 040$					
$\begin{array}{c} 0\cdot 85\\ 0\cdot 95\end{array}$	+0.050 + 0.110	$\begin{vmatrix} +0.050 \\ +0.110 \end{vmatrix}$	$\left \begin{array}{c} +0.040\\ +0.100\end{array}\right $					

-		· · · · · · · · · · · · · · · · · · ·	
		α (deg)	
x/c	0	4.3	10.7
$\begin{array}{c} 0 \cdot 01 \\ 0 \cdot 03 \\ 0 \cdot 08 \\ 0 \cdot 15 \\ 0 \cdot 225 \\ 0 \cdot 35 \\ 0 \cdot 50 \\ 0 \cdot 65 \\ 0 \cdot 75 \\ 0 \cdot 85 \\ 0 \cdot 95 \end{array}$	$\begin{array}{c} -0.065\\ -0.215\\ -0.265\\ -0.255\\ -0.275\\ -0.230\\ -0.140\\ -0.055\\ -0.015\\ +0.035\\ +0.075\end{array}$	$\begin{array}{c} +0.345\\ +0.160\\ -0.005\\ -0.075\\ -0.125\\ -0.100\\ -0.055\\ 0\\ +0.010\\ 0.035\\ +0.070\end{array}$	$\begin{array}{c} +0.325\\ 0.380\\ 0.240\\ 0.140\\ +0.050\\ -0.035\\ +0.005\\ 0.030\\ 0.035\\ 0.055\\ -0.070\end{array}$
			· ·

$$y/c = 2 \cdot 33$$

2y/b = 0.949

Upper surface

	α (deg)								
x/c	0	2.1	4.3	6.4	8.6	10.7			
$\begin{array}{c} 0 \\ 0 \cdot 025 \\ 0 \cdot 05 \\ 0 \cdot 10 \\ 0 \cdot 15 \\ 0 \cdot 25 \\ 0 \cdot 35 \\ 0 \cdot 50 \\ 0 \cdot 70 \end{array}$	$\begin{array}{c} +0\cdot 060 \\ -0\cdot 060 \\ -0\cdot 115 \\ -0\cdot 160 \\ -0\cdot 185 \\ -0\cdot 175 \\ -0\cdot 160 \\ -0\cdot 090 \\ +0\cdot 005 \end{array}$	$\begin{array}{c} +0\cdot 025\\ -0\cdot 215\\ -0\cdot 245\\ -0\cdot 260\\ -0\cdot 270\\ -0\cdot 240\\ -0\cdot 210\\ -0\cdot 210\\ -0\cdot 120\\ -0\cdot 005\end{array}$	$\begin{array}{c} -0.085 \\ -0.420 \\ -0.425 \\ -0.390 \\ -0.380 \\ -0.320 \\ -0.265 \\ -0.150 \\ -0.020 \end{array}$	$\begin{array}{c} -0.285 \\ -0.700 \\ -0.650 \\ -0.560 \\ -0.520 \\ -0.425 \\ -0.330 \\ -0.190 \\ -0.045 \end{array}$	$\begin{array}{c} -0.560 \\ -1.030 \\ -0.905 \\ -0.745 \\ -0.665 \\ -0.520 \\ -0.400 \\ -0.240 \\ -0.055 \end{array}$	$\begin{array}{c} -0.880 \\ -1.375 \\ -1.170 \\ -0.915 \\ -0.795 \\ -0.595 \\ -0.440 \\ -0.270 \\ -0.055 \end{array}$			

 C_{p}

Lower surface

 C_p

	α (deg)									
x/c	0	2.1	4.3	6.4	8.6	10.7				
0.025 0.05 0.10 0.15 0.25 0.35 0.50 0.70	$-0.075 \\ -0.100 \\ -0.155 \\ -0.175 \\ -0.185 \\ -0.160 \\ -0.065 \\ +0.005$	$\begin{array}{c} +0\cdot 060 \\ +0\cdot 005 \\ -0\cdot 065 \\ -0\cdot 090 \\ -0\cdot 115 \\ -0\cdot 120 \\ -0\cdot 045 \\ +0\cdot 035 \end{array}$	$ \begin{array}{c} +0.095 \\ +0.070 \\ 0 \\ -0.035 \\ -0.065 \\ -0.080 \\ -0.030 \\ +0.050 \\ \end{array} $	$ \begin{array}{c} +0.085 \\ 0.090 \\ 0.040 \\ +0.010 \\ -0.020 \\ -0.040 \\ 0 \\ +0.060 \end{array} $	$\begin{array}{c} +0\cdot 020\\ 0\cdot 075\\ 0\cdot 055\\ 0\cdot 045\\ +0\cdot 015\\ -0\cdot 015\\ +0\cdot 015\\ +0\cdot 015\\ +0\cdot 065\end{array}$	$\begin{array}{c} -0.085 \\ +0.025 \\ 0.050 \\ 0.045 \\ 0.045 \\ 0.005 \\ 0.035 \\ +0.070 \end{array}$				

TABLE 3

Coefficients of Local Normal Force, Tangential Force, Lift, Drag and Aerodynamic Centre Position

Wing A with constant section shape

$$\varphi = 45 \deg$$

$$A = 5 \cdot 0$$

 C_N

	2y/b										
α (deg)	0	0.041	0.082	0.163	0.245	0.367	0.510	0.653	0.898	0.949	
$2 \cdot 1 \\ 4 \cdot 2 \\ 6 \cdot 3 \\ 8 \cdot 4 \\ 10 \cdot 5$	$ \begin{array}{c} 0 \cdot 120 \\ 0 \cdot 239 \\ 0 \cdot 357 \\ 0 \cdot 476 \\ 0 \cdot 592 \end{array} $	$0.121 \\ 0.243 \\ 0.360 \\ 0.479 \\ 0.595$	0.127 0.249 0.368 0.484 0.599	$0.129 \\ 0.254 \\ 0.374 \\ 0.493 \\ 0.605$	$0.129 \\ 0.251 \\ 0.374 \\ 0.492 \\ 0.608$	$0.129 \\ 0.250 \\ 0.372 \\ 0.491 \\ 0.601$	$0.131 \\ 0.251 \\ 0.376 \\ 0.491 \\ 0.595$	0.125 0.246 0.364 0.477 0.582	0·192 0·410	0.087 0.170 0.254 0.336 0.395	

 C_T

		2y/b											
α (deg)	0	0.041	0.082	0.163	0.245	0.367	0.510	0.653	0.898	0.949			
$ \begin{array}{c} 0 \\ 2 \cdot 1 \\ 4 \cdot 2 \\ 6 \cdot 3 \\ 8 \cdot 4 \\ 10 \cdot 5 \end{array} $	0.044 0.043 0.042 0.039 0.035 0.030	$ \begin{array}{r} 0.014 \\ 0.012 \\ 0.007 \\ -0.001 \\ -0.012 \\ -0.025 \\ \end{array} $	$ \begin{array}{r} 0.007 \\ 0.005 \\ -0.002 \\ -0.013 \\ -0.027 \\ -0.045 \end{array} $	$ \begin{array}{r} 0.002 \\ -0.001 \\ -0.010 \\ -0.024 \\ -0.044 \\ -0.067 \end{array} $	$ \begin{array}{c} 0 \\ -0.003 \\ -0.012 \\ -0.027 \\ -0.047 \\ -0.071 \end{array} $	$ \begin{array}{r} -0.001 \\ -0.004 \\ -0.012 \\ -0.029 \\ -0.050 \\ -0.074 \end{array} $	$ \begin{array}{r} 0 \\ -0.003 \\ -0.013 \\ -0.030 \\ -0.050 \\ -0.075 \end{array} $	$ \begin{array}{r} -0.001 \\ -0.004 \\ -0.014 \\ -0.031 \\ -0.053 \\ -0.082 \end{array} $	$ \begin{array}{c} -0.009 \\ -0.016 \\ -0.067 \end{array} $	$ \begin{array}{c} -0.010 \\ -0.012 \\ -0.020 \\ -0.033 \\ -0.050 \\ -0.069 \end{array} $			

 C_L

	2y/b										
α (deg)	0	0.041	0.082	0.163	0.245	0.367	0.510	0.653	0.898	0.949	
$2 \cdot 1 \\ 4 \cdot 2 \\ 6 \cdot 3 \\ 8 \cdot 4 \\ 10 \cdot 5$	0.118 0.235 0.351 0.466 0.577	0.121 0.241 0.358 0.476 0.589	0.126 0.248 0.367 0.483 0.597	$0.129 \\ 0.253 \\ 0.374 \\ 0.494 \\ 0.607$	0.129 0.251 0.375 0.494 0.611	0.129 0.251 0.373 0.493 0.605	$\begin{array}{c} 0\cdot 131 \\ 0\cdot 251 \\ 0\cdot 377 \\ 0\cdot 493 \\ 0\cdot 599 \end{array}$	$\begin{array}{c} 0\cdot 125 \\ 0\cdot 246 \\ 0\cdot 365 \\ 0\cdot 480 \\ 0\cdot 587 \end{array}$	0.192 $$ 0.415	$\begin{array}{c} 0.087 \\ 0.171 \\ 0.256 \\ 0.340 \\ 0.401 \end{array}$	

TABLE	3-	-continued

	2y/b										
α (deg)	0	0:041	0.082	0.163	0.245	0.367	0.510	0.653	0.898	0.949	
$0 \\ 2 \cdot 1 \\ 4 \cdot 2 \\ 6 \cdot 3 \\ 8 \cdot 4 \\ 10 \cdot 5$	$\begin{array}{c} 0 \cdot 044 \\ 0 \cdot 047 \\ 0 \cdot 059 \\ 0 \cdot 078 \\ 0 \cdot 104 \\ 0 \cdot 138 \end{array}$	$\begin{array}{c} 0 \cdot 014 \\ 0 \cdot 016 \\ 0 \cdot 025 \\ 0 \cdot 039 \\ 0 \cdot 058 \\ 0 \cdot 084 \end{array}$	$\begin{array}{c} 0 \cdot 007 \\ 0 \cdot 010 \\ 0 \cdot 016 \\ 0 \cdot 028 \\ 0 \cdot 045 \\ 0 \cdot 065 \end{array}$	$\begin{array}{c} 0 \cdot 002 \\ 0 \cdot 004 \\ 0 \cdot 009 \\ 0 \cdot 017 \\ 0 \cdot 029 \\ 0 \cdot 044 \end{array}$	$0 \\ 0 \cdot 002 \\ 0 \cdot 007 \\ 0 \cdot 015 \\ 0 \cdot 026 \\ 0 \cdot 041$	$ \begin{array}{c} -0.001 \\ +0.001 \\ 0.006 \\ 0.012 \\ 0.023 \\ +0.037 \end{array} $	$0 \\ 0.002 \\ 0.006 \\ 0.012 \\ 0.022 \\ 0.035$	$ \begin{array}{c} -0.001 \\ +0.001 \\ 0.004 \\ 0.009 \\ 0.016 \\ +0.026 \end{array} $	$ \begin{array}{c} -0.009 \\ -0.002 \\ -0.002 \\ -0.009 \\ +0.009 \end{array} $	$ \begin{array}{r} -0.010 \\ -0.009 \\ -0.007 \\ -0.005 \\ -0.001 \\ +0.004 \\ \end{array} $	

h/c

	2y/b										
α (deg)	0	0.041	0.082	0.163	0.245	0.367	0.510	0.653	0.898	0.949	
$\begin{array}{c} 0 \\ \text{extrapol.} \\ 2 \cdot 1 \\ 4 \cdot 2 \\ 6 \cdot 3 \\ 8 \cdot 4 \\ 10 \cdot 5 \end{array}$	0.368 0.368 0.367 0.362 0.363 0.363	$ \begin{array}{c} 0.320 \\$	$\begin{array}{c} 0.291 \\ \\ 0.293 \\ 0.287 \\ 0.291 \\ 0.292 \end{array}$	$ \begin{array}{c} 0.265 \\$	$0.253 \\ \\ 0.254 \\ 0.254 \\ 0.252 \\ 0.251$	0.243 0.242 0.242 0.240 0.241 0.239	0.240 $$	0.236 0.234 0.235 0.233 0.234 0.234 0.233	0.217 $$	0.273 $$ 0.267 0.267 0.261 0.254	

TABLE 4

Coefficients of Total Lift and Drag from Pressure Measurements

Wing A

α (deg)	\vec{C}_L	\overline{C}_D .
$ \begin{array}{c} 2 \cdot 1 \\ 4 \cdot 2 \\ 6 \cdot 3 \\ 8 \cdot 4 \\ 10 \cdot 5 \end{array} $	$\begin{array}{c} 0 \cdot 121 \\ 0 \cdot 238 \\ 0 \cdot 350 \\ 0 \cdot 456 \\ 0 \cdot 559 \end{array}$	$\begin{array}{c}$

TABLE 5

Pressure Coefficients on Wing B with Modified Thickness Distribution at the Centre

y = 0

 C_{p}

$$\varphi = 45 \deg$$

$$A = 5 \cdot 0$$

Upper surface

	α (deg)									
x/c	0	2.1	4.2	6.2	8.3	10.4				
$\begin{array}{c} 0\\ 0\cdot 01\\ 0\cdot 03\\ 0\cdot 08\\ 0\cdot 15\\ 0\cdot 225\\ 0\cdot 35\\ 0\cdot 50\\ 0\cdot 65\\ 0\cdot 75\\ 0\cdot 95\end{array}$	$\begin{array}{c} +1\cdot005\\0\cdot510\\+0\cdot225\\-0\cdot100\\-0\cdot165\\-0\cdot240\\-0\cdot250\\-0\cdot180\\-0\cdot105\\-0\cdot070\\+0\cdot035\end{array}$	$\begin{array}{c} +1\cdot 005\\ 0\cdot 410\\ +0\cdot 110\\ -0\cdot 205\\ -0\cdot 250\\ -0\cdot 320\\ -0\cdot 315\\ -0\cdot 230\\ -0\cdot 145\\ -0\cdot 105\\ +0\cdot 025\end{array}$	$\begin{array}{r} +0.995\\ +0.295\\ -0.015\\ -0.310\\ -0.335\\ -0.400\\ -0.380\\ -0.270\\ -0.180\\ -0.130\\ +0.020\end{array}$	$\begin{array}{c} +0.950\\ +0.155\\ -0.165\\ -0.430\\ -0.440\\ -0.490\\ -0.450\\ -0.325\\ -0.220\\ -0.165\\ +0.005\end{array}$	$\begin{array}{c} +0\cdot 910\\ +0\cdot 030\\ -0\cdot 285\\ -0\cdot 535\\ -0\cdot 525\\ -0\cdot 565\\ -0\cdot 565\\ -0\cdot 370\\ -0\cdot 250\\ -0\cdot 190\\ 0\end{array}$	$\begin{array}{c} +0.845\\ -0.120\\ -0.440\\ -0.645\\ -0.605\\ -0.640\\ -0.575\\ -0.425\\ -0.285\\ -0.220\\ -0.015\end{array}$				

Lower surface

ļ

C_p

	α (deg)										
x/c	0	2.1	4.2	6.2	8.3	10.4					
$\begin{array}{c} 0\cdot 01 \\ 0\cdot 03 \\ 0\cdot 08 \\ 0\cdot 15 \\ 0\cdot 225 \\ 0\cdot 35 \\ 0\cdot 50 \\ 0\cdot 65 \\ 0\cdot 75 \\ 0\cdot 85 \\ 0\cdot 95 \end{array}$	$\begin{array}{c} +0.540 \\ +0.165 \\ -0.105 \\ -0.105 \\ -0.240 \\ -0.240 \\ -0.195 \\ -0.120 \\ -0.070 \\ -0.045 \\ +0.020 \end{array}$	$\begin{array}{c} +0.650\\ 0.285\\ +0.010\\ -0.065\\ -0.145\\ -0.165\\ -0.135\\ -0.065\\ -0.030\\ -0.005\\ +0.040\end{array}$	$\begin{array}{c} +0.745\\ 0.400\\ 0.125\\ +0.035\\ -0.055\\ -0.085\\ -0.065\\ -0.015\\ +0.015\\ 0.020\\ +0.055\end{array}$	$\begin{array}{c} +0.825\\ 0.510\\ 0.225\\ 0.130\\ +0.035\\ -0.005\\ 0\\ +0.035\\ 0.055\\ 0.035\\ +0.075\end{array}$	$\begin{array}{c} 0 \cdot 890 \\ 0 \cdot 605 \\ 0 \cdot 320 \\ 0 \cdot 215 \\ 0 \cdot 125 \\ 0 \cdot 065 \\ 0 \cdot 065 \\ 0 \cdot 085 \\ 0 \cdot 100 \\ 0 \cdot 080 \\ 0 \cdot 105 \end{array}$	$\begin{array}{c} 0.945\\ 0.685\\ 0.405\\ 0.290\\ 0.200\\ 0.135\\ 0.120\\ 0.135\\ 0.140\\ 0.145\\ 0.120\\ \end{array}$					

TABLE 5—continued

 $y/c = 0 \cdot 1$

2y/b = 0.041

Upper surface

......

C_p

	α (deg)										
x/c	0	2.1	4.2	6.2	8.3	10.4					
$\begin{array}{c} 0\\ 0\cdot 01\\ 0\cdot 03\\ 0\cdot 08\\ 0\cdot 15\\ 0\cdot 225\\ 0\cdot 35\\ 0\cdot 50\\ 0\cdot 65\\ 0\cdot 75\\ 0\cdot 85\\ 0\cdot 95\end{array}$	$\begin{array}{c} +0\cdot 470\\ 0\cdot 150\\ -0\cdot 070\\ -0\cdot 185\\ -0\cdot 245\\ -0\cdot 245\\ -0\cdot 245\\ -0\cdot 240\\ -0\cdot 180\\ -0\cdot 075\\ -0\cdot 050\\ +0\cdot 010\\ -\end{array}$	$\begin{array}{c} +0\cdot 465\\ -0\cdot 020\\ -0\cdot 235\\ -0\cdot 305\\ -0\cdot 350\\ -0\cdot 350\\ -0\cdot 310\\ -0\cdot 205\\ -0\cdot 110\\ -0\cdot 070\\ -0\cdot 005\\ -0\cdot 005\\ -0\end{array}$	$\begin{array}{c} +0\cdot 395\\ -0\cdot 210\\ -0\cdot 410\\ -0\cdot 440\\ -0\cdot 455\\ -0\cdot 440\\ -0\cdot 380\\ -0\cdot 245\\ -0\cdot 135\\ -0\cdot 135\\ -0\cdot 090\\ -0\cdot 020\\ -\end{array}$	$\begin{array}{c} +0\cdot 245\\ -0\cdot 475\\ -0\cdot 630\\ -0\cdot 585\\ -0\cdot 580\\ -\\ -\\ -\\ -0\cdot 295\\ -0\cdot 170\\ -0\cdot 115\\ -0\cdot 035\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$	$\begin{array}{c} +0\cdot 035\\ -0\cdot 735\\ -0\cdot 830\\ -0\cdot 730\\ -0\cdot 685\\ -0\cdot 580\\ -0\cdot 455\\ -0\cdot 335\\ -0\cdot 200\\ -0\cdot 135\\ -0\cdot 050\\ -0\end{array}$	$\begin{array}{c} -0.250 \\ -1.030 \\ -1.060 \\ -0.905 \\ -0.760 \\ -0.650 \\ -0.525 \\ -0.385 \\ -0.235 \\ -0.165 \\ -0.060 \\ -\end{array}$					

Lower surface

 C_{p}

	α (deg)							
x/c	0	2.1	4.2	6.2	8.3	10.4		
$\begin{array}{c} 0 \cdot 01 \\ 0 \cdot 03 \\ 0 \cdot 08 \\ 0 \cdot 15 \\ 0 \cdot 225 \\ 0 \cdot 35 \\ 0 \cdot 50 \\ 0 \cdot 65 \\ 0 \cdot 75 \\ 0 \cdot 85 \\ 0 \cdot 95 \end{array}$	$\begin{array}{c} +0\cdot 140 \\ -0\cdot 075 \\ -0\cdot 200 \\ -0\cdot 255 \\ -0\cdot 270 \\ -0\cdot 250 \\ -0\cdot 165 \\ -0\cdot 080 \\ -0\cdot 040 \\ 0 \\ +0\cdot 035 \end{array}$	$\begin{array}{c} +0\cdot 285 \\ +0\cdot 090 \\ -0\cdot 070 \\ -0\cdot 145 \\ -0\cdot 175 \\ -0\cdot 175 \\ -0\cdot 035 \\ -0\cdot 005 \\ +0\cdot 030 \\ +0\cdot 055 \end{array}$	$\begin{array}{c} +0\cdot 410\\ 0\cdot 230\\ +0\cdot 060\\ -0\cdot 040\\ -0\cdot 085\\ -0\cdot 105\\ -0\cdot 060\\ +0\cdot 005\\ 0\cdot 035\\ 0\cdot 060\\ +0\cdot 070\end{array}$	$\begin{array}{c} +0\cdot495\\ 0\cdot350\\ 0\cdot180\\ 0\cdot065\\ +0\cdot010\\ -0\cdot025\\ +0\cdot020\\ 0\cdot050\\ 0\cdot070\\ 0\cdot085\\ +0\cdot085\end{array}$	$\begin{array}{c} 0.550\\ 0.450\\ 0.280\\ 0.165\\ 0.100\\ 0.050\\ \hline \\ 0.095\\ 0.110\\ 0.115\\ 0.100\\ \end{array}$	$\begin{array}{c} 0.565\\ 0.510\\ 0.360\\ 0.245\\ 0.170\\ 0.110\\ 0.105\\ 0.130\\ 0.135\\ 0.135\\ 0.110\\ \end{array}$		

TABLE 5—continued

$$y/c = 0 \cdot 4$$

2y/b = 0.163

Upper surface

 C_{p}

	α (deg)							
x/c	0	2.1	4.2	6.2	8.3	10.4		
$\begin{array}{c} 0\\ 0\cdot01\\ 0\cdot03\\ 0\cdot08\\ 0\cdot15\\ 0\cdot225\\ 0\cdot35\\ 0\cdot50\\ 0\cdot65\\ 0\cdot75\\ 0\cdot85\\ 0\cdot95\\ \end{array}$	$\begin{array}{c} +0\cdot 495\\ +0\cdot 115\\ -0\cdot 045\\ -0\cdot 200\\ -0\cdot 240\\ -0\cdot 265\\ -0\cdot 250\\ -0\cdot 170\\ -0\cdot 055\\ -0\cdot 010\\ +0\cdot 035\\ +0\cdot 065\end{array}$	$\begin{array}{c} +0\cdot 440 \\ -0\cdot 155 \\ -0\cdot 275 \\ -0\cdot 365 \\ -0\cdot 365 \\ -0\cdot 325 \\ \hline \\ -0\cdot 080 \\ -0\cdot 025 \\ +0\cdot 030 \\ +0\cdot 070 \end{array}$	$\begin{array}{c} +0\cdot 245\\ -0\cdot 490\\ -0\cdot 540\\ -0\cdot 545\\ -0\cdot 490\\ -0\cdot 460\\ -0\cdot 395\\ -0\cdot 210\\ -0\cdot 105\\ -0\cdot 035\\ +0\cdot 025\\ +0\cdot 080\\ \end{array}$	$\begin{array}{c} -0.140 \\ -0.920 \\ -0.855 \\ -0.740 \\ \hline \\ -0.540 \\ -0.445 \\ -0.255 \\ -0.130 \\ -0.050 \\ +0.015 \\ +0.075 \\ \end{array}$	$\begin{array}{c} -0.640 \\ -1.365 \\ -1.190 \\ -0.950 \\ \hline \\ -0.610 \\ -0.505 \\ -0.290 \\ -0.145 \\ -0.060 \\ +0.010 \\ +0.070 \\ \end{array}$	$\begin{array}{c} -1\cdot 295 \\ -1\cdot 900 \\ -1\cdot 620 \\ -0\cdot 830 \\ -0\cdot 725 \\ -0\cdot 575 \\ -0\cdot 335 \\ -0\cdot 175 \\ -0\cdot 085 \\ -0\cdot 015 \\ +0\cdot 040 \end{array}$		

Lower surface

 C_p

	α (deg)							
x/c	0	2.1	4.2	6.2	8.3	10.4		
$\begin{array}{c} 0 \cdot 01 \\ 0 \cdot 03 \\ 0 \cdot 08 \\ 0 \cdot 15 \\ 0 \cdot 225 \\ 0 \cdot 35 \\ 0 \cdot 50 \\ 0 \cdot 65 \\ 0 \cdot 75 \\ 0 \cdot 85 \\ 0 \cdot 95 \end{array}$	$\begin{array}{c} +0\cdot090\\ -0\cdot130\\ -0\cdot230\\ -0\cdot270\\ -0\cdot285\\ -0\cdot265\\ -0\cdot180\\ -0\cdot070\\ -0\cdot040\\ +0\cdot025\\ +0\cdot060\\ \end{array}$	$\begin{array}{c} +0\cdot 300\\ +0\cdot 085\\ -0\cdot 070\\ -0\cdot 140\\ -0\cdot 175\\ -0\cdot 185\\ -0\cdot 125\\ -0\cdot 025\\ -0\cdot 010\\ +0\cdot 050\\ +0\cdot 075\end{array}$	$\begin{array}{c} +0\cdot 440 \\ 0\cdot 260 \\ +0\cdot 080 \\ -0\cdot 020 \\ -0\cdot 075 \\ -0\cdot 110 \\ -0\cdot 060 \\ +0\cdot 005 \\ 0\cdot 020 \\ 0\cdot 065 \\ +0\cdot 080 \end{array}$	$\begin{array}{c} +0.515\\ 0.390\\ 0.205\\ 0.095\\ +0.025\\ -0.035\\ -0.005\\ +0.040\\ 0.040\\ 0.075\\ +0.080\end{array}$	$\begin{array}{c} 0\cdot 515 \\ \cdot 0\cdot 480 \\ 0\cdot 315 \\ 0\cdot 195 \\ 0\cdot 115 \\ 0\cdot 040 \\ 0\cdot 055 \\ 0\cdot 075 \\ 0\cdot 065 \\ 0\cdot 100 \\ 0\cdot 085 \end{array}$	$\begin{array}{c} 0\cdot 445 \\ 0\cdot 520 \\ 0\cdot 395 \\ 0\cdot 275 \\ 0\cdot 185 \\ 0\cdot 100 \\ 0\cdot 085 \\ 0\cdot 110 \\ 0\cdot 095 \\ 0\cdot 110 \\ 0\cdot 085 \end{array}$		

TABLE 6

Coefficients of Local Normal Force, Tangential Force, Lift, Drag and Aerodynamic Centre Position

Wing B with modified thickness distribution at the centre

 $\varphi = 45 \deg$

 $A = 5 \cdot 0$

. .

 C_N

a (doa)	2y/b						
	0	0.041	0.163				
$2 \cdot 1$ $4 \cdot 2$ $6 \cdot 3$ $8 \cdot 4$ $10 \cdot 5$	$0.121 \\ 0.239 \\ 0.358 \\ 0.475 \\ 0.591$	$\begin{array}{c} 0 \cdot 122 \\ 0 \cdot 244 \\ 0 \cdot 362 \\ 0 \cdot 475 \\ 0 \cdot 588 \end{array}$	$0.136 \\ 0.263 \\ 0.387 \\ 0.511 \\ 0.631$				

a (dea)	2y/b						
w (ueg)	0	0.041	0.163				
$0 \\ 2 \cdot 1 \\ 4 \cdot 2 \\ 6 \cdot 3 \\ 8 \cdot 4 \\ 10 \cdot 5$	0.064 0.063 0.062 0.059 0.055 0.050	$ \begin{array}{r} +0.010 \\ 0.009 \\ +0.005 \\ -0.002 \\ -0.012 \\ -0.024 \end{array} $	$ \begin{array}{r} 0 \\ -0.003 \\ -0.012 \\ -0.025 \\ -0.043 \\ -0.064 \end{array} $				

 C_T

 C_L

v (deg)		2y/b	
x (ueg)	0	0.041	0.163
$2 \cdot 1$ $4 \cdot 2$ $6 \cdot 3$ $8 \cdot 4$ $10 \cdot 5$	$0.119 \\ 0.234 \\ 0.349 \\ 0.462 \\ 0.572$	$\begin{array}{c} 0 \cdot 122 \\ 0 \cdot 243 \\ 0 \cdot 360 \\ 0 \cdot 472 \\ 0 \cdot 583 \end{array}$	$\begin{array}{c} 0.136\\ 0.263\\ 0.387\\ 0.512\\ 0.632 \end{array}$

1	
U	\mathcal{D}
	\mathcal{L}

or (dog)	2y/b				
ox (ueg)	0	0.041	0.163		
$0 \\ 2 \cdot 1 \\ 4 \cdot 2 \\ 6 \cdot 3 \\ 8 \cdot 4 \\ 10 \cdot 5$	$\begin{array}{c} 0 \cdot 064 \\ 0 \cdot 067 \\ 0 \cdot 079 \\ 0 \cdot 098 \\ 0 \cdot 125 \\ 0 \cdot 156 \end{array}$	$\begin{array}{c} 0.010\\ 0.014\\ 0.023\\ 0.038\\ 0.057\\ 0.084\end{array}$	$\begin{array}{c} 0 \\ 0 \cdot 002 \\ 0 \cdot 008 \\ 0 \cdot 018 \\ 0 \cdot 033 \\ 0 \cdot 051 \end{array}$		

h/c

er (dag)	2y/b				
	0	0.041	0 · 163		
0 extrapol.	0.353	0.318	0.265		
$2\cdot 1$	_	—			
$4 \cdot 2$	0.355	0.316	0.265		
6.3	0.355	0.318	0.265		
$8 \cdot 4$	0.356	0.319	0.266		
10.5	0.357	0.320	0.266		

TABLE 7

Pressure Coefficients on Wing C with Twisted and Cambered Centre Section

y = 0

 C_{p}

 $\varphi = 45 \deg$

A = 5

Upper surface

	α (deg)							
x/c	-4.0	-1.9	-0.1	+2.3	$+4\cdot 4$	+6.4	+8.5	+10.6
$\begin{array}{c} 0 \\ 0 \cdot 01 \\ 0 \cdot 03 \\ 0 \cdot 08 \\ 0 \cdot 15 \\ 0 \cdot 225 \\ 0 \cdot 35 \\ 0 \cdot 50 \\ 0 \cdot 65 \\ 0 \cdot 75 \\ 0 \cdot 85 \\ 0 \cdot 95 \end{array}$	$\begin{array}{c} +1\cdot00\\ 0\cdot370\\ 0\cdot160\\ 0\cdot055\\ +0\cdot035\\ -0\cdot035\\ -0\cdot075\\ -0\cdot110\\ -0\cdot070\\ -0\cdot045\\ -0\cdot015\\ +0\cdot015\end{array}$	$\begin{array}{c} +0.985\\ 0.235\\ +0.040\\ -0.050\\ -0.055\\ -0.115\\ -0.145\\ -0.170\\ -0.115\\ -0.085\\ -0.050\\ 0\end{array}$	$\begin{array}{r} +0.965\\ +0.115\\ -0.060\\ -0.125\\ -0.125\\ -0.120\\ -0.185\\ -0.200\\ -0.220\\ -0.155\\ -0.115\\ -0.070\\ -0.015\end{array}$	$\begin{array}{c} +0.905\\ -0.070\\ -0.215\\ -0.250\\ -0.220\\ -0.270\\ -0.270\\ -0.275\\ -0.205\\ -0.160\\ -0.105\\ -0.040\end{array}$	$\begin{array}{c} +0.830\\ -0.240\\ -0.345\\ -0.350\\ -0.350\\ -0.340\\ -0.335\\ -0.325\\ -0.240\\ -0.190\\ -0.125\\ -0.045\end{array}$	$\begin{array}{c} +0.740\\ -0.415\\ -0.490\\ -0.450\\ -0.375\\ -0.420\\ -0.395\\ -0.380\\ -0.280\\ -0.225\\ -0.150\\ -0.065\end{array}$	$\begin{array}{c} +0.620\\ -0.590\\ -0.615\\ -0.535\\ -0.445\\ -0.500\\ -0.460\\ -0.435\\ -0.320\\ -0.250\\ -0.175\\ -0.075\end{array}$	$\begin{array}{c} +0.505\\ -0.755\\ -0.735\\ -0.635\\ -0.520\\ -0.575\\ -0.510\\ -0.480\\ -0.350\\ -0.275\\ -0.190\\ -0.080\end{array}$

Lower surface

\sim	
U_{h}	
P	

	lpha (deg)							
x/c	-4.0	-1.9	-0.1	+2.3	+4.4	+6·4	+8.5	+10.6
$\begin{array}{c} 0\cdot 01 \\ 0\cdot 03 \\ 0\cdot 08 \\ 0\cdot 15 \\ 0\cdot 225 \\ 0\cdot 35 \\ 0\cdot 50 \\ 0\cdot 65 \\ 0\cdot 75 \\ 0\cdot 85 \\ 0\cdot 95 \end{array}$	$\begin{array}{c} +0.565\\ +0.180\\ -0.110\\ -0.260\\ -0.335\\ -0.375\\ -0.350\\ -0.270\\ -0.200\\ -0.060\end{array}$	$\begin{array}{c} +0.670\\ 0.290\\ +0.015\\ -0.155\\ -0.240\\ -0.295\\ -0.280\\ -0.225\\ -0.180\\ -0.045\end{array}$	$\begin{array}{c} +0.745\\ 0.390\\ +0.105\\ -0.075\\ -0.170\\ -0.240\\ -0.240\\ -0.185\\ -0.150\\ \hline -0.030\end{array}$	$\begin{array}{c} +0.830\\ 0.515\\ 0.225\\ +0.040\\ -0.060\\ -0.150\\ -0.165\\ -0.125\\ -0.100\\ -0.065\\ -0.005\end{array}$	$\begin{array}{c} +0.895\\ 0.615\\ 0.330\\ 0.140\\ +0.035\\ -0.070\\ -0.100\\ -0.075\\ -0.055\\ -0.025\\ +0.010\\ \end{array}$	$\begin{array}{c} +0.940\\ 0.700\\ 0.420\\ 0.225\\ 0.115\\ +0.005\\ -0.040\\ -0.030\\ -0.015\\ +0.005\\ +0.035\end{array}$	$\begin{array}{c} 0.975\\ 0.775\\ 0.515\\ 0.320\\ 0.205\\ 0.085\\ 0.030\\ 0.030\\ 0.035\\ 0.050\\ 0.060\\ \end{array}$	$\begin{array}{c} 0 \cdot 995 \\ 0 \cdot 835 \\ 0 \cdot 590 \\ 0 \cdot 400 \\ 0 \cdot 275 \\ 0 \cdot 150 \\ 0 \cdot 090 \\ 0 \cdot 075 \\ 0 \cdot 075 \\ 0 \cdot 085 \\ 0 \cdot 085 \\ 0 \cdot 085 \end{array}$

 C_{p}

$$y/c = 0.13$$

2y/b = 0.053

Upper surface

	α (deg)							
_x/c	-4.0	-1.9	-0.1	+2.3	+4.4	+6.4	.+8.5	+10.6
$\begin{array}{c} 0 \\ 0 \cdot 01 \\ 0 \cdot 03 \\ 0 \cdot 08 \\ 0 \cdot 15 \\ 0 \cdot 225 \\ 0 \cdot 35 \\ 0 \cdot 50 \\ 0 \cdot 65 \\ 0 \cdot 75 \\ 0 \cdot 85 \\ 0 \cdot 95 \end{array}$	$\begin{array}{c} +0\cdot 490\\ 0\cdot 220\\ 0\cdot 125\\ +0\cdot 015\\ -0\cdot 045\\ -0\cdot 100\\ -0\cdot 145\\ -0\cdot 100\\ -0\cdot 060\\ +0\cdot 015\\ 0\cdot 035\\ +0\cdot 055\end{array}$	$\begin{array}{c} +0.490 \\ +0.030 \\ -0.035 \\ -0.115 \\ -0.145 \\ -0.195 \\ -0.220 \\ -0.160 \\ -0.085 \\ -0.040 \\ -\end{array}$	$\begin{array}{c} +0\cdot 435\\ -0\cdot 155\\ -0\cdot 180\\ -0\cdot 220\\ -0\cdot 235\\ -0\cdot 260\\ -0\cdot 275\\ \hline\\ -0\cdot 120\\ -0\cdot 050\\ +0\cdot 050\\ +0\cdot 050\\ \end{array}$	$\begin{array}{r} +0\cdot270\\ -0\cdot450\\ -0\cdot405\\ -0\cdot375\\ -0\cdot350\\ -0\cdot365\\ -0\cdot365\\ -0\cdot240\\ -0\cdot160\\ -0\cdot080\\ -0\cdot025\\ +0\cdot045\end{array}$	$\begin{array}{r} +0\cdot035\\ -0\cdot750\\ -0\cdot625\\ -0\cdot515\\ -0\cdot455\\ -0\cdot425\\ -0\cdot400\\ -0\cdot285\\ -0\cdot195\\ -0\cdot195\\ -0\cdot040\\ +0\cdot040\\ \end{array}$	$\begin{array}{c} -0.275\\ -1.075\\ -0.860\\ -0.635\\ -0.550\\ -0.520\\ -0.465\\ -0.335\\ -0.225\\ -0.135\\ -0.055\\ +0.015\end{array}$	$\begin{array}{c} -0.710 \\ -1.455 \\ -1.130 \\ -0.780 \\ -0.655 \\ -0.615 \\ -0.540 \\ -0.385 \\ -0.260 \\ -0.165 \\ -0.075 \\ +0.020 \end{array}$	$\begin{array}{c} -1\cdot 160 \\ -1\cdot 835 \\ -1\cdot 280 \\ -0\cdot 920 \\ -0\cdot 750 \\ -0\cdot 695 \\ -0\cdot 600 \\ -0\cdot 430 \\ -0\cdot 290 \\ -0\cdot 195 \\ -0\cdot 100 \\ +0\cdot 010 \end{array}$

Lower surface

0
C.

	lpha (deg)							
x/c	-4.0	-1.9	-0.1	+2.3	+4.4	+6.4	+8.5	+10.6
$\begin{array}{c} 0.01 \\ 0.03 \\ 0.08 \\ 0.15 \\ 0.225 \\ 0.35 \\ 0.50 \\ 0.65 \\ 0.75 \\ 0.85 \\ 0.95 \end{array}$	$\begin{array}{c} +0\cdot 005 \\ -0\cdot 180 \\ -0\cdot 350 \\ -0\cdot 390 \\ -0\cdot 410 \\ -0\cdot 380 \\ -0\cdot 305 \\ -0\cdot 195 \\ -0\cdot 120 \\ -0\cdot 045 \\ +0\cdot 040 \end{array}$	$\begin{array}{r} +0.205 \\ +0.010 \\ -0.205 \\ -0.270 \\ -0.315 \\ -0.310 \\ -0.245 \\ -0.160 \\ -0.095 \\ -0.030 \\ +0.040 \end{array}$	$\begin{array}{r} +0.320 \\ +0.135 \\ -0.100 \\ -0.190 \\ -0.240 \\ -0.250 \\ -0.205 \\ -0.135 \\ -0.070 \\ -0.020 \\ +0.040 \end{array}$	$\begin{array}{r} +0.450\\ 0.290\\ +0.045\\ -0.070\\ -0.140\\ -0.170\\ -0.145\\ -0.095\\ -0.045\\ +0.005\\ +0.045\end{array}$	$\begin{array}{c} +0.520\\ 0.405\\ 0.165\\ +0.035\\ -0.050\\ -0.085\\ -0.050\\ -0.020\\ +0.025\\ +0.055\end{array}$	$\begin{array}{r} +0.545\\ 0.485\\ 0.260\\ 0.125\\ +0.030\\ -0.035\\ -0.035\\ -0.010\\ +0.015\\ 0.045\\ +0.055\end{array}$	$\begin{array}{c} 0.535\\ 0.545\\ 0.360\\ 0.220\\ 0.115\\ 0.045\\ 0.025\\ 0.035\\ 0.050\\ 0.050\\ 0.070\\ 0.070\\ 0.070\\ \end{array}$	$\begin{array}{c} 0.495\\ 0.585\\ 0.440\\ 0.300\\ 0.195\\ 0.110\\ 0.075\\ 0.075\\ 0.080\\ 0.100\\ 0.090\\ \end{array}$

y/c = 0.6

 $2y/b = 0 \cdot 245$

Upper surface

 C_{p}

	lpha (deg)							
x/c	-4.0	-1.9	-0.1	+2.3	+4.4	+6.4	+8.5	+10.6
$\begin{array}{c} 0\\ 0\cdot 01\\ 0\cdot 03\\ 0\cdot 08\\ 0\cdot 15\\ 0\cdot 225\\ 0\cdot 35\\ 0\cdot 50\\ 0\cdot 65\\ 0\cdot 75\\ 0\cdot 85\\ 0\cdot 95\end{array}$	$\begin{array}{c} +0\cdot 245\\ 0\cdot 370\\ 0\cdot 240\\ +0\cdot 070\\ -0\cdot 035\\ -0\cdot 100\\ -0\cdot 125\\ -0\cdot 080\\ -0\cdot 020\\ 0\\ +0\cdot 035\\ +0\cdot 080\end{array}$	$\begin{array}{c} +0\cdot 445\\ 0\cdot 180\\ +0\cdot 045\\ -0\cdot 085\\ -0\cdot 155\\ -0\cdot 200\\ -0\cdot 195\\ -0\cdot 135\\ -0\cdot 045\\ -0\cdot 015\\ +0\cdot 020\\ +0\cdot 075\end{array}$	$\begin{array}{c} +0\cdot 495 \\ -0\cdot 040 \\ -0\cdot 135 \\ -0\cdot 225 \\ -0\cdot 260 \\ -0\cdot 285 \\ -0\cdot 260 \\ -0\cdot 180 \\ -0\cdot 075 \\ -0\cdot 030 \\ +0\cdot 005 \\ +0\cdot 065 \end{array}$	$\begin{array}{c} +0\cdot415\\ -0\cdot435\\ -0\cdot450\\ -0\cdot440\\ -0\cdot420\\ -0\cdot410\\ -0\cdot355\\ -0\cdot200\\ -0\cdot110\\ -0\cdot055\\ -0\cdot005\\ +0\cdot065\\ \end{array}$	$\begin{array}{c} +0.190\\ -0.850\\ -0.755\\ -0.635\\ -0.560\\ -0.510\\ -0.400\\ -0.240\\ -0.130\\ -0.060\\ -0.005\\ +0.065\end{array}$	$\begin{array}{c} -0.175 \\ -1.315 \\ -1.095 \\ -0.845 \\ \hline \\ -0.605 \\ -0.470 \\ -0.285 \\ -0.150 \\ -0.070 \\ -0.010 \\ +0.045 \\ \end{array}$	$\begin{array}{c} -0.720 \\ -1.915 \\ -1.535 \\ -0.820 \\ -0.715 \\ -0.535 \\ -0.320 \\ -0.160 \\ -0.080 \\ -0.020 \\ +0.030 \end{array}$	$\begin{array}{c} -1\cdot 320 \\ -2\cdot 485 \\ -2\cdot 015 \\ -1\cdot 255 \\ -0\cdot 955 \\ -0\cdot 805 \\ -0\cdot 585 \\ -0\cdot 330 \\ -0\cdot 170 \\ -0\cdot 095 \\ -0\cdot 050 \\ -0\cdot 015 \end{array}$

Lower surface

 C_{p}

	α (deg)							
x/c	-4.0	-1.9	-0:1	$+2\cdot 3$	+4.4	+6.4	+8.5	+10.6
$\begin{array}{c} 0\cdot 01 \\ 0\cdot 03 \\ 0\cdot 08 \\ 0\cdot 15 \\ 0\cdot 225 \\ 0\cdot 35 \\ 0\cdot 50 \\ 0\cdot 65 \\ 0\cdot 75 \\ 0\cdot 85 \\ 0\cdot 95 \end{array}$	$\begin{array}{c} -0.405 \\ -0.560 \\ -0.510 \\ -0.510 \\ -0.490 \\ \hline \\ -0.240 \\ -0.110 \\ -0.050 \\ +0.005 \\ +0.065 \end{array}$	$\begin{array}{c} -0.045 \\ -0.255 \\ -0.340 \\ -0.375 \\ -0.380 \\ -0.325 \\ -0.085 \\ -0.085 \\ -0.040 \\ +0.005 \\ +0.060 \end{array}$	$\begin{array}{c} +0\cdot 165\\ -0\cdot 055\\ -0\cdot 195\\ -0\cdot 265\\ -0\cdot 295\\ -0\cdot 265\\ -0\cdot 170\\ -0\cdot 065\\ -0\cdot 030\\ +0\cdot 005\\ +0\cdot 055\end{array}$	$\begin{array}{c} +0\cdot 395\\ +0\cdot 185\\ -0\cdot 015\\ -0\cdot 120\\ -0\cdot 175\\ -0\cdot 185\\ -0\cdot 125\\ -0\cdot 030\\ -0\cdot 010\\ +0\cdot 020\\ +0\cdot 055\\ \end{array}$	$\begin{array}{c} +0\cdot 490\\ 0\cdot 340\\ +0\cdot 130\\ 0\\ -0\cdot 075\\ -0\cdot 115\\ -0\cdot 070\\ -0\cdot 005\\ +0\cdot 005\\ 0\cdot 030\\ +0\cdot 055\end{array}$	$\begin{array}{c} +0\cdot \dot{5}05\\ 0\cdot 440\\ 0\cdot 240\\ 0\cdot 100\\ +0\cdot 010\\ -0\cdot 050\\ -0\cdot 030\\ +0\cdot 020\\ 0\cdot 025\\ 0\cdot 040\\ +0\cdot 050\end{array}$	$\begin{array}{c} 0.440\\ 0.500\\ 0.340\\ 0.200\\ 0.100\\ 0.025\\ 0.025\\ 0.025\\ 0.050\\ 0.040\\ 0.050\\ 0.045\\ \end{array}$	$\begin{array}{c} 0.325\\ 0.520\\ 0.420\\ 0.285\\ 0.180\\ 0.085\\ 0.065\\ 0.085\\ 0.065\\ 0.065\\ 0.065\\ 0.060\\ 0.035\\ \end{array}$

TABLE 8

Coefficients of Local Normal Force, Tangential Force, Lift, Drag, Pitching Moment and Aerodynamic Centre Position

Wing C with twisted and cambered centre section

 $\varphi = 45 \deg$

$$A = 5 \cdot 0$$

 C_T

er (dog)		2y/b	
w (deg)	0	0.053	0.245
-4.0	-0.199	-0.205	-0.241
-1.9	-0.075	-0.078	-0.109
-0.1	+0.029	+0.025	+0.007
+2.3	0.167	0.161	0.157
$4 \cdot 4$	0.284	0.280	0.281
$6 \cdot 5$	0.401	0.397	0.403
$8 \cdot 6$	0.520	0.516	0.522
+10.7	+0.631	+0.630	+0.639

 C_N

 C_L

a (dea)		2y/b	
	0	0.053	0.245
$-4 \cdot 0 \\ -1 \cdot 9 \\ -0 \cdot 1 \\ +2 \cdot 3 \\ 4 \cdot 4 \\ 6 \cdot 5 \\ 8 \cdot 6 \\ +10 \cdot 7$	$\begin{array}{c} -0.196 \\ -0.074 \\ +0.029 \\ 0.165 \\ 0.279 \\ 0.391 \\ 0.504 \\ +0.607 \end{array}$	$\begin{array}{c} -0.205 \\ -0.078 \\ +0.025 \\ 0.161 \\ 0.280 \\ 0.394 \\ 0.512 \\ +0.623 \end{array}$	$\begin{array}{c} -0.242 \\ -0.109 \\ +0.007 \\ 0.157 \\ 0.281 \\ 0.403 \\ 0.523 \\ +0.641 \end{array}$

 C_m

er (dog)		2y/b	
or (meg)	0	0.053	0.245
$-4 \cdot 0$ -1 \cdot 9 -0 \cdot 1	+0.044 0.031 0.019	+0.025 0.018 0.011	0.002 0.003 0.002
$+2\cdot\hat{3}$ $4\cdot4$	$+0.003 \\ -0.010$	$+0.004 \\ -0.004$	$ \begin{array}{c c} 0.002 \\ 0.003 \\ 0.003 \end{array} $
	$ \begin{array}{c c} -0.024 \\ -0.041 \\ -0.052 \end{array} $	$ \begin{array}{c c} -0.012 \\ -0.021 \\ -0.032 \end{array} $	$ \begin{array}{c c} 0 \cdot 003 \\ 0 \cdot 005 \\ 0 \cdot 002 \end{array} $

$\begin{array}{c c} 0 & 0.053 & 0.245 \\ \hline -4.0 & 0.0316 & +0.0007 & -0.0124 \\ -1.9 & 0.0393 & 0.0076 & -0.00124 \\ -0.1 & 0.0456 & 0.0088 & -0.0000 \\ \end{array}$	a (dog)	2y/b					
$\begin{array}{c ccccc} -4 \cdot 0 & 0 \cdot 0316 & +0 \cdot 0007 & -0 \cdot 0124 \\ -1 \cdot 9 & 0 \cdot 0393 & 0 \cdot 0076 & -0 \cdot 0018 \\ -0 \cdot 1 & 0 \cdot 0456 & 0 \cdot 0088 & -0 \cdot 0008 \\ \end{array}$	w (ueg)	0	0.053	0.245			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -4 \cdot 0 \\ -1 \cdot 9 \\ -0 \cdot 1 \\ +2 \cdot 3 \\ 4 \cdot 4 \\ 6 \cdot 5 \\ 8 \cdot 6 \\ +10 \cdot 7 \end{array}$	$\begin{array}{c} 0.0316\\ 0.0393\\ 0.0456\\ 0.0521\\ 0.0559\\ 0.0613\\ 0.0632\\ 0.0655\end{array}$	$\begin{array}{c} +0\cdot 0007\\ 0\cdot 0076\\ 0\cdot 0088\\ 0\cdot 0091\\ +0\cdot 0054\\ -0\cdot 0012\\ -0\cdot 0123\\ -0\cdot 0220\end{array}$	$\begin{array}{c} -0 \cdot 0124 \\ -0 \cdot 0018 \\ -0 \cdot 0005 \\ -0 \cdot 0033 \\ -0 \cdot 0122 \\ -0 \cdot 0268 \\ -0 \cdot 0459 \\ -0 \cdot 0690 \end{array}$			

 C_D

0 0.053	
4.0 0.010 0.017	0.245
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0\cdot 004 \\ 0\cdot 002 \\ 0 \\ 0\cdot 003 \\ 0\cdot 010 \\ 0\cdot 020 \\ 0\cdot 034 \\ 0\cdot 050 \end{array}$

h/c

a (dea)		2y/b	
w (deg)	0	0.053	0.245
$ \begin{array}{c} 2 \cdot 3 \\ 4 \cdot 4 \\ 6 \cdot 5 \\ 8 \cdot 6 \\ 10 \cdot 7 \end{array} $	$\begin{array}{c} 0 \cdot 232 \\ 0 \cdot 286 \\ 0 \cdot 310 \\ 0 \cdot 328 \\ 0 \cdot 333 \end{array}$	$\begin{array}{c} 0 \cdot 225 \\ 0 \cdot 264 \\ 0 \cdot 280 \\ 0 \cdot 290 \\ 0 \cdot 300 \end{array}$	$\begin{array}{c} 0\cdot 239 \\ 0\cdot 240 \\ 0\cdot 242 \\ 0\cdot 241 \\ 0\cdot 241 \\ 0\cdot 247 \end{array}$

Fig. 2. Wing A. Chordwise lift distribution at various spanwise sections for $\alpha = 4 \cdot 2$ deg.

FIG. 5. Wing A. Spanwise lift distribution.

FIG. 6. Wing A. Chordwise position of aerodynamic centre.

FIG. 7. Wing A. Local drag coefficients.

FIG. 11. Wing C. Chordwise lift distributions at the centre section.

.

Balance and Pressure Measurements on Wings of Different Aspect Ratios

By

D. KÜCHEMANN, Dr.rer.nat.,

J. WEBER, Dr.rer.nat.

and

G. G. BREBNER, M.A.

Summary.—This Part contains the results of balance and pressure measurements on constant-chord wings of 45-deg sweepback. Together with wing A of Part I they provide data for aspect ratios 2, 3, 5 and infinity.

The results at low \overline{C}_L are analysed and used to verify assumptions made in the calculation method of Refs. 2 and 3. The growth of the boundary layer and its influence on the lift, drag and pitching moment are discussed. The effect of tip vortices on lift and drag is also discussed. The stall is investigated on the wing of aspect ratio 3.

1. Introduction.—This report deals with part of the work done in an investigation of the chordwise and spanwise pressure distribution of swept-back wings and the associated variations of lift, drag and pitching moment. It gives the results of pressure measurements on two wings of aspect ratios 2 and 3 and on a third wing spanning the tunnel, with balance measurements on the wing of aspect ratio 3 only. The results supplement those in Part I where the tests on the wing of aspect ratio 5 of this series have been described (Wing A of Part I).

The wings have constant chord and symmetrical wing section, and differ only in aspect ratio. Thus the complications introduced by taper, twist, camber, dihedral and varying thickness are avoided. Refs. 2 and 3 present a calculation method for the loading and pressure distributions on swept wings. This method is based on non-viscous flow but a constant is introduced into the lift slope of the two-dimensional unswept wing to represent the effect of viscosity. Calculations made on this basis are compared with the experimental results as C_L tends to zero, and the additional effects of boundary-layer thickness on the swept wing can then be separated. a 12 per cent infinite sheared wing in non-viscous flow, the theoretical value of the lift slope is $1 \cdot 14 \times 2\pi \cos \varphi$. Measurements of $\partial C_L / \partial \alpha$ on a two-dimensional unswept wing of the same section and at the same Reynolds number as used in this report gave an experimental value equal to $0.92 \times$ theoretical value, the difference being attributed to the effect of the boundary In this report, the same factor 0.92 to the two-dimensional lift slope is used in the laver. calculation of the swept wing local lift coefficients. A further report will be written explaining in detail the method of application of Refs. 2 and 3.

In section 3.1 the comparison of the low C_L results with the calculation method is discussed. The additional influence of the boundary layer, whose development is greater on the swept wing than in two-dimensional flow, is described in section 3.2, but the boundary-layer effects are sensitive to changes in Reynolds number and may be much smaller at full-scale Reynolds numbers. A later report will give results of experimental investigation of the boundary layer. Some earlier boundary-layer tests on a 59-deg swept wing are given in Ref. 4. The effect of the vortex configuration at the tip, which is formed before the actual stall is reached, is dealt with in section 3.3. Its influence becomes more apparent as aspect ratio decreases. Section 3.4 describes the stalling characteristics of the wing of aspect ratio 3. Some estimates of the local critical Mach numbers along the span, based on the measured isobar patterns are made in section 3.5. 2. Details of Models and Tests.—The tests described in this report were made in the No. 2 $11\frac{1}{2}$ -ft × $8\frac{1}{2}$ -ft Wind Tunnel at the R.A.E. between March 1949 and August 1950. They consisted mainly of pressure measurements on a constant-chord wing of 45-deg sweep which originally spanned the tunnel, with its centre at the middle of the tunnel: it was successively cut down to aspect ratios 5, 3* and 2, being then rigged horizontally. Balance measurements of lift, drag and pitching moment were also made on the pressure-plotting wing of aspect ratio 3 and on a solid wing of identical dimensions (but without the tip distortion necessary to fair the pressure tubes).

The pressure-plotting model is shown in Fig. 1. The chord was 20 inches and the wing had the same symmetrical section throughout the span. Pressure measurements were made using rows of flush holes in the wing surface at different spanwise stations, *see* Table 1. The wings of finite aspect ratio were fitted with curved leading edge tips as described in Ref. 6; this shape minimises the forward swing of the isobars at the tip.

The design wing section along wind was RAE 101, 12 per cent thick, the co-ordinates of which are given in Part I.

All pressure measurements were made at a speed of 163 ft/sec giving a Reynolds number of 1.71×10^6 based on the wing chord. Total pitching-moment coefficients were calculated about the mean quarter-chord line for each finite wing. Balance measurements on the pressure plotting wing of aspect ratio 3 were also made at a Reynolds number of 1.71×10^6 , the model being rigged on wires. The balance measurements on the solid wing of aspect ratio 3 were made at Reynolds numbers of 1.05×10^6 , 1.71×10^6 , and 2.95×10^6 , the model being mounted on struts. These struts introduce a very bad asymmetry of flow, and their redesign is being considered. The corrections applied, though large, are checked by the agreement at the Reynolds number 1.71×10^6 with the results for the pressure-plotting wing on wires.

It was necessary to make special corrections to the results of the tests on the swept wing spanning the tunnel in order to represent the effect of infinite aspect ratio. Near the tunnel walls the lift and induced drag obtained from the pressure measurements are different from those on an infinite swept wing, and must be corrected for the reflection plate effect of the walls. These corrections were estimated by considering the loading of a wing alternately swept back and swept forward at intervals of half the tunnel width, and using the calculation of Ref. 2. The corrections are given in Table 11.

3. Results and Discussion.—The measured values of C_p are given in Tables 2, 5 and 9. Coefficients of total lift, drag and pitching moment obtained from pressure measurements on the wings of aspect ratio 3 and 2 are given in Tables 4 and 7, and Table 8 contains the lift, drag and pitching-moment coefficients obtained from balance measurements on the wings of aspect ratio 3.

The illustrations are arranged in the following order: Figs. 2 to 9 show pressure distributions, in Figs. 10 to 20 lift coefficients and the positions of the aerodynamic centre are plotted, with pitching-moment coefficients in Figs. 21 and 22. Drag coefficients are shown in Figs. 23 to 30, and isobar patterns and critical Mach numbers in Figs. 31 to 33.

3.1. Comparison of Calculations^{2,3} with Results at Small Values of C_L .—3.1.1. Chordwise pressure and lift distributions (Figs. 2 to 6).—Experimental results show that, near the centre and tip, the chordwise pressure distributions deviate from the sheared wing distribution in the same way and by almost the same amount for all aspect ratios (Figs. 2 and 6). This is true with and without lift. The chordwise pressure and lift distributions for the different aspect ratios are

* Actually 3.04,

compared at the same local C_N value and not at the same C_L or geometric incidence, (Figs. 2, 5 and 6). The measured distributions at the same α are, of course, not the same for different aspect ratios because of the different downwash induced by the trailing vortices. Figs. 2, 5 and 6 thus imply that the induced incidence α_i does not vary along the chord. This forms an experimental verification of this assumption, which is used in Refs. 2 and 3.

Fig. 6 shows that for aspect ratio 2 the centre effect on the chordwise loading is slightly less than for the higher aspect ratios. Thus aspect ratio 2 seems to be the lower limit for the application to untapered wings of 45 deg sweepback of the assumption that the chordwise lift distribution at the centre is independent of aspect ratio at the same effective incidence α_e . The centre effect due to thickness, however, is independent of aspect ratio down to A = 1.0for untapered wings as shown in Ref. 6. On the present series of wings the distortion of the pressure distribution near the tip, where the leading edge is curved, is less than it would be with a square tip, since this modification of the plan-form was designed to counteract the tip effect.

The centre effects due to lift and thickness decrease at different rates along the span, the former being zero at about $y/c = 1 \cdot 0$ and the latter at about $y/c = 0 \cdot 5$, for all aspect ratios. Figs. 3 and 4 show how the pressure distribution changes from the central type to the sheared wing type. This again is part of the data on which Refs. 2 and 3 are based.

3.1.2. Lift (Figs. 10 to 13, 19, 20).—Local lift coefficients for the wings of aspect ratio 2, 3 and infinity are plotted against incidence in Figs. 10 to 12. The corresponding figure for the wing of aspect ratio 5 is Fig. 4 of Part I. The local lift slopes and the position of the aerodynamic centre at zero incidence are plotted against span in Figs. 13 and 14. On all wings with $A \ge 3$ the local lift slopes at small incidences agree with calculated values (Fig. 13), which implies that α_i induced by the trailing vortices is constant along the chord and equal to half the induced angle at infinity downstream. This is no longer true for the wing of aspect ratio 2 where the induced downwash is greater and the measured lift smaller than the calculated values.

Total lift coefficients obtained from pressure measurements are plotted against incidence in Fig. 19, together with the balance measurements on the wing of aspect ratio 3. Comparison between the balance and pressure measurements shows good agreement to within 3 deg or 4 deg of the stall. This indicates that the effect of leading the pressure tubes out of the wing tip (Fig. 1) is not noticeable. There is, however, a discrepancy at incidences above about 19 deg where the flow has broken down on the outer part of the wing (Fig. 9). Total lift slopes are plotted against aspect ratio in Fig. 20.

The spanwise loadings in Fig. 13 show the loss of lift at the centre and the gain near the tips which are characteristic of swept-back wings. Both become less pronounced with decreasing aspect ratio. The loss of lift near the centre causes trailing vortices of opposite sense to those arising from the outer part of the wing. An upwash is thus produced at the centre.

3.1.3. Drag (Figs. 23, 24, 28).—The nature of the spanwise lift distribution causes the drag induced by the trailing vortices to vary considerably along the span; in particular it is small at the centre section and large near the tips, (Figs. 24 and 25). The large spanwise variation of the induced angle explains why the total induced drag, \bar{C}_{Di} , and the K_i factor

$$K_i = \frac{\bar{C}_{Di}}{\bar{C}_L^2 / \pi A}$$

are both greater than for the corresponding unswept wings, (Fig. 28). This is only true for constant-chord wings, and a highly-tapered swept-back wing might have a lower induced drag than the corresponding unswept wing; see Ref. 2, section 6.1.
The spanwise distribution of the drag coefficient obtained from pressure measurements is quite different from that of the drag induced by the trailing vortices, being very large at the centre and perhaps even negative at the tips, (Figs. 23 and 24). The existence at zero incidence of drag forces near the centre and thrust forces near the tips in non-viscous flow has already been noted in Ref. 6. These drag and thrust coefficients are proportional to $(t/c)^2$ and will thus be smaller with thinner wings. Fig. 24 shows that there is a similar effect when $C_L \neq 0$, resulting from the distorted chordwise load distributions at the centre and the tips. The additional local drag or thrust, ΔC_D , is proportional to \tilde{C}_L^2 . The actual values of ΔC_D are considerable. For instance, at $y = 0 \ \Delta C_D/\tilde{C}_L^2 = 0.28$, so that $\Delta C_D = 0.07$ for $\tilde{C}_L = 0.5$, that is about ten times the ordinary profile drag. ΔC_D integrated over the span is zero as long as the high suction peaks near the tips, which give the main contribution to the thrust force, still exist. The loss of a fraction of this thrust force means a big increase in drag. This explains why the drag rise is large as soon as there is any breakdown in the forward peak suctions near the tip. This may occur while the overall lift is still rising. There are thus two 'induced drags', the usual one due to the trailing vortices which has a total value $\tilde{C}_{Di} \neq 0$, and another one due to the bound vortices whose integral over the span is zero in ideal flow.

3.1.4. Pitching moment (Figs. 14 and 22).—The local position of the aerodynamic centre is behind the sheared wing value (24 per cent) at the centre of the wing and ahead of it at the tips, (Fig. 14). The measured values of h/c agree with the calculated values, except those for aspect ratio 2 which are smaller (*i.e.*, centre of pressure further forward than expected) by about 1 per cent to 2 per cent chord. The calculated values in Fig. 14 are for wings having constant chord everywhere, and the effect of the curved-leading edge at the tip is very marked⁵. There is a total nose-up pitching moment at small \bar{C}_L values, as calculated (Fig. 22).

3.2. Additional Influence of the Boundary Layer.-3.2.1. Lift and pitching moment (Figs. 5, 7, 10 to 12, 15, 17, 19).-As is well known, the thickness of the boundary layer increases with incidence more on the upper surface of wings than on the lower surface. This is even more pronounced on swept wings, as the results of Ref. 4 and of boundary-layer investigations on the present series of wings (to be published) have shown. This causes a loss of lift and the curve of C_L against α is not a straight line, a higher incidence $\alpha + \alpha_B$ being needed to produce a certain C_L value, (Figs. 10 to 12, 19). α_B increases towards the tips, which alters the shape of the spanwise loading curve (Fig. 15), and thus alters the downwash behind the wing. Above incidences of about 12 deg this loss of lift is masked by other influences which tend to increase the lift, (see section 3.3). The effect of the boundary layer is apparent in the chordwise lift distributions, particularly at stations well outboard such as 2y/b = 0.61, (Fig. 7). Fig. 5 shows that for all aspect ratios the influence of the boundary layer on the lift distribution is roughly the same, for a particular y/c position and C_N . The calculated curves in Figs. 2 to 7 are based on potential flow, the two-dimensional lift-slope correction being included in the calculation of the effective incidence. The differences between the calculated and measured values may be taken as the additional boundary-layer effect for swept wings. The loss of lift is greatest in the rear part of the section, as is to be expected since the boundary-layer thickness increases towards the trailing edge.

The position of the local aerodynamic centre is not much affected up to $\alpha = 12$ deg (Fig. 17). In a spanwise direction the loss of lift is largest near the tips and therefore the total pitching moment increases more rapidly with C_L , see Fig. 21.

3.2.2. Drag (Figs. 25 to 30).—There is an appreciable influence of the boundary layer on the drag, even at small incidences. α_B may be regarded as an induced angle of incidence due to the boundary layer, just as α_i is due to the trailing vortices, and it thus gives rise to a drag coefficient $\alpha_B \times C_L$. The magnitude of this drag for the wing of aspect ratio 5 at $\alpha = 10$ deg is shown in Fig. 25. Curve A represents the drag induced by the trailing vortices as calculated

from the measured spanwise loading. To this was added the drag term $\alpha_B \times C_L$ from the boundary layer (curve B). The value of α_B used was obtained as the difference in α , for the given C_L , between the measured curve and the calculated tangent at $\alpha = 0$ deg in Fig. 4 of Part I. Curve C was obtained by adding to curve B the drag forces arising from the distortion of the pressure distributions at the centre and tip due to the thickness, derived from the measurements at $C_L = 0$. The measured curve, D, includes the drag and thrust induced by the bound vortices. Integrating $\alpha_B \times C_L$ along the span to give \overline{C}_{DB} , it can be seen from the values given in Fig. 25 that $\overline{C}_{Di} + \overline{C}_{DB} = \overline{C}_D$, the total drag coefficient obtained from the pressure measurements. This confirms that the sum of the additional local drag and thrust which is induced by the bound vortices on the wing in potential flow (see section 3.1) is zero. The values of \overline{C}_{DB} are quite large compared with \overline{C}_{Di} (Fig. 25). Therefore the total K values in Figs. 28 and 30 are much larger than K_i .

The drag coefficients calculated from the measured pressure distributions do not include the skin friction and are therefore smaller than those from the balance measurements, (Fig. 26). The difference decreases with increasing lift; this decrease may be partly due to an increased outflow in the boundary layer and a consequent reduction in the component of the shear stresses in the free stream direction. The drag factor K derived from the balance measurements is therefore less than that derived from the pressure measurements, and is constant for small \bar{C}_L . This should be kept in mind when studying Fig. 30, especially since the difference will depend on aspect ratio, A being a factor of K. Fig. 26 shows how much the drag due to skin friction and boundary layer is dependent on Reynolds number; it may be much smaller at full-scale Reynolds numbers.

3.3. Effect of the Tip Vortex.—Tuft observations indicate that at some \bar{C}_L value well below $\bar{C}_{L\max}$ the air flowing round the tip from the lower surface to the upper surface breaks away at the extreme tip and re-attaches a short distance inboard on the upper surface, thus forming a particular kind of trailing vortex. This begins at the trailing edge and extends gradually along the whole of the tip chord and a vertical sheet of trailing vortices is formed*. The 'height' of this sheet is thus connected with the incidence, (see also Mangler' (1939) and Küchemann and Kettle¹ (1951)). The vortex occurs on unswept wings but may be more noticeable on swept wings, for several reasons. Due to the different spanwise loading, more vorticity is shed near the tip on a swept-back wing than on an unswept wing; again, for a given \bar{C}_L , a higher incidence is required on a swept wing than on an unswept wing, and the height of the vortex sheet increases with α . The sharp suction peaks near the tips of swept-back wings may also intensify the flow around the tip and thus the strength of the vortex. Since the tip vortex probably arises because of a breakaway in the flow, it is dependent on Reynolds number, but it is not associated with any general breakdown of the flow over the wing surface.

3.3.1. Lift (Figs. 7, 10, 11, 15, 18 to 20).—The effect of the vortex sheet is to increase the local lift coefficients near the tip by restricting the flow round the edge, (Figs. 10 and 11). With increasing incidence and height of the vortex sheet, the slope of the C_L against α curve increases, the effect being more pronounced as aspect ratio decreases (Figs. 19 and 20). The ratio of the height of the vortex sheet to the wing span is the parameter which determines the magnitude of the tip vortex effect, and this ratio obviously increases as aspect ratio decreases.

Fig. 15 shows how much the spanwise lift distribution is affected and how far inboard the influence of the tip vortex is felt. The effect on the chordwise lift distribution is illustrated in Fig. 7; at the front of the section, where there may be no separation or where the height of the vortex sheet is zero or small, there is little change, but at the rear, where the height is greater, there is a marked increase in lift.

^{*} The effect is described in Ref. 5 where the influence of various tip shapes was investigated.

3.3.2. Pitching moment (Figs. 17, 21, 22).—Since the lift is increased mostly at the rear of the sections, there is a considerable rearward shift of the local aerodynamic centre positions, (Fig. 17), and since those sections where the lift is increased are near the tips there is a very marked nose-down pitching moment, due to the long moment-arm of the tip sections on swept wings, see Figs. 21 and 22*. Again this is not connected with a general breakdown of the flow over the wing surface. The turning point of the curve of \bar{C}_m against \bar{C}_L occurs at that \bar{C}_L at which the flow round the tip first breaks down, (Fig. 22). The turning point is also affected by the Reynolds number, (Fig. 21). A detailed explanation of the tip vortex sheet and its effect on the pitching moment is given in Ref. 1.

3.3.3. Drag (Figs. 24 and 26).—At about the same \bar{C}_L as the turning point mentioned above there is a fairly sudden increase in the slopet of the curve of the drag due to skin friction and boundary layer against \bar{C}_L , (Fig. 26). There is an increase in the local drag coefficient, C_D , (Fig. 24) because the increase in the suction forces is mainly found at the rear part of the sections near the tip where the suction force has a drag component. This is again connected with the fact that the height of the vortex sheet is greatest near the trailing edge, and is also influenced by the geometry of the swept wing.

3.4. Stalling Characteristics (Figs. 7 to 9, 11, 16, 18, 19).—The stall was investigated only in the case of the wing of aspect ratio 3. At $\alpha = 18.5$ deg there is no sign of a stall over any part of the wing, but at $\alpha = 20.6$ deg the flow has broken down over the outer half of the wing, as shown in Fig. 9‡. The breakdown is brought about not by the thick boundary layer in the rear part of the section but by the high suction peaks near the leading edge, (Fig. 7). The effect of this breakdown on the curve of C_L against α is shown in Figs. 11, 16 and 18. Tuft observations indicated that the separation of the flow took place first at about mid-semispan where the highest suction peaks have been found, (Fig. 9). This spread rapidly outwards but slowly inwards. A 'part-span vortex sheet' is formed, which separates the inner region with attached flow from the outer region with broken-down flow.

The maximum value of $-C_{p}$ measured is between 7 and 8. This value is smaller than on straight wings where a peak suction coefficient greater than 10 has been measured on sections between 9 per cent and 12 per cent thickness/chord ratio (McCullough and Gault^{8,9,10} (1948-49)). This fact may be explained by the assumption that the magnitude of the adverse pressure gradient is responsible for the breakdown. For the same local C_{L} (and therefore the same peak suction) on the straight and sheared wings, the gradient is higher on the sheared wing. This is because the streamlines are curved and, in the extreme case, cross the peak suction line at right-angles, thus introducing a factor of $1/\cos \varphi$ to the pressure gradient.

3.5. Estimated Critical Mach numbers (Figs. 31 to 33).—An estimate of the effect of compressibility has been made using the experimental isobar patterns on the wings of finite aspect ratio, (Figs. 32, 33, and Figs. 9, 10, of Part I), and applying equation (27) of Ref. 11:—

$$\frac{C_{pc}}{C_{pi}} = \frac{1}{\sqrt{[1 - M_0^2 (\cos^2 \varphi - C_{pi})]}}$$

where C_{pc} is the pressure coefficient in compressible flow,

 C_{pi} , ,, ,, ,, in incompressible flow.

* The accuracy of the \overline{C}_m values integrated from the pressure measurements is about ± 0.004 for the wing of aspect ratio 3 at a \overline{C}_L of 0.6, due to the small number of measuring stations near the tips.

[†] This can be more easily seen from the values of K shown in Fig. 27.

‡ Fig. 19 shows that the slope of the lift curve at this incidence is different on the pressure-plotting model due to interference from the holes and the tubes, and that the reduction in slope is less from the balance measurements when this interference is absent.

This is strictly applicable only to the sheared part of the wing but has been used for the whole wing.

The main difference between the different aspect ratios appears at $\bar{C}_L = 0$, when the peak suction line on the wings of lower aspect ratio never attains a sweep of 45 deg. The estimated critical Mach number is lowest at the centre, (Fig. 33), except for higher \bar{C}_L values where high suction peaks on the sheared part of the wing (Figs. 8 and 9) reduce $M_{\rm crit}$ below that at the centre. The beneficial effect of the curved leading-edge tip is apparent.

4. Conclusions.—(a) Assumptions made in the calculation method of Refs. 2 and 3 are verified by the present tests. For example, it was assumed that the only effect of the trailing vortices is a change in the effective incidence at any spanwise position. This implies that, at the same C_N , the chordwise pressure distributions at the centre and tip are independent of aspect ratio. This is shown to be true, except for some small deviation at aspect ratio 2. The empirical curve for the rate of decrease of the centre and tip effects is confirmed (section 3.1.1.), as is the correction to the lift slope for two-dimensional boundary-layer effects.

(b) At low \bar{C}_L , where viscosity effects are of little importance, the experimental results show that the aerodynamic characteristics of a given wing can be calculated satisfactorily by the method of Refs. 2 and 3 if the characteristics of the aerofoil section, including the two-dimensional lift slope at the required Reynolds number, are known.

Due to distorted pressure distributions there is a considerable drag at the centre of a swept-back wing, which is almost exactly compensated by a thrust near the tips each consisting of a term proportional to $(t/c)^2$ and another proportional to \bar{C}_L^2 .

(c) As the incidence increases, the loss of lift due to the boundary-layer becomes appreciable. This effect is greater on swept-back wings than on unswept wings because of the outflow in the boundary-layer near the trailing edge; this causes the air in the boundary-layer to follow a longer path along the wing surface, and the thickness of the layer is thereby increased. Associated with the loss of lift is an increase in drag (see section 3.2).

As the incidence increases still further, the effect of a tip vortex becomes noticeable. This causes an increase of lift at the rear of sections near the tips, spreading forwards and inwards as the incidence increases, and also an increase in the total lift slope. This is accompanied by another drag increment and also by a nose-down pitching moment. The effect is more apparent on swept-back wings than on straight wings, (see section 3.3).

The stall begins with a breakdown of the suction peaks near the leading edge. The spanwise position where the breakdown first occurs depends on the spanwise variation of the peak suction and therefore on the geometry of the wing. Even on constant-chord wings the central region remains unstalled after the flow has broken down over the outer part. The leading-edge separation vortex which is formed at this stage causes a rapid reversal of the pitching moment and a decrease of the total lift slope. Since the large drag at the centre induced by the bound vortices is normally balanced by the thrust induced near the tip, the loss of the peak suctions near the tip means a large increase in drag (see section 3.4).

Acknowledgement.—The authors wish to acknowledge the assistance given by Mr. F. W. Dee who helped with the model tests and Miss M. Patterson who did most of the computing.

NOTATION

x,y,z	Rectangular	co-ordinates;	<i>x</i> -axis i	in	direction	\mathbf{of}	main	flow,	y-axis	spanwise,	
-	z-axis upwar	ds, origin at le	ading ed	lge					5	т ,	

c(y) Local wing chord

 \bar{c} Mean chord

b Span

A Aspect ratio

 φ Angle of sweep

 α Geometric angle of incidence

 α_i Induced angle of incidence due to trailing vortices

 α_e Effective angle of incidence = $\alpha - \alpha_i$

 α_B Induced angle of incidence due to boundary layer

 $C_{p} = (p - p_{0})/q_{0}$, pressure coefficient

 ΔC_{p} Difference of pressure coefficients on upper and lower surface

 $C_N(y)$ Coefficient of local normal force

$$= -\int_0^1 \Delta C_p(x,y) \ d\left(\frac{x}{c(y)}\right)$$

 $C_T(y)$ Coefficient of local tangential force

$$= \int_{\substack{\text{around}\\\text{profile}}} C_p(x, y) \ d\left(\frac{z(x)}{c(y)}\right)$$

 $C_L(y)$

y) Local lift coefficient $= C_N \cos \alpha - C_T \sin \alpha$

 $C_{L\infty}$ Lift coefficient on an infinite sheared wing

 $C_D(y)$ Local drag coefficient = $C_N \sin \alpha + C_T \cos \alpha$

Coefficient of total lift

$$= \int_0^1 C_L(y) \frac{c(y)}{\bar{c}} d\left(\frac{y}{\bar{b}/2}\right)$$

$$\bar{C}_{D}$$

 \bar{C}_L

Coefficient of total drag, either from balance measurements or from pressure measurements

$$= \int_0^1 C_D(y) \frac{c(y)}{\bar{c}} d\left(\frac{y}{b/2}\right)$$

 $ar{C}_{{\scriptscriptstyle D}i}$

 \bar{C}_{DB}

Coefficient of total induced drag

 $\bar{C}_{D\min}$ Minimum value of \bar{C}_{D}

 ΔC_D Local drag coefficient or thrust coefficient due to distorted chordwise pressure distribution

Total drag coefficient due to boundary layer

$$K = \frac{\bar{C}_D - \bar{C}_{D\min}}{\bar{C}_L^2 / \pi A}$$

$$egin{array}{rcl} K_i &=& rac{ar{C}_{D\,i}}{ar{C}_L{}^2/\pi A} \ K_B &=& rac{ar{C}_{D\,B}}{ar{C}_L{}^2/\pi A} \end{array}$$

 $C_m(y)$

Coefficient of local pitching moment with respect to the local quarter-chord point

$$= \int_{0}^{1} \Delta C_{p}(x,y) \left(\frac{x}{c(y)} - 0 \cdot 25\right) d\left(\frac{x}{c(y)}\right)$$
$$+ \int_{\text{around}} C_{p}(x,y) \frac{z(x)}{c(y)} d\left(\frac{z(x)}{c(y)}\right)$$

 \bar{C}_m Total pitching-moment coefficient with respect to the mean quarter-chord point ; measured positive when 'nose-up'

h x co-ordinate of local aerodynamic centre

$$= \left(0 \cdot 25 - \frac{C_m(y)}{C_N(y)}\right) c(y)$$

 $\delta = t/c$, thickness/chord ratio in wind direction

 M_0 Free-stream Mach number

 $M_{\rm crit}$ Critical Mach number, the free-stream Mach number at which the local Mach number first becomes unity somewhere on the wing

R Reynolds number

REFERENCES

No.		Autho	V			Title, etc.
1	D. Küchemann	and D.	J. Ket	tle	••	The effect of endplates on swept wings. C.P. 104. June, 1951.
2	D. Küchemann		•••	••	••	A simple method for calculating the span and chordwise loadings on thin swept wings. R.A.E. Report Aero. 2392. A.R.C. 13,758. 1950.
.3	J. Weber	•••	•••	••	•••	A simple method for calculating the chordwise pressure distribution on two-dimensional and swept wings for aerofoil sections of finite thickness. R.A.E. Report Aero. 2391. A.R.C. 13,757. 1950.
4	G. G. Brebner	••	•••	•••	••	Boundary layer measurements on a 59 deg sweptback wing at low speed. C.P. 86. August, 1950.
5	J. Weber	••	•••	•••	••	Low speed measurements of the pressure distributions and overall forces on wings of small aspect ratio and 53 deg sweepback. R.A.E. Tech. Note Aero. 2017. A.R.C. 12,878. 1949.
6	J. Weber	• •	••	••	••	Low speed measurements of the pressure distribution near the tips of swept back wings at no lift. R.A.E. Report Aero. 2318. A.R.C. 12,421. 1949.

REFERENCES—continued

No.	Autho	r		Title, etc.
7	W. Mangler	••••••	••	Der kleinste induzierte Widerstand eines Tragflügels mit kleinem Seitenverhältnis. Jahrbuch 1939 der deutschen Luftfahrtforschung. I, p. 139.
8	G. B. McCullough and	D. E. Gau	ılt	Boundary layer and stalling characteristics of the NACA 64A006 airfoil section. N.A.C.A. Tech. Note 1923. A.R.C. 12,781. August, 1949.
. 9	D. E. Gault		• •	Boundary layer and stalling characteristics of the NACA 63-009 airfoil section. N.A.C.A. Tech. Note 1894. A.R.C. 12,780. June, 1949.
10	G. B. McCullough and	D. E. Gaı	ılt	An experimental investigation of a NACA 63 ₁ -012 airfoil section with leading-edge suction slots. N.A.C.A. Tech. Note No. 1683. August, 1948.
11	J. Weber		•••	Some remarks on the application of the theory of incompressible flow around a swept wing at zero incidence to the flow at high subsonic Mach numbers. R.A.E. Report Aero. 2274. A.R.C. 11,774. 1948.
12	V. W. Falkner	••••••		Calculated loadings due to incidence of a number of straight and swept back wings. R. & M. 2596. June, 1948.

TABLE 1

Details of Models

The main dimensions of the models are given in Fig. 1. The RAE 101 wing section was maintained on the curved tip, except where the pressure-tube guides made this impossible. The co-ordinates of the tip plan-form are given below, referred to an origin at point 0 in Fig. 1.

<i>x</i> (in.)	(in.)	<i>x</i> (in.)	y (in.)
$0 \\ 1 \cdot 0$	0 0.80	$13 \cdot 0$ $14 \cdot 0$	$4 \cdot 40 \\ 4 \cdot 50$
$2 \cdot 0$ $3 \cdot 0$ $4 \cdot 0$	$1 \cdot 43$ $2 \cdot 00$ $2 \cdot 40$	$15 \cdot 0$ $16 \cdot 0$ $17 \cdot 0$	$4 \cdot 60 \\ 4 \cdot 68 \\ 4 \cdot 75$
$5 \cdot 0$ $6 \cdot 0$	$2 \cdot 78$ $3 \cdot 08$ $3 \cdot 08$	18·0 19·0	$4 \cdot 80$ $4 \cdot 86$
$\begin{array}{c} 7 \cdot 0 \\ 8 \cdot 0 \\ 9 \cdot 0 \end{array}$	$3 \cdot 35$ $3 \cdot 60$ $3 \cdot 80$	$\begin{array}{c} 20 \cdot 0 \\ 21 \cdot 0 \\ 22 \cdot 0 \end{array}$	$4 \cdot 92 \\ 4 \cdot 95 \\ 4 \cdot 98 \\ -$
$10 \cdot 0 \\ 11 \cdot 0 \\ 12 \cdot 0$	$ \begin{array}{c c} 4 \cdot 00 \\ 4 \cdot 12 \\ 4 \cdot 28 \end{array} $	$23 \cdot 0$ $24 \cdot 0$ $25 \cdot 0$	$\begin{array}{c} 5 \cdot 00 \\ 5 \cdot 00 \\ 5 \cdot 00 \end{array}$

TABLE 1-continued

Arrangement of pressure holes:-

Aspect ratio		Spanwise stations of rows of pressure holes, <i>y/c</i>											
∞	0	0.10	0.20	0.40	0.60	0.90	1.25	1.60					
5	0	$0 \cdot 10$	0.20	0.40	0.60	0.90	1.25	1.60	$2 \cdot 2$	2.33	$2 \cdot 45$		
3	0	0.10	0.20	$0 \cdot 40$	0.60	0.90			$1 \cdot 23$	1.35	1 • 47		
2	0	0.10	0.20	0.40	0.60					0.83	0.95		

Checks of the model wing section at two spanwise stations (y/c = 0.10 and 0.20) showed discrepancies between the model and the design sections: the model section was too thick all over, the discrepancy increasing from about 0.1 per cent chord at maximum thickness to about 0.4 per cent chord near the trailing edge. The actual maximum thickness was 12.1 per cent. This discrepancy was not the same on both surfaces, so that the section had a slight camber. This asymmetry has been allowed for in analysing the results by subtracting from ΔC_p^* at any incidence α the value of ΔC_p at $\alpha = 0$ deg: *i.e.*, the ΔC_p plotted in Figs. 5, 6 and 7 is really $(\Delta C_{p\alpha} - \Delta C_{p0})$. The values of C_p given in Tables 2, 5 and 9 are those actually measured. The calculated distributions of C_p for sections in the central region of the wing, (Figs. 2, 3 and 4), are based on the true thickness profile of the model at stations y/c = 0.10 and 0.20. Distributions calculated for the tip region are based on the design section. This may account for some difference between experimental and theoretical results (see Fig. 2) for the station near the tip.

The total pitching-moment coefficients were calculated about the mean quarter-chord line for each finite wing:---

5

Aspect ratio:

Distance of mean quarter-chord line behind apex of wing:

29.30 in. 19.70 in. 14.60 in.

3

 $\mathbf{2}$

* ΔC_p is the difference between the pressure coefficients on the upper and lower surfaces of the wing.

Pressure Coefficients on Wing of Aspect Ratio $2{\cdot}0$

У	—	0
~		

 C_{p}

Upper surface

							α (deg)						-
x/c	0	2.0	4 · 1	6.1	8.1	10.2	12.2	$14 \cdot 2$	16.3	17.3	18.3	19.3	20.3
$\begin{array}{c} 0 \\ 0 \cdot 01 \\ 0 \cdot 03 \\ 0 \cdot 08 \\ 0 \cdot 15 \\ 0 \cdot 225 \\ 0 \cdot 35 \\ 0 \cdot 50 \\ 0 \cdot 65 \\ 0 \cdot 75 \\ 0 \cdot 85 \\ 0 \cdot 95 \end{array}$	$\begin{array}{c} +1\cdot 005\\ 0\cdot 470\\ 0\cdot 210\\ +0\cdot 020\\ -0\cdot 105\\ -0\cdot 175\\ -0\cdot 260\\ -0\cdot 215\\ -0\cdot 160\\ -0\cdot 095\\ -0\cdot 065\\ -\end{array}$	$\begin{array}{c} +1\cdot 000\\ 0\cdot 335\\ +0\cdot 090\\ -0\cdot 080\\ -0\cdot 190\\ -0\cdot 250\\ -0\cdot 330\\ -0\cdot 265\\ -0\cdot 195\\ -0\cdot 125\\ -0\cdot 080\\ -\end{array}$	$\begin{array}{c} +0.950\\ +0.200\\ -0.025\\ -0.175\\ -0.270\\ -0.325\\ -0.390\\ -0.305\\ -0.225\\ -0.145\\ -0.100\\ -\end{array}$	$\begin{array}{c} +0.940\\ +0.060\\ -0.140\\ -0.260\\ -0.345\\ -0.390\\ -0.440\\ -0.340\\ -0.245\\ -0.165\\ -0.110\\ \end{array}$	$\begin{array}{c} +0.905\\ -0.090\\ -0.245\\ -0.340\\ -0.410\\ -0.445\\ -0.480\\ -0.370\\ -0.265\\ -0.175\\ -0.115\\ -0.025\end{array}$	$\begin{array}{c} +0.845\\ -0.255\\ -0.375\\ -0.435\\ -0.435\\ -0.505\\ -0.530\\ -0.405\\ -0.285\\ -0.200\\ -0.140\\ -0.040\end{array}$	$\begin{array}{c} +0.760\\ -0.430\\ -0.510\\ -0.530\\ -0.565\\ -0.575\\ -0.590\\ -0.440\\ -0.315\\ -0.205\\ -0.135\\ -0.035\end{array}$	$\begin{array}{c} +0.655\\ -0.615\\ -0.650\\ -0.650\\ -0.650\\ -0.650\\ -0.655\\ -0.480\\ -0.340\\ -0.225\\ -0.150\\ -0.035\end{array}$	$\begin{array}{c} +0.520\\ -0.830\\ -0.765\\ -0.735\\ -0.735\\ -0.725\\ -0.705\\ -0.520\\ -0.365\\ -0.240\\ -0.160\\ -0.040\end{array}$	$\begin{array}{c} +0.480\\ -0.895\\ -0.755\\ -0.755\\ -0.760\\ -0.735\\ -0.715\\ -0.530\\ -0.370\\ -0.240\\ -0.160\\ -0.035\end{array}$	$\begin{array}{c} +0.410\\ -1.000\\ -0.915\\ -0.800\\ -0.790\\ -0.760\\ -0.735\\ -0.545\\ -0.380\\ -0.260\\ -0.180\\ -0.060\end{array}$	$\begin{array}{c} +0.310\\ -1.140\\ -1.005\\ -0.870\\ -0.855\\ -0.815\\ -0.780\\ -0.575\\ -0.405\\ -0.265\\ -0.175\\ -0.045\end{array}$	$\begin{array}{c} +0.255\\ -1.225\\ -1.065\\ -0.920\\ -0.865\\ -0.825\\ -0.785\\ -0.785\\ -0.590\\ -0.410\\ -0.265\\ -0.180\\ -0.040\\ \end{array}$

44

Lower surface

							α (deg)	,					
x/c	0	2.0	4 • 1	6.1	8.1	10.2	12.2	14.2	16.3	17.3	18.3	19.3	20.3
$\begin{array}{c} 0 \cdot 01 \\ 0 \cdot 03 \\ 0 \cdot 08 \\ 0 \cdot 15 \\ 0 \cdot 225 \\ 0 \cdot 35 \\ 0 \cdot 50 \\ 0 \cdot 65 \\ 0 \cdot 75 \\ 0 \cdot 85 \\ 0 \cdot 95 \end{array}$	$\begin{array}{c} +0.520\\ +0.230\\ -0.005\\ -0.105\\ -0.175\\ -0.255\\ -0.235\\ -0.170\\ -0.110\\ -0.065\\ -0.020\\ \end{array}$	$\begin{array}{c} +0.625\\ 0.335\\ +0.085\\ -0.025\\ -0.105\\ -0.195\\ -0.185\\ -0.140\\ -0.090\\ -0.050\\ -0.005\end{array}$	$\begin{array}{c} +0.720\\ 0.435\\ 0.180\\ +0.060\\ -0.030\\ -0.130\\ -0.135\\ -0.100\\ -0.060\\ -0.035\\ +0.005\end{array}$	$\begin{array}{c} +0.790\\ 0.530\\ 0.260\\ 0.135\\ +0.045\\ -0.070\\ -0.085\\ -0.060\\ -0.035\\ -0.010\\ +0.020\end{array}$	$\begin{array}{c} +0.870\\ 0.630\\ 0.350\\ 0.220\\ 0.120\\ +0.005\\ -0.025\\ -0.010\\ -0.010\\ +0.025\\ +0.045\end{array}$	$\begin{array}{c} 0.925\\ 0.700\\ 0.435\\ 0.295\\ 0.195\\ 0.070\\ 0.025\\ 0.030\\ 0.025\\ 0.035\\ 0.050\\ \end{array}$	$\begin{array}{c} 0.960\\ 0.770\\ 0.510\\ 0.370\\ 0.260\\ 0.130\\ 0.080\\ 0.075\\ 0.060\\ 0.075\\ 0.080\\ \end{array}$	$\begin{array}{c} 0.985\\ 0.825\\ 0.580\\ 0.430\\ 0.320\\ 0.190\\ 0.130\\ 0.110\\ 0.095\\ 0.100\\ 0.095\end{array}$	$\begin{array}{c} 0.995\\ 0.885\\ 0.655\\ 0.510\\ 0.400\\ 0.260\\ 0.190\\ 0.160\\ 0.135\\ 0.130\\ 0.120\\ \end{array}$	$\begin{array}{c} 1 \cdot 005 \\ 0 \cdot 905 \\ 0 \cdot 685 \\ 0 \cdot 540 \\ 0 \cdot 430 \\ 0 \cdot 290 \\ 0 \cdot 220 \\ 0 \cdot 185 \\ 0 \cdot 155 \\ 0 \cdot 155 \\ 0 \cdot 150 \\ 0 \cdot 135 \end{array}$	$\begin{array}{c} 1 \cdot 000 \\ 0 \cdot 925 \\ 0 \cdot 715 \\ 0 \cdot 575 \\ 0 \cdot 460 \\ 0 \cdot 315 \\ 0 \cdot 245 \\ 0 \cdot 205 \\ 0 \cdot 160 \\ 0 \cdot 150 \\ 0 \cdot 130 \end{array}$	$\begin{array}{c} 0.985\\ 0.940\\ 0.740\\ 0.600\\ 0.495\\ 0.350\\ 0.265\\ 0.225\\ 0.185\\ 0.175\\ 0.150\\ \end{array}$	$\begin{array}{c} 0.985\\ 0.960\\ 0.775\\ 0.635\\ 0.525\\ 0.380\\ 0.295\\ 0.255\\ 0.210\\ 0.195\\ 0.170\\ \end{array}$

 $y/c = 0 \cdot 1$

 $2y/b = 0 \cdot 105$

· -

Upper surface

Upper sur	rface				($\hat{\mathcal{L}}_{p}$					
x/c				1		α (deg)			,	·	
$\begin{array}{c} 0\\ 0\cdot 01\\ 0\cdot 03\\ 0\cdot 08\\ 0\cdot 15\\ 0\cdot 225\\ 0\cdot 35\\ 0\cdot 50\\ 0\cdot 65\\ 0\cdot 75\\ 0\cdot 85\\ 0\cdot 95\\ \end{array}$	$\begin{array}{c} +0.540 \\ +0.205 \\ -0.015 \\ -0.125 \\ -0.250 \\ -0.250 \\ -0.250 \\ -0.195 \\ -0.115 \\ -0.060 \\ -0.005 \\ +0.055 \end{array}$	$\begin{array}{c} 2.0 \\ +0.520 \\ +0.025 \\ -0.180 \\ -0.240 \\ -0.290 \\ -0.325 \\ -0.315 \\ -0.145 \\ -0.080 \\ -0.020 \\ +0.050 \end{array}$	$\begin{array}{c} 4\cdot 1 \\ +0\cdot 430 \\ -0\cdot 180 \\ -0\cdot 345 \\ -0\cdot 385 \\ -0\cdot 395 \\ -0\cdot 395 \\ -0\cdot 260 \\ -0\cdot 175 \\ -0\cdot 100 \\ -0\cdot 030 \\ +0\cdot 050 \end{array}$	$\begin{array}{c} 6.1 \\ +0.300 \\ -0.400 \\ -0.520 \\ -0.470 \\ -0.470 \\ -0.475 \\ -0.410 \\ -0.290 \\ -0.195 \\ -0.110 \\ -0.035 \\ +0.050 \end{array}$	$\begin{array}{c} 8 \cdot 1 \\ + 0 \cdot 125 \\ - 0 \cdot 650 \\ - 0 \cdot 705 \\ - 0 \cdot 585 \\ - 0 \cdot 550 \\ - 0 \cdot 530 \\ - 0 \cdot 450 \\ - 0 \cdot 325 \\ - 0 \cdot 200 \\ - 0 \cdot 115 \\ - 0 \cdot 040 \\ + 0 \cdot 055 \end{array}$	$\begin{array}{c} 10 \cdot 2 \\ -0 \cdot 120 \\ -0 \cdot 940 \\ -0 \cdot 910 \\ -0 \cdot 715 \\ -0 \cdot 610 \\ -0 \cdot 605 \\ -0 \cdot 500 \\ -0 \cdot 230 \\ -0 \cdot 140 \\ -0 \cdot 055 \\ +0 \cdot 040 \end{array}$	$\begin{array}{c} 12 \cdot 2 \\ \hline \\ -0 \cdot 415 \\ -1 \cdot 245 \\ -1 \cdot 130 \\ -0 \cdot 805 \\ -0 \cdot 685 \\ -0 \cdot 670 \\ -0 \cdot 540 \\ -0 \cdot 385 \\ -0 \cdot 240 \\ -0 \cdot 145 \\ -0 \cdot 055 \\ +0 \cdot 050 \end{array}$	$\begin{array}{c} 14 \cdot 2 \\ \hline \\ -0.790 \\ -1.595 \\ -1.390 \\ -0.930 \\ -0.785 \\ -0.730 \\ -0.590 \\ -0.420 \\ -0.260 \\ -0.160 \\ -0.060 \\ +0.050 \end{array}$	$\begin{array}{c} 16 \cdot 3 \\ \hline \\ -1 \cdot 290 \\ -2 \cdot 005 \\ -1 \cdot 620 \\ -1 \cdot 080 \\ -0 \cdot 885 \\ -0 \cdot 805 \\ -0 \cdot 645 \\ -0 \cdot 455 \\ -0 \cdot 455 \\ -0 \cdot 290 \\ -0 \cdot 175 \\ -0 \cdot 070 \\ +0 \cdot 050 \end{array}$	$\begin{array}{c c} 18 \cdot 3 \\ \hline & -1 \cdot 700 \\ -2 \cdot 310 \\ -1 \cdot 840 \\ -0 \cdot 940 \\ -0 \cdot 860 \\ -0 \cdot 680 \\ -0 \cdot 480 \\ -0 \cdot 315 \\ -0 \cdot 195 \\ -0 \cdot 080 \\ +0 \cdot 025 \end{array}$	$\begin{array}{c} 20 \cdot 3 \\ \hline -2 \cdot 245 \\ -2 \cdot 715 \\ -2 \cdot 010 \\ -1 \cdot 315 \\ -1 \cdot 030 \\ -0 \cdot 940 \\ -0 \cdot 740 \\ -0 \cdot 535 \\ -0 \cdot 330 \\ -0 \cdot 200 \\ -0 \cdot 070 \\ +0 \cdot 070 \end{array}$

45

Lower surface

x/c	α (deg)													
	0	2.0	$4 \cdot 1$	6.1	8.1	10.2	12.2	14.2	16.3	18.3	20.3			
$\begin{array}{c} 0 \cdot 01 \\ 0 \cdot 03 \\ 0 \cdot 08 \\ 0 \cdot 15 \\ 0 \cdot 225 \\ 0 \cdot 35 \\ 0 \cdot 50 \\ 0 \cdot 65 \\ 0 \cdot 75 \\ 0 \cdot 85 \\ 0 \cdot 95 \end{array}$	$\begin{array}{c} +0.205\\ +0.025\\ -0.115\\ -0.215\\ -0.240\\ -0.260\\ -0.210\\ -0.120\\ -0.060\\ -0.020\\ +0.050\end{array}$	$ \begin{array}{c} +0.345 \\ +0.165 \\ -0.005 \\ -0.125 \\ -0.170 \\ -0.210 \\ -0.170 \\ -0.010 \\ +0.050 \\ \end{array} $	$\begin{array}{c} +0.450\\ 0.275\\ +0.100\\ -0.040\\ -0.090\\ -0.150\\ -0.125\\ -0.080\\ -0.040\\ +0.010\\ +0.055\end{array}$	$\begin{array}{c} +0.515\\ 0.375\\ 0.195\\ +0.045\\ -0.020\\ -0.090\\ -0.080\\ -0.045\\ -0.015\\ +0.020\\ +0.065\end{array}$	$\begin{array}{c} +0.570\\ 0.465\\ 0.280\\ 0.130\\ +0.060\\ -0.025\\ -0.030\\ 0\\ +0.030\\ 0.035\\ +0.075\end{array}$	$\begin{array}{c} 0.555\\ 0.530\\ 0.365\\ 0.210\\ 0.130\\ 0.040\\ 0.020\\ 0.035\\ 0.045\\ 0.050\\ 0.075\\ \end{array}$	$\begin{array}{c} 0.520 \\ 0.580 \\ 0.440 \\ 0.280 \\ 0.200 \\ 0.100 \\ 0.070 \\ 0.070 \\ 0.070 \\ 0.080 \\ 0.085 \\ 0.095 \end{array}$	$\begin{array}{c} 0.445\\ 0.605\\ 0.505\\ 0.350\\ 0.260\\ 0.155\\ 0.115\\ 0.100\\ 0.105\\ 0.100\\ 0.105\\ 0.100\\ 0.110\\ \end{array}$	$\begin{array}{c} 0.320\\ 0.615\\ 0.570\\ 0.430\\ 0.335\\ 0.220\\ 0.190\\ 0.145\\ 0.135\\ 0.125\\ 0.125\\ \end{array}$	$\begin{array}{c} 0.205\\ 0.610\\ 0.615\\ 0.490\\ 0.400\\ 0.275\\ 0.235\\ 0.185\\ 0.185\\ 0.155\\ 0.135\\ 0.130\\ \end{array}$	$\begin{array}{c} 0 \cdot 015 \\ 0 \cdot 585 \\ 0 \cdot 660 \\ 0 \cdot 550 \\ 0 \cdot 460 \\ 0 \cdot 340 \\ 0 \cdot 265 \\ 0 \cdot 230 \\ 0 \cdot 200 \\ 0 \cdot 175 \\ 0 \cdot 155 \end{array}$			

 C_{p}

 $y/c = 0 \cdot 2$

 $2y/b = 0 \cdot 21$

Upper surface

						$\alpha(\mathrm{deg})$,		· / · · ·
x/c	0	2.0	4 · 1	6.1	8.1	$10 \cdot 2$	12.2	14.2	16.3	18.3	20.3
$\begin{array}{c} 0 \\ 0 \cdot 01 \\ 0 \cdot 03 \\ 0 \cdot 08 \\ 0 \cdot 15 \\ 0 \cdot 225 \\ 0 \cdot 35 \\ 0 \cdot 50 \\ 0 \cdot 65 \\ 0 \cdot 75 \\ 0 \cdot 85 \\ 0 \cdot 95 \end{array}$	$\begin{array}{c} +0\cdot485\\ +0\cdot160\\ -0\cdot055\\ -0\cdot170\\ -0\cdot240\\ -0\cdot255\\ -0\cdot255\\ -0\cdot190\\ -0\cdot085\\ -0\cdot030\\ +0\cdot020\\ +0\cdot075\\ \end{array}$	$\begin{array}{c} +0\cdot 440\\ -0\cdot 050\\ -0\cdot 240\\ -0\cdot 300\\ -0\cdot 345\\ -0\cdot 345\\ -0\cdot 320\\ -0\\ -0\cdot 120\\ -0\cdot 055\\ 0\\ +0\cdot 065\end{array}$	$\begin{array}{c} +0\cdot 310\\ -0\cdot 300\\ -0\cdot 450\\ -0\cdot 435\\ -0\cdot 435\\ -0\cdot 425\\ -0\cdot 375\\ -0\cdot 235\\ -0\cdot 235\\ -0\cdot 140\\ -0\cdot 070\\ -0\cdot 005\\ +0\cdot 065\end{array}$	$\begin{array}{c} +0\cdot110\\ -0\cdot575\\ -0\cdot650\\ -0\cdot560\\ -0\cdot540\\ -0\cdot495\\ -0\cdot405\\ -0\cdot270\\ -0\cdot155\\ -0\cdot075\\ -0\cdot075\\ -0\cdot010\\ +0\cdot065\end{array}$	$\begin{array}{c} -0.170 \\ -0.870 \\ -0.855 \\ -0.685 \\ -0.615 \\ -0.555 \\ -0.445 \\ -0.290 \\ -0.165 \\ -0.080 \\ -0.020 \\ +0.070 \end{array}$	$\begin{array}{c} -0.550 \\ -1.230 \\ -1.120 \\ -0.825 \\ -0.680 \\ -0.590 \\ -0.500 \\ -0.325 \\ -0.190 \\ -0.100 \\ -0.025 \\ +0.055 \end{array}$	$\begin{array}{c} -1\cdot005\\ -1\cdot620\\ -1\cdot390\\ -0\cdot925\\ -0\cdot760\\ -0\cdot645\\ -0\cdot530\\ -0\cdot335\\ -0\cdot190\\ -0\cdot105\\ -0\cdot020\\ +0\cdot060\\ \end{array}$	$\begin{array}{c} -1.590 \\ -2.080 \\ -1.735 \\ -1.110 \\ -0.875 \\ -0.730 \\ -0.590 \\ -0.375 \\ -0.215 \\ -0.115 \\ -0.025 \\ +0.060 \end{array}$	$\begin{array}{c} -2 \cdot 335 \\ -2 \cdot 625 \\ -2 \cdot 015 \\ -1 \cdot 290 \\ -0 \cdot 985 \\ -0 \cdot 805 \\ -0 \cdot 640 \\ -0 \cdot 405 \\ -0 \cdot 235 \\ -0 \cdot 125 \\ -0 \cdot 025 \\ +0 \cdot 070 \end{array}$	$\begin{array}{c} -2 \cdot 950 \\ -3 \cdot 040 \\ -2 \cdot 230 \\ -1 \cdot 410 \\ -1 \cdot 080 \\ -0 \cdot 880 \\ -0 \cdot 675 \\ -0 \cdot 440 \\ -0 \cdot 260 \\ -0 \cdot 145 \\ -0 \cdot 035 \\ +0 \cdot 075 \end{array}$	$\begin{array}{c} -3.755\\ -3.595\\ -2.445\\ -1.575\\ -1.190\\ -0.960\\ -0.735\\ -0.495\\ -0.295\\ -0.160\\ -0.035\\ +0.080\\ \end{array}$

Lower surface

 C_{p}

•		α (deg)													
x/c	0	.2.0	4 • 1	6.1	8.1	10.2	12.2	14.2	16.3	18.3	20.3				
$\begin{array}{c} 0 \cdot 01 \\ 0 \cdot 03 \\ 0 \cdot 08 \\ 0 \cdot 15 \\ 0 \cdot 225 \\ 0 \cdot 35 \\ 0 \cdot 50 \\ 0 \cdot 65 \\ 0 \cdot 75 \\ 0 \cdot 85 \\ 0 \cdot 95 \end{array}$	$\begin{array}{c} +0\cdot 190\\ -0\cdot 015\\ -0\cdot 180\\ -0\cdot 245\\ -0\cdot 265\\ -0\cdot 265\\ -0\cdot 205\\ -0\cdot 080\\ -0\cdot 050\\ -0\cdot 050\\ +0\cdot 060\\ \end{array}$	$\begin{array}{c} +0.350\\ +0.145\\ -0.065\\ -0.160\\ -0.195\\ -0.220\\ -0.165\\ -0.080\\ -0.040\\ +0.005\\ +0.055\end{array}$	$\begin{array}{c} +0.450\\ 0.270\\ +0.050\\ -0.065\\ -0.120\\ -0.160\\ -0.125\\ -0.070\\ -0.020\\ +0.015\\ +0.055\end{array}$	$\begin{array}{c} +0.505\\ 0.375\\ +0.150\\ -0.020\\ -0.045\\ -0.100\\ -0.080\\ -0.020\\ -0.010\\ 0.020\\ 0.060\\ \end{array}$	$\begin{array}{c} +0.530\\ 0.455\\ 0.245\\ 0.110\\ +0.035\\ -0.035\\ -0.030\\ +0.015\\ 0.015\\ 0.045\\ +0.075\end{array}$	$\begin{array}{c} 0.505\\ 0.505\\ 0.315\\ 0.180\\ 0.095\\ 0.015\\ 0.005\\ 0.035\\ 0.030\\ 0.050\\ 0.070\\ \end{array}$	$\begin{array}{c} 0 \cdot 470 \\ 0 \cdot 565 \\ 0 \cdot 415 \\ 0 \cdot 270 \\ 0 \cdot 185 \\ 0 \cdot 100 \\ 0 \cdot 065 \\ 0 \cdot 095 \\ 0 \cdot 060 \\ 0 \cdot 070 \\ 0 \cdot 080 \end{array}$	$\begin{array}{c} 0.355\\ 0.555\\ 0.465\\ 0.330\\ 0.240\\ 0.135\\ 0.095\\ 0.105\\ 0.085\\ 0.090\\ 0.080\end{array}$	$\begin{array}{c} 0 \cdot 210 \\ 0 \cdot 550 \\ 0 \cdot 540 \\ 0 \cdot 415 \\ 0 \cdot 320 \\ 0 \cdot 210 \\ 0 \cdot 160 \\ 0 \cdot 145 \\ 0 \cdot 130 \\ 0 \cdot 125 \\ 0 \cdot 115 \end{array}$	$\begin{array}{c} 0 \cdot 040 \\ 0 \cdot 500 \\ 0 \cdot 570 \\ 0 \cdot 465 \\ 0 \cdot 365 \\ 0 \cdot 250 \\ 0 \cdot 195 \\ 0 \cdot 170 \\ 0 \cdot 145 \\ 0 \cdot 140 \\ 0 \cdot 125 \end{array}$	$\begin{array}{c} -0.195\\ 0.435\\ 0.610\\ 0.520\\ 0.430\\ 0.310\\ 0.245\\ 0.210\\ 0.175\\ 0.160\\ 0.140\\ \end{array}$				

 $y/c = 0 \cdot 4$

2y/b = 0.42

· .

Upper surface

 C_{p}

rlc					α (deg)				
	-1.0	1.0	3.1	7.1	11.2	13.2	15.2	17.3	19.3
$\begin{array}{c} 0\\ 0\cdot 01\\ 0\cdot 03\\ 0\cdot 08\\ 0\cdot 15\\ 0\cdot 225\\ 0\cdot 35\\ 0\cdot 50\\ 0\cdot 65\\ 0\cdot 75\\ 0\cdot 85\\ 0\cdot 95\end{array}$	$\begin{array}{c} +0.455\\ +0.200\\ 0\\ -0.150\\ -0.240\\ -0.245\\ -0.250\\ \hline \\ -0.060\\ -0.025\\ +0.015\\ +0.065\\ \end{array}$	$\begin{array}{c} +0\cdot 490 \\ +0\cdot 030 \\ -0\cdot 140 \\ -0\cdot 245 \\ -0\cdot 295 \\ -0\cdot 295 \\ -0\cdot 280 \\ -0\cdot 260 \\ -0\cdot 145 \\ -0\cdot 080 \\ -0\cdot 030 \\ +0\cdot 005 \\ +0\cdot 060 \end{array}$	$\begin{array}{c} +0.380\\ -0.230\\ -0.340\\ -0.405\\ -0.410\\ -0.375\\ -0.315\\ -0.185\\ -0.095\\ -0.030\\ +0.010\\ +0.070\end{array}$	$\begin{array}{c} -0.085\\ -0.890\\ -0.835\\ -0.705\\ -0.625\\ -0.480\\ -0.390\\ -0.240\\ -0.110\\ -0.040\\ +0.015\\ +0.075\end{array}$	$\begin{array}{c} -0.950 \\ -1.805 \\ -1.425 \\ -0.950 \\ -0.835 \\ -0.645 \\ -0.480 \\ -0.255 \\ -0.130 \\ -0.040 \\ +0.010 \\ +0.065 \end{array}$	$\begin{array}{c} -1 \cdot 610 \\ -2 \cdot 380 \\ -1 \cdot 760 \\ -1 \cdot 170 \\ -0 \cdot 935 \\ -0 \cdot 735 \\ -0 \cdot 530 \\ -0 \cdot 300 \\ -0 \cdot 140 \\ -0 \cdot 065 \\ -0 \cdot 005 \\ +0 \cdot 040 \\ \end{array}$	$\begin{array}{c} -2 \cdot 355 \\ -2 \cdot 975 \\ -2 \cdot 000 \\ -1 \cdot 335 \\ -0 \cdot 335 \\ -0 \cdot 800 \\ -0 \cdot 555 \\ -0 \cdot 315 \\ -0 \cdot 165 \\ -0 \cdot 080 \\ -0 \cdot 025 \\ +0 \cdot 025 \end{array}$	$\begin{array}{c} -3\cdot 145 \\ -3\cdot 575 \\ -2\cdot 315 \\ -1\cdot 505 \\ -1\cdot 140 \\ -0\cdot 860 \\ -0\cdot 590 \\ -0\cdot 345 \\ -0\cdot 200 \\ -0\cdot 120 \\ -0\cdot 060 \\ +0\cdot 015 \end{array}$	$\begin{array}{c} -4\cdot 190 \\ -4\cdot 370 \\ -2\cdot 705 \\ -1\cdot 715 \\ -1\cdot 245 \\ -0\cdot 955 \\ -0\cdot 645 \\ -0\cdot 415 \\ -0\cdot 280 \\ -0\cdot 190 \\ -0\cdot 090 \\ +0\cdot 015 \end{array}$

47

Lower surface

r le					α (deg)				
	-1·0 ⁻	1.0	3.1	7.1	11.2	13.2	15.2	17.3	19.3
$\begin{array}{c} 0 \cdot 01 \\ 0 \cdot 03 \\ 0 \cdot 08 \\ 0 \cdot 15 \\ 0 \cdot 225 \\ 0 \cdot 35 \\ 0 \cdot 50 \\ 0 \cdot 65 \\ 0 \cdot 75 \\ 0 \cdot 85 \\ 0 \cdot 95 \end{array}$	$\begin{array}{c} -0.025\\ -0.220\\ -0.320\\ -0.355\\ -0.350\\ -0.320\\ -0.195\\ -0.085\\ -0.050\\ -0.010\\ +0.070\\ \end{array}$	$\begin{array}{c} +0\cdot230\\ +0\cdot015\\ -0\cdot140\\ -0\cdot210\\ -0\cdot230\\ -0\cdot225\\ -0\cdot150\\ \hline \\ -0\cdot050\\ -0\cdot010\\ +0\cdot060\\ \end{array}$	$\begin{array}{c} +0\cdot 365\\ +0\cdot 165\\ -0\cdot 030\\ -0\cdot 130\\ -0\cdot 165\\ -0\cdot 185\\ -0\cdot 115\\ -0\cdot 020\\ -0\cdot 030\\ +0\cdot 005\\ +0\cdot 070\end{array}$	$\begin{array}{c} +0.500\\ 0.395\\ 0.195\\ +0.055\\ -0.015\\ -0.080\\ -0.035\\ +0.015\\ 0\\ 0.020\\ +0.080\end{array}$	$\begin{array}{c} 0\cdot 425\\ 0\cdot 515\\ 0\cdot 360\\ 0\cdot 220\\ 0\cdot 125\\ 0\cdot 030\\ 0\cdot 025\\ 0\cdot 060\\ 0\cdot 025\\ 0\cdot 030\\ 0\cdot 075\end{array}$	$\begin{array}{c} 0.300\\ 0.520\\ 0.425\\ 0.280\\ 0.185\\ 0.075\\ 0.055\\ 0.075\\ 0.075\\ 0.040\\ 0.035\\ 0.065\end{array}$	$\begin{array}{c} 0.140\\ 0.515\\ 0.495\\ 0.360\\ 0.260\\ 0.145\\ 0.105\\ 0.110\\ 0.070\\ 0.060\\\end{array}$	$\begin{array}{c} -0.070\\ 0.475\\ 0.535\\ 0.415\\ 0.315\\ 0.195\\ 0.145\\ 0.135\\ 0.095\\ 0.075\\ 0.090\end{array}$	$\begin{array}{c} -0.370\\ 0.395\\ 0.570\\ 0.475\\ 0.370\\ 0.245\\ 0.185\\ 0.160\\ 0.110\\ 0.090\\ 0.100\\ \end{array}$

 C_{p}

 $y/c = 0 \cdot 6$

.

2y/b = 0.63

Upper surface

					α (deg)		•	·	
x/c	-1.0	1.0	3.1	7 · 1	11.2	13.2	15.2	17.3	19.3
$\begin{array}{c} 0\\ 0\cdot 01\\ 0\cdot 03\\ 0\cdot 08\\ 0\cdot 15\\ 0\cdot 225\\ 0\cdot 35\\ 0\cdot 50\\ 0\cdot 65\\ 0\cdot 75\\ 0\cdot 85\\ 0\cdot 95\end{array}$	$\begin{array}{c} +0\cdot 485\\ 0\cdot 235\\ +0\cdot 025\\ -0\cdot 130\\ -0\cdot 220\\ -0\cdot 245\\ -0\cdot 180\\ -0\cdot 100\\ -0\cdot 006\\ -0\cdot 005\\ +0\cdot 025\\ +0\cdot 075\end{array}$	$\begin{array}{c} +0\cdot 465 \\ +0\cdot 030 \\ -0\cdot 165 \\ -0\cdot 265 \\ -0\cdot 310 \\ -0\cdot 305 \\ -0\cdot 250 \\ -0\cdot 120 \\ -0\cdot 075 \\ -0\cdot 010 \\ +0\cdot 020 \\ +0\cdot 070 \end{array}$	$\begin{array}{c} +0.360\\ -0.210\\ -0.370\\ -0.395\\ -0.405\\ -0.375\\ -0.300\\ -0.150\\ -0.085\\ -0.020\\ +0.025\\ +0.075\end{array}$	$\begin{array}{c} -0.170 \\ -0.820 \\ -0.840 \\ -0.710 \\ -0.600 \\ -0.515 \\ -0.330 \\ -0.185 \\ -0.090 \\ -0.020 \\ +0.030 \\ +0.080 \end{array}$	$\begin{array}{c} -1\cdot 135 \\ -1\cdot 695 \\ -1\cdot 435 \\ -0\cdot 975 \\ -0\cdot 780 \\ -0\cdot 660 \\ -0\cdot 415 \\ -0\cdot 220 \\ -0\cdot 100 \\ -0\cdot 025 \\ +0\cdot 025 \\ +0\cdot 070 \end{array}$	$\begin{array}{c} -1\cdot825\\ -2\cdot240\\ -1\cdot745\\ -1\cdot170\\ -0\cdot890\\ -0\cdot730\\ -0\cdot455\\ -0\cdot240\\ -0\cdot105\\ -0\cdot040\\ +0\cdot015\\ +0\cdot045\end{array}$	$\begin{array}{c} -2 \cdot 620 \\ -2 \cdot 915 \\ -2 \cdot 035 \\ -1 \cdot 355 \\ -0 \cdot 995 \\ -0 \cdot 785 \\ -0 \cdot 490 \\ -0 \cdot 260 \\ -0 \cdot 135 \\ -0 \cdot 075 \\ -0 \cdot 010 \\ 0 \end{array}$	$\begin{array}{c} -3 \cdot 430 \\ -3 \cdot 585 \\ -2 \cdot 320 \\ -1 \cdot 530 \\ -1 \cdot 095 \\ -0 \cdot 840 \\ -0 \cdot 485 \\ -0 \cdot 255 \\ -0 \cdot 135 \\ -0 \cdot 090 \\ -0 \cdot 070 \\ -0 \cdot 045 \end{array}$	$\begin{array}{c} -4 \cdot 465 \\ -4 \cdot 380 \\ -2 \cdot 690 \\ -1 \cdot 735 \\ -1 \cdot 215 \\ -0 \cdot 900 \\ -0 \cdot 500 \\ -0 \cdot 305 \\ -0 \cdot 215 \\ -0 \cdot 200 \\ -0 \cdot 175 \\ -0 \cdot 095 \end{array}$

48

Lower surface

					$\alpha(\mathrm{deg})$				
x/c	$-1 \cdot 0$	1.0	3.1	7 · 1	11.2	13.2	15.2	17.3	19.3
$\begin{array}{c} 0 \cdot 01 \\ 0 \cdot 03 \\ 0 \cdot 08 \\ 0 \cdot 15 \\ 0 \cdot 225 \\ 0 \cdot 35 \\ 0 \cdot 50 \\ 0 \cdot 65 \\ 0 \cdot 75 \\ 0 \cdot 85 \\ 0 \cdot 95 \end{array}$	$\begin{array}{c} -0.045 \\ -0.195 \\ -0.315 \\ -0.330 \\ -0.255 \\ -0.120 \\ -0.070 \\ -0.005 \\ +0.045 \end{array}$	$\begin{array}{c} +0\cdot 175 \\ -0\cdot 005 \\ -0\cdot 175 \\ -0\cdot 235 \\ -0\cdot 250 \\ -0\cdot 210 \\ -0\cdot 095 \\ -0\cdot 065 \\ -0\cdot 010 \\ +0\cdot 035 \end{array}$	$ \begin{array}{c} +0.330 \\ +0.155 \\ -0.050 \\ -0.145 \\ -0.185 \\ -0.165 \\ -0.050 \\ 0 \\ +0.045 \\$	$\begin{array}{c c} +0.480 \\ 0.385 \\ 0.165 \\ +0.030 \\ -0.050 \\ -0.075 \\ -0.040 \\ -0.020 \\ +0.025 \\ +0.055 \end{array}$	$\begin{array}{c} 0 \cdot 400 \\ 0 \cdot 490 \\ 0 \cdot 320 \\ 0 \cdot 175 \\ 0 \cdot 070 \\ 0 \cdot 010 \\ 0 \cdot 010 \\ 0 \cdot 010 \\ 0 \cdot 040 \\ 0 \cdot 030 \\ \end{array}$	$\begin{array}{c} 0.275\\ 0.500\\ 0.390\\ 0.240\\ 0.130\\ 0.050\\ 0.040\\ 0.025\\ 0.045\\ 0.050\\\end{array}$	$\begin{array}{c} 0.095\\ 0.480\\ 0.445\\ 0.300\\ 0.190\\ 0.100\\ 0.065\\ 0.040\\ 0.050\\ 0.055\\\end{array}$	$\begin{array}{c} -0.110\\ 0.435\\ 0.485\\ 0.350\\ 0.245\\ 0.145\\ 0.100\\ 0.065\\ 0.065\\ 0.065\\ -\end{array}$	$\begin{array}{c} -0.395\\ 0.355\\ 0.510\\ 0.405\\ 0.295\\ 0.190\\ 0.130\\ 0.090\\ 0.085\\ 0.070\\\end{array}$

 C_{p}

$$y/c = 0.83$$

2y/b = 0.87

Upper surface

x/c(y)		,					α (deg)				•		
	0	2.0	4 · 1	6.1	8.1	10.2	12.2	14.2	16.3	17.3	18.3	19.3	20.3
$\begin{array}{c} 0\\ 0\cdot 025\\ 0\cdot 05\\ 0\cdot 10\\ 0\cdot 15\\ 0\cdot 25\\ 0\cdot 35\\ 0\cdot 50\\ 0\cdot 70\end{array}$	$\begin{array}{c} +0\cdot005\\ -0\cdot055\\ -0\cdot110\\ -0\cdot155\\ -0\cdot185\\ -0\cdot170\\ -0\cdot150\\ -0\cdot085\\ +0\cdot020\end{array}$	$\begin{array}{c} -0.050 \\ -0.190 \\ -0.235 \\ -0.260 \\ -0.270 \\ -0.240 \\ -0.205 \\ -0.125 \\ -0.015 \end{array}$	$ \begin{array}{c} -0.160 \\ -0.370 \\ -0.385 \\ -0.370 \\ -0.370 \\ -0.310 \\ -0.250 \\ -0.155 \\ -0.030 \\ \end{array} $	$\begin{array}{c} -0.275 \\ -0.560 \\ -0.540 \\ -0.495 \\ -0.465 \\ -0.380 \\ -0.285 \\ -0.175 \\ -0.045 \end{array}$	$ \begin{array}{c} -0.410 \\ -0.790 \\ -0.730 \\ -0.640 \\ -0.575 \\ -0.440 \\ -0.340 \\ -0.210 \\ -0.060 \\ \end{array} $	$\begin{array}{c} -0.680 \\ -1.055 \\ -0.940 \\ -0.790 \\ -0.685 \\ -0.525 \\ -0.395 \\ -0.240 \\ -0.080 \end{array}$	$\begin{array}{c} -0.965 \\ -1.405 \\ -1.200 \\ -0.965 \\ -0.815 \\ -0.620 \\ -0.455 \\ -0.285 \\ -0.095 \end{array}$	$\begin{array}{c} -1\cdot 340 \\ -1\cdot 735 \\ -1\cdot 475 \\ -1\cdot 125 \\ -0\cdot 940 \\ -0\cdot 695 \\ -0\cdot 515 \\ -0\cdot 335 \\ -0\cdot 160 \end{array}$	$\begin{array}{c} -1\cdot800\\ -2\cdot175\\ -1\cdot790\\ -1\cdot345\\ -1\cdot085\\ -0\cdot785\\ -0\cdot610\\ -0\cdot355\\ -0\cdot270\end{array}$	$\begin{array}{c} -1 \cdot 965 \\ -2 \cdot 350 \\ -1 \cdot 890 \\ -1 \cdot 350 \\ -1 \cdot 120 \\ -0 \cdot 800 \\ -0 \cdot 655 \\ -0 \cdot 335 \end{array}$	$\begin{array}{r} -2 \cdot 190 \\ -2 \cdot 515 \\ -2 \cdot 110 \\ -1 \cdot 470 \\ -1 \cdot 170 \\ -0 \cdot 845 \\ -0 \cdot 745 \\ -0 \cdot 435 \\ -0 \cdot 435 \end{array}$	$\begin{array}{c} -2\cdot 440 \\ -2\cdot 765 \\ -2\cdot 095 \\ -1\cdot 420 \\ -1\cdot 070 \\ -0\cdot 865 \\ -0\cdot 825 \\ -0\cdot 655 \\ -0\cdot 665 \end{array}$	$\begin{array}{r} -2 \cdot 670 \\ -2 \cdot 865 \\ -2 \cdot 220 \\ -1 \cdot 545 \\ -1 \cdot 230 \\ -0 \cdot 895 \\ -0 \cdot 815 \\ -0 \cdot 735 \\ -0 \cdot 745 \end{array}$

49

Lower surface

 C_p

x/c(y)		(α (deg)						
	0	2.0	4.1	6.1	8.1	10.2	12.2	$14 \cdot 2$	16-3	17.3	18.3	19.3	20.3
0.025 0.05 0.10 0.15 0.25 0.35 0.50 0.70	$\begin{array}{c} -0.075 \\ -0.100 \\ -0.170 \\ -0.180 \\ -0.185 \\ -0.175 \\ -0.080 \\ +0.010 \end{array}$	$\begin{array}{c} +0\cdot 020 \\ -0\cdot 015 \\ -0\cdot 080 \\ -0\cdot 120 \\ -0\cdot 135 \\ -0\cdot 145 \\ -0\cdot 060 \\ +0\cdot 005 \end{array}$	$\begin{array}{c} +0.075 \\ +0.040 \\ -0.035 \\ -0.070 \\ -0.095 \\ -0.110 \\ -0.040 \\ +0.020 \end{array}$	$\begin{array}{c} +0.080\\ 0.075\\ +0.020\\ -0.020\\ -0.050\\ -0.080\\ -0.020\\ +0.030\end{array}$	$\begin{array}{c} +0.065\\ 0.085\\ 0.030\\ +0.010\\ -0.015\\ -0.050\\ -0.005\\ +0.035\end{array}$	$-0.030 \\ 0.020 \\ 0.030 \\ 0.020 \\ -0.005 \\ -0.040 \\ +0.005 \\ +0.025$	$\begin{array}{c} -0.110 \\ +0.005 \\ 0.030 \\ 0.035 \\ +0.025 \\ -0.010 \\ +0.030 \\ +0.035 \end{array}$	$\begin{array}{c} -0.255 \\ -0.060 \\ +0.015 \\ 0.035 \\ 0.040 \\ 0.010 \\ 0.040 \\ +0.055 \end{array}$	$\begin{array}{c} -0.510\\ -0.180\\ -0.025\\ +0.025\\ 0.055\\ 0.025\\ 0.055\\ +0.060\end{array}$	$\begin{array}{c} -0.545 \\ -0.225 \\ -0.040 \\ +0.015 \\ 0.055 \\ 0.025 \\ 0.055 \\ +0.055 \end{array}$	$\begin{array}{c} -0.655 \\ -0.285 \\ -0.065 \\ -0.005 \\ +0.050 \\ 0.035 \\ 0.060 \\ +0.070 \end{array}$	$\begin{array}{c} -0.785 \\ -0.365 \\ -0.100 \\ -0.025 \\ +0.050 \\ 0.035 \\ 0.070 \\ +0.075 \end{array}$	$\begin{array}{c} -0.895 \\ -0.430 \\ -0.130 \\ -0.040 \\ +0.050 \\ 0.045 \\ 0.080 \\ +0.090 \end{array}$

TABLE 3

Coefficients of Local Normal Force, Tangential Force, Lift, Drag and Aerodynamic Centre Position

$\gamma \gamma \Pi g \cup I a spect I a u u \Delta$	Wing	of	aspect	ratio	2
---	------	----	--------	-------	----------

 C_N

			2y	v/b		
α (deg)	0	0.105	0.210	0.420	0.630	0.870
$ \begin{array}{r} 1 \cdot 0 \\ 2 \cdot 0 \\ 3 \cdot 1 \\ 4 \cdot 1 \\ 6 \cdot 1 \\ 7 \cdot 1 \\ 8 \cdot 1 \\ 10 \cdot 2 \\ 11 \cdot 2 \\ 12 \cdot 2 \\ 13 \cdot 2 \\ 14 \cdot 2 \\ 15 \cdot 2 \\ 16 \cdot 3 \\ 17 \cdot 3 \end{array} $	$\begin{array}{c} 0.048\\ 0.097\\ 0.144\\ 0.197\\ 0.293\\ 0.338\\ 0.386\\ 0.478\\ 0.525\\ 0.568\\ 0.623\\ 0.662\\ 0.719\\ 0.759\\ 0.803\\ \end{array}$	$ \begin{array}{c} 0.096\\ 0.191\\ 0.285\\ 0.376\\ 0.471\\ 0.561\\ 0.652\\ 0.752\\ \end{array} $	$ \begin{array}{c} 0.097 \\ 0.196 \\ 0.288 \\ 0.378 \\ 0.468 \\ 0.562 \\ 0.653 \\ 0.752 \\ \end{array} $	$\begin{array}{c} 0.047 \\ 0.141 \\ \\ 0.322 \\ \\ 0.497 \\ 0.595 \\ 0.693 \\ \\ 0.790 \end{array}$	$ \begin{array}{c} 0 \cdot 043 \\ 0 \cdot 130 \\ \\ 0 \cdot 291 \\ \\ 0 \cdot 450 \\ 0 \cdot 528 \\ 0 \cdot 620 \\ \\ 0 \cdot 699 \\ \end{array} $	$\begin{array}{c} 0\cdot 037\\ 0\cdot 073\\ 0\cdot 108\\ 0\cdot 145\\ 0\cdot 213\\ 0\cdot 248\\ 0\cdot 283\\ 0\cdot 347\\ 0\cdot 388\\ 0\cdot 416\\ 0\cdot 458\\ 0\cdot 505\\ 0\cdot 545\\ 0\cdot 505\\ 0\cdot 545\\ 0\cdot 608\\ 0\cdot 675\end{array}$
$ 18 \cdot 3 \\ 19 \cdot 3 \\ 20 \cdot 3 $	$0.849 \\ 0.901 \\ 0.943$	$ \begin{array}{c c} 0.843 \\ - \\ 0.931 \end{array} $	$ \begin{array}{c} 0.842 \\ \hline 0.942 \end{array} $	0.909	0.817	$ \begin{array}{c} 0.747 \\ 0.844 \\ 0.942 \end{array} $

Ст

			2y	/b		
α (deg)	0	0.105	0.210	0.420	0.630	0.870
$0 \\ 1 \cdot 0 \\ 2 \cdot 0 \\ 3 \cdot 1 \\ 4 \cdot 1 \\ 6 \cdot 1 \\ 7 \cdot 1 \\ 8 \cdot 1$	+0.044 0.043 0.042 0.041 0.039 0.037 0.036	+0.013 0.012 0.008 +0.002 -0.006	+0.006 +0.004 -0.001 -0.008 -0.019	+0.001 -0.004 -0.024 -0.024	-0.004 -0.006 -0.026	$\begin{array}{c} -0.014 \\ -0.014 \\ -0.013 \\ -0.016 \\ -0.018 \\ -0.026 \\ -0.032 \\ -0.037 \end{array}$
$10.2 \\ 11.2 \\ 12.2 \\ 13.2 \\ 14.2 \\ 15.2 \\ 16.3 \\ 17.3 \\ 18.3 \\ 19.3 \\ 20.3$	$\begin{array}{c} 0.032\\ 0.029\\ 0.027\\ 0.023\\ 0.020\\ 0.016\\ 0.013\\ 0.011\\ 0.007\\ +0.002\\ -0.002 \end{array}$	$ \begin{array}{c} -0.014 \\ -0.027 \\ -0.042 \\ -0.061 \\ -0.074 \\ -0.097 \end{array} $	$ \begin{array}{c} -0.031 \\ -0.047 \\ -0.069 \\ -0.094 \\ -0.116 \\ -0.141 \end{array} $	$ \begin{array}{c} -0.055 \\ -0.080 \\ -0.104 \\ -0.134 \\ -0.172 \\ -0.172 \end{array} $	$ \begin{array}{c} -0.057 \\ -0.081 \\ -0.108 \\ -0.135 \\ -0.178 \\ -0.1$	$\begin{array}{c} -0.033 \\ -0.061 \\ -0.071 \\ -0.081 \\ -0.093 \\ -0.102 \\ -0.117 \\ -0.124 \\ -0.132 \\ -0.132 \\ -0.142 \end{array}$

TABLE	3-	-continued

a			2	у/b		
(deg)	0	0 · 105	0.210	0.420	0.630	0.870
1.0	0.048			0.047	0.043	0.037
$2 \cdot 0$	0.096	0.096	0.097			0.073
$3 \cdot 1$	$0 \cdot 142$			0.141	0.130	0.109
$4 \cdot 1$	0.194	0.190	0.196			0.146
$6 \cdot 1$	0.287	0.283	0.287	·		0.215
$7 \cdot 1$	0.330	_	—	0.322	0.292	0.249
$8 \cdot 1$	0.377	0.373	0.378		_	0.285
$10 \cdot 2$	0.465	0.466	0.466			0.350
$11 \cdot 2$	0.509			0.498	0.453	0.393
$12 \cdot 2$	0.550	0.554	0.559			0.422
$13 \cdot 2$	0.602			0.598	0.533	0.465
$14 \cdot 2$	0.638	0.643	0.650			0.512
$15 \cdot 2$	0.689			0.696	0.627	0.552
16.3	0.726	0.740	0.748			0.616
17.3	0.763		·	0.794	0.708	0.681
18.3	0.804	0.823	0.837			0.751
19•3	0.849	_		0.915	0.830	0.841
20.3	0.886	0.907	0.933			0.933

۰.	*
\sim	1.
	_

 C_{D}

~	<u>.</u>	2y/b										
(deg)	0	0 · 105	. 0.210	0.420	0.630	0.870						
$\begin{array}{c} 0\\ 1 \cdot 0\\ 2 \cdot 0\\ 3 \cdot 1^{-1}\\ 4 \cdot 1\\ 6 \cdot 1\\ 7 \cdot 1\\ 8 \cdot 1\\ 10 \cdot 2\\ 11 \cdot 2\\ 12 \cdot 2\end{array}$	$\begin{array}{c} 0.044\\ 0.044\\ 0.046\\ 0.049\\ 0.054\\ 0.069\\ 0.078\\ 0.089\\ 0.116\\ 0.131\\ 0.146\\ \end{array}$	$ \begin{array}{c} 0.013 \\ 0.016 \\ 0.022 \\ 0.033 \\ 0.048 \\ 0.070 \\ 0.093 \end{array} $	$ \begin{array}{c} 0.006\\ 0.007\\ 0.013\\ 0.023\\ 0.035\\ 0.052\\ 0.073 \end{array} $	$ \begin{array}{c} 0.01\\ 0.001\\ 0.002\\ 0.005\\\\ 0.017\\\\ 0.042\\\\ 0.042\\\\\\ 0.042\\\\\\ 0.042\\\\\\\\ 0.042\\\\\\\\\\\\\\\\\\\\ -$	$ \begin{array}{c} -0.004 \\ -0.003 \\ +0.001 \\ \\ 0.011 \\ \\ 0.031 \\ \\ 0.031 \end{array} $	$\begin{array}{c} -0.014 \\ -0.013 \\ -0.011 \\ -0.009 \\ -0.008 \\ -0.003 \\ -0.001 \\ +0.004 \\ 0.009 \\ 0.014 \\ 0.019 \end{array}$						
$ \begin{array}{r} 13 \cdot 2 \\ 14 \cdot 2 \\ 15 \cdot 2 \\ 16 \cdot 3 \\ 17 \cdot 3 \\ 18 \cdot 3 \\ 19 \cdot 3 \\ 20 \cdot 3 \end{array} $	$\begin{array}{c} 0 \cdot 164 \\ 0 \cdot 182 \\ 0 \cdot 204 \\ 0 \cdot 226 \\ 0 \cdot 248 \\ 0 \cdot 273 \\ 0 \cdot 300 \\ 0 \cdot 326 \end{array}$	$ \begin{array}{c} 0 \cdot 120 \\ 0 \cdot 151 \\ 0 \cdot 194 \\ 0 \cdot 232 \end{array} $	$ \begin{array}{c} 0.094 \\ 0.121 \\ 0.154 \\ 0.196 \end{array} $	$\begin{array}{c} 0.058 \\ 0.082 \\ 0.107 \\ 0.138 \\ \end{array}$	$ \begin{array}{c c} 0.042 \\ \hline 0.058 \\ \hline 0.079 \\ \hline +0.102 \\ \hline \end{array} $	$\begin{array}{c} 0 & 0.026 \\ 0 & 0.034 \\ 0 & 0.044 \\ 0 & 0.058 \\ 0 & 0.082 \\ 0 & 0.110 \\ 0 & 0.155 \\ +0 & 194 \end{array}$						

	n
c(y)

	2y/b										
(deg)	0	0 • 105	0.21	0.42	0.63	0.87					
. 0	0.336	0.291	0.266	0.230	0.208	0.258					
2.0	0.335	0.292	0.266			0.258					
3.1	0.337			0.230	0.211	0.258					
$4 \cdot 1$	0.337	0.291	0.267	_		0.260					
$6 \cdot 1$	0.338	0.290	0.265	. —		0.258					
$7 \cdot 1$	0.339	_			0.207	0.258					
$8 \cdot 1$	0.340	0.291	0.267		_	0.257					
$10 \cdot 2$	0.342	0.297	0.269			0.256					
$11 \cdot 2$	0.342			0.234	0.210	0.256					
$12 \cdot 2$	0.342	0.300	0.270	_		0.256					
$13 \cdot 2$	0.343			0.237	0.214	0.264					
$14 \cdot 2$	0.342	0.298	0.270	—		0.275					
$15 \cdot 2$	0.344			0.244	0.219	0.283					
16.3	0.346	0.301	0.275		_	0.298					
$17 \cdot 3$	0.346			0.254	0.230	0.315					
18.3	0.346	0.307	0.281	—	·	0.332					
19.3	0.348	0.307	0.283	0.266	0.251	0.353					
$20 \cdot 3$	0.349	0.308	0.284		-	0.386					

TABLE 4

Coefficients of Total Lift, Drag and Pitching Moment from Pressure Measurements

a (deg)	\bar{c}_L	<i>Γ</i> _D	<i>Ē</i>
$2 \cdot 0$ $4 \cdot 1$ $6 \cdot 1$ $8 \cdot 1$ $10 \cdot 2$ $12 \cdot 2$ $14 \cdot 2$ $16 \cdot 3$ $17 \cdot 3$ $18 \cdot 3$ $19 \cdot 3$	0.088 0.176 0.258 0.345 0.428 0.513 0.605 0.702 0.751 0.810 0.885	$\begin{array}{c} 0\cdot 0025\\ 0\cdot 0062\\ 0\cdot 0136\\ 0\cdot 0239\\ 0\cdot 0367\\ 0\cdot 0523\\ 0\cdot 0717\\ 0\cdot 0963\\ 0\cdot 112\\ 0\cdot 132\\ 0\cdot 156\end{array}$	$\begin{array}{c} 0\cdot 003\\ 0\cdot 006\\ 0\cdot 009\\ 0\cdot 012\\ 0\cdot 016\\ 0\cdot 016\\ 0\cdot 016\\ 0\cdot 006\\ -0\cdot 002\\ -0\cdot 014\\ -0\cdot 029\end{array}$

Wing of aspect ratio $2 \cdot 0$

TABLE 5

Pressure Coefficients on Wing of Aspect Ratio 3

y = 0

 C_{p}

Upper surface

r/c	α (deg)											
	0	2.1	4 · 1	6.2	8.2	10.3	12.3	14.4	16.4	18.5	20.6	22.6
$\begin{array}{c} 0\\ 0\cdot 01\\ 0\cdot 03\\ 0\cdot 08\\ 0\cdot 15\\ 0\cdot 225\\ 0\cdot 35\\ 0\cdot 50\\ 0\cdot 65\\ 0\cdot 75\\ 0\cdot 85\\ 0\cdot 95\\ \end{array}$	$\begin{array}{c} +1\cdot000\\ 0\cdot460\\ 0\cdot195\\ +0\cdot015\\ -0\cdot115\\ -0\cdot180\\ -0\cdot255\\ -0\cdot220\\ -0\cdot175\\ -0\cdot115\\ -0\cdot080\\ -0\cdot025\end{array}$	$\begin{array}{c}\\ +0.330\\ +0.075\\ -0.095\\ -0.200\\ -0.255\\ -0.310\\ -0.270\\ -0.210\\ -0.145\\ -0.100\\ -0.025\end{array}$	$\begin{array}{c} +0.980\\ +0.205\\ -0.035\\ -0.175\\ -0.270\\ -0.320\\ -0.380\\ -0.310\\ -0.235\\ -0.165\\ -0.115\\ -0.035\end{array}$	$\begin{array}{c} +0.935\\ +0.035\\ -0.175\\ -0.280\\ -0.370\\ -0.410\\ -0.455\\ -0.360\\ -0.275\\ -0.200\\ -0.140\\ -0.055\end{array}$	$\begin{array}{c} +0.875\\ -0.135\\ -0.300\\ -0.385\\ -0.455\\ -0.455\\ -0.480\\ -0.510\\ -0.410\\ -0.310\\ -0.225\\ -0.160\\ -0.060\end{array}$	$\begin{array}{r} +0.805\\ -0.295\\ -0.430\\ -0.475\\ -0.530\\ -0.545\\ -0.570\\ -0.450\\ -0.340\\ -0.245\\ -0.175\\ -0.065\end{array}$	$\begin{array}{c} +0.700\\ -0.495\\ -0.585\\ -0.585\\ -0.620\\ -0.630\\ -0.635\\ -0.495\\ -0.370\\ -0.265\\ -0.190\\ -0.070\end{array}$	$\begin{array}{c} +0.600\\ -0.685\\ -0.725\\ -0.680\\ -0.710\\ -0.705\\ -0.695\\ -0.540\\ -0.400\\ -0.285\\ -0.205\\ -0.075\end{array}$	$\begin{array}{c} +0.465\\ -0.885\\ -0.845\\ -0.780\\ -0.795\\ -0.770\\ -0.750\\ -0.580\\ -0.430\\ -0.310\\ -0.220\\ -0.075\end{array}$	$\begin{array}{r} +0.320\\ -1.105\\ -1.005\\ -0.900\\ -0.890\\ -0.845\\ -0.815\\ -0.635\\ -0.470\\ -0.335\\ -0.235\\ -0.235\\ -0.075\end{array}$	$\begin{array}{r} +0.155\\ -1.240\\ -1.105\\ -1.010\\ -0.975\\ -0.930\\ -0.885\\ -0.690\\ -0.525\\ -0.395\\ -0.280\\ -0.120\end{array}$	$\begin{array}{c} 0 \\ -1 \cdot 485 \\ -1 \cdot 270 \\ -1 \cdot 080 \\ -1 \cdot 020 \\ -0 \cdot 960 \\ -0 \cdot 925 \\ -0 \cdot 755 \\ -0 \cdot 625 \\ -0 \cdot 500 \\ -0 \cdot 385 \\ -0 \cdot 190 \end{array}$

53

Lower surface

Τ

x/c	α (deg)											
	0	2.1	4 · 1	$6 \cdot 2$	8.2	10.3	12.3	14.4	16.4	18.5	20.6	22.6
$\begin{array}{c} 0 \cdot 01 \\ 0 \cdot 03 \\ 0 \cdot 08 \\ 0 \cdot 15 \\ 0 \cdot 225 \\ 0 \cdot 35 \\ 0 \cdot 50 \\ 0 \cdot 65 \\ 0 \cdot 65 \\ 0 \cdot 75 \\ 0 \cdot 85 \\ 0 \cdot 95 \end{array}$	$\begin{array}{c} +0.540\\ +0.225\\ -0.010\\ -0.105\\ -0.175\\ -0.250\\ -0.240\\ -0.180\\ -0.130\\ -0.070\\ -0.035\end{array}$	$\begin{array}{c} +0.630\\ 0.340\\ +0.095\\ -0.020\\ -0.100\\ -0.185\\ -0.185\\ -0.135\\ -0.095\\ -0.050\\ -0.005\end{array}$	$\begin{array}{c} +0.735\\ 0.450\\ 0.200\\ +0.075\\ -0.010\\ -0.105\\ -0.115\\ -0.080\\ -0.065\\ -0.015\\ +0.025\end{array}$	$\begin{array}{c} +0.805\\ 0.545\\ 0.280\\ 0.155\\ +0.065\\ -0.045\\ -0.060\\ -0.040\\ -0.020\\ +0.010\\ +0.030\end{array}$	$\begin{array}{c} +0.870\\ 0.630\\ 0.370\\ 0.235\\ 0.145\\ +0.030\\ -0.005\\ +0.005\\ 0.020\\ 0.040\\ +0.055\end{array}$	$\begin{array}{c} 0.925 \\ 0.710 \\ 0.450 \\ 0.310 \\ 0.215 \\ 0.095 \\ 0.055 \\ 0.055 \\ 0.060 \\ 0.070 \\ 0.075 \end{array}$	$\begin{array}{c} 0.965\\ 0.785\\ 0.540\\ 0.395\\ 0.295\\ 0.170\\ 0.125\\ 0.110\\ 0.110\\ 0.105\\ 0.105\end{array}$	$\begin{array}{c} 0.990\\ 0.850\\ 0.615\\ 0.470\\ 0.365\\ 0.240\\ 0.180\\ 0.155\\ 0.155\\ 0.140\\ 0.130\\ \end{array}$	$\begin{array}{c} 1\cdot005\\ 0\cdot905\\ 0\cdot685\\ 0\cdot540\\ 0\cdot440\\ 0\cdot310\\ 0\cdot245\\ 0\cdot215\\ 0\cdot205\\ 0\cdot180\\ 0\cdot160\\ \end{array}$	$\begin{array}{c} 1 \cdot 000 \\ 0 \cdot 940 \\ 0 \cdot 745 \\ 0 \cdot 590 \\ 0 \cdot 510 \\ 0 \cdot 370 \\ 0 \cdot 295 \\ 0 \cdot 260 \\ 0 \cdot 245 \\ 0 \cdot 230 \\ 0 \cdot 190 \end{array}$	$\begin{array}{c} 0.990\\ 0.990\\ 0.815\\ 0.680\\ 0.585\\ 0.445\\ 0.360\\ 0.310\\ 0.280\\ 0.255\\ 0.205\end{array}$	$\begin{array}{c} 0.985\\ 1.045\\ 0.900\\ 0.760\\ 0.675\\ 0.530\\ 0.430\\ 0.370\\ 0.325\\ 0.285\\ 0.225\end{array}$

 C_{P}

 $y/c = 0 \cdot 1$

2y/b = 0.068

Upper surface

_	α (deg)											
x/c	0	$2 \cdot 1$	4 • 1	$6\cdot 2$	8.2	10.3	12.3	14.4	16.4	18.5	20:6	22.6
$\begin{array}{c} 0\\ 0\cdot 01\\ 0\cdot 03\\ 0\cdot 08\\ 0\cdot 15\\ 0\cdot 225\\ 0\cdot 35\\ 0\cdot 50\\ 0\cdot 65\\ 0\cdot 75\\ 0\cdot 85\\ 0\cdot 95\end{array}$	$\begin{array}{c} +0.540\\ +0.200\\ -0.020\\ -0.125\\ -0.205\\ -0.255\\ -0.260\\ -0.200\\ -0.130\\ -0.075\\ -0.015\\ +0.035\end{array}$	$\begin{array}{c} +0.505\\ +0.010\\ -0.190\\ -0.240\\ -0.310\\ -0.335\\ -0.330\\ -0.245\\ -0.160\\ -0.095\\ -0.030\\ +0.045\end{array}$	$\begin{array}{c} +0\cdot 430\\ -0\cdot 185\\ -0\cdot 350\\ -0\cdot 350\\ -0\cdot 390\\ -0\cdot 415\\ -0\cdot 375\\ -0\cdot 270\\ -0\cdot 185\\ -0\cdot 110\\ -0\cdot 035\\ +0\cdot 045\end{array}$	$\begin{array}{c} +0\cdot 265\\ -0\cdot 455\\ -0\cdot 565\\ -0\cdot 505\\ -0\cdot 505\\ -0\cdot 505\\ -0\cdot 435\\ -0\cdot 320\\ -0\cdot 220\\ -0\cdot 140\\ -0\cdot 055\\ +0\cdot 035\end{array}$	$\begin{array}{c} +0\cdot055\\ -0\cdot735\\ -0\cdot770\\ -0\cdot630\\ -0\cdot600\\ -0\cdot580\\ -0\cdot500\\ -0\cdot365\\ -0\cdot245\\ -0\cdot160\\ -0\cdot065\\ +0\cdot035\end{array}$	$\begin{array}{c} -0.220\\ -1.060\\ -0.765\\ -0.655\\ -0.655\\ -0.550\\ -0.405\\ -0.270\\ -0.180\\ -0.075\\ +0.030\\ \end{array}$	$\begin{array}{c} -0.605\\ -1.410\\ -1.265\\ -0.850\\ -0.755\\ -0.735\\ -0.610\\ -0.445\\ -0.295\\ -0.195\\ -0.085\\ +0.030\\ \end{array}$	$\begin{array}{c} -1\cdot005\\ -1\cdot765\\ -1\cdot540\\ -0\cdot980\\ -0\cdot855\\ -0\cdot810\\ -0\cdot665\\ -0\cdot490\\ -0\cdot320\\ -0\cdot215\\ -0\cdot095\\ +0\cdot035\end{array}$	$\begin{array}{c} -1\cdot 460 \\ -2\cdot 195 \\ -1\cdot 810 \\ -1\cdot 135 \\ -0\cdot 955 \\ -0\cdot 885 \\ -0\cdot 720 \\ -0\cdot 530 \\ -0\cdot 345 \\ -0\cdot 235 \\ -0\cdot 100 \\ +0\cdot 035 \end{array}$	$\begin{array}{c} -1.980 \\ -2.610 \\ -2.030 \\ -1.290 \\ -1.070 \\ -0.970 \\ -0.785 \\ -0.585 \\ -0.385 \\ -0.250 \\ -0.110 \\ +0.050 \end{array}$	$\begin{array}{c} -2.635 \\ -3.105 \\ -2.220 \\ -1.465 \\ -1.180 \\ -1.065 \\ -0.870 \\ -0.665 \\ -0.450 \\ -0.305 \\ -0.150 \\ +0.025 \end{array}$	$\begin{array}{c} -3 \cdot 140 \\ -3 \cdot 480 \\ -2 \cdot 335 \\ -1 \cdot 245 \\ -1 \cdot 125 \\ -0 \cdot 965 \\ -0 \cdot 785 \\ -0 \cdot 565 \\ -0 \cdot 400 \\ -0 \cdot 230 \\ -0 \cdot 025 \end{array}$

54

Lower surface

	α (deg)											
x /c	0 ·	2.1	4 · 1	6.2	8.2	10.3	12.3	14.4	16.4	18.5	20.6	22.6
$\begin{array}{c} 0 \cdot 01 \\ 0 \cdot 03 \\ 0 \cdot 08 \\ 0 \cdot 15 \\ 0 \cdot 225 \\ 0 \cdot 35 \\ 0 \cdot 50 \\ 0 \cdot 65 \\ 0 \cdot 65 \\ 0 \cdot 75 \\ 0 \cdot 85 \\ 0 \cdot 95 \end{array}$	$\begin{array}{c} +0\cdot210\\ +0\cdot025\\ -0\cdot115\\ -0\cdot215\\ -0\cdot240\\ -0\cdot265\\ -0\cdot215\\ -0\cdot125\\ -0\cdot025\\ +0\cdot045\\ \end{array}$	$\begin{array}{r} +0\cdot 360\\ 0\cdot 180\\ +0\cdot 005\\ -0\cdot 115\\ -0\cdot 155\\ -0\cdot 195\\ -0\cdot 165\\ -0\cdot 100\\ -0\cdot 030\\ -0\cdot 010\\ +0\cdot 055\end{array}$	$\begin{array}{c} +0\cdot475\\ 0\cdot305\\ +0\cdot125\\ -0\cdot010\\ -0\cdot065\\ -0\cdot120\\ -0\cdot105\\ -0\cdot055\\ -0\cdot020\\ +0\cdot030\\ +0\cdot070\end{array}$	$\begin{array}{c} +0.535\\ 0.400\\ 0.220\\ 0.075\\ +0.010\\ -0.060\\ -0.055\\ -0.020\\ +0.020\\ 0.040\\ +0.070\end{array}$	$\begin{array}{c} +0.560\\ 0.490\\ 0.310\\ 0.165\\ 0.090\\ +0.005\\ -0.005\\ +0.025\\ 0.055\\ 0.060\\ +0.085\end{array}$	0.540 0.540 0.380 0.235 0.150 0.060 0.040 0.055 0.080 0.075 0.085	0.475 0.585 0.465 0.235 0.140 0.105 0.100 0.120 0.110 0.105	$\begin{array}{c} 0.390\\ 0.605\\ 0.530\\ 0.390\\ 0.300\\ 0.205\\ 0.155\\ 0.145\\ 0.145\\ 0.140\\ 0.125\\ \end{array}$	$\begin{array}{c} 0.260\\ 0.610\\ 0.590\\ 0.465\\ 0.375\\ 0.270\\ 0.215\\ 0.190\\ 0.185\\ 0.165\\ 0.150\\ \end{array}$	$\begin{array}{c} 0\cdot 100\\ 0\cdot 595\\ 0\cdot 640\\ 0\cdot 530\\ 0\cdot 440\\ 0\cdot 330\\ 0\cdot 270\\ 0\cdot 235\\ 0\cdot 225\\ 0\cdot 185\\ 0\cdot 170\\ \end{array}$	$\begin{array}{c} -0.100 \\ +0.575 \\ 0.700 \\ 0.605 \\ 0.520 \\ 0.405 \\ 0.280 \\ 0.255 \\ 0.220 \\ +0.170 \end{array}$	$\begin{array}{c} -0.325 \\ +0.525 \\ 0.740 \\ 0.670 \\ 0.585 \\ 0.460 \\ 0.370 \\ 0.300 \\ 0.270 \\ 0.220 \\ +0.145 \end{array}$

 C_{p}

$$y/c = 0 \cdot 2$$

2y/b = 0.135

.

Upper surface

x/c	α (deg)											
	0	2 · 1	4 · 1	$6 \cdot 2$	8.2	10.3	$12 \cdot 3$	14.4	16.4	18.5	20.6	22.6
$\begin{array}{c} 0\\ 0\cdot 01\\ 0\cdot 03\\ 0\cdot 08\\ 0\cdot 15\\ 0\cdot 225\\ 0\cdot 35\\ 0\cdot 50\\ 0\cdot 65\\ 0\cdot 75\\ 0\cdot 85\\ 0\cdot 95\end{array}$	$\begin{array}{c} +0\cdot 480\\ +0\cdot 155\\ -0\cdot 055\\ -0\cdot 170\\ -0\cdot 240\\ -0\cdot 270\\ -0\cdot 265\\ -0\cdot 195\\ -0\cdot 095\\ -0\cdot 040\\ +0\cdot 010\\ +0\cdot 060\end{array}$	$\begin{array}{c} +0.425\\ -0.070\\ -0.255\\ -0.310\\ -0.355\\ -0.360\\ -0.330\\ -0.230\\ -0.130\\ -0.065\\ -0.005\\ +0.060\end{array}$	$\begin{array}{c} +0\cdot 290\\ -0\cdot 305\\ -0\cdot 455\\ -0\cdot 450\\ -0\cdot 450\\ -0\cdot 435\\ -0\cdot 390\\ -0\cdot 245\\ -0\cdot 145\\ -0\cdot 070\\ 0\\ +0\cdot 070\end{array}$	$\begin{array}{c} +0.030\\ -0.650\\ -0.700\\ -0.605\\ -0.575\\ -0.540\\ -0.430\\ -0.300\\ -0.180\\ -0.100\\ -0.020\\ +0.055\end{array}$	$\begin{array}{c} -0.315\\ -0.995\\ -0.995\\ -0.960\\ -0.740\\ \hline \\ -0.590\\ -0.495\\ -0.335\\ -0.200\\ -0.115\\ -0.025\\ +0.055\\ \end{array}$	$\begin{array}{c} -0.755\\ -1.375\\ -1.245\\ -0.890\\ -0.755\\ -0.690\\ -0.560\\ -0.375\\ -0.230\\ -0.135\\ -0.045\\ +0.045\end{array}$	$\begin{array}{c} -1\cdot 365\\ -1\cdot 865\\ -1\cdot 595\\ -1\cdot 050\\ -0\cdot 860\\ -0\cdot 750\\ -0\cdot 615\\ -0\cdot 415\\ -0\cdot 250\\ -0\cdot 150\\ -0\cdot 050\\ +0\cdot 045\end{array}$	$\begin{array}{c} -1 \cdot 970 \\ -2 \cdot 350 \\ -1 \cdot 915 \\ -1 \cdot 230 \\ -0 \cdot 975 \\ -0 \cdot 835 \\ -0 \cdot 670 \\ -0 \cdot 450 \\ -0 \cdot 280 \\ -0 \cdot 170 \\ -0 \cdot 060 \\ +0 \cdot 040 \end{array}$	$\begin{array}{c} -2 \cdot 795 \\ -2 \cdot 905 \\ -2 \cdot 110 \\ -1 \cdot 410 \\ -1 \cdot 100 \\ -0 \cdot 930 \\ -0 \cdot 735 \\ -0 \cdot 495 \\ -0 \cdot 310 \\ -0 \cdot 195 \\ -0 \cdot 070 \\ +0 \cdot 045 \end{array}$	$\begin{array}{r} -3.620 \\ -3.490 \\ -2.430 \\ -1.600 \\ -1.230 \\ -1.050 \\ -0.795 \\ -0.550 \\ -0.345 \\ -0.210 \\ -0.075 \\ +0.050 \end{array}$	$\begin{array}{c} -4.600\\ -4.165\\ -2.785\\ -1.810\\ -1.365\\ -1.145\\ -0.890\\ -0.650\\ -0.435\\ -0.280\\ -0.125\\ +0.015\end{array}$	$\begin{array}{c} -5\cdot485\\ -4\cdot685\\ -3\cdot025\\ -1\cdot875\\ -1\cdot235\\ -1\cdot185\\ -1\cdot115\\ -0\cdot885\\ -0\cdot600\\ -0\cdot415\\ -0\cdot235\\ -0\cdot065\\ \end{array}$

55

Lower surface

xlc	α (deg)											
	0	$2 \cdot 1$	· 4·1	$6\cdot 2$	8.2	10.3	12.3	14.4	16.4	18.5	20.6	22.6
$\begin{array}{c} 0\cdot 01 \\ 0\cdot 03 \\ 0\cdot 08 \\ 0\cdot 15 \\ 0\cdot 225 \\ 0\cdot 35 \\ 0\cdot 50 \\ 0\cdot 50 \\ 0\cdot 65 \\ 0\cdot 75 \\ 0\cdot 85 \\ 0\cdot 95 \end{array}$	$\begin{array}{c} +0\cdot 195\\ -0\cdot 015\\ -0\cdot 180\\ -0\cdot 250\\ -0\cdot 270\\ -0\cdot 270\\ -0\cdot 270\\ -0\cdot 210\\ -0\cdot 090\\ -0\cdot 055\\ 0\\ +0\cdot 045\end{array}$	$\begin{array}{r} +0\cdot 365\\ +0\cdot 160\\ -0\cdot 045\\ -0\cdot 145\\ -0\cdot 180\\ -0\cdot 205\\ -0\cdot 155\\ -0\cdot 075\\ -0\cdot 075\\ -0\cdot 030\\ +0\cdot 015\\ +0\cdot 060\end{array}$	$\begin{array}{c} +0.480\\ 0.300\\ +0.080\\ -0.035\\ -0.090\\ -0.135\\ -0.095\\ -0.025\\ 0\\ +0.035\\ +0.075\end{array}$	$\begin{array}{c} +0.530\\ 0.405\\ 0.170\\ +0.055\\ -0.015\\ -0.070\\ -0.050\\ +0.005\\ 0.015\\ 0.045\\ +0.075\end{array}$	$\begin{array}{c} +0.540\\ 0.490\\ 0.280\\ 0.145\\ +0.070\\ -0.005\\ +0.005\\ 0.045\\ 0.045\\ 0.040\\ 0.070\\ +0.085\end{array}$	$\begin{array}{c} 0 \cdot 495 \\ 0 \cdot 525 \\ 0 \cdot 350 \\ 0 \cdot 220 \\ 0 \cdot 140 \\ 0 \cdot 050 \\ 0 \cdot 040 \\ 0 \cdot 065 \\ 0 \cdot 055 \\ 0 \cdot 075 \\ 0 \cdot 075 \\ 0 \cdot 075 \end{array}$	$\begin{array}{c} 0 \cdot 405 \\ 0 \cdot 550 \\ 0 \cdot 435 \\ 0 \cdot 300 \\ 0 \cdot 220 \\ 0 \cdot 125 \\ 0 \cdot 105 \\ 0 \cdot 115 \\ 0 \cdot 090 \\ 0 \cdot 105 \\ 0 \cdot 090 \end{array}$	$\begin{array}{c} 0\cdot 280\\ 0\cdot 550\\ 0\cdot 500\\ 0\cdot 375\\ 0\cdot 285\\ 0\cdot 190\\ 0\cdot 145\\ 0\cdot 150\\ 0\cdot 120\\ 0\cdot 130\\ 0\cdot 110\\ \end{array}$	$\begin{array}{c} 0\cdot 105\\ 0\cdot 520\\ 0\cdot 555\\ 0\cdot 450\\ 0\cdot 360\\ 0\cdot 255\\ 0\cdot 205\\ 0\cdot 185\\ 0\cdot 150\\ 0\cdot 165\\ 0\cdot 130\\ \end{array}$	$\begin{array}{c} -0.110 \\ +0.460 \\ 0.600 \\ 0.510 \\ 0.430 \\ 0.260 \\ 0.230 \\ 0.180 \\ 0.190 \\ +0.155 \end{array}$	$\begin{array}{c} -0.365 \\ +0.390 \\ 0.645 \\ 0.590 \\ 0.505 \\ 0.390 \\ 0.310 \\ 0.260 \\ 0.210 \\ 0.200 \\ +0.145 \end{array}$	$\begin{array}{c} -0.635 \\ +0.305 \\ 0.685 \\ 0.645 \\ 0.570 \\ 0.440 \\ 0.340 \\ 0.275 \\ 0.205 \\ +0.185 \\ -0.025 \end{array}$

 $y/c = 0 \cdot 4$

 $2y/b = 0 \cdot 271$

Upper surface

C_{p}	

,	α (deg)											
<i>x</i> / <i>c</i>	0	$2 \cdot 1$	4 · 1	6.2	8.2	10.3	12.3	14.4	16.4	18.5	20.6	22.6
$\begin{array}{c} 0\\ 0\cdot 01\\ 0\cdot 03\\ 0\cdot 08\\ 0\cdot 15\\ 0\cdot 225\\ 0\cdot 35\\ 0\cdot 50\\ 0\cdot 65\\ 0\cdot 75\\ 0\cdot 85\\ 0\cdot 95\end{array}$	$\begin{array}{r} +0\cdot 485\\ +0\cdot 115\\ -0\cdot 075\\ -0\cdot 205\\ -0\cdot 270\\ -0\cdot 270\\ -0\cdot 270\\ -0\cdot 265\\ -0\cdot 180\\ -0\cdot 075\\ -0\cdot 035\\ +0\cdot 015\\ +0\cdot 060\end{array}$	$\begin{array}{r} +0\cdot410\\ -0\cdot130\\ -0\cdot270\\ -0\cdot335\\ -0\cdot375\\ -0\cdot350\\ -0\cdot320\\ -0\cdot185\\ -0\cdot100\\ -0\cdot045\\ +0\cdot010\\ +0\cdot060\end{array}$	$\begin{array}{r} +0\cdot 245\\ -0\cdot 440\\ -0\cdot 520\\ -0\cdot 520\\ -0\cdot 505\\ -0\cdot 445\\ -0\cdot 385\\ -0\cdot 215\\ -0\cdot 115\\ -0\cdot 060\\ 0\\ +0\cdot 060\end{array}$	$\begin{array}{c} -0.005\\ -0.775\\ -0.770\\ -0.680\\ -0.620\\ -0.510\\ -0.430\\ -0.255\\ -0.140\\ -0.065\\ +0.005\\ +0.065\end{array}$	$\begin{array}{c} -0.430\\ -1.275\\ -1.100\\ -0.810\\ -0.725\\ -0.585\\ -0.490\\ -0.290\\ -0.150\\ -0.070\\ +0.005\\ +0.060\end{array}$	$\begin{array}{c} -0.950\\ -1.780\\ -1.435\\ -0.965\\ -0.850\\ -0.670\\ -0.540\\ -0.315\\ -0.165\\ -0.075\\ -0.005\\ +0.050\end{array}$	$\begin{array}{c} -1.605\\ -2.340\\ -1.755\\ -0.975\\ -0.975\\ -0.755\\ -0.590\\ -0.345\\ -0.185\\ -0.090\\ -0.015\\ +0.035\end{array}$	$\begin{array}{c} -2 \cdot 410 \\ -2 \cdot 965 \\ -2 \cdot 075 \\ -1 \cdot 355 \\ -1 \cdot 105 \\ -0 \cdot 845 \\ -0 \cdot 635 \\ -0 \cdot 370 \\ -0 \cdot 200 \\ -0 \cdot 115 \\ -0 \cdot 035 \\ +0 \cdot 025 \end{array}$	$\begin{array}{c} -3 \cdot 335 \\ -3 \cdot 725 \\ -2 \cdot 455 \\ -1 \cdot 610 \\ -1 \cdot 230 \\ -0 \cdot 930 \\ -0 \cdot 690 \\ -0 \cdot 420 \\ -0 \cdot 420 \\ -0 \cdot 250 \\ -0 \cdot 160 \\ -0 \cdot 065 \\ +0 \cdot 020 \end{array}$	$\begin{array}{c} -4 \cdot 450 \\ -4 \cdot 610 \\ -2 \cdot 780 \\ -1 \cdot 860 \\ -1 \cdot 390 \\ -1 \cdot 050 \\ -0 \cdot 755 \\ -0 \cdot 500 \\ -0 \cdot 330 \\ -0 \cdot 210 \\ -0 \cdot 075 \\ +0 \cdot 035 \end{array}$	$\begin{array}{c} -5\cdot770\\ -5\cdot520\\ -3\cdot225\\ -2\cdot125\\ -1\cdot535\\ -1\cdot075\\ -0\cdot935\\ -0\cdot715\\ -0\cdot490\\ -0\cdot310\\ -0\cdot155\\ -0\cdot035\end{array}$	$\begin{array}{c} -6 \cdot 140 \\ -5 \cdot 600 \\ -3 \cdot 035 \\ -2 \cdot 760 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $

56

Lower surface

						α(deg)				,	
<i>x</i> / <i>c</i>	0	2.1	4 · 1	$6 \cdot 2$	$8 \cdot 2$	10.3	12.3	14.4	16.4	18.5	20.6	22.6
$\begin{array}{c} 0 \cdot 01 \\ 0 \cdot 03 \\ 0 \cdot 08 \\ 0 \cdot 15 \\ 0 \cdot 225 \\ 0 \cdot 35 \\ 0 \cdot 50 \\ 0 \cdot 65 \\ 0 \cdot 65 \\ 0 \cdot 75 \\ 0 \cdot 85 \\ 0 \cdot 95 \end{array}$	$\begin{array}{c} +0.140\\ -0.075\\ -0.215\\ -0.265\\ -0.280\\ -0.265\\ -0.190\\ -0.070\\ -0.025\\ +0.010\\ +0.070\end{array}$	$\begin{array}{r} +0\cdot 315\\ +0\cdot 110\\ -0\cdot 075\\ -0\cdot 160\\ -0\cdot 195\\ -0\cdot 205\\ -0\cdot 145\\ -0\cdot 035\\ -0\cdot 005\\ +0\cdot 025\\ +0\cdot 070\end{array}$	$\begin{array}{c} +0\cdot 435\\ 0\cdot 260\\ +0\cdot 060\\ -0\cdot 060\\ -0\cdot 105\\ -0\cdot 140\\ -0\cdot 085\\ -0\cdot 020\\ +0\cdot 010\\ 0\cdot 035\\ +0\cdot 070\end{array}$	$\begin{array}{r} +0\cdot 495\\ 0\cdot 375\\ 0\cdot 175\\ +0\cdot 045\\ -0\cdot 010\\ -0\cdot 075\\ -0\cdot 040\\ +0\cdot 010\\ 0\cdot 030\\ 0\cdot 045\\ +0\cdot 080\end{array}$	$\begin{array}{c} 0 \cdot 495 \\ 0 \cdot 470 \\ 0 \cdot 290 \\ 0 \cdot 150 \\ 0 \cdot 075 \\ 0 \cdot 005 \\ 0 \cdot 015 \\ 0 \cdot 045 \\ 0 \cdot 055 \\ 0 \cdot 065 \\ 0 \cdot 085 \end{array}$	$\begin{array}{c} 0.430\\ 0.510\\ 0.370\\ 0.235\\ 0.145\\ 0.060\\ 0.055\\ 0.075\\ 0.075\\ 0.075\\ 0.085\\ \end{array}$	$\begin{array}{c} 0.310\\ 0.535\\ 0.445\\ 0.305\\ 0.225\\ 0.125\\ 0.100\\ 0.110\\ 0.105\\ 0.095\\ 0.090 \end{array}$	$\begin{matrix} 0 \cdot 140 \\ 0 \cdot 525 \\ 0 \cdot 520 \\ 0 \cdot 390 \\ 0 \cdot 295 \\ 0 \cdot 195 \\ 0 \cdot 155 \\ 0 \cdot 155 \\ 0 \cdot 155 \\ 0 \cdot 140 \\ 0 \cdot 125 \\ 0 \cdot 115 \end{matrix}$	$\begin{array}{c} -0.125 \\ +0.470 \\ 0.550 \\ 0.440 \\ 0.355 \\ 0.250 \\ 0.200 \\ 0.180 \\ 0.165 \\ 0.145 \\ +0.125 \end{array}$	$\begin{array}{c} -0.435 \\ +0.380 \\ 0.580 \\ 0.505 \\ 0.420 \\ 0.305 \\ 0.245 \\ 0.220 \\ 0.195 \\ 0.170 \\ +0.145 \end{array}$	$\begin{array}{c} -0.810 \\ +0.280 \\ 0.620 \\ 0.575 \\ 0.495 \\ 0.365 \\ 0.280 \\ 0.240 \\ 0.205 \\ 0.155 \\ +0.115 \end{array}$	$\begin{array}{c} -0.860 \\ +0.310 \\ 0.670 \\ 0.620 \\ 0.530 \\ 0.390 \\ 0.295 \\ 0.240 \\ 0.195 \\ 0.135 \\ +0.065 \end{array}$

y/c = 0.6

2y/b = 0.406

٠

Upper surface

 C_{p}

x/c						α(deg)					
	0	2.1	4 • 1	$6 \cdot 2$	8.2	10.3	12.3	14.4	16.4	18.5	20.6	22.6
$\begin{array}{c} 0\\ 0\cdot 01\\ 0\cdot 03\\ 0\cdot 08\\ 0\cdot 15\\ 0\cdot 225\\ 0\cdot 35\\ 0\cdot 50\\ 0\cdot 65\\ 0\cdot 75\\ 0\cdot 85\\ 0\cdot 95\end{array}$	$\begin{array}{c} +0.500\\ +0.120\\ -0.070\\ -0.185\\ -0.260\\ -0.275\\ -0.255\\ -0.150\\ -0.060\\ -0.025\\ +0.015\\ +0.060\end{array}$	$\begin{array}{c} +0.430\\ -0.140\\ -0.285\\ -0.340\\ -0.375\\ -0.360\\ -0.305\\ -0.180\\ -0.075\\ -0.035\\ +0.005\\ +0.060\\ \end{array}$	$\begin{array}{c} +0.225\\ -0.490\\ -0.555\\ -0.520\\ -0.510\\ -0.465\\ -0.355\\ -0.210\\ -0.100\\ -0.050\\ +0.005\\ +0.065\end{array}$	$\begin{array}{c} -0.085\\ -0.860\\ -0.830\\ -0.690\\ -0.630\\ -0.530\\ -0.395\\ -0.240\\ -0.115\\ -0.055\\ +0.005\\ +0.065\end{array}$	$\begin{array}{c} -0.615 \\ -1.355 \\ -1.195 \\ -0.730 \\ -0.630 \\ -0.440 \\ -0.260 \\ -0.120 \\ -0.055 \\ +0.010 \\ +0.065 \end{array}$	$\begin{array}{c} -1\cdot 230 \\ -1\cdot 870 \\ -1\cdot 575 \\ -0\cdot 855 \\ -0\cdot 720 \\ -0\cdot 490 \\ -0\cdot 285 \\ -0\cdot 125 \\ -0\cdot 060 \\ +0\cdot 005 \\ +0\cdot 045 \end{array}$	$\begin{array}{c} -1.960\\ -2.480\\ -1.920\\ -0.985\\ -0.985\\ -0.800\\ -0.540\\ -0.300\\ -0.140\\ -0.075\\ -0.020\\ +0.020\end{array}$	$\begin{array}{c} -2.835\\ -3.200\\ -2.200\\ -1.430\\ -0.890\\ -0.585\\ -0.320\\ -0.170\\ -0.115\\ -0.070\\ -0.015\end{array}$	$\begin{array}{c} -3 \cdot 905 \\ -4 \cdot 070 \\ -2 \cdot 610 \\ -1 \cdot 700 \\ -1 \cdot 245 \\ -0 \cdot 975 \\ -0 \cdot 630 \\ -0 \cdot 380 \\ -0 \cdot 245 \\ -0 \cdot 195 \\ -0 \cdot 115 \\ -0 \cdot 020 \end{array}$	$\begin{array}{c} -5\cdot170\\ -5\cdot080\\ -3\cdot120\\ -1\cdot970\\ -1\cdot345\\ -1\cdot085\\ -0\cdot710\\ -0\cdot515\\ -0\cdot365\\ -0\cdot240\\ -0\\ -0\cdot065\end{array}$	$\begin{array}{c} -6\cdot 225 \\ -5\cdot 760 \\ -3\cdot 370 \\ -2\cdot 135 \\ -2\cdot 150 \\ -1\cdot 650 \\ -1\cdot 085 \\ -0\cdot 735 \\ -0\cdot 490 \\ -0\cdot 355 \\ -0\cdot 220 \\ -0\cdot 110 \end{array}$	$\begin{array}{c} -2 \cdot 610 \\ -2 \cdot 020 \\ -2 \cdot 175 \\ -2 \cdot 090 \\ -1 \cdot 655 \\ -1 \\ -1 \cdot 445 \\ -1 \cdot 105 \\ -0 \cdot 835 \\ -0 \cdot 680 \\ -0 \cdot 505 \\ -0 \cdot 350 \end{array}$

57

Lower surface

 C_p

x/c	α (deg)												
	0	2.1	4 · 1	6.2	8.2	10.3	12.3	14.4	16.4	18.5	20.6	22.6	
0.01 0.03 0.08 0.15 0.225 0.35 0.50 0.65 0.75 0.85 0.95	$\begin{array}{c} +0\cdot 100\\ -0\cdot 065\\ -0\cdot 220\\ -0\cdot 265\\ -0\cdot 265\\ -0\cdot 245\\ -0\cdot 170\\ -0\cdot 055\\ -0\cdot 015\\ +0\cdot 005\\ +0\cdot 060\\ \end{array}$	$\begin{array}{c} +0\cdot 295 \\ +0\cdot 125 \\ -0\cdot 075 \\ -0\cdot 155 \\ -0\cdot 180 \\ -0\cdot 190 \\ -0\cdot 130 \\ -0\cdot 030 \\ +0\cdot 005 \\ 0\cdot 015 \\ +0\cdot 065 \end{array}$	$\begin{array}{r} +0.435\\ 0.280\\ +0.075\\ -0.045\\ -0.090\\ -0.125\\ -0.080\\ -0.015\\ +0.020\\ 0.025\\ +0.065\end{array}$	$\begin{array}{c} +0.495\\ 0.395\\ 0.180\\ +0.055\\ -0.010\\ -0.060\\ -0.030\\ +0.015\\ 0.035\\ 0.040\\ +0.070\end{array}$	0.495 0.490 0.300 0.165 0.085 0.010 0.025 0.045 0.060 0.055 0.070	$\begin{array}{c} 0\cdot 405\\ 0\cdot 520\\ 0\cdot 375\\ 0\cdot 240\\ 0\cdot 155\\ 0\cdot 060\\ 0\cdot 055\\ 0\cdot 065\\ 0\cdot 070\\ 0\cdot 055\\ 0\cdot 060\\ \end{array}$	$\begin{array}{c} 0.270\\ 0.525\\ 0.450\\ 0.315\\ 0.230\\ 0.125\\ 0.090\\ 0.100\\ 0.095\\ 0.070\\ 0.060\\ \end{array}$	$\begin{array}{c} 0\cdot 070\\ 0\cdot 505\\ 0\cdot 515\\ 0\cdot 395\\ 0\cdot 300\\ 0\cdot 190\\ 0\cdot 155\\ 0\cdot 135\\ 0\cdot 125\\ 0\cdot 095\\ 0\cdot 075\\ \end{array}$	$\begin{array}{c} -0\cdot 195 \\ +0\cdot 435 \\ 0\cdot 550 \\ 0\cdot 450 \\ 0\cdot 360 \\ 0\cdot 245 \\ 0\cdot 195 \\ 0\cdot 165 \\ 0\cdot 155 \\ 0\cdot 155 \\ 0\cdot 120 \\ +0\cdot 095 \end{array}$	$\begin{array}{c} -0.560 \\ +0.320 \\ 0.640 \\ 0.505 \\ 0.420 \\ 0.300 \\ 0.240 \\ 0.205 \\ 0.185 \\ 0.145 \\ +0.115 \end{array}$	$\begin{array}{c} -0.795 \\ +0.295 \\ 0.640 \\ 0.580 \\ 0.485 \\ 0.345 \\ 0.260 \\ 0.210 \\ 0.175 \\ 0.120 \\ +0.055 \end{array}$	$\begin{array}{c} -0.360 \\ +0.395 \\ 0.595 \\ 0.600 \\ 0.505 \\ 0.360 \\ 0.265 \\ 0.205 \\ 0.155 \\ +0.075 \\ -0.045 \end{array}$	

 C_{p}

y/c = 0.9

2y/b = 0.610

Upper surface

	α (deg)												
x/c	0	$2 \cdot 1$	4 · 1	6.2	8.2	10.3	12.3	14.4	16.4	18.5	20.6	22.6	
$\begin{array}{c} 0\\ 0\cdot 01\\ 0\cdot 03\\ 0\cdot 08\\ 0\cdot 15\\ 0\cdot 225\\ 0\cdot 35\\ 0\cdot 50\\ 0\cdot 65\\ 0\cdot 75\\ 0\cdot 85\\ 0\cdot 95\end{array}$	$\begin{array}{c} +0\cdot490\\ +0\cdot100\\ -\\ -\\ -0\cdot195\\ -0\cdot245\\ -0\cdot240\\ -0\cdot240\\ -0\cdot115\\ -0\cdot055\\ -0\cdot005\\ +0\cdot020\\ +0\cdot070\\ \end{array}$	$\begin{array}{c} +0\cdot455\\ -0\cdot175\\ -\\ -\\ -\\ -0\cdot350\\ -0\cdot370\\ -0\cdot350\\ -0\cdot300\\ -0\cdot135\\ -0\cdot075\\ -0\cdot015\\ +0\cdot015\\ +0\cdot070\\ \end{array}$	$\begin{array}{c} +0\cdot 260\\ -0\cdot 545\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$	$\begin{array}{c} +0\cdot010\\ -0\cdot910\\ \hline \\ -0\cdot710\\ -0\cdot620\\ -0\cdot490\\ -0\cdot370\\ -0\cdot205\\ -0\cdot100\\ -0\cdot025\\ +0\cdot020\\ +0\cdot075\\ \end{array}$	$\begin{array}{c} -0.455\\ -1.460\\ -1.230\\ -0.905\\ -0.720\\ -0.595\\ -0.420\\ -0.230\\ -0.100\\ -0.025\\ +0.025\\ +0.080\end{array}$	$\begin{array}{c} -1\cdot025\\ -2\cdot015\\ -1\cdot585\\ -1\cdot080\\ -0\cdot850\\ -0\cdot685\\ -0\cdot470\\ -0\cdot250\\ -0\cdot115\\ -0\cdot040\\ +0\cdot005\\ +0\cdot060\\ \end{array}$	$\begin{array}{c} -1\cdot 640 \\ -2\cdot 645 \\ -1\cdot 835 \\ -1\cdot 280 \\ -0\cdot 975 \\ -0\cdot 760 \\ -0\cdot 505 \\ -0\cdot 265 \\ -0\cdot 135 \\ -0\cdot 075 \\ -0\cdot 040 \\ +0\cdot 045 \end{array}$	$\begin{array}{c} -2 \cdot 415 \\ -3 \cdot 330 \\ -2 \cdot 190 \\ -1 \cdot 470 \\ -1 \cdot 090 \\ -0 \cdot 825 \\ -0 \cdot 510 \\ -0 \cdot 275 \\ -0 \cdot 185 \\ -0 \cdot 150 \\ -0 \cdot 085 \\ +0 \cdot 005 \end{array}$	$\begin{array}{c} -3\cdot490\\ -4\cdot110\\ -2\cdot710\\ -1\cdot745\\ -1\cdot205\\ -0\cdot885\\ -0\cdot525\\ -0\cdot370\\ -0\cdot375\\ -0\cdot295\\ -0\cdot295\\ -0\cdot115\\ +0\cdot030\\ \end{array}$	$\begin{array}{c} -4.635 \\ -4.935 \\ -3.245 \\ -1.990 \\ -1.305 \\ -0.910 \\ -0.615 \\ -0.615 \\ -0.645 \\ -0.430 \\ - \\ - \end{array}$	$-1.755 \\ -1.380 \\ -1.410 \\ -1.385 \\ -1.320 \\ -1.280 \\ -1.210 \\ -1.010 \\ -0.780 \\ -0.645 \\ -0.505 \\ -0.350 $	$\begin{array}{c} -1\cdot 435 \\ -1\cdot 085 \\ -1\cdot 085 \\ -1\cdot 075 \\ -1\cdot 035 \\ -0\cdot 995 \\ -0\cdot 990 \\ -0\cdot 900 \\ -0\cdot 775 \\ -0\cdot 685 \\ -0\cdot 615 \\ -0\cdot 540 \end{array}$	

58

Lower surface

,		α (deg)													
x/c	0	2.1	4 · 1	6.2	8.2	10.3	12.3	14.4	16.4	18.5	20.6	22.6			
··01 ··03 ··08 ··15 ··225 ··35 ··50 ··65 ··75 ··85	$\begin{array}{c} +0.090\\ -0.090\\ -0.210\\ -0.260\\ -0.260\\ -0.240\\ -0.125\\ -0.060\\ -0.010\\ +0.075\end{array}$	$\begin{array}{c} +0\cdot 295\\ +0\cdot 100\\ -0\cdot 060\\ -0\cdot 155\\ -0\cdot 180\\ -0\cdot 180\\ -0\cdot 115\\ -0\cdot 045\\ -0\cdot 005\\ +0\cdot 005\\ +0\cdot 070\end{array}$	$\begin{array}{c} +0\cdot 430\\ 0\cdot 260\\ +0\cdot 075\\ -0\cdot 045\\ -0\cdot 095\\ -0\cdot 125\\ -0\cdot 075\\ -0\cdot 030\\ +0\cdot 005\\ 0\cdot 045\\ +0\cdot 070\end{array}$	$\begin{array}{c} +0\cdot 495\\ 0\cdot 375\\ 0\cdot 185\\ +0\cdot 050\\ -0\cdot 020\\ -0\cdot 070\\ -0\cdot 040\\ -0\cdot 010\\ +0\cdot 015\\ 0\cdot 055\\ +0\cdot 075\end{array}$	$ \begin{array}{c} +0.495\\0.480\\0.300\\0.160\\+0.075\\-0.005\\-0.005\\+0.020\\0.045\\0.075\\+0.085\end{array} $	0.400 0.510 0.230 0.140 0.045 0.020 0.035 0.045 0.070 0.075	$\begin{array}{c} 0.260\\ 0.520\\ 0.440\\ 0.300\\ 0.210\\ 0.100\\ 0.065\\ 0.055\\ 0.065\\ 0.085\\ 0.085\\ 0.085\end{array}$	$\begin{array}{c} 0 \cdot 055 \\ 0 \cdot 510 \\ 0 \cdot 505 \\ 0 \cdot 375 \\ 0 \cdot 280 \\ 0 \cdot 165 \\ 0 \cdot 105 \\ 0 \cdot 085 \\ 0 \cdot 075 \\ 0 \cdot 085 \\ 0 \cdot 055 \end{array}$	$\begin{array}{ c c c c } -0.220 \\ +0.445 \\ 0.530 \\ 0.430 \\ 0.335 \\ 0.215 \\ 0.150 \\ 0.115 \\ 0.105 \\ 0.110 \\ +0.080 \end{array}$	$\begin{array}{c} -0.600 \\ +0.340 \\ 0.550 \\ 0.485 \\ 0.395 \\ 0.265 \\ 0.185 \\ 0.150 \\ 0.130 \\ +0.130 \\ -0.035 \end{array}$	$\begin{array}{c} -0.025 \\ +0.510 \\ 0.600 \\ 0.510 \\ 0.415 \\ 0.275 \\ 0.175 \\ 0.120 \\ 0.070 \\ +0.025 \\ -0.110 \end{array}$	$\begin{array}{c} +0.035\\ 0.530\\ 0.615\\ 0.535\\ 0.430\\ 0.290\\ 0.180\\ 0.100\\ +0.035\\ -0.040\\ -0.240\end{array}$			

 C_{p}

$$y/c = 1 \cdot 228$$

2y/b = 0.831

Upper surface

aclo	α (deg)													
x/c	0	4 · 1	8.2	12.3	16.4	20.6	22.6							
$\begin{array}{c} 0\\ 0\cdot 01\\ 0\cdot 03\\ 0\cdot 08\\ 0\cdot 15\\ 0\cdot 225\\ 0\cdot 35\\ 0\cdot 50\\ 0\cdot 65\\ 0\cdot 75\\ 0\cdot 85\\ 0\cdot 95\end{array}$	$\begin{array}{c} +0\cdot 460\\ -0\cdot 065\\ -0\cdot 105\\ -0\cdot 195\\ -0\cdot 245\\ -0\cdot 230\\ -0\cdot 215\\ -0\cdot 090\\ -0\cdot 020\\ +0\cdot 020\\ +0\cdot 070\\ +0\cdot 095\end{array}$	$\begin{array}{c} +0\cdot 375\\ -0\cdot 650\\ -0\cdot 515\\ -0\cdot 475\\ -0\cdot 425\\ -0\cdot 370\\ -0\cdot 295\\ -0\cdot 125\\ -0\cdot 040\\ -0\cdot 030\\ +0\cdot 065\\ +0\cdot 100\\ \end{array}$	$\begin{array}{c} -0\cdot155\\ -1\cdot435\\ -1\cdot015\\ -0\cdot765\\ -0\cdot625\\ -0\cdot520\\ -0\cdot385\\ -0\cdot175\\ -0\cdot070\\ -0\cdot040\\ +0\cdot060\\ +0\cdot090\\ \end{array}$	$\begin{array}{c} -1\cdot 130 \\ -2\cdot 420 \\ -1\cdot 610 \\ -1\cdot 135 \\ -0\cdot 860 \\ -0\cdot 665 \\ -0\cdot 450 \\ -0\cdot 220 \\ -0\cdot 095 \\ -0\cdot 045 \\ +0\cdot 010 \\ +0\cdot 035 \end{array}$	$\begin{array}{c} -3 \cdot 595 \\ -3 \cdot 285 \\ -2 \cdot 175 \\ -1 \cdot 340 \\ -1 \cdot 065 \\ -0 \cdot 740 \\ -0 \cdot 420 \\ -0 \cdot 335 \\ -0 \cdot 315 \\ -0 \cdot 275 \\ -0 \cdot 160 \\ -0 \cdot 170 \end{array}$	$\begin{array}{c} -5 \cdot 720 \\ -4 \cdot 445 \\ -2 \cdot 645 \\ -1 \cdot 330 \\ -0 \cdot 845 \\ -0 \cdot 735 \\ -0 \cdot 735 \\ -0 \cdot 740 \\ -0 \cdot 955 \\ -1 \cdot 430 \\ -1 \cdot 260 \\ -0 \cdot 370 \\ +0 \cdot 045 \end{array}$	$\begin{array}{c} -2\cdot 485 \\ -4\cdot 120 \\ -1\cdot 800 \\ -1\cdot 355 \\ -1\cdot 055 \\ -1\cdot 035 \\ -0\cdot 945 \\ -1\cdot 145 \\ -1\cdot 065 \\ -0\cdot 910 \\ -0\cdot 465 \\ -0\cdot 250 \end{array}$							

Lower surface

rla	α (deg)												
	0	4 · 1	8.2	12.3	16.4	20.6	22.6						
0.01 0.03 0.08 0.15 0.225 0.35 0.50 0.65 0.75 0.85 0.95	$\begin{array}{c} -0.025\\ -0.175\\ -0.250\\ -0.230\\ -0.225\\ -0.210\\ -0.135\\ -0.040\\ 0\\ +0.055\\ +0.055\end{array}$	$\begin{array}{c} +0\cdot 330 \\ +0\cdot 135 \\ -0\cdot 025 \\ -0\cdot 070 \\ -0\cdot 110 \\ -0\cdot 135 \\ -0\cdot 005 \\ -0\cdot 020 \\ +0\cdot 010 \\ 0\cdot 065 \\ +0\cdot 050 \end{array}$	$\begin{array}{c} +0\cdot 440 \\ 0\cdot 315 \\ 0\cdot 145 \\ 0\cdot 065 \\ +0\cdot 005 \\ -0\cdot 060 \\ -0\cdot 055 \\ 0 \\ +0\cdot 020 \\ 0\cdot 065 \\ +0\cdot 035 \end{array}$	$\begin{array}{c} +0\cdot 320\\ 0\cdot 380\\ 0\cdot 260\\ 0\cdot 165\\ 0\cdot 105\\ +0\cdot 015\\ -0\cdot 015\\ +0\cdot 025\\ 0\cdot 025\\ +0\cdot 065\\ -0\cdot 005\end{array}$	$\begin{array}{c c} -0.010 \\ +0.310 \\ 0.335 \\ 0.260 \\ 0.155 \\ 0.080 \\ 0.010 \\ 0.075 \\ 0.045 \\ +0.045 \\ -0.040 \end{array}$	$\begin{array}{c} -0.515 \\ +0.025 \\ 0.360 \\ 0.325 \\ 0.245 \\ 0.160 \\ 0.070 \\ 0.130 \\ 0.105 \\ +0.110 \\ -\end{array}$	$\begin{array}{c} -0.675 \\ +0.165 \\ 0.385 \\ 0.355 \\ 0.295 \\ 0.200 \\ 0.095 \\ 0.130 \\ 0.095 \\ +0.060 \\ -0.100 \end{array}$						

 $y/c = 1 \cdot 352$

2y/b = 0.915

Upper surface

 C_{p}

$\alpha(\alpha(\alpha))$	α (deg)												
x/c(y)	0	2.1	4 · 1	$6\cdot 2$	8.2	10.3	12.3	14.4	16.4	18.5	20.6	22.6	
$\begin{array}{c} 0\\ 0\cdot 025\\ 0\cdot 05\\ 0\cdot 10\\ 0\cdot 15\\ 0\cdot 25\\ 0\cdot 35\\ 0\cdot 50\\ 0\cdot 70\\ \end{array}$	$\begin{array}{c} +0.035\\ -0.065\\ -0.115\\ -0.175\\ -0.195\\ -0.180\\ -0.155\\ -0.100\\ +0.005\end{array}$	$\begin{array}{c} -0.025\\ -0.215\\ -0.250\\ -0.280\\ -0.280\\ -0.275\\ -0.245\\ -0.210\\ -0.135\\ -0.015\end{array}$	$\begin{array}{c} -0.120 \\ -0.405 \\ -0.415 \\ -0.395 \\ -0.390 \\ -0.325 \\ -0.265 \\ -0.170 \\ -0.040 \end{array}$	$ \begin{array}{c} -0.265 \\ -0.620 \\ -0.595 \\ -0.535 \\ -0.500 \\ -0.410 \\ -0.320 \\ -0.200 \\ -0.055 \\ \end{array} $	$\begin{array}{c} -0.510 \\ -0.905 \\ -0.825 \\ -0.700 \\ -0.635 \\ -0.495 \\ -0.380 \\ -0.240 \\ -0.075 \end{array}$	$\begin{array}{c} -0.820 \\ -1.240 \\ -1.095 \\ -0.885 \\ -0.785 \\ -0.600 \\ -0.460 \\ -0.305 \\ -0.135 \end{array}$	$-1 \cdot 170 \\ -1 \cdot 600 \\ -1 \cdot 355 \\ -0 \cdot 905 \\ -0 \cdot 685 \\ -0 \cdot 520 \\ -0 \cdot 375 \\ -0 \cdot 200$	$-1.525 \\ -1.980 \\ -1.630 \\ -1.230 \\ -0.755 \\ -0.650 \\ -0.420 \\ -0.250$	$-1.975 \\ -2.415 \\ -1.935 \\ -1.410 \\ -1.145 \\ -0.890 \\ -1.255 \\ -0.305 \\ -0.345$	$\begin{array}{c} -2 \cdot 470 \\ -2 \cdot 715 \\ -2 \cdot 045 \\ -1 \cdot 435 \\ -1 \cdot 240 \\ -1 \cdot 530 \\ -1 \cdot 240 \\ -0 \cdot 915 \\ -0 \cdot 490 \end{array}$	$-1.330 \\ -0.915 \\ -0.805 \\ -0.740 \\ -0.690 \\ -0.585 \\ -0.485 \\ -0.415 \\ -0.385$	$-1 \cdot 235 \\ -0 \cdot 780 \\ -0 \cdot 720 \\ -0 \cdot 670 \\ -0 \cdot 610 \\ -0 \cdot 515 \\ -0 \cdot 450 \\ -0 \cdot 395 \\ -0 \cdot 385$	

60

Lower surface

						α(deg)					
x/c(y)	0	2.1	4 · 1	· 6·2	8.2	10.3	12.3	14•4	16.4	18.5	20.6	22.6
$\begin{array}{c} 0\cdot 025\\ 0\cdot 05\\ 0\cdot 10\\ 0\cdot 15\\ 0\cdot 25\\ 0\cdot 35\\ 0\cdot 50\\ 0\cdot 70\\ \end{array}$	$ \begin{array}{c} -0.080 \\ -0.110 \\ -0.175 \\ -0.185 \\ -0.145 \\ -0.175 \\ -0.085 \\ 0 \end{array} $	$ \begin{array}{r} +0.030 \\ -0.010 \\ -0.095 \\ -0.120 \\ -0.110 \\ -0.135 \\ -0.060 \\ +0.020 \end{array} $	$\begin{array}{c} +0.080\\ +0.050\\ -0.030\\ -0.060\\ -0.070\\ -0.100\\ -0.035\\ +0.030\end{array}$	$\begin{array}{r} +0.080\\ 0.085\\ +0.015\\ -0.015\\ -0.035\\ -0.065\\ -0.015\\ +0.040\\ \end{array}$	$\begin{array}{c} +0.050\\ 0.075\\ 0.040\\ +0.025\\ -0.005\\ -0.030\\ 0\\ +0.055\end{array}$	$\begin{array}{c} -0.080 \\ +0.015 \\ 0.020 \\ +0.020 \\ -0.005 \\ -0.020 \\ +0.010 \\ +0.045 \end{array}$	$\begin{array}{c} -0.205 \\ -0.045 \\ +0.005 \\ 0.025 \\ 0.015 \\ 0 \\ 0.025 \\ +0.055 \end{array}$	$\begin{array}{c} -0.380\\ -0.145\\ -0.025\\ +0.020\\ 0.020\\ 0.010\\ 0.040\\ +0.055\end{array}$	$\begin{array}{c} -0.595 \\ -0.250 \\ -0.075 \\ -0.005 \\ +0.020 \\ 0.025 \\ 0.065 \\ +0.075 \end{array}$	$\begin{array}{c} -0.830 \\ -0.385 \\ -0.130 \\ -0.035 \\ +0.030 \\ 0.050 \\ 0.090 \\ +0.100 \end{array}$	$\begin{array}{c} -0.480 \\ -0.180 \\ -0.010 \\ +0.055 \\ 0.070 \\ 0.080 \\ 0.090 \\ +0.065 \end{array}$	$\begin{array}{c} -0.440 \\ -0.230 \\ +0.005 \\ 0.070 \\ 0.085 \\ 0.090 \\ 0.100 \\ +0.070 \end{array}$

TABLE 6

Coefficients of Local Normal Force, Tangential Force, Lift, Drag and Aerodynamic Centre Position

Wing of aspect ratio 3

C_N

۵r	2y/b												
(deg)	0	0.068	0 · 135	0.271	0.406	0.610	0.831	0.915					
$\begin{array}{c} 2 \cdot 1 \\ 4 \cdot 1 \\ 6 \cdot 2 \\ 8 \cdot 2 \\ 10 \cdot 3 \\ 12 \cdot 3 \\ 14 \cdot 4 \\ 16 \cdot 4 \\ 18 \cdot 5 \\ 20 \cdot 6 \end{array}$	$\begin{array}{c} 0 \cdot 111 \\ 0 \cdot 223 \\ 0 \cdot 333 \\ 0 \cdot 440 \\ 0 \cdot 545 \\ 0 \cdot 655 \\ 0 \cdot 764 \\ 0 \cdot 873 \\ 0 \cdot 978 \\ 1 \cdot 097 \end{array}$	$\begin{array}{c} 0 \cdot 111 \\ 0 \cdot 221 \\ 0 \cdot 332 \\ 0 \cdot 438 \\ 0 \cdot 542 \\ 0 \cdot 647 \\ 0 \cdot 747 \\ 0 \cdot 851 \\ 0 \cdot 962 \\ 1 \cdot 097 \end{array}$	$\begin{array}{c} 0 \cdot 113 \\ 0 \cdot 224 \\ 0 \cdot 337 \\ 0 \cdot 441 \\ 0 \cdot 547 \\ 0 \cdot 658 \\ 0 \cdot 769 \\ 0 \cdot 873 \\ 0 \cdot 990 \\ 1 \cdot 141 \end{array}$	$\begin{array}{c} 0 \cdot 111 \\ 0 \cdot 224 \\ 0 \cdot 331 \\ 0 \cdot 438 \\ 0 \cdot 544 \\ 0 \cdot 653 \\ 0 \cdot 764 \\ 0 \cdot 884 \\ 1 \cdot 020 \\ 1 \cdot 214 \end{array}$	$\begin{array}{c} 0 \cdot 111 \\ 0 \cdot 226 \\ 0 \cdot 329 \\ 0 \cdot 435 \\ 0 \cdot 539 \\ 0 \cdot 639 \\ 0 \cdot 762 \\ 0 \cdot 891 \\ 1 \cdot 047 \\ 1 \cdot 975 \end{array}$	$\begin{array}{c} 0 \cdot 107 \\ 0 \cdot 212 \\ 0 \cdot 311 \\ 0 \cdot 416 \\ 0 \cdot 515 \\ 0 \cdot 619 \\ 0 \cdot 718 \\ 0 \cdot 861 \\ 1 \cdot 077 \\ 1 \cdot 178 \end{array}$	$\begin{array}{c} 0 \cdot 166 \\ \hline 0 \cdot 326 \\ \hline 0 \cdot 476 \\ \hline 0 \cdot 717 \\ \hline \end{array}$	$\begin{array}{c} 0.082\\ 0.165\\ 0.241\\ 0.322\\ 0.406\\ 0.492\\ 0.575\\ 0.724\\ 0.925\\ 0.483\end{array}$					
$\frac{20.6}{22.6}$	1.097 1.238	1.097 1.222	$1 \cdot 141$ $1 \cdot 292$	1.214 1.406	1.275	1.178		$0.483 \\ 0.458$					

 C_T

	2y/b												
α (deg)	0	0.068	0.135	0.271	0.406	0.610	0.831	0.915					
$\begin{array}{c} 0\\ 2\cdot 1\\ 4\cdot 1\\ 6\cdot 2\\ 8\cdot 2\\ 10\cdot 3\\ 12\cdot 3\\ 14\cdot 4\\ 16\cdot 4\\ 18\cdot 5\\ 20\cdot 6\end{array}$	$\begin{array}{r} +0\cdot044\\ 0\cdot043\\ 0\cdot042\\ 0\cdot039\\ 0\cdot036\\ 0\cdot031\\ 0\cdot025\\ 0\cdot018\\ 0\cdot011\\ +0\cdot003\\ -0\cdot002\end{array}$	$\begin{array}{c} +0.013\\ 0.012\\ 0.008\\ +0.001\\ -0.008\\ -0.019\\ -0.034\\ -0.050\\ -0.068\\ -0.088\\ -0.110\end{array}$	$\begin{array}{r} +0.007\\ +0.005\\ 0\\ -0.010\\ -0.023\\ -0.038\\ -0.059\\ -0.083\\ -0.109\\ -0.137\\ -0.167\end{array}$	$\begin{array}{c} +0.001 \\ -0.009 \\ -0.019 \\ -0.035 \\ -0.054 \\ -0.077 \\ -0.108 \\ -0.144 \\ -0.183 \\ -0.216 \end{array}$	$\begin{array}{c} 0 \\ -0.002 \\ -0.010 \\ -0.022 \\ -0.041 \\ -0.062 \\ -0.088 \\ -0.119 \\ -0.156 \\ -0.196 \\ -0.224 \end{array}$	$\begin{array}{c} -0.002\\ -0.004\\ -0.013\\ -0.024\\ -0.042\\ -0.063\\ -0.089\\ -0.111\\ -0.138\\ -0.145\\ -0.047\\ \end{array}$	$ \begin{array}{c} -0.011 \\ -0.019 \\ -0.041 \\ -0.076 \\ -0.125 \\ -0.125 \\ -0.0$	$\begin{array}{c} -0.013\\ -0.015\\ -0.021\\ -0.031\\ -0.046\\ -0.062\\ -0.081\\ -0.102\\ -0.124\\ -0.149\\ -0.090\end{array}$					

TABLE	6-continued
	• • • • • • • • • • • • • • • • • • • •

	-			C_L				
	2y/b .							
(deg)	0	0.068	0.135	0.271	0.406	0.610	0.831	0.915
$2 \cdot 1 4 \cdot 1 6 \cdot 2 8 \cdot 2 10 \cdot 3 12 \cdot 3 14 \cdot 4 16 \cdot 4 18 \cdot 5 20 \cdot 6 22 \cdot 6$	$\begin{array}{c} 0\cdot 109\\ 0\cdot 218\\ 0\cdot 327\\ 0\cdot 430\\ 0\cdot 531\\ 0\cdot 636\\ 0\cdot 736\\ 0\cdot 835\\ 0\cdot 927\\ 1\cdot 028\\ 1\cdot 144\end{array}$	$\begin{array}{c} 0 \cdot 111 \\ 0 \cdot 220 \\ 0 \cdot 330 \\ 0 \cdot 435 \\ 0 \cdot 537 \\ 0 \cdot 640 \\ 0 \cdot 737 \\ 0 \cdot 837 \\ 0 \cdot 941 \\ 1 \cdot 065 \\ 1 \cdot 175 \end{array}$	$\begin{array}{c} 0\cdot 113\\ 0\cdot 223\\ 0\cdot 336\\ 0\cdot 440\\ 0\cdot 545\\ 0\cdot 656\\ 0\cdot 766\\ 0\cdot 868\\ 0\cdot 982\\ 1\cdot 128\\ 1\cdot 265\end{array}$	$\begin{array}{c} 0\cdot 111\\ 0\cdot 224\\ 0\cdot 331\\ 0\cdot 439\\ 0\cdot 545\\ 0\cdot 655\\ 0\cdot 767\\ 0\cdot 889\\ 1\cdot 026\\ 1\cdot 212\\ 1\cdot 376\end{array}$	$\begin{array}{c} 0.111\\ 0.226\\ 0.330\\ 0.436\\ 0.542\\ 0.643\\ 0.768\\ 0.899\\ 1.055\\ 1.272\\ 1.342 \end{array}$	$\begin{array}{c} 0\cdot 107 \\ 0\cdot 212 \\ 0\cdot 312 \\ 0\cdot 418 \\ 0\cdot 518 \\ 0\cdot 624 \\ 0\cdot 723 \\ 0\cdot 865 \\ 1\cdot 067 \\ 1\cdot 119 \\ 0\cdot 964 \end{array}$	$ \begin{array}{c} 0 \cdot \overline{167} \\ - \\ 0 \cdot 328 \\ - \\ 0 \cdot 481 \\ - \\ 0 \cdot 723 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	$\begin{array}{c} 0\cdot 082 \\ 0\cdot 166 \\ 0\cdot 243 \\ 0\cdot 325 \\ 0\cdot 411 \\ 0\cdot 498 \\ 0\cdot 582 \\ 0\cdot 730 \\ 0\cdot 924 \\ 0\cdot 484 \\ 0\cdot 444 \end{array}$

 C_D

				2	y/b			
α (deg)	0	0.068	0 · 135	0.271	0.406	0.610	0.831	0.915
$\begin{array}{c} 0\\ 2\cdot 1\\ 4\cdot 1\\ 6\cdot 2\\ 8\cdot 2\\ 10\cdot 3\\ 12\cdot 3\\ 14\cdot 4\\ 16\cdot 4\\ 18\cdot 5\\ 20\cdot 6\\ 22\cdot 6\end{array}$	$\begin{array}{c} 0\cdot 044 \\ 0\cdot 047 \\ 0\cdot 057 \\ 0\cdot 074 \\ 0\cdot 098 \\ 0\cdot 127 \\ 0\cdot 163 \\ 0\cdot 207 \\ 0\cdot 257 \\ 0\cdot 257 \\ 0\cdot 313 \\ 0\cdot 384 \\ 0\cdot 471 \end{array}$	$\begin{array}{c} 0\cdot013\\ 0\cdot016\\ 0\cdot024\\ 0\cdot037\\ 0\cdot054\\ 0\cdot078\\ 0\cdot105\\ 0\cdot138\\ 0\cdot175\\ 0\cdot222\\ 0\cdot283\\ 0\cdot356\\ \end{array}$	$\begin{array}{c} 0.007\\ 0.009\\ 0.016\\ 0.027\\ 0.041\\ 0.061\\ 0.083\\ 0.111\\ 0.143\\ 0.184\\ 0.245\\ 0.324\\ \end{array}$	$\begin{array}{c} 0.001 \\ 0.003 \\ 0.007 \\ 0.017 \\ 0.028 \\ 0.044 \\ 0.062 \\ 0.085 \\ 0.112 \\ 0.149 \\ 0.225 \\ 0.352 \end{array}$	$\begin{array}{c} 0\\ 0\cdot 002\\ 0\cdot 006\\ 0\cdot 014\\ 0\cdot 022\\ 0\cdot 035\\ 0\cdot 050\\ 0\cdot 074\\ 0\cdot 102\\ 0\cdot 147\\ 0\cdot 240\\ 0\cdot 464 \end{array}$	$\begin{array}{c} -0.002\\ 0\\ +0.002\\ 0.010\\ 0.018\\ 0.030\\ 0.045\\ 0.071\\ 0.111\\ 0.205\\ 0.371\\ +0.393\end{array}$	$ \begin{array}{c} -0.011 \\ -0.007 \\ +0.006 \\ 0.027 \\ +0.082 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	$\begin{array}{c} -0.013\\ -0.012\\ -0.009\\ -0.005\\ +0.001\\ 0.011\\ 0.025\\ 0.045\\ 0.086\\ 0.152\\ 0.086\\ +0.128\end{array}$

 $[\]frac{h}{c(y)}$

	2y/b										
(deg)	0	0.068	0.135	0.271	0.406	0.610	0.831	0.915			
$0 \\ 2 \cdot 1 \\ 4 \cdot 1 \\ 6 \cdot 2 \\ 8 \cdot 2 \\ 10 \cdot 3 \\ 12 \cdot 3 \\ 14 \cdot 4 \\ 16 \cdot 4 \\ 18 \cdot 5 \\ 20 \cdot 6 \\ 2$	$\begin{array}{c} 0.360\\ 0.360\\ 0.359\\ 0.360\\ 0.360\\ 0.361\\ 0.362\\ 0.362\\ 0.363\\ 0.365\\ 0.371\\ 0.920\end{array}$	$\begin{array}{c} 0.310\\ 0.311\\ 0.310\\ 0.311\\ 0.311\\ 0.313\\ 0.316\\ 0.318\\ 0.319\\ 0.319\\ 0.326\\ 0.326\\ 0.322\\ 0.$	$\begin{array}{c} 0.285\\ 0.285\\ 0.285\\ 0.286\\ 0.286\\ 0.290\\ 0.291\\ 0.291\\ 0.292\\ 0.298\\ 0.300\\ 0.306\\ 0.306\end{array}$	$\begin{array}{c} 0.254\\ 0.255\\ 0.254\\ 0.255\\ 0.256\\ 0.258\\ 0.258\\ 0.261\\ 0.268\\ 0.276\\ 0.284\\ 0.295\\ 0.295\\ 0.210\end{array}$	$\begin{array}{c} 0.238\\ 0.239\\ 0.239\\ 0.238\\ 0.240\\ 0.240\\ 0.244\\ 0.251\\ 0.272\\ 0.284\\ 0.294\\ 0.$	$\begin{array}{c} 0.227 \\$	$ \begin{array}{c} 0 \cdot 200 \\ $	$\begin{array}{c} 0 \cdot 279 \\ 0 \cdot 279 \\ 0 \cdot 281 \\ 0 \cdot 281 \\ 0 \cdot 288 \\ 0 \cdot 301 \\ 0 \cdot 307 \\ 0 \cdot 315 \\ 0 \cdot 353 \\ 0 \cdot 400 \end{array}$			

TABLE 7

Coefficients of Total Lift, Drag and Pitching Moment from Pressure Measurements

Wing of a spect ratio ${\bf 3}$

α (deg)	\overline{C}_L		\overline{C}_m
$2 \cdot 1 \\ 4 \cdot 1 \\ 6 \cdot 2 \\ 8 \cdot 2 \\ 10 \cdot 3 \\ 12 \cdot 3 \\ 14 \cdot 4 \\ 16 \cdot 4 \\ 18 \cdot 5 \\ 20 \cdot 6 \\ 22 \cdot 6 \\ $	$\begin{array}{c} 0\cdot 105 \\ 0\cdot 208 \\ 0\cdot 308 \\ 0\cdot 409 \\ 0\cdot 507 \\ 0\cdot 608 \\ 0\cdot 711 \\ 0\cdot 839 \\ 1\cdot 006 \\ 1\cdot 035 \\ 1\cdot 044 \end{array}$	$\begin{array}{c}$	$\begin{array}{c} 0.005\\ 0.011\\ 0.017\\ 0.021\\ 0.024\\ 0.025\\ 0.019\\ -0.005\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$

TABLE 8

· Coefficients of Total Lift, Drag and Pitching Moment from Balance Measurements

Wing of a spect ratio ${\bf 3}$

(a) Pressure-plotting wing: $R=1\cdot71~\times10^6$

lpha (deg)	\overline{C}_L
$\begin{array}{c} -0.5 \\ +1.5 \\ 3.6 \\ 5.7 \\ 7.7 \\ 9.8 \\ 11.8 \\ 13.9 \\ 15.9 \\ 18.0 \\ 20.1 \\ +22.1 \end{array}$	$\begin{array}{c} -0.020 \\ +0.072 \\ 0.178 \\ 0.279 \\ 0.378 \\ 0.470 \\ 0.576 \\ 0.677 \\ 0.806 \\ 0.963 \\ 1.059 \\ +1.134 \end{array}$

(b) Solid wing: various Reynolds numbers

	R	$= 1 \cdot 05 \times 1$	O ⁶		$= 1.71 \times 1$	106	R	$= 2 \cdot 95 \times 10^{-10}$	106
α (deg)	\bar{C}_L	Ē,	\bar{C}_m	\bar{C}_L	\bar{C}_D	\bar{C}_m	ĒL	Ē _D	\bar{C}_m
$\begin{array}{c} 0\\ 2\cdot 1\\ 4\cdot 1\\ 6\cdot 2\\ 8\cdot 2\\ 10\cdot 3\\ 12\cdot 3\\ 12\cdot 3\\ 14\cdot 4\\ 16\cdot 4\\ 18\cdot 5\\ 20\cdot 6\\ 22\cdot 6\\ 22\cdot 6\\ 22\cdot 6\\ 24\cdot 5\\ 26\cdot 5\\ 28\cdot 5\\ 30\cdot 5\end{array}$	$\begin{array}{c} 0\cdot 004 \\ 0\cdot 101 \\ 0\cdot 200 \\ 0\cdot 298 \\ 0\cdot 394 \\ 0\cdot 485 \\ 0\cdot 579 \\ 0\cdot 684 \\ 0\cdot 835 \\ 0\cdot 982 \\ 0\cdot 976 \\ 0\cdot 986 \\ 0\cdot 996 \\ 0\cdot 996 \\ 0\cdot 953 \\ 0\cdot 832 \\ \end{array}$	$\begin{array}{c} 0\cdot 0066\\ 0\cdot 0090\\ 0\cdot 0137\\ 0\cdot 0210\\ 0\cdot 0309\\ 0\cdot 0434\\ 0\cdot 0601\\ 0\cdot 0845\\ 0\cdot 1274\\ 0\cdot 1801\\ 0\cdot 2833\\ 0\cdot 3543\\ 0\cdot 4186\\ 0\cdot 4604\\ 0\cdot 4533\\ \end{array}$	$\begin{matrix} 0\\ +0\cdot0042\\ 0\cdot0079\\ 0\cdot0132\\ 0\cdot0191\\ 0\cdot0231\\ 0\cdot0242\\ +0\cdot0123\\ -0\cdot0163\\ -0\cdot0511\\ +0\cdot0147\\ 0\cdot0272\\ 0\cdot0249\\ +0\cdot0103\\ -0\cdot0184\end{matrix}$	$\begin{array}{c} 0\cdot 002\\ 0\cdot 097\\ 0\cdot 195\\ 0\cdot 290\\ 0\cdot 388\\ 0\cdot 485\\ 0\cdot 585\\ 0\cdot 687\\ 0\cdot 814\\ 0\cdot 976\\ 1\cdot 067\\ 0\cdot 990\\ 0\cdot 988\\ 0\cdot 961\\ 0\cdot 864\\ 0\cdot 818 \end{array}$	$\begin{array}{c} 0\cdot 0068\\ 0\cdot 0086\\ 0\cdot 0125\\ 0\cdot 0191\\ 0\cdot 0282\\ 0\cdot 0404\\ 0\cdot 0562\\ 0\cdot 0777\\ 0\cdot 1105\\ 0\cdot 1614\\ 0\cdot 1977\\ 0\cdot 2931\\ 0\cdot 4088\\ 0\cdot 4538\\ 0\cdot 4556\\ 0\cdot 4675\\ \end{array}$	$\begin{array}{c} 0\\ +0\cdot 0041\\ 0\cdot 0083\\ 0\cdot 0131\\ 0\cdot 0193\\ 0\cdot 0239\\ 0\cdot 0241\\ +0\cdot 0144\\ -0\cdot 0115\\ -0\cdot 0520\\ -0\cdot 0384\\ -0\cdot 0045\\ +0\cdot 0319\\ +0\cdot 0250\\ -0\cdot 0024\\ -0\cdot 0191\end{array}$	0.002 0.106 0.208 0.308 0.404 0.503 0.601 0.708 0.834 0.968 1.078 1.064	0.0068 0.0084 0.0126 0.0194 0.0285 0.0409 0.0560 0.0767 0.1083 0.1502 0.1939 0.2841	$\begin{array}{c} 0 \\ +0\cdot0042 \\ 0\cdot0084 \\ 0\cdot0126 \\ 0\cdot0167 \\ 0\cdot0198 \\ 0\cdot0218 \\ 0\cdot0218 \\ 0\cdot0186 \\ +0\cdot0017 \\ -0\cdot0255 \\ -0\cdot0346 \\ +0\cdot0111 \end{array}$

TABLE 9

Pressure Coefficients on Wing Spanning the Tunnel

$$y = 0$$
 C_p

Upper surface

inclo		lpha (deg)								
<i>x/c</i>	0	2	4	6	8					
$\begin{array}{c} 0 \\ 0 \cdot 01 \\ 0 \cdot 03 \\ 0 \cdot 08 \\ 0 \cdot 15 \\ 0 \cdot 225 \\ 0 \cdot 35 \\ 0 \cdot 50 \\ 0 \cdot 50 \\ 0 \cdot 65 \\ 0 \cdot 75 \\ 0 \cdot 85 \end{array}$	$\begin{array}{c} +1\cdot000\\ 0\cdot470\\ 0\cdot205\\ +0\cdot025\\ -0\cdot100\\ -0\cdot170\\ -0\cdot240\\ -0\cdot225\\ -0\cdot160\\ -0\cdot110\\ -0\cdot110\\ -0\cdot070\end{array}$	$\begin{array}{c} +1\cdot 000\\ 0\cdot 325\\ +0\cdot 075\\ -0\cdot 085\\ -0\cdot 200\\ -0\cdot 255\\ -0\cdot 315\\ -0\cdot 280\\ -0\cdot 205\\ -0\cdot 145\\ -0\cdot 145\\ -0\cdot 095\end{array}$	$\begin{array}{c} +0.970 \\ +0.170 \\ -0.065 \\ -0.195 \\ -0.295 \\ -0.350 \\ -0.395 \\ -0.345 \\ -0.245 \\ -0.180 \\ -0.125 \end{array}$	$\begin{array}{c} +0.915\\ -0.005\\ -0.215\\ -0.305\\ -0.395\\ -0.435\\ -0.465\\ -0.465\\ -0.400\\ -0.285\\ -0.215\\ -0.150\end{array}$	$\begin{array}{c} +0.800\\ -0.230\\ -0.400\\ -0.455\\ -0.540\\ -0.565\\ -0.570\\ -0.490\\ -0.375\\ -0.285\\ -0.215\end{array}$					

Lower surface

\sim	
しゅ	
\cup_{b}	

rla	$lpha~(\mathrm{deg})$								
<i>x</i> /c	0	2	4	6	8				
0.01 0.03 0.08 0.15 0.225 0.35 0.50 0.65 0.75 0.85 0.95	$\begin{array}{c} +0.480 \\ +0.200 \\ -0.015 \\ -0.115 \\ -0.185 \\ -0.250 \\ -0.235 \\ -0.170 \\ -0.120 \\ -0.065 \\ -0.035 \end{array}$	$\begin{array}{c} +0.615\\ 0.325\\ +0.105\\ -0.010\\ -0.090\\ -0.170\\ -0.165\\ -0.115\\ -0.075\\ -0.035\\ -0.005\end{array}$	$\begin{array}{c} +0.725\\ 0.445\\ 0.210\\ +0.090\\ 0\\ -0.090\\ -0.100\\ -0.060\\ -0.035\\ -0.005\\ +0.025\end{array}$	$\begin{array}{c} +0.810\\ 0.555\\ 0.310\\ 0.185\\ +0.090\\ -0.015\\ -0.030\\ -0.010\\ +0.010\\ 0.030\\ +0.045\end{array}$	$\begin{array}{c} +0.845\\ 0.610\\ 0.360\\ 0.310\\ 0.135\\ +0.020\\ -0.005\\ 0\\ +0.010\\ 0.025\\ +0.025\end{array}$				

$$y/c = 0 \cdot 1$$

 C_{p}

Upper surface

,	. α (deg)									
x/c 	. 0	2	· 4	6	. 8					
$\begin{array}{c} 0\\ 0\cdot 01\\ 0\cdot 03\\ 0\cdot 08\\ 0\cdot 15\\ 0\cdot 225\\ 0\cdot 35\\ 0\cdot 50\\ 0\cdot 65\\ 0\cdot 75\\ 0\cdot 85\\ 0\cdot 95\end{array}$	$\begin{array}{c} +0.535\\ +0.190\\ -0.010\\ -0.110\\ -0.190\\ -0.240\\ -0.250\\ -0.185\\ -0.120\\ -0.075\\ -0.015\\ +0.055\end{array}$	$\begin{array}{c} +0.515\\ -0.025\\ -0.200\\ -0.255\\ -0.305\\ -0.335\\ -0.330\\ -0.240\\ -0.160\\ -0.110\\ -0.035\\ +0.050\end{array}$	$\begin{array}{c} +0\cdot 410\\ -0\cdot 260\\ -0\cdot 395\\ -0\cdot 395\\ -0\cdot 415\\ -0\cdot 430\\ -0\cdot 430\\ -0\cdot 290\\ -0\cdot 195\\ -0\cdot 195\\ -0\cdot 135\\ -0\cdot 050\\ +0\cdot 045\end{array}$	$\begin{array}{c} +0.230\\ -0.560\\ -0.635\\ -0.550\\ -0.540\\ -0.525\\ -0.465\\ -0.340\\ -0.235\\ -0.160\\ -0.070\\ +0.040\end{array}$	$\begin{array}{c} -0.025 \\ -0.875 \\ -0.855 \\ -0.705 \\ -0.640 \\ -0.605 \\ -0.540 \\ -0.385 \\ -0.265 \\ -0.190 \\ -0.080 \\ +0.035 \end{array}$					

Lower surface

C_p

1.	$lpha ({ m deg})$								
<i>x</i> /c	0	2	4	6	8				
0.01 0.03 0.08 0.15 0.225 0.35 0.50 0.65 0.75 0.85 0.85	$\begin{array}{c} +0.190\\ +0.010\\ -0.215\\ -0.235\\ -0.255\\ -0.205\\ -0.115\\ -0.055\\ -0.055\\ -0.055\\ -0.055\\ -0.055\end{array}$	$\begin{array}{c} +0.360\\ 0.180\\ +0.015\\ -0.100\\ -0.140\\ -0.180\\ -0.145\\ -0.090\\ -0.015\\ +0.010\\ +0.060\end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} +0.535\\ 0.420\\ 0.245\\ 0.105\\ +0.045\\ -0.030\\ -0.025\\ +0.005\\ 0.045\\ 0.055\\ -0.075\end{array}$	$\begin{array}{c} 0.550\\ 0.550\\ 0.335\\ 0.200\\ 0.125\\ 0.045\\ 0.035\\ 0.050\\ 0.050\\ 0.085\\ 0.085\\ 0.085\\ 0.095\end{array}$				

$$y/c = 0 \cdot 2$$
 ' C_p

Upper surface

x/c	α (deg)					
	0	2	4	6	8	
$\begin{array}{c} 0\\ 0{\cdot}01\\ 0{\cdot}03\\ 0{\cdot}08\\ 0{\cdot}15\\ 0{\cdot}225\\ 0{\cdot}35\\ 0{\cdot}50\\ 0{\cdot}65\\ 0{\cdot}65\\ 0{\cdot}75\\ 0{\cdot}85\\ 0{\cdot}95\end{array}$	$\begin{array}{c} +0\cdot 490\\ +0\cdot 180\\ -0\cdot 040\\ -0\cdot 160\\ -0\cdot 230\\ -0\cdot 255\\ -0\cdot 250\\ -0\cdot 190\\ -0\cdot 080\\ -0\cdot 035\\ +0\cdot 015\\ +0\cdot 070\\ \end{array}$	$\begin{array}{c} +0\cdot 430\\ -0\cdot 080\\ -0\cdot 265\\ -0\cdot 320\\ -0\cdot 360\\ -0\cdot 365\\ -0\cdot 335\\ -0\cdot 245\\ -0\cdot 125\\ -0\cdot 125\\ -0\cdot 070\\ -0\cdot 005\\ +0\cdot 065\end{array}$	$\begin{array}{c} +0\cdot 255\\ -0\cdot 390\\ -0\cdot 515\\ -0\cdot 485\\ -0\cdot 490\\ -0\cdot 470\\ -0\cdot 415\\ -0\cdot 290\\ -0\cdot 160\\ -0\cdot 090\\ -0\cdot 015\\ +0\cdot 060\\ \end{array}$	$\begin{array}{c} -0\cdot055\\ -0\cdot765\\ -0\cdot785\\ -0\cdot660\\ -0\cdot615\\ -0\cdot570\\ -0\cdot455\\ -0\cdot335\\ -0\cdot190\\ -0\cdot110\\ -0\cdot025\\ +0\cdot060\\ \end{array}$	$\begin{array}{c} -0\cdot 480 \\ -1\cdot 195 \\ -1\cdot 095 \\ -0\cdot 855 \\ -0\cdot 690 \\ -0\cdot 655 \\ -0\cdot 550 \\ -0\cdot 380 \\ -0\cdot 220 \\ -0\cdot 130 \\ -0\cdot 050 \\ +0\cdot 050 \end{array}$	

Lower surface

Ċ

nla	α (deg)					
	0	2	4	6	8	
0.01 0.03 0.08 0.15 0.225 0.35 0.50	$ \begin{array}{c} +0.180 \\ -0.020 \\ -0.180 \\ -0.240 \\ -0.255 \\ -0.195 \\ \end{array} $	$ \begin{array}{c} +0.360 \\ +0.170 \\ -0.035 \\ -0.130 \\ -0.170 \\ -0.190 \\ 0.135 \end{array} $	$ \begin{array}{c} +0.475 \\ 0.315 \\ +0.100 \\ -0.020 \\ -0.075 \\ -0.110 \\ 0.075 \end{array} $	$\begin{array}{c} +0.520\\ 0.430\\ 0.220\\ 0.095\\ +0.025\\ -0.035\\ 0.015\end{array}$	$\begin{array}{c} 0.520\\ 0.510\\ 0.310\\ 0.185\\ 0.110\\ 0.035\\ 0.025\end{array}$	
0·65 0·75 0·85 0·95	$ \begin{array}{c} -0.193 \\ -0.075 \\ -0.040 \\ +0.015 \\ +0.070 \end{array} $	$ \begin{array}{c c} -0.135 \\ -0.050 \\ -0.015 \\ +0.030 \\ +0.070 \end{array} $	$ \begin{array}{c c} -0.075 \\ -0.015 \\ +0.010 \\ 0.045 \\ +0.075 \end{array} $	$ \begin{array}{c c} -0.015 \\ +0.030 \\ 0.040 \\ 0.065 \\ +0.080 \end{array} $	$ \begin{array}{c} 0.025 \\ 0.070 \\ 0.070 \\ 0.075 \\ 0.075 \end{array} $	

$y/c = 0 \cdot 4$

. C,

Upper surface

,	α (deg)						
ж/с 	0	2	4	6	8		
$\begin{array}{c} 0 \\ 0 \cdot 01 \\ 0 \cdot 03 \\ 0 \cdot 08 \\ 0 \cdot 15 \\ 0 \cdot 225 \\ 0 \cdot 35 \\ 0 \cdot 50 \\ 0 \cdot 65 \\ 0 \cdot 75 \end{array}$	$\begin{array}{c} +0.480 \\ +0.125 \\ -0.070 \\ -0.200 \\ -0.260 \\ -0.265 \\ -0.265 \\ -0.260 \\ -0.165 \\ -0.070 \\ -0.030 \end{array}$	$ \begin{array}{c} +0.370 \\ -0.185 \\ -0.315 \\ -0.380 \\ -0.405 \\ -0.375 \\ -0.340 \\ -0.200 \\ -0.105 \\ -0.050 \\ \end{array} $	$\begin{array}{c} +0.115\\ -0.550\\ -0.600\\ -0.570\\ -0.545\\ -0.480\\ -0.410\\ -0.240\\ -0.130\\ -0.065\end{array}$	$\begin{array}{c} -0.335\\ -1.045\\ -0.935\\ -0.785\\ -0.785\\ -0.700\\ -0.550\\ -0.485\\ -0.290\\ -0.155\\ -0.085\end{array}$	$\begin{array}{c} -0.915 \\ -1.565 \\ -1.275 \\ -0.975 \\ -0.815 \\ -0.670 \\ -0.550 \\ -0.325 \\ -0.170 \\ -0.090 \end{array}$		
$\begin{array}{c} 0.85\\ 0.95\end{array}$	-0.005 + 0.065	$ \begin{array}{c c} -0.005 \\ +0.065 \end{array} $	-0.010 + 0.060	-0.015 + 0.055	-0.015 + 0.050		

Lower surface

x/c	α (deg)						
	0	2	4	6	8		
0.01 0.03 0.08 0.15 0.225 0.35 0.50 0.65	$ \begin{array}{r} +0.095 \\ -0.070 \\ -0.205 \\ -0.265 \\ -0.275 \\ -0.260 \\ -0.165 \\ -0.070 \\ \end{array} $	$\begin{array}{c} +0.315\\ +0.145\\ -0.045\\ -0.140\\ -0.175\\ -0.185\\ -0.125\\ -0.035\end{array}$	$ \begin{array}{c} +0.440 \\ 0.305 \\ +0.105 \\ -0.020 \\ -0.070 \\ -0.110 \\ -0.065 \\ -0.005 \end{array} $	$\begin{array}{c} +0.490\\ 0.425\\ 0.230\\ 0.100\\ +0.030\\ -0.035\\ -0.010\\ +0.030\end{array}$	$\begin{array}{c} 0 \cdot 460 \\ 0 \cdot 500 \\ 0 \cdot 335 \\ 0 \cdot 200 \\ 0 \cdot 120 \\ 0 \cdot 045 \\ 0 \cdot 050 \\ 0 \cdot 070 \end{array}$		
0.75 0.85 0.95	-0.025 + 0.010 + 0.060	0 + 0.025 + 0.060	$+0.025 \\ 0.035 \\ +0.060$	$0.050 \\ 0.050 \\ +0.065$	0.075 0.070 0.070		

$$y/c = 0.6$$

 C_p

Upper surface

rla		a (deg)					
	. 0	2	4	6	8		
$\begin{array}{c} 0\\ 0\cdot 01\\ 0\cdot 03\\ 0\cdot 08\\ 0\cdot 15\\ 0\cdot 225\\ 0\cdot 35\\ 0\cdot 50\\ 0\cdot 65\\ 0\cdot 75\\ 0\cdot 85\\ 0\cdot 95\end{array}$	$\begin{array}{c} +0.510\\ +0.120\\ -0.075\\ -0.200\\ -0.265\\ -0.285\\ -0.260\\ -0.165\\ -0.065\\ -0.035\\ +0.015\\ +0.060\\ \end{array}$	$\begin{array}{c} +0\cdot 400 \\ -0\cdot 215 \\ -0\cdot 355 \\ -0\cdot 400 \\ -0\cdot 415 \\ -0\cdot 405 \\ -0\cdot 345 \\ -0\cdot 190 \\ -0\cdot 095 \\ -0\cdot 055 \\ +0\cdot 005 \\ +0\cdot 065 \end{array}$	$\begin{array}{c} +0.120 \\ -0.635 \\ -0.680 \\ -0.615 \\ -0.570 \\ -0.520 \\ -0.380 \\ -0.245 \\ -0.125 \\ -0.070 \\ -0.005 \\ +0.060 \end{array}$	$\begin{array}{c} -0.365 \\ -1.115 \\ -1.045 \\ -0.845 \\ -0.710 \\ -0.610 \\ -0.435 \\ -0.285 \\ -0.145 \\ -0.085 \\ -0.010 \\ +0.050 \end{array}$	$\begin{array}{c} -0.975 \\ -1.790 \\ -1.440 \\ -1.015 \\ -0.830 \\ -0.720 \\ -0.505 \\ -0.315 \\ -0.165 \\ -0.090 \\ -0.015 \\ +0.035 \end{array}$		

Lower surface

rla	α (deg)					
	0	2	4	6	8	
0.01 0.03 0.08 0.15 0.225 0.35 0.50 0.65 0.75 0.85 0.95	$\begin{array}{c} +0.080 \\ -0.075 \\ -0.240 \\ -0.275 \\ -0.280 \\ -0.255 \\ -0.160 \\ -0.075 \\ -0.015 \\ +0.020 \\ +0.050 \end{array}$	$\begin{array}{c} +0.325 \\ +0.160 \\ -0.055 \\ -0.140 \\ -0.170 \\ -0.185 \\ -0.130 \\ -0.035 \\ +0.010 \\ +0.035 \\\end{array}$	$\begin{array}{c} +0.460\\ 0.325\\ +0.100\\ -0.015\\ -0.065\\ -0.105\\ -0.070\\ -0.015\\ +0.030\\ +0.045\\\end{array}$	$\begin{array}{c} +0\cdot 495 \\ 0\cdot 445 \\ 0\cdot 235 \\ 0\cdot 105 \\ +0\cdot 035 \\ -0\cdot 030 \\ -0\cdot 010 \\ +0\cdot 015 \\ 0\cdot 050 \\ +0\cdot 055 \\\end{array}$	$\begin{array}{c} 0.450\\ 0.510\\ 0.335\\ 0.200\\ 0.125\\ 0.045\\ 0.045\\ 0.050\\ 0.070\\ 0.070\\ 0.070\\ \end{array}$	

$$y/c = 0.90$$

Upper surface

 C_{p}

x/c	α (deg)					
	0	2	4	6	8	
$\begin{array}{c} 0\\ 0 \cdot 01\\ 0 \cdot 03\\ 0 \cdot 08\\ 0 \cdot 15\\ 0 \cdot 225\\ 0 \cdot 35\\ 0 \cdot 50\\ 0 \cdot 65\\ 0 \cdot 75\\ 0 \cdot 85\\ 0 \cdot 95\end{array}$	$\begin{array}{c} +0.425 \\ +0.085 \\ -0.050 \\ -0.195 \\ -0.255 \\ -0.270 \\ -0.245 \\ -0.125 \\ -0.065 \\ -0.010 \\ +0.020 \\ +0.080 \end{array}$	$\begin{array}{c} +0.375 \\ -0.310 \\ -0.340 \\ -0.405 \\ -0.410 \\ -0.395 \\ -0.330 \\ -0.165 \\ -0.095 \\ -0.025 \\ +0.015 \\ +0.075 \end{array}$	$\begin{array}{c} +0.050 \\ -0.820 \\ -0.700 \\ -0.630 \\ -0.570 \\ -0.515 \\ -0.375 \\ -0.215 \\ -0.120 \\ -0.040 \\ +0.010 \\ +0.075 \end{array}$	$\begin{array}{c} -0.235 \\ -1.385 \\ -0.865 \\ -0.690 \\ -0.605 \\ -0.450 \\ -0.250 \\ -0.135 \\ -0.050 \\ -0.005 \\ +0.055 \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	

Lower surface

 C_{p}

x/c —		α (deg)					
	0	2	4	6	8		
$\begin{array}{c} 0\cdot 01 \\ 0\cdot 03 \\ 0\cdot 08 \\ 0\cdot 15 \\ 0\cdot 225 \\ 0\cdot 35 \\ 0\cdot 50 \\ 0\cdot 65 \\ 0\cdot 75 \\ 0\cdot 85 \\ 0\cdot 95 \end{array}$	$\begin{array}{c} +0\cdot070\\ -0\cdot095\\ -0\cdot220\\ -0\cdot275\\ -0\cdot285\\ -0\cdot265\\ -0\cdot150\\ -0\cdot075\\ -0\cdot020\\ +0\cdot015\\ +0\cdot060\\ \end{array}$	$\begin{array}{c} +0.330 \\ +0.150 \\ -0.020 \\ -0.130 \\ -0.170 \\ -0.190 \\ -0.115 \\ -0.040 \\ +0.005 \\ 0.030 \\ +0.065 \end{array}$	$\begin{array}{c} +0.475\\ 0.325\\ 0.140\\ +0.005\\ -0.055\\ -0.105\\ -0.035\\ -0.005\\ +0.025\\ 0.045\\ +0.065\end{array}$	$\begin{array}{c} +0.505 \\ 0.450 \\ 0.270 \\ 0.130 \\ +0.045 \\ -0.030 \\ +0.010 \\ 0.025 \\ 0.045 \\ 0.055 \\ +0.065 \end{array}$	$\begin{array}{c} 0\cdot 435 \\ 0\cdot 510 \\ 0\cdot 370 \\ 0\cdot 215 \\ 0\cdot 125 \\ 0\cdot 035 \\ 0\cdot 050 \\ 0\cdot 050 \\ 0\cdot 060 \\ 0\cdot 060 \\ 0\cdot 060 \\ 0\cdot 050 \end{array}$		

$y/c = 1 \cdot 25$

Upper surface

C_p

<i>wla</i>		α (deg)				
<i>x/c</i>	0	2	4	6	8	
$\begin{array}{c} 0\\ 0\cdot 01\\ 0\cdot 03\\ 0\cdot 08\\ 0\cdot 15\\ 0\cdot 225\\ 0\cdot 35\\ 0\cdot 50\\ 0\cdot 65\\ 0\cdot 75\\ 0\cdot 85\\ 0\cdot 95\\ \end{array}$	$\begin{array}{r} +0.485 \\ +0.170 \\ -0.060 \\ -0.200 \\ -0.245 \\ -0.270 \\ -0.255 \\ -0.165 \\ -0.060 \\ -0.025 \\ +0.010 \\ +0.060 \end{array}$	$\begin{array}{c} +0.515\\ -0.205\\ -0.385\\ -0.425\\ -0.415\\ -0.405\\ -0.350\\ -0.170\\ -0.090\\ -0.050\\ 0\\ +0.065\end{array}$	$\begin{array}{c} +0.350\\ -0.665\\ -0.755\\ -0.755\\ -0.585\\ -0.525\\ -0.405\\ -0.235\\ -0.120\\ -0.065\\ -0.005\\ +0.060\end{array}$	$\begin{array}{c} -0.035\\ -1.255\\ -1.180\\ -0.935\\ -0.715\\ -0.635\\ -0.485\\ -0.285\\ -0.150\\ -0.085\\ -0.015\\ +0.035\end{array}$	$\begin{array}{c} -0.590 \\ -1.905 \\ -1.595 \\ -1.090 \\ -0.840 \\ -0.705 \\ -0.540 \\ -0.300 \\ -0.140 \\ -0.065 \\ -0.015 \\ +0.020 \end{array}$	

Lower surface

 C_{p}

rela	α (deg)					
	0	2	4	6	8	
$\begin{array}{c} 0 \cdot 01 \\ 0 \cdot 03 \\ 0 \cdot 08 \\ 0 \cdot 15 \\ 0 \cdot 225 \\ 0 \cdot 35 \\ 0 \cdot 50 \\ 0 \cdot 65 \\ 0 \cdot 75 \\ 0 \cdot 85 \\ 0 \cdot 95 \end{array}$	$\begin{array}{c} +0\cdot070\\ -0\cdot070\\ -0\cdot220\\ -0\cdot275\\ -0\cdot285\\ -0\cdot265\\ -0\cdot140\\ -0\cdot065\\ -0\cdot020\\ +0\cdot025\\ +0\cdot070\end{array}$	$\begin{array}{c} +0.335\\ +0.180\\ -0.020\\ -0.130\\ -0.170\\ -0.185\\ -0.025\\ 0\\ +0.040\\ +0.070\\ \end{array}$	$\begin{array}{c} +0.485\\ 0.360\\ 0.140\\ +0.005\\ -0.060\\ -0.105\\ -0.040\\ -0.005\\ +0.020\\ 0.045\\ +0.065\end{array}$	$\begin{array}{c} +0.505\\ 0.465\\ 0.265\\ 0.120\\ +0.030\\ -0.035\\ +0.005\\ 0.015\\ 0.030\\ 0.045\\ +0.045\\ \end{array}$	$\begin{array}{c} 0.475\\ 0.545\\ 0.400\\ 0.240\\ 0.135\\ 0.045\\ 0.060\\ 0.060\\ 0.060\\ 0.060\\ 0.060\\ 0.060\\ 0.045\end{array}$	
TABLE 9-continued

$$y/c = 1 \cdot 6$$

 C_p

Upper surface

 α (deg) x/c 0 2 4 6 8 $-1 \cdot 245$ $-2 \cdot 070$ $-1 \cdot 660$ $-1 \cdot 185$ -0.495+0.505+0.405+0.0750 +0.075-0.740-0.785-0.710-0.605-0.535-0.410-0.255-0.235-0.405 $-1.365 \\ -1.210$ 0.01+0.150-0.070 $0 \cdot 03$ 0.08-0.220-0.455-0.970-0.935-0.740-0.540-0.295-0.970-0.770-0.640-0.495-0.285-0.265-0.4350.15 $\begin{array}{r} -0.263 \\
-0.275 \\
-0.255 \\
-0.160 \\
-0.085 \\
-0.020 \\
\end{array}$ $-0.410 \\ -0.350$ 0.2250.35 $0 \cdot 50$ -0.210 $-0.120 \\ -0.045$ -0.135-0.065-0.145-0.1500.65-0.0700 +0.050 $0.75 \\ 0.85$ -0.060+0.020 + 0.020 + 0.080 $0 \\ +0.075$ +0.005-0.0200.95+0.0800

Lower surface

 C_{p}

			α (deg)		
x/c	0	2	4	6	8
$\begin{array}{c} 0.01 \\ 0.03 \\ 0.08 \\ 0.15 \\ 0.225 \\ 0.35 \\ 0.50 \\ 0.65 \\ 0.75 \\ 0.85 \\ 0.95 \end{array}$	$\begin{array}{c} +0.090 \\ -0.085 \\ -0.220 \\ -0.265 \\ -0.280 \\ -0.260 \\ -0.160 \\ -0.060 \\ -0.020 \\ +0.020 \\ +0.065 \end{array}$	$\begin{array}{c} +0.355 \\ +0.180 \\ -0.025 \\ -0.110 \\ -0.160 \\ -0.170 \\ -0.105 \\ -0.025 \\ +0.005 \\ 0.035 \\ +0.070 \end{array}$	$\begin{array}{c} +0.495\\ 0.365\\ 0.150\\ +0.030\\ -0.050\\ -0.090\\ -0.040\\ +0.005\\ 0.030\\ 0.050\\ +0.070\end{array}$	$\begin{array}{c} +0.515\\ 0.485\\ 0.280\\ 0.155\\ 0.060\\ 0.000\\ +0.010\\ 0.030\\ 0.045\\ 0.050\\ +0.050\end{array}$	0.450 0.540 0.390 0.250 0.140 0.060 0.060 0.070 0.070 0.060 0.060 0.035

TABLE 10

Coefficients of Local Normal Force, Tangential Force, Lift, Drag and Aerodynamic Centre Position Wing Spanning the Tunnel

 C_N

~	\mathcal{Y}/c							
(deg)	0	0.1	0.2	0.4	0.6	0.9	1.25	1.6
2 4 6	$0.134 \\ 0.264 \\ 0.390 \\ 0.510$	$ \begin{array}{c} 0.134 \\ 0.260 \\ 0.391 \\ 0.510 \end{array} $	0.138 0.267 0.396	$ \begin{array}{c} 0.141 \\ 0.273 \\ 0.402 \\ 0.500 \end{array} $	$ \begin{array}{c} 0.149 \\ 0.285 \\ 0.417 \\ 0.504 \end{array} $	$ \begin{array}{c} 0.153 \\ 0.295 \\ 0.428 \\ 0.540 \end{array} $	$ \begin{array}{c c} 0.162 \\ 0.307 \\ 0.441 \\ 0.552 \\ \end{array} $	$ \begin{array}{c} 0.168 \\ 0.319 \\ 0.453 \\ 0.557 \end{array} $

(uncorrected for tunnel-wall interference)

\sim	
\cup	Т

(uncorrected for tunnel-wall interference)

~				J	v/c			
(deg)	0	0.1	0.2	0.4	0.6	0.9	1.25	1.6
0 2 4 6 8	$\begin{array}{c} 0 \cdot 043 \\ 0 \cdot 042 \\ 0 \cdot 040 \\ 0 \cdot 037 \\ 0 \cdot 033 \end{array}$	$^{+0\cdot015}_{0\cdot013}_{+0\cdot008}_{-0\cdot001}_{-0\cdot013}$	$ \begin{array}{c} +0.006 \\ +0.004 \\ -0.004 \\ -0.016 \\ -0.031 \end{array} $	$ \begin{array}{r} 0 \\ -0.003 \\ -0.013 \\ -0.029 \\ -0.048 \end{array} $	$ \begin{array}{r} -0.001 \\ -0.004 \\ -0.015 \\ -0.031 \\ -0.053 \\ \end{array} $	$ \begin{array}{r} 0 \\ -0.004 \\ -0.017 \\ -0.035 \\ -0.056 \end{array} $	$0 \\ -0.005 \\ -0.017 \\ -0.036 \\ -0.056$	$ \begin{array}{r} -0.001 \\ -0.006 \\ -0.019 \\ -0.039 \\ -0.067 \\ \end{array} $

C_L

(corrected for tunnel-wall interference)

~				2	y/c			
(deg)	0	0.1	0.2	0.4	0.6	0.9	1.25	1.6
2 4 6 .8	$0.130 \\ 0.256 \\ 0.377 \\ 0.491$	$0.130 \\ 0.254 \\ 0.382 \\ 0.497$	$0.135 \\ 0.261 \\ 0.388 \\ 0.500$	$0.138 \\ 0.267 \\ 0.394 \\ 0.510$	$0.147 \\ 0.279 \\ 0.408 \\ 0.523$	$ \begin{array}{c} 0.149 \\ 0.287 \\ 0.417 \\ 0.536 \end{array} $	$0.156 \\ 0.294 \\ 0.423 \\ 0.530$	$\begin{array}{c} 0 \cdot 158 \\ 0 \cdot 298 \\ 0 \cdot 424 \\ 0 \cdot 536 \end{array}$

TABLE 10—continued

C_D

(corrected for tunnel-wall interference)

~					y/c			
(deg)	0	0.1	0.2	. 0.4	0.6	0.9	1.25	1.6
$ \begin{array}{c} 0 \\ 2 \\ 4 \\ 6 \\ 8 \end{array} $	$0.043 \\ 0.047 \\ 0.059 \\ 0.078 \\ 0.105$	$\begin{array}{c} 0 \cdot 015 \\ 0 \cdot 018 \\ 0 \cdot 027 \\ 0 \cdot 041 \\ 0 \cdot 059 \end{array}$	$\begin{array}{c} 0 \cdot 006 \\ 0 \cdot 009 \\ 0 \cdot 016 \\ 0 \cdot 027 \\ 0 \cdot 042 \end{array}$	$\begin{array}{c} 0 \\ 0 \cdot 002 \\ 0 \cdot 007 \\ 0 \cdot 015 \\ 0 \cdot 027 \end{array}$	$\begin{array}{c} -0.001 \\ +0.001 \\ 0.005 \\ 0.014 \\ +0.023 \end{array}$	$\begin{array}{c} 0 \\ 0 \cdot 002 \\ 0 \cdot 004 \\ 0 \cdot 011 \\ 0 \cdot 022 \end{array}$	$\begin{array}{c} 0 \\ 0 \cdot 001 \\ 0 \cdot 005 \\ 0 \cdot 012 \\ 0 \cdot 024 \end{array}$	$-0.001 \\ 0 \\ +0.004 \\ 0.011 \\ +0.017$

h/c

(uncorrected for tunnel-wall interference)

~				2	y/c			
(deg)	0	0.1	0.2	0.4	0.6	0.9	1.25	1.6
· 0 2 4 6 8	0 • 366 0 • 366 0 • 367 0 • 367 0 • 367 0 • 367	$\begin{array}{c} 0.316 \\ 0.315 \\ 0.316 \\ 0.316 \\ 0.316 \\ 0.317 \end{array}$	$\begin{array}{c} 0 \cdot 293 \\ 0 \cdot 293 \\ 0 \cdot 292 \\ 0 \cdot 292 \\ 0 \cdot 291 \end{array}$	$\begin{array}{c} 0.269 \\ 0.268 \\ 0.266 \\ 0.264 \\ 0.263 \end{array}$	$\begin{array}{c} 0.258 \\ 0.257 \\ 0.255 \\ 0.252 \\ 0.252 \\ 0.252 \end{array}$	$\begin{array}{c} 0.254 \\ 0.252 \\ 0.249 \\ 0.246 \\ 0.246 \\ 0.246 \end{array}$	$ \begin{array}{c} 0 \cdot 254 \\ 0 \cdot 247 \\ 0 \cdot 242 \\ 0 \cdot 237 \end{array} $	$ \begin{array}{c} 0 \cdot 260 \\ 0 \cdot 252 \\ 0 \cdot 243 \\ 0 \cdot 236 \end{array} $

TABLE 11

Corrections for Tunnel-Wall Interference

Wing Spanning the Tunnel

y/c	$\frac{\varDelta C_L}{C_L \infty}$	$\frac{\varDelta C_D}{C_{L\omega^2}}$
$0 \\ 0 \cdot 1 \\ 0 \cdot 2 \\ 0 \cdot 4 \\ 0 \cdot 6 \\ 0 \cdot 9 \\ 1 \cdot 25 \\ 1 \cdot 6$	$\begin{array}{c} -0 \cdot 014 \\ -0 \cdot 015 \\ -0 \cdot 015 \\ -0 \cdot 017 \\ -0 \cdot 020 \\ -0 \cdot 025 \\ -0 \cdot 040 \\ -0 \cdot 064 \end{array}$	$\begin{array}{c} 0\cdot 005 \\ 0\cdot 004 \\ 0\cdot 004 \\ 0\cdot 003 \\ 0\cdot 003 \\ 0\cdot 003 \\ 0\cdot 005 \\ 0\cdot 008 \\ 0\cdot 013 \end{array}$

 $C_{L\,\infty}$ is the C_L -value far away from the centre.

FIG. 1. View of models and dimensions.

Į

FIG. 5. Chordwise lift distributions for wings of different aspect ratio at y/c = 0.9 for the same local C_N .

.

 $C_N = 0.33$.

 $y/\frac{1}{2}b = 0.61.$ A = 3.

A = 3.

10

5 FIG. 11. Local lift coefficients. A = 3. 80

15*

d

б

ŏ

20°

25°

18

0-1 **L** 0

ŀ5 γ/c

2-0

2-5

S≖A

10

0.5

FIG. 15. Spanwise lift distributions.

A=3,

A = 3.

FIG. 22. Total pitching moments about mean quarter-chord point.

FIG. 24. Local drag coefficients.

A = 3.

FIG. 25. Analysis of spanwise drag distribution.

A = 5,

A = 3,

(6705) Wt. 18/680 K7. 4/58 H.P.Co. 34-261

68

PRIN ITAIN

Publications of the
Aeronautical Research Council
ANNUAL TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL (BOUND VOLUMES)—
1939 Vol. I. Aerodynamics General, Performance, Airscrews, Engines. 50s. (52s.) Vol. II. Stability and Control, Flutter and Vibration, Instruments, Structures, Septlanes etc. 63s. (65s.)
1940 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Icing, Stability and Control, Structures, and a miscellaneous section. 50s. (52s.)
1941 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Stability and Control, Structures. 63s. (65s.)
1942 Vol. I. Aero and Hydrodynamics, Aerofoils, Airscrews, Engines. 75s. (77s.) Vol. II. Noise, Parachutes, Stability and Control, Structures, Vibration, Wind Tunnels. 47s. 6d. (49s. 6d.)
1943 Vol. I. Aerodynamics, Aerofoils, Airscrews. 80s. (82s.) Vol. II. Engines, Flutter, Materials, Parachutes, Performance, Stability and Control. Structures. 90s. (92s. 9d.)
1944 Vol. I. Aero and Hydrodynamics, Aerofoils, Aircraft, Airscrews, Controls. 84s. (86s. 6d.)
Vol. II. Flutter and Vibration, Materials, Miscellaneous, Navigation, Parachutes, Performance, Plates and Panels, Stability, Structures, Test Equipment, Wind Tunnels. 84s. (86s. 6d.)
 1945 Vol. I. Aero and Hydrodynamics, Aerofoils. 130s. (132s. 9d.) Vol. II. Aircraft, Airscrews, Controls. 130s. (132s. 9d.) Vol. III. Flutter and Vibration, Instruments, Miscellaneous, Parachutes, Plates and Panels, Propulsion. 130s. (132s. 6d.) Vol. IV. Stability, Structures, Wind Tunnels, Wind Tunnel Technique. 130s.
(132s. 6d.) ANNUAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL— 1937 2s. (2s. 2d.) 1938 1s. 6d. (1s. 8d.) 1939–48 3s. (3s. 5d.)
INDEX TO ALL REPORTS AND MEMORANDA PUBLISHED IN THE ANNUAL TECHNICAL REPORTS, AND SEPARATELY—
April, 1950 R. & M. No. 2600 2s. 6d. (2s. 10d.)
RESEARCH COUNCIL-
1909–January, 1954 R. & M. No. 2570 15s. (15s. 8d.)
INDEXES TO THE TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL—
December 1, 1936 — June 30, 1939 R. & M. No. 1850 1s. 3d. (1s. 5d.) July 1, 1939 — June 30, 1945 R. & M. No. 1950 1s. (1s. 2d.) July 1, 1945 — June 30, 1946 R. & M. No. 2050 1s. (1s. 2d.) July 1, 1946 — December 31, 1946 R. & M. No. 2150 1s. 3d. (1s. 5d.) January 1, 1947 — June 30, 1947 R. & M. No. 2250 1s. 3d. (1s. 5d.)
PUBLISHED REPORTS AND MEMORANDA OF THE AERONAUTICAL RESEARCH COUNCIL
Between Nos. 2251–2349R. & M. No. 23501s. 9d. (1s. 11d.)Between Nos. 2351–2449R. & M. No. 24502s. (2s. 2d.)Between Nos. 2451–2549R. & M. No. 25502s. 6d. (2s. 10d.)Between Nos. 2551–2649R. & M. No. 26502s. 6d. (2s. 10d.)Between Nos. 2651–2749R. & M. No. 27502s. 6d. (2s. 10d.)
Prices in brackets include postage
HER MAJESTY'S STATIONERY OFFICE York House, Kingsway, London, W.C.2; 423 Oxford Street, London, W.1; 13a Castle Street, Edinburgh 2; 39 King Street, Manchester 2; 2 Edmund Street, Birmingham 3; 109 St. Mary Street, Cardiff; Tower Lane, Bristol 1; 80 Chichester Street, Belfast or through any bookseller.

R. & M. No. 28: