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Summary.--If ad hoc wind-tunnel work on controls is to be of value it is essential that  the same precautions should 
be taken as are necessary for fundamental research. For the model there must-be careful selection of material and 
accurate finish. Attention must  be paid during the experiments to the observation and control of transition in the 
boundary layer ; a suitable technique for doing this is outlined. 

Control power may  be measured on complete models of reasonable size, but usually hinge moments can only be 
measured satisfactorily on partial models, which provide control surfaces large enough for accurate reproduction of 
contours and detailed features. The great care and time involved in the construction of models and testing of controls 
for design purposes are frequently not justified when the only purpose is to determine the effects of balance, gaps, or 
small changes of shape. On the model scale the main object of tests should be to determine the properties of the basic 
control shape chosen by the designer, recognising that  there will in general he differences of detail in the actual aircraft 
for which a margin must be allowed. 

Some notes are included on the correction of tunnel measurements for Reynolds number. I t  is suggested that  the 
basis of this correction should be the slope of the lift curve against incidence for the aerofoil section or sections used. 
For a given Reynolds number and position of boundary-layer transition the lift slope is related to its value in potential 
flow by  a ratio which can be estimated from gelleralised charts. On this basis the prediction of Reynolds number effect 
on control characteristics should be satisfactory when the full-scale boundary-layer conditions can be specified. Though 
more evidence is required for swept wings and high-speed flow, a procedure to deal with sweepback and compressibility 
is included. 

The models suitable for control testing are invariably large for the size of tunnel available for the tests, and the estimate 
of tunnel interference corrections becomes a major consideration. The use of open-jet tunnels for such experiments is 
not recommended. Tests of partial models are best carried out ha closed tunnels of rectangular or octagonal section. 
I t  is essential that  a systematic scheme of calculation should be undertaken by wind-tunnel staff for each tunnel likely 
to be used for the testing of large models. Certain tables of numerical values can be drawn up so that  tunnel operators 
can do their own computing of the tunnel corrections ; instructions for this are given ha Appendix II .  Corrections are 
required for blockage and for tunnel-wall constraint on the flow associated with the lift on the model. The procedures 
to be followed in computing corrections for two-dimensional and three-dimensional experiments are described in detail. 

The numerical significance of the corrections for wind-tunnel interference and for scale effect is discussed at the end 
of the report with illustrations from worked examples. In the case of control derivatives it is clear that  corrections for 
scale effect are often the more important and should be estimated as part  of the routine. 

* This report comprises A.R.C. 13,465, A.R.C. 13,718, and the Appendix to A.R.C. 10,936, which forms the present 
Appendix II .  

Published with the permission of the Director, National Physical Laboratory. 
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1. Introduction.--Experience has shown very clearly that,  unless considerable care is taken 
both with the construction of the model and with the conditions of test, control testing in a wind 
tunnel has little value. The interpretation of the results is in any case not an easy matter. 
The basis of design of controls must always be a carefully organised research in wind tunnels 
combined with co-ordinated measurements oi~ tile full scale ; and to be of value ad hoc testing 
must adhere in the main to the same rules of procedure as have been found essential in funda- 
mentM research. If this is not practicable it is far better to rely on estimates from standard 
formulae and collected data. 

Systematic research on controls has so far been confined in the main to the s tudy of the effects 
of the boundary layers on the properties of control flaps. One of the objects of this s tudy is to 
establish a firm basis for the extrapolation of model results to the full-scale Reynolds number 
in the absence of shock-waves. I t  has been found tha t  the three-dimensional characteristics of 
unswept wings can be related to those in two-dimensional flow. The properties of a given aerofoil 
section can be related closely to the slope of the lift-incidence curve expressed as a fraction of the 
corresponding value in potential flow. This ratio can be estimated from generalised charts, 
together with its variation from model to full-scale Reynolds number;  it can then be used for 
the interpretation of the measured quantities from the model tests. The process is not yet  fully 
developed for swept wings, but  suggestions are put forward in this report for a procedure to be 
adopted until  further investigation reveals any essential changes in principle. The behaviour 
of the aerofoil section and especially of control flaps is sensitive in general to the position of the 
transition, where the boundary layer changes from laminar to turbulent flow; it is therefore 
important  to observe the transition in the model experiments and in addition to find the effect 
of artificially changing its position. This information can be used to assess the likely uncertainties 
in the prediction of the effects of Reynolds number, and in favourable cases to improve the 
accuracy of this prediction. 

If the model is of a complete aircraft to a comparatively small scale, moments on the aircraft 
due to control deflections may be determined with reasonable confidence, but  in general hinge 
moments can only be measured satisfactorily on partial models made to a larger scale than is 
possible with complete models. This is necessary in order to reproduce with sufficient precision 
the contours of the control surface, the hinge location, and the finish of nose and trailing edges, 
all of which will materially affect hinge moments. I t  is considered that,  until  more is known of 
modern swept wings, control testing on models should primarily be concerned with smooth 
surfaces and sealed gaps, with complications of balance and gaps as far as possible treated as a 
separate problem. There is then a reasonable prospect of extrapolating to full-scale Reynolds 
number. Isolated tests which do not include a test of the smooth plain control, unbalanced, 
may well prove to be misleading ; several changes in the parameters must be tested and compared. 
At higher incidences in particular the effect of gaps may be serious, and the scale effect on them 
unpredictable. Without  them and other complicating details the procedure outlined in this 
report is applicable, as far as present knowledge goes, to all tests up to the approach of the stall. 
The stall of the sections in two-dimensional flow may give some indication of the incidence or 
lift coefficient at which the tip stall of a swept wing should occur on the model and on full-scale. 
Unfortunately there has been so far a large discrepancy between the two in most cases, and it is 
obvious tha t  short of some device for postponing the tip stall of the model, only a higher Reynolds 
number of test can give reliable information concerning controls at the lowest speeds of flight. 

2. Construction of the Model . - -I t  is important  tha t  the fixed surfaces of wings and tail organs 
should be finished as smoothly and accurately as possible ; smoothness is particularly necessary 
to ensure maximum accuracy of measurement, because it is essential tha t  transition in the 
boundary layer should not be precipitated by local imperfections of the surface. The flaps must 
be made with special care as true as possible to contours, particular at tention being paid to the 
finish at the trailing edge, to the accuracy of construction at the nose of the control and to the 
fitting of the flap into its shroud by the location of the hinges. 

Models for use in the majori ty of existing tunnels will be made of wood. I t  is desirable tha t  
they should be built up in laminated well-seasoned mahogany or other suitable hard wood, 
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except for separate surfaces small in area, which may sometimes be made out of the solid. Soft 
woods are not suitable unless the model is required only for a short test immediately after tile 
completion. A reliable filler should be used on the woodwork before applying polish or varnish. 
Tile harder, more durable finishes now favoured in some laboratories have been found at times 
to reduce the accuracy attainable where curvature is great, unless an inordinate amount of time 
is spent in rubbing down. A well-polished varnish finish is often to be preferred for ordinary 
work in atmospheric tunnels as it saves time in manufacture. The harder finish is of course 
essential if active chemicals or the china-clay technique for observing transition are likely 
to be used, or if the model is to be subjected to high-pressure air. 

I t  has been found necessary to use a close-grained wood-like box, or one of the proprietary 
plastic materials of fine texture free from layers to construct the trailing-edge portion of a flap, 
or for the whole flap if it is a small one. The important  point here is to reproduce the equivalent 
trailing-edge angle accurately. I t  is useful to groove the trailing edge (if of wood) into the body 
of a control flap so tha t  movement is possible without distortion under temperature and moisture 
changes. 

Tile span of a model should not exceed 0.7 of the breadth of the tunnel (or the height if the 
model is vertical} and tile ratio of chord to tunnel height (or breadth for a vertical model} should 
not be greater than 0-5 over any part  of the span; further, the ratio of mean chord to tunnel 
height (or breadth} should not exceed 0.35. The mean chord should be at least 5 {n. in order 
tha t  the required accuracy of manufacture may be possible. Ailerons may be tested on part  
wings of half or nearly half the total  wing span. Tail organs may be tested with a stub body. 

I t  is preferable to seal the gap at the nose, otherwise the greatest care should be taken tha t  the 
gap is known accurately along the whole length of tile flap. When the gap on the actual aircraft 
is known it is often better to correct for it, using a sealed-nose model test as basis ; correction 
data exist for this purpose. Hinges should be well cleaned and lubricated ball-bearings held 
in brackets rigidly attached to the shroud ; crossed springs are sometimes advisable. Gaps around 
hinge brackets must be kept to a minimum. 

The need for accuracy in the construction of flaps may be illustrated by some figures from 
National Physical Laboratory tests" 

One degree increase of trailing-edge angle gives A b2 = + 0.04. 

0.01 increase of centre-line camber of the control gives A C~ -- 0.03. 

The procedure for tailplane and elevator testing when determining the stick-free stabili ty of 
new aircraft, as laid down by Wright Field and the U.S. Bureau of Aeronautics, is to use an 
actual tail unit or half unit or a large-scale model of the actual unit  in a high-speed tunnel. 
I t  is argued tha t  tile ideally finished model is certain to yield erroneous results, especially if the 
trailing edge is ' razor sharp '. High speed is desirable to show up any effects of elastic distortion. 
Any necessary adjustments of balance are made forward of the hinge-line and not by tampering 
with elevator contour or trailing-edge angle. 

These recommendations can only be adopted when a large and high-speed tunnel is available ; 
even then they can be satisfactory only when several production specimens are tested, in view 
of the usually unavoidable variations in manufacture. In this country when a comparatively 
low Reynolds number of test must be accepted it would appear to be preferable to use a carefully 
made solid model, recognising tha t  what is being tested is the basic geometrical design, and tha t  
due allowance must be made in interpreting the results for any likely effects of elastic distortion 
or errors in manufacture. 

3. Observation and Control of Transition in the Boundary Layer.--In order to make it possible 
to interpret the results of model tests on control characteristics it is necessary to adopt a procedure 
which gives sufficient information about the effects of boundary-layer transition. Bryant  and 
Batson "~ (1944) have suggested the following tests as in general providing tile requisite data. 
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The model is tested first over the required range of incidence and control angle with wings 
smooth, i.e., without wires to locate transition. Then over the range of incidence within 
5-deg of minimum ~lrag with flap angles between _+_ 10-deg the tests are repeated, (a) with a 
wire at 0.1 chord from the leading edge on both upper and lower surfaces, (b) with a wire at 0.1 
chord on the upper surface only. In addition the positions of natural  transition on both upper 
and lower surfaces must be observed for the same ranges of values of incidence and flap angle as 
for the (a) and (b) tests. This can be done by evaporation tests as described in Refs. 20, 21, 
and 22. Laminar separation, if it occurs, must be suppressed by placing a wire about 0.1 chord 
in front of the position of separation. This is best determined by coating a portion of the wing near 
the observed transition region with lead acetate and exploring close to the surface with a fine 
tube from which H~S is slowly emerging. Any backward flow in the boundary layer will be 
indicated by the stain, and the actual position of any separation can easily be located as the 
position when flow at the surface is neither backward nor forward. The beginning of turbulent 
separation at the trailing edge may be explored in a similar manner, and the incidence or flap 
angle at which this occurs may be determined; these observations are of value if the curves of 
control coefficients are notably non-linear. 

The tests with wires on both surfaces at the same distance from the leading edge are intended 
to cover the case where transition occurs on the full scale in front of the minimum pressure point 
at the optimum CL owing to surface imperfections, whilst the tests with one wire only cover 
the effects of forward movement of transition on the upper surface on the full scale due to change 
of incidence or to change of flap angle. 

3.1. Size of Tra~sitio~ Wims.--It has been the custom to determine the wire diameter to fix 
transition from the relation Vd/v > 600, where V is the wind speed in the tunnel, d the wire 
diameter and v the kinematic viscosity of the air. The conditions of the boundary layers at the 
trailing edge, so far as they affect control forces, are not specially sensitive to wire diameter, 
provided it is large enough to cause transition to take place at the wire without a subsequent 
return to a laminar layer further downstream. The criterion Vd/v > 600 is a rough interpretation 
of the more exact criterion ud/v > 400, given by Fage 24 (1943), where u is the velocity in the 
boundary layer at the position at the highest point of the wire surface when the wire is absent. 
But  the criterion should vary with the Reynolds number of test and with the distance of the 
wire from the leading edge. Fig. 1, based on flat-plate theory, may be used for determining 
wire size on low-drag types of section. If x is the distance of the wire from the leading edge, 
the thickness, d, of the boundary layer i's of the order given by 

Vdt~ = 5.84~/(Vx/~) . 

From the graph of Fig. 1 the minimum value of Vd/., to ensure final transition can be read 
off when the value of Vx/v is known. The graph is determined from the basis ud/v : 400. I t  is 
advisable to choose d so tha t  Vd/~ is at least some 20 per cent greater than the value read off 
the graph. ~ 

4. Correctior~s for Tu~el-l/Vall I~terference.~Where hinge moments and the effects of small 
modifications -to a control are to be investigated the use of part models is almost unavoidable. 
The part  models are invariably large for the size of tunnel available for the tests, and the estimate 
of tunnel interference corrections becomes a major consideration. In general it would seem to 
be essential tha t  a systematic scheme of calculation should be undertaken by a wind-tunnel staff 
for each tunnel likely to be used for the testing of large models. Certain tables of numerical 
values can be drawn up so tha t  tunnel operators can do their own computing of tunnel corrections. 
The tables should give the "upwash at a fair number of selected points in the working-section 
of the tunnel due to images of simple horse-shoe vortices of varying span situated in the region 
where a wing under test is likely to be placed. The procedure for doing this is described in 
Appendix II. 

The first correction to be applied is the so-called ' blockage'  correction, which is represented 
by an increment to the speed of test, The main correction is for the constraint of the tunnel 
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FIo. 1. Graph to determine tile size of transition wire. 

walls on the flow due to the Vorticity on the surface of the wing and in the wake ; this is equivalent 
to a distribution of upwash induced in the neighbourhood of the model, and may be represented 
roughly by a correction to incidence and a residual local incidence and superposed curvature of 
flow at each section of the model. The residual interference is interpreted as corrections to the 
aerodynamic forces and moments. 

A really satisfactory computation of tunnel-wall corrections is best made by first estimating 
the lift distribution for the model in a free stream using lifting-line theory, then employing the 
tables to compute downwash distributions at the model in the tunnel due to the images arising 
from this assumed lift distribution associated with the measured lift and pitching moment. 
For fundamental  research work this procedure has been used at the N.P.L. when the model is 
large. But if control testing becomes a considerable part  of wind-tunnel programmes time and 
labour can be saved by adopting approximate interference corrections based on calculations for 
elliptically loaded wings (section 4.4) or a simple combination of part-span uniform loadings 
to cover the case of flaps and ailerons (section 4.5). 
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4.1. Blockage Correclion.--The space occupied by the model and its wake in a closed tunnel 
effectively reduces the tunnel cross-section and causes an increase of longitudinal velocity which 
does not exist in a free stream. I t  is shown by Young 1 (1945) tha t  at low speeds the solid blockage 
correction due to a two-dimensional model itself may usually* be estimated with sufficient 
accuracy by tile formula 

(~V) 
V - -  0 . 6 2  , 

where A' is the area of the wing section 

(6 V) is the increment to the speed of test, V 

" h is the dimension of the tunnel at right-angles to the span of the model. 

The wake blockage correction should be related to the drag coefficient of the wing 

profile drag force per unit span _ profile drag force 
= ½pV c - ½pV S , 

when this can be measured or estimated~. 

( a V )  _ C o S  

V 4 C '  

The formula 

where S is the surface area of the wing 

C is the cross-sectional area of the tunnel 

has been suggested by Thompson 3 (1947) and is recommended for general use at low speeds. 

Thus in incompressible two-dimensional flow the overall blockage correction is 

A'  Ca c (4v)_0 .62  + _ . _  (1) 
V ~ 4 h . . . . . . . . . . .  

This formula can easily be extended to cases of three-dimensional wings for which 

(A V) Y' Ca S (2) 
V - - 0 " 6 2 C h  + - 4 - C '  ' . . . . . . . . .  

where V' is the volume of the model. 

For a complete aircraft model the blockage effect of the wake of the fuselage may be neglected, 
and following Ref. 1 the formula 

V' CoS (A V) __ 0" 65 + . . .  (3) 
V C-h 4C . . . . . . . . .  

is estimated to be accurate within ± 10 per cent. 

* Young has only considered sections of thickness/chord ratio t/c = 0' 1 and 0' 2. For conventional aerofoil shapes, 
Thompson 3 recommends the approximate formula for solid blockage 

V - - 6  1 -t-1.2 h~. 

t When C9 cannot be measured or estimated, the wake blockage correction may be applied in Glauert's e form (1933) 

(~v) ~t V = ~ , where, approximately, ~ = 0.50 ct" 

But it is emphasised that in the case of a low-drag wing this formula will seriously overestimate the wake blockage. 
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The factors for compressibility are considered by Thompson (Ref. 3, p. 17), who recommends 

1 
~-~ for solid blockage ; 

1 
/~ for wake blockage* ; 

where /~ = ~/(1 -- M~), 

in two and three dimensions and for bodies of revolution. 

Thus from equations (1), (2) and (3) the blockage in a closed rectangular subsonic high-speed 
tunnel is given by the formulae: 

for a two-dimensional wing, 

(AV) 0.62 A' CD c 
V = ~" h -~  + 4~  2 h 

for a three-dimensional wing, 

(A V) 0" 62 V' Ca S 
V -- f13 Ch + 4 ~ C  

for a complete aircraft model, 

(AV) 0.65 V' CD S 

. . . . . . . .  ( 4 )  

The blockage correction with a given model in a tunnel of the open-jet type is of the opposite 
sign and of half the magnitude of the correction in a closed tunnel of the same dimensions (Ref. 2, 
p. 53). 

4.2. Two-dimensional Interference Correction.--The main wall interference arises from the 
circulation round the wing. The image system of vortices, required to satisfy the boundary 
conditions at the tunnel wall, produces a distribution of velocity normal to the plan-form. For 
a two-dimensional wing spanning a closed rectangular tunnel of height h, this upwash is normally 
expanded in even powers of c/h. For c/h < 1/3, it is only necessary to consider the first term 
and the interference in incompressible potential flow is equivalent to an increase in incidence 

(Ao:) = ~ (CZ + 4C,,,') . . . . . . . . . . . . .  (S) 

where CL' is the measured lift coefficient and C,,/the measured pitching-moment coefficient with 
respect to the quarter-chord point, together with a change of camber (A~,) given by 

2(A~,) = ~ CL', . . . . . . . . . . . . . .  (6) 

defined by a parabolic arc of maximum height (A7) . c above its chord at the centre [Ref. 4, 
Miss Lyon (1942)]. 

The expression for (A~) in (5) may also be written in the form 

(A~) = ~ Cj(1 -- 21) . . . . . . . . . . . . .  (7) 

where lc is the distance of the centre of pressure behind the leading edge. On the basis of the 

* When extensive shock-waves are present,  these theoretical  corrections are too small and it seems best to use the 
factor  1//~ 3 througl~ol!t (Ref. 3, p. 5). 
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two-dimensional potential flow past a thin plate due to a pure incidence change 

Z =  l ~ =  ¼ ] 

and due to a deflected flap f ' "" 

1 = 12 2(= -- 01) + 4 sin 01 -- sin 201 
= 8(~ -- 01 + sin 0~) 

where 
E -- flap chord 

wing chord 

. .  (s) 

Values of l~ from (8) are given in Table 1. 
to be about 7 per cent greater. 

_ c  I _ _ l  + c o s 0 ~  
c 2 

Experinlental values (Refs. 11 and 15) of 12 are found 

TABLE 1 
Theoretical Values of 12 .for a Thin Plate 

E* 0"08 0" 10 0- 15 0.20 0.25 0.30 0.35 0-40 0.45 0-50 

0.474 0.467 0.451 0.435 0.420 0.405 0.390 0-375 0.361 0.347 

In general the measured lift coefficient C j  is the sum of (CL)I due to pure incidence 
(CL)2 due to flap deflection, and it  follows from (6) and (7) tha t  

and 

/ (A0(,) = ~ { (CL) I ( I  - -  211) -t-(CL)~( I - -  212)} 
(9) 

I . . . . . .  2(a~) = ~  { ( c ~ ) ,  + (c~)~} 

For some purposes when the stalling condition is not too nearly approached it i s  usual to 
correct the measured incidence by the quant i ty  (in radians) 

{(A~) + 2(A~)} = g 6  {(cL)1(3- 4ll)+ (c~)~(3- 41~)i . . . . . . .  (10) 

But evidence given later in this section [see (14)] suggests tha t  the ratio 

OCL/OCL 
U~/-U£ < 2, 

and it is preferable to correct the incidence according to the relation (9) and also to correct 
the measured lift coefficient CL' by 

( ~ c ~ )  = - 1-9-~ • c L ' .  07 . . . . . . . . . .  (11) 

Similarly, when pitching and hinge moments are being determined, the same correction is applied 
to e, and the measured values C,,' and C j  are corrected by  the respective amounts 

. .  (11)' 
(AC,,,) = - - ~  • C j "  0~ 

~_ ( ~ h  ~ o c .  
(AC~)-- 1 9 2 \ h /  " CL'' 0~ 

The camber derivatives OCs/O),, aC,,,/O7 and 0Cr~/07 will be denoted by a', m' and b' respectively. 

* For balanced controls E should be replaced by (a + 1)E as defined in (13). 
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According to the  theory  of potent ia l  flow past  a th in  plate* 

(a')~. = \ ~ r  .& =- 4~ 

= = 

(12) 

If the  flap has nose balance,  it  m a y  be verified from Ref. 16 (Thomas and Lofts, 1945) tha t  

E2(b')~ = E2 ( ~C~"I \ - ~ y / T  ~-- - -  2(~ --  02) COS 0~ --  sin 202 cos 01 - -  ~ sin 3 02, (13)' 

where  cos 01 ---- 2E  --  1, cos 02 ---- 2(~ + 1)E --  1, 2 being the chord of the  nose balance as a 
fract ion of tile chord of the  flap. 

Wi thou t  nose balance,  01 ---- 02 and (13)' yields 

E2(b')r  - -  2(= --  01) cos 01 --  .~ sin 01 -- ~. sin 301 . . . . . . .  (13) 

, I ! b ! Expe r imen ta l l y  the  values of a ,  m ,  differ considerably from their  theoret ical  values on 
account  of b o u n d a r y  layers on the  wing surface. F rom N.A.C.A. tests ~ (1933) on a series of 
aerofoil sections of va ry ing  thickness and camber  at  Reynolds  numbers  of approx imate ly  
R- - - -3 .2  × 106, exper imenta l  values of a' and m'  have  been deduced  b y  considering those 
sections wi th  parabolic camber-l ines.  The  tests were carried out  on models  of rec tangular  
plan-form of aspect  rat io 6. In  Ref. 6, the  curves of CL were presented  uncorrec ted  for aspect  
rat io and the  values below have  been corrected by  a factor  1. 405. The presented curves of C,,, 
were a l ready corrected to infinite aspect ratio according to lifting-line theory  by  a factor  1.365 
and  the  values below have  therefore been corrected by  a fur ther  factor  1.03. An analysis of 
the  re levant  tests suggests roughly,  t h a t  

t 10~ (~ in radians) a' ---- 4~ --  19 c -  

r e ' = -  ~ - - 5  c where  e is small 

t 
= --  0.7~ for all values of c near  the  stall (~ ~ 0.25) ~ 

This does not  imply  t ha t  th ickness /chord r a t i o  t/c has any  appreciable direct  influence on 
a'  or m' .  At small  incidences t h e y  are approx imate ly  re la ted to the  lift slope, O C L / ~  ---= a~ ; for 
the  N.A.C.A. results, corrected to infinite aspect ratio, are represented  roughly  by  

al = 2~ --  3 .5  -t , 
6 

while theoret ica l ly  (Ref. 11) 

(1 + 
Approx imate ly  therefore 

a~ t 
(a l )~--  1 - -  1.25 c .  

* There is an effect of thickness on camber derivatives (Ref. 5, section 3). For the purposes of the present report the 
suffix T, as applied to camber derivatives, will denote theoretical values neglecting wing thickness. 
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When ~ is small, the ratios of the camber derivatives to the theoretical values in (12) are 

a'  . . s t  . 
4 ~ - -  1 - -  1 c '  

m'  __ . 6 t  - - 1  1 • 

Thus, with a probable accuracy of the order 5 per cent 

a - - . m '  a~ . . . . . . . .  (14) 
4 ~ -  - - ~ -  (adr . . . . . . .  

There is an indication tha t  both a'  and m' diminish numerically with increasing incidence. 
To take account of this it seems reasonable to replace a~/(a~)w in (14) by 

C~ C~ 
- 

where eo is the no-lift angle. 

Evidence from Refs. 13 and 14 points to the conclusion tha t  the simplest relation approximately 
fitting the known facts for controls, whether balanced or unbalanced, is 

b' b~ 
( b ' ) r -  

More data* are needed before this relation can be accepted as established, but  nothing better  
can be adopted on the available evidence fully discussed in Ref. 5. 

TABLE 2 

Theoretical values of b'/b~ for  a Th in  Plate 

(~ + 1)E 

0.08 0 .10 0.15 0 .20 0 .25 0 .35  0 .45 0 .50 

.05 
0.10 
0.15 
0-20 
0-25 

7-724 
7"739 
7 '756 
7"778 
7" 803 
7"835 

7.655 
7.673 
7.696 
7-722 
7-754 
7.795 

7.481 
7.509 
7.543 
7.583 
7-632 
7-694 

7- 304 
7- 343 
7.388 
7.442 
7" 509 
7.593 

7.128 
7.176 
7.233 
7-302 
7.387 
7.493 

0.30 

6.949 
7.007 
7.076 
7.160 
7-264 
7.394 

6- 768 
6" 837 
6"919 
7"019 
7"141 
7"297 

I 
]0 .40  
I 

6.585 
6.665 
6-760 
6-876 
7.019 
7.202 

6.400 
6.492 
6.600 
6.733 
6.898 
7-109 

6-213 
6.316 
6.439 
6'  590 
6" 778 
7'019 

For a thin plate with unbalanced control (2 = 0), (b')r/(bl)r decreases slightly with increasing E. 
Table 2 also indicates a rather smaller increase in (b')r/(bl)r with increase of Z for balanced controls 
of the same total  chord (X + 1)Ec. But the variation with balance for a constant flap chord 
ratio E, based on the chord behind the hinge, is often negligible and only exceeds 4 per cent for 
very large controls with heavy balance. In the present uncertain state of knowledge it  should 
normally suffice to use Table 2 in conjunction with 

b ' = b l  ~ r  . . . . . . .  " "" 

* Recent tests on a cambered wing--A.R.C. 15,456 (Garner and Batson, 1952)--confirm equations (14) and suggest in 
b' b' 

place of equation (15), ~ - -  (bl)~,o~on~hoor" 
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To allow for compressibility a~ and b~ and therefore the camber derivatives, as defined in (14) and 
(15), need to be increased by the factor 

1 1 
- V ( 1  - M ~ )  

In the case of two-dimensional experiments the linear perturbation theory 18 (Goldstein and 
Young, 1943) shows that  (A~) and (AT) in (9) also require a factor 1/$. 

The following procedure for determining tunnel-wall interference corrections to measurements 
on a two-dimensional wing in a dosed subsonic rectangular tunnel is recommended" 

(a) Apply the blockage correction (A V) to V [section 4.1 from (4)!. 
(b) Correct the measured incidence by the amount 

( A ~ )  - -  4gp  {(C&(1 - -  2Z~) + (CJ~(1 - -  2Z~)}. 

(c) Correct the measured coefficients Ca', C./, CH' by respective amounts 
7 g ~  t 

_ _  C C L  t 

( A G )  = - -  192~ CL' 

Of the quantities occurring in these expressions, 

(CJl is the measured lift coefficient due to wing incidence, 

11 is approximately ~- and may be estimated more accurately from the correlated 
experimental data  in Ref. 15 (1950), 

(CL)2 is the additional measured lift coefficient due to a flap deflection, if any, 

12 is given approximately by the theoretical values in (8) and Table 1, but should 
preferably be modified by an empirical correction factor of 1.07 (or estimated 
from Ref. 15), 

I t  should be noted that  (CJ~ and (CJ~ are corrected for tunnel blockage. If the thickness/chord 
ratio of the wing is large b' should be modified in accordance with the footnote to (15). In the 
formulae for a' and m' it is sometimes important to replace ad(a~)r by 

~1 e L  t 

i~,)-~ (~,) '(~'  - ~'o) + (~)'~' 
where ~', ~0' are respectively the measured incidence and measured no-lift angle, 

~CL' 
(al)' is the value of ~v - , ,  when ~' is small, 

0CL' 
(a~)' is the value of ~ - c o r r e s p o n d i n g  to a small flap deflection ~. 

In instances of compressible flow, when a~ and b~ are not available from the tests themselves, 
it may  be necessary to estimate their values from low-speed charts in Ref. 11, in order to 
determine the camber derivatives a', m' and b', given above. The values so obtained would 
require the compressibility factor 1/~. 
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4.3. I~teffere~ce Col, rections iv Open-jet Tu=~els.--On the assumptions that  the boundary of 
an open jet is not influenced by the presence of the model and tha t  the disturbance to the tunnel 
velocity'at the boundary of the jet is small, Glauert 2 (1933) shows that  the interference on a wing 
in a tunnel  with a free boundary is determined by the following theorems : 

(i) The interference on a small wing placed symmetrically in an open rectangular tunnel 
of breadth b parallel to the span and of height h is of the same magnitude as but of 
opposite sign to tha t  on the same wing placed symmetrically in a closed tunnel of 
breadth h and height b. 

(ii) The interference on any wing in an open circular tunnel is of the same magnitude as 
but of opposite sign to the of the same wing similarly placed in a closed tunnel of the 
same dimensions. 

Unless the model is placed between end-plates and is of small chord the testing of a two- 
dimensional control surface in open-jet tunnels is considered to be valueless, for the initial 
assumptions are violated. Tunnel blockage will distort the jet boundary ; and in an infinite free 
jet an additional interference arises on account of the downward deflection of the jet behind the 
wing. I t  is determined theoretically for a rectangular jet tha t  for a typical value of c/h = ~ 
there is a consequent correction to lift of nearly -- 40 per cent (Ref. 2, Fig. 21) and there are 
probably larger corrections to pitching and hinge moments. Moreover an open jet usually issues 
from a closed cylindrical mouth upstream of the model and enters a similar collector at moderate 
distance downstream. These conditions differ appreciably from those of an infinite free jet, 
and no experimental check on the reliability of the interference corrections is available. 

For similar reasons, it is inadvisable to test large three-dimensional models in open-jet tunnels. 
If models are restricted to have spans not exceeding 0.6 of the tunnel breadth and chord not 
greater than 0.25 of the tunnel height it is probably accurate enough to use theorems (i), (ii) and 
the methods of section 4.4 and section 4.5 to determine the main interference correction, and to 
determine the blockage correction to V according to the final paragraph of section 4.1. 

4.4. U~iform Imideme  or Ful/-S#ar~ Co~#rol.--In problems of a complete wing inclined to the 
undisturbed stream or of a symmetrical tail model with a deflected full-span elevator, an elliptic 
distribution of lift is assumed*. The local centre of pressure is approximately represented by a 
constant value of 1 along the wing span. 

If A is the angle of sweepback of the quarter-chord locus, for purposes of calculating wind- 
tunnel interference tile wing is represented by a Vee lifting line swept back through an angle A~ 
given by 

tan At = tan A -- Co (l -- 1)(1 -- it) . . . .  
.9 • 

where the taper parameter 
c~ tip chord 
Co root chord ' 

which for wings of variable taper is conveniently generalised in the form 
4s 
Aco 

The wing span is represented by -- s < t < s. 
distributed circulation 

which is accompanied by  a wake of trailing vorticity of strength 
d/~ 

K - -  dt 
per unit span. 

. . . . . .  

The lifting line is associated with an elliptically 

* This  a s s u m p t i o n  is ins t iKed  il l  A p p e n d i x  I .  
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The constraint of the tunnel walls on the flow due to this vorticity is equivalent to a distribution 
of upwash in the neighbourhood of the wing and may be evaluated from a system of images of 
the vorticity. As a basis of the calculation it is convenient to consider a single horse-shoe vortex 
of strength K and width 2t, situated symmetrically in the tunnel with its lifting line at a position x0. 
For small wings in incompressible flow, Glauert and Hartshorn 7 (1924) express the angle of 
upwash w/V,  induced at a position x by the doubly infinite set of images in the tunnel walls, as 

w SCL' I X - - S o }  

By extending this definition of 00 and 01, the angle of upwash, induced at (x, y) in the plane of 
the wing by the images of the single horse-shoe vortex, is 

w 4Kt { X - -  Xo } 
V -- CV G(y;t) + ~ 6l(y,t) , . . . . . . . .  (17) 

where the quantities G(y,t) and $dy,t) may be calculated for closed tunnels by methods described 
in Appendix II.  

Whatever the form of the working-section of a tunnel it is necessary that  tables of G(y,t) 
and Ol(y,t) should be computed once for all. The ranges of y and t should cover all sizes of wing 
likely to be tested. In addition the tables might well include a similar set of values for wings 
placed, say, 6 inches above or below the central plane of the tunnel. When necessary G(y,t) 
and ~dy,t) should be tabulated for both horizontal and vertical wing spans. 

I t  is shown in Ref. 27, p. 4 (Acum, 1950) that  under the conditions assumed for a swept wing in 
incompressible flow 

w ~ 1 4 r s I ~  x - - x o  3 1 ( ! )  
= J o - ~  -~t {t3°(Y't)} @ h 3t { t d l ( y , t ) }  d , . .  . .  ( 18 )  

where, measured from the leading edge of the root chord, 

Xo ----- lco+ t tan Az 

_ l c o + t { t a n A _ ( l _ ~ ) ( 2 C o  4 -- s A / )  [fr°m (16)1 . . . . .  (19) 

For the elliptic distribution of lift, F0 is determined from the measured lift coefficient CL' 'corrected 
for tunnel blockage by the methods of section 4.1). Hence 

" t )  ~ ; 

and it follows from (18) that  in incompressible flow 

x - -  ~ %/ V ~ 4"~CLt~IO~c JO [ t)) "-~ ~0 ~-t {tOl(y,t)) ] [1 -- (~)21 d(~ ) (20) - = g-t {tG(y' h 

Shbject to a linear chordwise variation of upwash, (20) will determine the angle of upwash, 
induced by wall interference, at any point (x,y) in the plane of the wing referred to the root 
leading edge. x0, a function of t, has to be determined from (19), in which the only unknown 
is 1. When the pitching moment is not measured, it is best to take 

l = 11 or 12 (section 4.2). 

Otherwise the ratio C,,,'/CL' will determine an axis of zero pitching moment x = 2 and it is easy 
to equate this with the elliptic/-chord point. Thus 

t 4 s t a n A }  . 4 (1 - -  l ) ( ~ - - - l )  + 3~ 2 = 6 .hdx ip t i  o = Co l @ ~ Co 

1 4(1- -  2) 1 _  2 1 - - 2  4 s t a l l A  i.e., l (21) 
3:~ ] Co 3z~ 3z~ co . . . .  
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Using, if possible, the value of 1 from (21), it is simple to evaluate tan A~ as given in (19), and 
similarly 

tan A314 -- t a n A  -- s A " 

tan A3/~ is identically the tangent of the angle of sweepback of the three-quarter-chord locus for 
wings of uniform taper, and for the purposes of calculating tunnel interference it will normally 
suffice to take 

x =  ~Co + y  { t a n A  - - ( ; 0  ] ) } _ .  . . . . . . . . .  (22) 

at  the three-quarter chord of the section at y. Then in the notation of Ref. 27, the interference 
at  this section is expressed as a local incidence at three-quarter chord and a local camber 

4SC~' 
= I 

4SCL' c 
(A),) = zsh 8--h I2 

(23) 

where 

viz., 

h 
b 
l 

11, I2 and 13 

I = I i +  ( ~ - - l ) ~ +  tanA.w4 I s - - [~ tanA~. I3 ,  

is the height of the tunnel, 
is the breadth of the tunnel, 
is determined from (21), and 
are defined in Ref. 27, equations (4), (5) and (6), 

L = fo ~ {(t~o(y,t)} 1 -- ~ ; 

Acum has calculated the spanwise distributions of (A ~)3/4 for elliptically loaded wings of various 
spans in rectangular tunnels in the case l = ~.1 I t  is found from lifting-line theory (section 5.1) 
that  for the purpose of estimating lift it is accurate enough to use a mean value of (A~)3/~, 

(Ac¢) = 0 .6  (elliptic mean) + 0 .4  (chord mean) 

= 0"6 ~ ~ -t- 0"4 

f o J [ 1 - -  (Y-s) l dY foedY 

= - -  - -  d y 

SCL' 
- -  C " 8 ,  . . . . . . . . . . . . . . . .  ( 2 4 )  

where ~ is unexpectedly insensitive to changes in taper and sweep and is virtually dependent on 
aspect ratio, A, and span a = s/b. 
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The values of ~ are conveniently plotted against (a + 1.5/A). Curves from Ref. 27 a r e  
reproduced in this report as follows : 

Fig. 2. Square tunnel 

Fig: 3. Duplex tunnel (b = 2h). 

I t  is suggested that  similar sets of curves* should be calculated for a representative series of tunnel 
working-sections. I t  will readily be seen tha t  these curves can be applied to a more general case 
in which 1 is different from ~ by substituting 

3 

in place of the abscissa (a -t- 1" 5/A). In this way d in (24) may be evaluated with good accuracy 
for complete wings at a uniform incidence or with full-span controls and for a symmetrical tail 
model with a deflected full=span elevator. 

In the theory of interference for a small wing represented by a single doublet vortex (Ref. 2, 
p. 21) the parameter ~ is equaivalent to 

= + - z ) ; ,  

and the induced camber is 

SCL' 
- c • 

. . . . . . . . . .  ( 2 5 )  

As an indication of the effect of tunnel cross-section, d0 and dl are given in the following table. 

TABLE 3 

Interference for a Small Wing 

Shape of tunnel 3 o 61 R e f e r e n c e  

Square . . . . .  
Duplex (horizontal wing i 
Duplex (vertical wing) .. 
Circular 
Elliptical (bih = i:795) " '  
Rectangular  9 It × 7 f t . .  
N.P.L.  9 ft × 7 ff with fillets 
Rectangular  13 It  × 9 It  
N.P.L.  13 It  × 9 ft with fillets. 

0.137 
0.137 
0.262 
O" 125 
O. 1215 
0.120 
0.114 
0.119 
0.1125 

0.240 
0.2925 
0.512 
0"250 
0.291~ 
0"2285 
0.217~ 
0.233 
0.220~ 

7 
7 
2 

25 
2 
8 
8 
8 
8 

To the accuracy of the linear perturbation theory 18, d0 is unaffected by compressibility but  
dl is subject to the correction factor 

1 1 
V ( 1  - " 

* Similar curves for rectangular  tunnels (b = 9h/7, 18h/7) are included in Ref. 27. 
Denotes an es t imated value. For  the elliptical tunnel  61 is obtained by  making  an assumption similar to tha t  in 

Ref. 2, p. 37. A rat io correction is also used to assess the  influence of t r iangular  fillets on 61 (Ref. 9). 
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Then, to summarise, in all problems in which the spanwise loading is approximately elliptic, the 
tunnel interference due to vorticity is expressed as a distribution of angle of upwash as in (20) 

V - -  ~C o gt{ ta°(y't)} + [3h at {ta'(y't)} 1 - -  s d s ' 

where x0 is given in (19). At 

where 

4SCL' 
I 

4SCL' c 
( A y ) -  =sh 8h 

any section y the distribution of w/V  is represented as 

1 
/3 Is 

I = I i +  ( [ - - 1 ) ~ +  tanAs/~ ~ I s - -  ~ t a n A ~ . I 3  

and I~, I2, I~ are defined in Ref. 27 and evaluated for rectangular tunnels (b = h, 9h/7, 2h, 
18h/7), and l is given in (21) or else by two-dimensional considerations (section 4.2). Finally 

SCL' 
c a 

is evaluated as in (24). For square and duplex tunnels a is given in Figs. 2 and 3 respectively 
(reproduced from Ref. 27). If the abscissa is replaced by 

+ ~(-~ - -  Z), 
the value of a corresponding to a given ~ will take account of compressibility and any departure 
from l = ¼. 

The correction (A ~.) is applied as an increment to the incidence of test. In view of (24) there 
is no further correction to the measured lift. There is a small residual correction to the measured 
pitching moment ; this is shown to be small, independent of pitching axis, and difficult to compute 
(Ref. 27). When the procedure of this section is adopted the residual (AC,,~) may usually be 
neglected for small values of a. The residual (d CH) to be added to the measured hinge-moment 
coefficient should always be included; practical methods o~ estimating these incremental 
corrections are given in section 4.5, equations (32) and (33). 

In undertaking calculations for a new tunnel, the first step is to evaluate the quantities ao(y,t) 
and al(y,t) once for all by the methods suggested in Appendix II. For rectangular tunnels the 
summation in series obtained by Olver 28 (1949) is of assistance. The second step is to carry 
out the cMculations fully described in Ref. 27 and finally to produce curves in the convenient 
form of Figs. 2 and 3. 

4.5. Deflected Partial-Span ControL--The method of section 4.4 for evaluating the upwash 
due to tunnel interference is not applicable when the model under test has deflected control 
surfaces of partial span. In the first place the spanwise wing loading is not elliptic and further 
the local centre of pressure is not truly represented by a constant value of 1 along the wing span. 

Take for instance the problem of a half-wing with a deflected aileron of span 

Yl < y  <Yo 

mounted on one wall of a tunnel. An unswept example of this has been considered in detail 
in connection with the work of Ref. 17. The whole wing with symmetrical ailerons is imagined 
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to be placed symmetrically in a tunnel of the same height and twice the breadth. The disturbance 
to the tunnel stream is satisfactorily represented by two discrete horse-shoe vortices" 

(i) of strength Ko and span 22o with its bound vortex at a constant chordwise position 
loC to be determined from the pitching moment, 

(ii) of strength -- K1 and span 2yl with its bound vortex at 0.3c from the leading edge. 

This assumption presupposes a total lift on the half wing 

L = p V ( K o Y o -  Kly~) 

and a total rolling moment 
1 2 2 = ~pV(KoYo --  K~yl ) .  

If both lift and rolling moment are measured these will determine K0 and K~. If, however, only 
rolling moment is measured, then the spanwise centre of pressure 35 must be estimated (section 5.2). 
Thus 

Ko _ Yl 235 -- 21 
K~ Yo 235 -- Yo 

and their magnitudes are determined by the measured rolling moment. If the pitching moment 
is not measured, it is best to take loc = l~c, the chordwise centre of pressure for a two-dimensional 
flap (Table 1). For an unswept wing the distribution of upwash is calculated at once from (17). 
In the notation of (23) 

4KoYo { c I (Ao:)8/4-= C V  6o(Y,yo) + ~ (-~ ---12)6~(y,yo) 

4K~.yl c 0 "  , . . . . . .  
C V  {a0(y ,y , )+  ~ ( 4 5 ) O ~ ( y , y l )  } (26) 

Ko yo c K~y, c 
(A),) = 2 C F  ~h ~(Y,Yo) --  2 C V  ~h dl(Y,Yl) 

where ao(Y, Yo), al(y, yo), ~Ù(Y,Yd, a~(Y,Y~) should be available in tabular form, and the factor 
allows for compressibility. 

A rapid procedure of this kind is needed for swept wings and it is suggested that  the same 
assumptions (i) and (ii) should be used. The vorticity now corresponds to two uniformly loaded 
lifting lines swept respectively through angles A0 and A1, obtained by substituting the appropriate 
values of 1 in (16): 

tan Ao = tan A -- (10 - -1 )  \ s 

s A 
This configuration implies a pitching moment on the half-wing 

- -  d / =  pVKoYo(loCo + ~yol tan Ao) - -  pVKly l (O.  3co + ~Yll tan A1) 

about an axis through the leading apex and a chordwise centre of pressure at x = 2 given by 

2(Koyo - -  Kly l )  : KoYo(loco + ½Yo tan Ao) --  Kly~(O" 3Co + ½yl tan A1). 

When 2 is known experimentally, 

1 (2Co 4 ) }  = (2 0"3co)(1 K~y~') K~I2~ (27) 
(lo -- 0"3){Co -- ~Yo\ s A -- K o Y o / - -  ½Yo tan AI(1 KoyoL]" 
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Otherwise lo = 1= should be used. 

Therefore 

Then the upwash calculated from (18) and (19) is 

V --  C V  Jo ~-t {tOo(y,t)} + flh ~-t {tO~(y,t)) dt 

4K~ ~ x -- 0.3Co -- t tan A~ ~ { t~(y , t )}  dt 
C V  o -~t {t~o(y,t) } + flh ~-t 

4KoYo/do(y,'Vo) -t x - -  loco 1 
- -  C V  t " f lh  ~ ( Y , Y o )  j 

4K~ y~ x - -  0" 3Co 

_ _  

4Ko tan Ao fi° ~ 
C V ~ h  ~ { t~(y , t )} t  dt 

4K~ tan & ;i~ 0 

w 4Koyo { x - -  loco - -  Yo t an  A / 
V --  C V  ,~o(Y,Yo) + flh o cSz(y,yo) J 

4K1y11 x --  O.3co - -  y l  t a n  A~ } 
C V  Oo(Y,Yl) + flh ~I(Y,Y~) 

4Ko tan Ao C , o . ,  4K~ tan A~ fo t~i(y,t) dt . . . . .  (28) ~VYh L t~l(y,~) d t -  CrT~h • 

Thus for swept-back wings the interference at a section y is given by 

(Ae)a/~ = - p  from (28) putt ing 

x = ~ c 0 + y  t a n A - -  A as in (22) '. . . . . . .  (29) 

Ko yo c K~y~ c 
(Ay) - -  2 C V  fl]~ 61(Y'Y°) 2 C V  flh 61(Y'Yl) as in (26) 

The computation of d0(y,t) and d~(y,t) is discussed in Appendix II. The numerical evaluation 
of the two integrals in (28) for any given value of y is easily carried out by Simpson's Rule (or 
its equivalent if Y0 and Yl differ from the values of t for which d1(y,t) is computed). 

The method of evaluating (Ao:)~/~ and (Ay) in the case of ailerons of partial span can obviously 
be extended to include deflected inboardflaps, which may be regarded as the difference between 
a fuU-span flap treated in section 4.4 and the aileron considered here. 

Having computed (Ao:).~/~ and (A~,) from (26) or (29), the mean value from (24) 

(Ac~) = 0.6(elliptic mean of (Ac~)a/4} + 0.4{chord mean of (Ac~)}a/~ 

is first applied as a correction to the incidence of test. The residual tunnel interference is then 
expressed as a local incidence at mid-chord and a local camber 

(~.) = ( ~ ) ~ , -  2 ( ~ ) -  (z~) / 
(,~r) = ( .~r)  j . . . . . . . . . . . . .  (30) 
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For special accuracy it is necessary to use the method described in section 4.6 to obtain the 
increments 

(4c,), (4c ) 
to the measured Cr', Cz', C,,', CH', when the extraneous flow represented in (30) is removed. 
When the simplifying assumptions of sections 4.4. and 4.5 are involved in obtaining (O~) and 
(~) ,  the authors do not consider that  elaborate calculations are demanded. By the definition of 
(4 c¢) in (24) it is presumed that  there is no further correction (A CL). Thus (A C,,,) is independent 
of the pitching axis. 

The following simple formulae should be used: 

0Cz ? /fs 
* ( A C t )  - -  - -  - -  d y  - -  d y  ( 3 1 )  

~ 0 " " 

P 

r 
dy 

(A C,,) = A tan A (A C~) -- m' cos A j0 (07) -~ . . . .  . . (32) 

0CH( "° b' 

where (as) and (a~) are defined in (30). 

In (31) (see footnote), aCz/a~ is the experimental derivative of the rolling-moment coefficient 
corrected to free-stream conditions. I t  is sufficient to use the value 

0{~' + (As)} 

where ~.' is the measured incidence of test, (A ~) is determined from section 4.4 and C/is  the 
measured rolling-moment coefficient, corrected for tunnel blockage (section 4.1). 

(A C,,,) consists of two contributions: 

(i) the pitching moment about an axis through the root quarter-chord corresponding to the 
residual spanwise distributions of lift concentrated on the quarter-chord locus 

(if) the additional moment from the residual camber on the basis of two-dimensional strip 
theory, the camber derivative m' being given in (14) and requiring a factor 1//~ for 
compressibility. 

In (33), it  is sufficient to use 

~C/~ ~C~' 

The ratio b'/bl is given in Table 2 (section 4.2). 

The formulae (31), (32) and (33) are likely to be in error by __ 25 per cent. However these 
residual corrections will usually be small enough for this not to matter.  

To summarise, for many three-dimensional experiments, including all ad hoc work, the 
corrections for interference may be calculated in the following stages : 

(a) Correct the speed of test for tunnel blockage (section 4.1) and compute the aerodynamic 
coefficients 

e.g., CL', Ct', C,,/, CH' 
from tunnel measurements. 

* Equation (31) gives the correction to the rolling moment measured on a half-vdng. 
interpreted in the sense of equation (40). 
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(b) Use the expressions in equations 

(23) for uniform incidence or full-span controls 
(29) for deflected controls of partial span 

to compute (A c~)8/4 and (A?) at a suitable number of spanwise positions. 

(c) Evaluate (Am) from equation (24) and apply it as a correction to the incidence of test. 

(d) Evaluate (ACz), (A C,,), (A C~), as may be required, from the respective equations (31), 
(32), (33), and add these quantities to the corresponding coefficients in (a). 

4.6. Accurate Detcrmi~atio~ of Tuvcml I~terfereme for a Large ModeL--Experience suggests 
that  the methods of the previous section for the estimation of wall interference corrections may 
not always be accm'ate enough for really large models, particularly when pitching and hinge 
moments are the measurements to be corrected. The following procedure is fairly simple to apply 
to special tests although too elaborate for frequent use. I t  makes use of the lifting-surface theory 1°, 
which has improved the accuracy in calculating the distribution of load or circulation along the 
span of a finite wing with partial span controls*. For determining wind-tunnel interference 
this ' lifting-surface ' c i rcula t ion/ '  is associated with the representative ' lifting-line' through the 
local centres of pressure. Then the expression for the induced angle of upwash in (18) becomes 

r s 4 r  {a x -  R ( t ) +  a t 
V = J o U ¢  _ + { t a , ( y , t ) } ,  dr ,  . .  (34) 

where x ---- R(y) is the locus of mid-chord points, 

x = R(t) + (1 -- ½)c(t) is the equation of the lifting line, 

/3 = t / (1 -- M ~) is the factor for compressibility. 

I t  isshown in Appendix I that,  for a given measured CL', the calculation of tunnel interference 
does not require the spanwise distribution of lift to great accuracy. I t  is sufficient to use estimated 
free-stream distributions of F corresponding to the measured CL' (section 5.1). The local 
interference at any wing section is obtained by substituting estimated values of 1 and calculated 
distributions of F in (34). Hence, from formulae analogous to (29), the quantities (A c~)~/~ and (A V) 
may be evaluated at any section. The incremental circulation (aP) corresponding to the local 
incidence (Ac~)~/~ is then calculated by means of section 5.1; and its contributions to lift and 
rolling moment (aCL) and (aCz) are obtained by substituting F = (aF) in (40). 

The form in which the main interference correction is applied is to some extent arbitrary. 
No difficulty arises when the curves of measured lift and rolling moment are linear with incidence ; 
for either -- (aCL) and -- (aCz) may be applied as corrections to the measured coefficients CL' 
and C / o r  an equivalent correction may be applied to the incidence. The former procedure may 
be preferred in correcting control derivatives; but for all other purposes it is satisfactory to 
use a correction to the incidence of test. When serious turbulent separation is present, tile 
conditions of test are best represented when the major correction for tunnel interference takes 
the form of an increment of incidence equal to a mean upwash angle in the tunnel. This is 
conveniently chosen to be 

/ aCL 
( ,~ )  = (aC~) a~ . . . . . . . . . . . . .  (35) 

Then the measured lift applies to free-stream conditions. But there remains a supplementary 
correction 

= - { ( a c , )  - ac /ao:}; . . . . . . . .  ( 3 6 )  

and it is necessary to allow for residual interference due to induced curvature of flow and to 
the spanwise variation of upwash angle. On the basis of equation (34), (a~) and (@) in (30) 

* Ref. 10 has been superseded by R. & M. 2884 (Multhopp, 1950), which deals with sweepback. 
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should be calculated. Then, (A Cz) bring known, the formulae (32) and (33) for (A C,~) and (ACH) 
are recommended. At high incidence the necessary derivatives may not be known with any 
certainty, but they can usually be estimated wei1 enough for the purpose of making these 
comparatively small corrections. 

5. Free-Stream Calculations.--The method of t u n n d  interference correction, which has just 
been outlined, involves a procedure for estimating forces and moments under free-stream 
conditions by using an approximate theory. This same calculation is often appropriate for 
giving a satisfactory indication of the corrections for Reynolds number (section 6) to be applied 
to the free-stream values deduced from the tunnel measurements by the methods of the preceding 
paragraphs. 

Since the preparation of this report a satisfactory theoretical method of treating a swept 
wing with partial-span controls has appeared (R. & M. 2884 (Multhopp, 1950)). This subsonic 
lifting-surface theory should be used in preference to the approximate procedure which follows. 
However sections 5.1 and 5.2 describe a more rapid method of calculation and a means of allowing 
for sectional characteristics not inherent in the theory. 

5.1. Lifting-Line Theory.--The spanwise distribution of circulation /~ round a wing with 
deflected controls in a uniform free stream may  be calculated from the lifting-line theory, as 
developed by Multhopp TM (1938). In calculations for compressible flow the lateral dimensions 
of the wing should be reduced so tha t  the semi-span becomes Ss.. For the application of 
Multhopp's method it is necessary to use the chord c, the lift slope and the equivalent incidence 
[~ + (a~/a~)~] at certain wing'~sections, al and a2 may be estimated by the process described in 
Ref. 11. For swept wings they should both be modified by the factor cos A' from equation (44). 

Let the reduced spanwise distance from the wing root be fly = ~s cos 6; then Multhopp 
chooses stations 

6 = ¢ ~ - - m _ /  1 ( v =  1 ,2 ,3  . . . .  ½(m@ 1)) 

along the semi-span. A continuous and symmetrical distribution of equivalent incidence can be 
represented by its values c~, at the selected stations. The computation then amounts to the 
solution of ½(m + 1) linear simultaneous equations, from which the circulation F~ at each station 
can be expressed conveniently in non-dimensional form 

f f  v ~(,n+l) 

2sV = E D . # .  . . . . . . . . . . . . . . .  (37) 

The factors D,~ depend only on the ½(m + 1) values of (c/4$s)a~ cos A' and m, which is usually 
7 or 15. Thus the calculation is identically that  for the actual wing of semi-span s with a lift 
slope (1//~)a, cos A' in place of the value a~ for an unswept wing of the same section in incom- 
pressible flow. 

When a partial-span control is deflected, the equivalent incidence has discontinuities at the 
ends of the control. Multhopp's method treats the integral equation of the lifting-line by 
prescribing equal and opposite discontinuities in the induced incidence, which determines a 
circulation (r~)~ (Ref. 12, section VII). Thereby the problem is reduced to one with a residual 
continuous distribution of incidence (~,,)~, for which equation (37) determines the corresponding 
circulation (f,)~. Then 

= + (r )H . . . . .  

The coefficients of lift and rolling moment are then given by 

~A ~ 2s@ sin ~ ~ C~ -- m + 1 

C~ = 4(m + 1 i El 2sV sin 26~ 

where ¢~ = v~/(m + 1). This applies to a complete wing. 

23 

. . . . . . . .  ( 3 8 )  

. . . . . . . .  (39) 



For a half-wing with a symmetrical distribution of lift about the root chord, 

2uA [,~(.,~1) F~(,.+,)] 
C o - - m +  1h ~' ( £ s { n ¢ , ) q - ½  2 s V ]  

Cz A [~/~ 
- -  2 d O  

where F~ is given below: 

m F~ F~ 

7 0'3525 0.5030 

15 0" 1913 0"3637 

sin 2 ¢ d ¢ - - m + ~  ~ " 2s V / 

F, G F ~  F,  G G 

0"3440 0"0404 . . . . .  

0"4617 0"5004 0"4612 0"3552 0"1867 0"0200 

( 4 0 )  

There is no need to refine these solutions for the purpose of calculating the tunnel interference. 
Values of the circulation from (38) should be associated with estimated local centres of pressure 
and used in accordance with section 4.6. The local interference (Ao:).~/, and (Ay) corresponding 
to this assumed wing loading should of course be adjusted in the ratio 

measured CL' (corrected for blockage) 
calculated CL from (38) and (39) 

The correction to the measured incidence, defined in (35), is the mean value of (A a)~/4 found by 
substituting ~, = (A a)a/4 and c~ = 1 in equation (37) and the values of F so obtained in (39), viz., 

Y,, E D,,,,(Ac~,,).~t~ sin 
= " = '  ' - '  + 1 , . . . . . . . .  ( 4 1 )  

E D,~ s i n ~ +  1 

where (Ao:,,).~/, is the value of (Ao:)~/, at the station y = s cos{~ / (m q-1)}. The residual 
corrections to Cz, C .... CH then follow from the procedure in section 4.6. In particular*, from (36) 

v = l  i~=1 

E F,,L E D~.J 

where ~C~/~o: is the corrected experimental coefficient of roiling moment on the half-wing, as 
defined in (40). 

The lifting-line theory is applicable to problems with asymmetrical spanwise loading. Sym- 
metrical and antisymmetrical parts are conveniently separated so that ,  when antisymmetrical 
ailerons are considered, an independent calculation is required. The treatment resembles that  
in the symmetrical case (Ref. 12, section VII) ; and the same modified two-dimensional lift slope 
(1/f l)al  COS A '  should be used. 

5.2. Practical Correlation.---When allowing for a change of Reynolds number or Mach number, 
some correlation between the measured and calculated coefficients is desirable. The free-stream 
calculations of section 5.1 should be carried out for two extreme values of (1/fl)a~ cos A' 
consistent with the range of boundary-layer transition, Reynolds number and Mach number. 
Some corrections to the lifting-line theory should then be applied. 

* When R. & 1K. 2884 is used, (AC,~) and (ACa) may be evaluated from equations similar to (42). 
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To evaluate the lift slope (al)1.1. for an unswept wing in incompressible flow, the procedure of 
section 5.1 may be bypassed with the aid of the approximate formula (Glauert ; Ref. 19, Chapter 
11) 

A _ A  + 1  + ~  . . . . . . . . .  (43) 
( a l ) 1 , 1 .  t ~  1 . . jTg ' " "  : . . . .  

where T is a function of A/a1, and the taper parameter 

,  ' c ord t" t Co -- root chord = A-co 1 !or Wings of variable taper. 

Since the lifting-line theory makes no allowance for sweepback or the induced curvature of flow 
associated with finite chord, it is necessary to modify (43) to include these effects and com- 
pressibility. Low-speed experiments at the N.P.L. have given values of ~CL/~c~ rather closer 
to (adu. than the predictions of lifting:surface theory have  suggested. For wings of moderate 
aspect ratio the authors recommend the practical formula 

- -  + O. 032 , . . . . . .  (44) ~c~ -- (al)o,~. ---- A + a 

1 
p = cos A ' ,  

t tan A ' =  1 /3A(X+ 1) /~ 

where 

tan A,  

A is the angle of sweepback of the quarter-chord locus, 

.(;), 
where f and g are given approximately in the respective Tables 4A and 4B. 

Thus (al)o.~f. may be evaluated for the two extreme values of (1/J)al cos A'. The conditions of 
test can then be associated with an intermediate value of this parameter, which is assumed to 
be constant along the span of the wing. 

TABLE 4A 

Z f(Z) 

0 1 .25  
O. 025 O. 77 
0 . 0 5  O. 595 
O" 1 O" 40~ 
O" 15 0"29 
0 -2  0"22 
0 -25  O" 18 
0 - 3  0"16 
0 -35  O" 16 
0 - 4  0 . 1 7  
0 -45  O. 195 
0 -5  0 . 2 3  
0 - 6  0"325 
0 - 7  0"455 
0 - 8  0"61 
0 . 9  - -0 .79  s 
1 - 0  1 . 0 0  

TABLE 4B 
Evaluation of T =: f .  g 

0 
• 05 0 . 0 1 9  
• 1 0 . 0 3 1  
• 2 0 .051 
• 3 0 -068  
.4 0 -084  
• 5 O- 100 
• 6 0 -115  
• 7 O- 129 
.8 O. 142 
• 9 0 . 1 5 5  
• 0 O- 168 
• 1- 0 - 1 8 1  
• 2 O- 193 
• 3 0 -204  
• 4 0 -216  
• 5 O- 227 
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To est imate  the  aerodynamic  coefficients due to deflected controls, consider first a purely  
two-dimensional  ' strip theory  '. For  wings of uniform taper  wi th  a deflected control  of spanwise 
ex ten t  s ~  < y < S~o, 

( C ~ L .  ,1  - ' 

f no C as~ f'~o 
(c,)~.~.-- ~1 1 + z ~1 " 

As in section 5.1, the  factor (1//~) cos A' from (44) is used as an equivalent  two-dimensional  
allowance for sweepback and compressibil i ty.  Thus 

[ c ~ / ( ~  ~ )Is.,. al cos A' ~o 

( 4 5 )  

The corresponding values {CL/(a2/al)~},, and {C,/(a~/al)~}11 from lifting-line theory  m a y  be 
calculated by  means  of Ref. 12. Two ex t r eme  values of t}le modified lift slope (1//~)a, cos A'  
are t aken ;  and the calculat ion outl ined in section 5.1 permits  in terpolat ion for in termedia te  
lift slopes. The best  accuracy is obtained by  l inear in terpolat ion in the  reciprocals, as if 1/C~ 
and 1/Cz were linear funct ions of #/al cos A'. 

The induced lift and induced rolling momen t  are given by  the differences 

- -  { ( C L ) s . t . -  (CL)I1 } and --  {(Cz)s.t.- (Cz)~.l.} • 

In  the  special case of a uniform incidence wi th  neut ra l  control  se t t ing the induced lift so obtained 
b y  lifting-line theory  requires the  pract ical  correction factor 

1 
a l cos A' - -  (al)~f,. 

2 i =  1 
al cos A' --  (al),.,. 

(46) 

= 1 - } - 0 " 0 3 2 1 / f l { 1 - + - ~ r (  l a  + 1 - / ~  
)}_1 

P + 0"032p 3/~ , 

when the values of (al)1.,. and (al)eff. are subs t i tu ted  from equat ions (43) and (44). As a pract ical  
measure it is sufficient to use Z~ = 1.07. A similar process will es t imate  the  coefficients (Cc)e~. 
and (Cz)off. due to deflected controls. The principles of l ift ing-surface theory  suggest t ha t  the  
value (,~ --  1) should be reduced as the  control  chord decreases. The centre of pressure moves 
fur ther  aft  and induced effects become smaller. (Z~ -- 1) is therefore replaced by  

t , ,  = ( z ~  - 1 ) ( 2  - 4 l , ) ,  

where l~ is given in Table 1 (section 4.2). ff~ decreases from about  0" 07 to zero as the  chord ratio 
E changes from 1 to 0. Equa t ion  (46) m a y  be rewri t ten  as 

1 A " - -  ] .  (~,),.,.- ( ~ , ) ° , .  = ( ~ ,  - 1)  ;~ ~, cos (~,),.~. 

The corresponding equat ion for the rolling momen t  from deflected controls is 

(C,),.,.- ( C , ) o , ~ .  = ff~{(C+.~.---(C,),.,.}. 
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Therefore 

(OC,) a, - -  .. .. (47) -.= - ,.,.- a2 - a 2  , 

[ \ ~1  / s . t .  ~ ~1  1.1. 

where ff~ = ( ; h -  1)(2 -- 4l~) 
and (Cz),.,. and (C~)~.,. correspond to a low-speed lift slope a~ = (a,)t~t consistent with (44). If 
required, (~ CL/~ ~)off. may be estimated similarly. 

By equating (~C~/8~)~ff. and the Corrected experimental derivative (OCz/8~)to,~, (47) will 
determine a mean value (a2/adto~ for a particular control surface and Mach number. Ref. 11 
shows that,  in incompressible flow, a2/a~ is a well-defined function of E for any given value of 
at/(a~)r. I t  should be verified tha t  consistent values (a~)to,~ and (a~/al)t~t satisfy the measured 
quantities. On swept wings with ailerons, however, the thicker boundary layers towards the 
wing tips may be expected to cause a rather  lower value of (a~)~,. (a~)~e~t and (a~),~ are essentially 
low-speed values and should not vary  much with subcritical Mach number. Having related the 
data  from the wind tunnel to these incompressible two-dimensional quantities (a~)to~ and (a2)~o,~, 
the corrections to full-scale flight involve the following simple operations : 

(a) Determine (al)~g,,t from (a~)to~t by means of Fig. 14 of Ref. 11. 

(b).Use (al)~ig~toevaluate { C,/(~d: ~ )},.~.fr°m (45)" 

(e) Use (a,)mh, to determine { C, / (a -~ ) }  whose reciprocal is practicallylinear between the 
a 1 1.1. 

the two extreme values of ~/a~ cos A' (section 5.1). 

(d) Determine (a,)~g~t from (a~)to,t by using Fig. 18 of Ref. l l , :which  relates a2 to a~. If 
Fig. 18 gives an inconsistent value of (a~)to~, the corresponding (a~)m~t should be found 
by repeating operation (a) for a fictitious trailing-edge angle and should then be used 
to evaluate (a2)m~ from Fig. 18. 

(e) Evaluate (aCz/a~)~, from (47). When the lateral derivative is required from control 

t e s t s o n a h a l f - m o d e l , ~ C , / ( ~ ) t  should be determined in both symmetrical and 
f 1 #  % ~  

I l X a l  / J  i . i .  

antisymmetrical cases. To correlate with experiment, the symmetrical value is 
required in (47). To predict (aC,/aQm~t, operation (c) demands the antisymmetrical 

6. Effect of Reynolds Number.--The wind-tunnel results after correction for wall interference 
require modification before they can be applied to the full-scale conditions. It  is mentioned 
in section 4.6 tha t  the accurate determination of tunnel corrections involves calculations of 
spanwise loading (section 5.1). These calculations should use values of al corresponding to 
widely different conditions in the boundary layer. By choosing the mean value of al appropriate 
to the higher Reynolds numbers of flight, linear interpolation will give the required distribution 
of lift in flight. Section 5.2 describes a practical procedure, which correlates any corrected 
experimental derivative ~C~/~ with certain two-dimensional values of al and a~. When appro- 
priate changes in these values have been estimated from two-dimensional charts, the inverse 
procedure will predict tile required rolling derivative in full-scale flight. 

But  since corrections will normally be applied by the methods recommended in sections 4.4 
and 4.5, these free-stream calculations may be avoided except when the scale effect on roiling 
power of ailerons is required and when changes of Mach number are to be considered. 
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Estimations of the two-dimensional coefficients for the wing sections should be made. Reynolds 
number effects and changes in transition from model experiment to flight are represented by 
changes in a: ; corresponding changes in a~, b~, b~ (Ref. 11) and m:, m~ (Ref. 15) may be deduced 
satisfactorily from the values of ad(a~) r. The following process expresses scale effect in a form 

t h a t  is equally applicable to two-dimensional and three-dimensional tests. 

6.1. Scale Effect on I~cidence Derivatives.--It  will be assumed that  the variation of al along 
the span of a finite wing is not very large, so that  a mean value consistent with the tunnel 
measurements may be used. For incompressible flow the writers recommend the approximate 
practical formula from section 5.2" 

~CL {1 I + T  }-1 
Oc~ -- (a:)off. = A } -1- ~ -[- 0.032~/p . . . . . . .  (44) 

where 
1 

= ~ al COS A ' ,  

{ t a n A ' =  1 A ( 2 + I ) t a n A ,  

3, determined by lifting-line theory, is given approximately by the product of f(2) and g(1/p) 
in Tables 4A and 4B, and the third term in the bracket represents the effect of induced aero- 
dynamic camber (Ref. 5). 

As a consequence of (44), sweepback (A) has a considerable influence on the effect of Reynolds 
number, represented by a change in the two-dimensional az. The ratio of the estimated a: in 
flight to its value under the conditions of test is denoted by 

(a+os  " 

Then if (OCL/Oo~)~o~ is the experimental derivative, corrected for interference, the corresponding 
full-scale value is 

(~C~ ~C~'~ 
-g~-~ ),igOr = e: ( - ~  Ao~t • 2A . . . . . . . . . . . . .  (48) 

where 

in which 

1 + 0.3183(1 + ,)p + 0.032/W ~ 
• ~A = 1 + 0.3183(1 + :)q + O.032qW~ 

c o s  A ' 
A (a:)tost 

. . . . . . . . . . . .  (49) 
COS A ' 

q - -  A (al)flight 

With zero flap setting scale effect changes the distribution of lift in an approximately uniform 
ratio, so tha t  the same factor cq,~A may generally be applied to the rolling moment on one-half 
of the wing in (40), i.e., 

h h 

To correct OC~/O~ for Reynolds number, a mean value of b: must be determined at each Reynolds 
number, since a considerable spanwise variation may be expected. Take 

;o /;;: 
bl = b:c:2 dy @ dy ,  

Yl 

where y :  < y < Y0 is the spanwise extent and cf the chord of the control. 
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Remembering tha t  the last term in (44) represents the effect of aerodynamic camber, and tha t  
it is on this account tha t  there is any difference between the scale effect on lift and the scale 
effect on hinge moment, it is reasonable to correct the experimental derivative (OC~I/OC~)~o~ to give 



Since 

ik follows that  

4 

where *.1 and 1A are defined in (48) 

4s  
and the taper parameter Z -- 

ACo 

4 

2(1 -¢- 2) \ ~c~/t ,st/1 (]~) test 

= cl for uniformly tapered wings. 
Co 

6.2. Scale Effect at Small Lifts.--Associated with these changes in the incidence derivatives 
there will be scale effects on the coefficients Cu 0, C,, o, defined by 

~CH 
CH = + - 

. . . . . . . .  ( 5 5 )  

c, , ,  = C , . o  + - 

Now lift on the wing at zero incidence is at tr ibuted to curvature in the centre-line and possibly 
to asymmetry in the boundary-layer transitions. Lift due to a cambered centre-line may be taken 
to be proportional to 8CL/~o¢, so tha t  there should be no pure scale effect on ~0. There may 
well be, however, discrepancies between wind-tunnel and flight tests due to changes in transition. 
Although the variation in the derivatives with mean position of transition is understood fairly 
well, the effect of asymmetry on the two surfaces is very sensitive to trailing-edge shape and 
cannot be predicted quantitatively.  In this field ad hoc control testing is indispensable, and the 
authors wish to emphasize the need for independent changes in the location of transition and 
its systematic measurement on both wing surfaces (see section 3). Systematic experiments of 
this kind on the model would provide data to show the variations in CL, C,, and C~ with x, the 
distance ill terms of the chord between the positions of transition on the upper and lower surfaces 
(positive when the upper surface transition is forward of the lower). These tests must be done 
at very low CL, say at zero incidence, in order to be able to cover a sufficient range of transition 
movement. ]Evidence tha t  there is no noticeable scale effect on tile variation of the coefficients 
with the asymmetry  of transition is given by Figs. 4 and 5. These figures are taken from the 
observations on the section 1541a in two-dimensional flow (Ref. 11) made in the R.A.E. No. 2, 
1 !½-ft by  8}-ft Wind Tunnel;  the tests were done at three speeds, and within the limits of 
experimental error the observations lie on straight lines for both CL and C~. Figs. 4 and 5 give 
the values 

CL ~ Cu 
x - - 0 " 0 6 '  ~x - -  0 . 0 2 5 .  

These values correspond to a trailing-edge angle of about 20 deg. Tests on the 1541 series, in 
which the trailing-edge angle was varied from 0 deg to 20 deg (Ref. 11), indicate that  the values 
decrease rapidly with decreasing trailing-edge angle. The lift arising from asymmetry of 
transition acts at 0.35c, whatever the shape of the after half of the section, the front half 
having been unchanged for the series of aerofoils ; this might be a result of general application 
to all profiles. 
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If the recommended experiments are carried out, the change of no- l i l t ang le  due to any 
estimated difference in the extent of the asymmetry in transition, model and full-scale, can be 
found from the equation 

The scale effect on the derivative OCL/a~ is calculated in the way described in section 6.1. 

When the model has cambered sections it is necessary to make additional corrections to CH o 
and C,, 0, associated with the changes in the two-dimensional derivatives. Since from (15) there 
is no scale effect on b'/b~, and aspect ratio effect is unlikely to be important  at low lift, it is suggested 
tha t  the scale effect on CH 0 is the same as for the mean two-dimensional derivative b~. From 
(14) there is no scale effect on m'/a~ and it is suggested that  the scale effect on C,,,o is the same as 
for the two-dimensional derivative a~. Thus, together with an incremental scale effect due to 
a change in asymmetry of transition x, 

OCH 
(CH o)flight = ~l(CHo)test -~ ~ {(X)fllght- (X)test } 

, • . . . . .  ( 5 7 )  

(Cmo)flight : °~l(C,,o)test -q- ~ {(X)flight--- (X)test} 

where c~ and /~, are defined in (48) and (51), and the derivatives ~C~/Sx and ~C,,,/Sx are obtained 
from special tests. 

From (55) the corrections to the experimentally estimated free-stream CH and C,, at small lift 
are therefore given by 

(C,,,)flight = (Cm0)l]ight .~_ (~C,/,/~0~)13ight{i ~ --(0~0)f l ight } , . .  . .  ( 58 )  

where (~o)m~t is given in (56), (3C,~/8m)~ght in (54), and (C, o)maht and (C,,,o)n~ght in (57). 

6.8. Scale Effect on Derivatives of Flalb Angle.--The effect of aspect ratio on the derivative 
~CH/~$ for a three-dimensional model is mainly due to aerodynamic camber, and in the present 
state of knowledge is somewhat uncertain. The following procedure is therefore suggested for 
the purpose of corrections to flight conditions. 

To account for the spanwise variation in G, it is often necessary to evaluate a mean value 

5~ 
and to determine 

b~ (associated with (a~)~g~) (Ref. 11). 
/~ -- ~2 (associated with (a~)~o~t) 

Then it is probably sufficient to take 
( cq 

( - ~ -  ,/flight = /~2 ~,-~--Jtest  " Y~d, • . . . . . . . . . . .  (59)  

where ZA is defined in (48). Indeed the calculations of Ref. 17 for an unswept wing show this to 
be in remarkable agreement theoretically. 

The procedure of section 5.2 may be applied to the derivative OCdO G when the necessary 
calculations by  section 5.1 have been carried out. Otherwise the theoretical result, that  changes 
in oCdO~ and OCL/~:~ with aspect ratio are roughly proportional, indicates the simple scale effect 

f 
k . . . . . . . . . . . . .  (60) 

where 
a~.(associated wi th (a,)~t)(ReL 1i) . .  

~ = a~ (associated wi th (a~),o~,) 
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"fEe pitching moment, defined about the mean elliptic quarter-chord axis is best treated in 
a way similar to aC,,]ac~ in (54). Thus 

= - 

4 
• " 1 - -  ~ (1 - -  z) ~CL~ (~]//~2/a2)flight ~ ('g2/a2) test "] (61) 

+ 2(1 + z) "" 

where the derivatives m~ corresponding to (a~),~g~/(a~)~ and (a:)~o~J(a:)r may be estimated from 
Ref. 15 for a given value of E = cs/c, and the taper parameter 2 is defined in (43). 

To deal with the rolling power of ailerons, it is best to carry through lifting-line calculations 
modified according to section 5.2 for the three cases" 

I. Symmetrical loading (ailerons deflected in the same sense) using (a:)~t, 
II. Antisymmetrical loading (equal and opposite deflections) using (a:)~o~, 

III .  Antisymmetrical loading using (a:)~ig:~t, 
and in each case to compute aCr./a~ for one half of the wing from (40) and (47). Then the factor 



to make a quanti tat ive study beyond an incidence a little below the stall. Any further 
investigation would require a drastic increase in the Reynolds number of test, unless it were 
found possible to delay the stall on the model by  some experimental control of the boundary 
layer. 

In the absence of complications arising from gaps or from local features which can cause 
premature separations or breakaway of flow on the model, it seems reasonable to suggest tha t  
the considerations of this paper should apply without much modification to the higher incidences 
of test until  turbulent separation at the rear of the aerofoil is marked, say at 4 deg or 5 deg below 
stalling. The equation (58) will still be valid if the derivatives and C~o are appropriate to the 
boundary-layer conditions of transition and rear turbulent separation observed on the model 
at the given incidence ~. The measured no-lift angle, actually giving zero lift in the tunnel, 
normally corresponds to symmetrical transition points ; but  (CCo)tost for substitution in (55) may be 
deduced by using the derivative aCL/Ox (section 6.2), and the value of x for the incidence ~ of 
test. Then the test and flight values of CL/(cc -- ~0) can replace (~CL/~cc)tost and (OCL/Ooc)m~t in 
(48), which will still apply. The ratio cq is not sensitive to mean transition position and can 
therefore be roughly estimated from the generalised charts (Ref. 11). The presence of turbulent 
separation, unless very different on the model from the full scale, should not materially affect 
the ratio ~1. By assuming also that  JlA is not changed appreciably by turbulent separations close 
to the trailing edge, it follows tha t  (48) will give the required (8CL/sCC)~h~. Hence 

= 

where (cc0),~h, is given in (56). 

To be consistent with (c¢0)t..~t, the test values of Cu0 and CLo should next be corrected from 
symmetric to asymmetric transitions as in section 6.2. The test values of 8CH/8c,. and ~C,,,/8oc then 
follow from (55), and can be corrected to full scale by  the procedure of section 6.1. For high 
incidences (~o),o~t needs no further correction for transition changes between model and full scale, 
but  Cn o and C,,~ 0 may need correction for scale effect on account of camber of the section. 
The final values of C,, and C, can then be found for the full-scale Reynolds number from (58). 

With the same limitation tha t  separation must not occur far from the trailing edge , the 
derivatives due to flap setting may be treated as in section 6.3. 

In tile presence of turbulent separation in any marked degree, there is not as yet  any satisfactory 
procedure for estimating scale effects on hinge and pitching moments. The foregoing discussion 
is intended to deal with scale effects on smooth-surfaced models representing the basic features 
of the design. At high incidences in particular it may be argued that  the effects of gaps and of 
nose balance outweigh in importance any likely effect of Reynolds number on the behaviour of 
the basic unbalanced sealed flaps. Scale effects on the flow through gaps and on the balance of 
the flaps can only be assessed from systematic researches, from collected data or from experience. 
If a watch is kept on the model for unusual features of flow, and for positions of boundary-layer 
transitions and separations, it should be possible to arrive at a reliable opinion regarding the 
applicability of the model results to full-scale conditions. 

7. Summary of Procedure.---(i) In the first place it is urged that  to obtain useful information 
on control surfaces from experiments conducted in a wind tunnel, considerable care must be 
taken both with the construction of the model and with the conditions of test (section 2). 
Systematic measurements and changes in the locations of boundary-layer transition are strongly 
advised (section 3). The minimum diameter d of a wire to ensure final transition may be estimated 
from the formula 

and the accompanying Fig. 1, in which (Vdlv)m~n is plotted against V~lv (section 3.1). 

(ii) the first correction to be applied to wind-tunnel tests is an increment to the undisturbed 
wind speed (measured upstream of the model) to take account of the tunnel blockage of the 
model and its wake (section 4.1). 
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(iii) Associated with the lift on the model there is a tunnel  interference correction to incidence 
(sections 4.4, 4.5 and 4.6). 

(iv) Associated with the lift on the  model  there is similarly an induced curvature  of flow, 
which together  with any residual incidence is expressed as a correction to each required force 
or momen t  (sections 4.4, 4.5 and 4.6). 

(v) After correction for wall interference the  wind- tunnel  results are modified to provide 
est imates of full-scale flight under  the  condit ions of t ransi t ion prede termined  for the  tests (section 
3). F rom ratio corrections to the  derivatives of the  required forces and moments  and modifications 
to their  values of zero lift, aerodynamic characteristics of the  wing at  incidence with and wi thout  
deflections of the control may  be predicted (sections 6.1, 6.2 and 6.3). 

7.1. Collected Formulae (or Correcting Two-dimensional  Tests.--- 

Blockage Correction • 
(,J V) 0 .62 A' C. c I 

v 5~ h ~ T 4fi~ ~. 

M a i n  Correction to Incidence • 

(Am) - - 4 ; 5  h {(Q)I(1 - -  2i,) + (C,.)2(1 -- 2l=)), 

where theoret ical  values of l~ are given in Table 1. 

M a i n  Corrections 1o Measured Coefficients CL', C,,', CH' " 

Scale Effect • 

where 

(ACr) - -  1925 Cz.', 

- 1925 cL', 

(c) 
( , J G ) -  1925 h eL', 

a t 7q4 t a l  C L  t 

4= - - ~  (al)T (al)'(o:' - -  ~.') + (a. , ) ' ,  

--  is given in Table 2. 

The derivatives aCL/O~, OC~/a~, 3CL/a~, aCH/O~ are modified by the  respectiv e factors ~1, /31, 
¢z2, G, where 

(al)flight 51 (hi)flight etc. (Ref. 11) 
ix I --  (al)test ' ---(hi)test ' 

Derivat ives of pi tching m o m e n t  are modified similarly (Ref. 15). 

There is probably no scale effect on c~0 other  t han  tha t  arising from changes in transit ion. 
For any given positions of boundary- layer  t ransi t ion the  coefficients C,,, o, C~ o are modified by 
the  respective factors ~,  51, viz., 

(C,,, o)~ig~ == cq(C,,, o) t,,~t, (about quarter-chord) 

(CH0)flight--" 51(CH0)test. 
51 may  vary  wi th  e owing to changes in transition. Otherwise the  curves of Cn against  ~ would 
need a constant  correction factor for scale effect. 
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7.2. Collected Approximate Formulae for Correcting Three-Dimensio~al Tests in a Closed Turn, e l . -  

Blockage Correction • 

(A V) 0.62 V'  C, S (wing) 

0i65 V' C~ S 
- -  Ch + -4~ 0 (complete aircraft) 

Main  Correction to Incide~.zce • 

<+++>+,+, - [;i <I)'}  =. ( I )  
1 1 3  co y t 

ft-~ .Io~-t td,(y,t)} { (a _. l)~- q7 7a tan Aa/~---]~tan. A~ }N/{1 -- (~)2.} d (~) l  

4Koyo }co + y tan A a / ~  - -  l o c o  - -  Y o  tan Ao } 
+ CV do(Y,Yo) + fih c~l()"Y°) 

4Klyl  { ~Co 4- y tan A=/~-- O'3co -- y l  tan Ai } 
C V  Fo(y,Yl) 4- file ~l(y,yl) 

4Ko tan Ao(~'o 4K1 tan A1/':* 
-k - C-12TA .... )o tO,(y,t) dr- -  C,~fiTi .o td,(y,t) dt J 

where the parameters G(y,t), dl(y,t) are defined in (17) (see Appendix II) and should be available 
for any particular tunnel, l is given by (21) and is approximately I1 ~ }, 

K o y o -  K 1 7 1 -  1VS(Cz)2 

- -  K ~ = sVS(Cz)2 {contribution to C~' due to ~}" Koyo 2 lyl 

tan Aa/4, tan Ao, tan A, are obtained from 

tan Aa = t anA --  9 (1 -- 1)(l--  }) s 
by substituting I -- ~, 10 (equation (27)), 0.3 respectively. 

(A a)a/~ varies (withy) along the span and a process of averaging gives the correction to be applied 
to the measured incidence 

(A~) = 0.6 (elliptic mean) + 0.4 (chord mean) 

Without flaps, 
SCL' 

whe<e a is given in Fig. 2 (square tunnel) and Fig. 3 (duplex tunnel), in which the abscissa 
(o q- 1.5/A) may be generalised as [o. + (3/A/~)(a _ l)l. 
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Residual Corrections to Measured Coefficients.--These correspond to the removal of a residual 
local incidence (A cd3/: -- (A c~) and a local camber 

(Ay)---- 2u----(" Z~fo~t  {ta:(y't)} 1 - -  ~ J d  - + 2 C V "  Z~,a ' (Y 'Yo) - -2CV " n% a m ' > ) '  

which varies (with y) along the span. 

(A C~) = O, 

a~ o {(a~)~/, - -  d~}.cy~/(s ~ - - j )  dy o~.,V'< ' -- y") dy , 

j-'-~)' d~/ 
(AC,,.) = - -  A tar, A ( . J C , ) -  , <  cos A o(.?. ( ~ ' )  ?' 

(zl C . )  - ~ --,:~ ( ~ ) ~ / ~ -  ( ~ )  - 2(~r) + ~ (a t )  c ? V ( s ~ - S )  d/ , e % / ( s ~ - - y  ~) dy, 

where b'/b~ is given in Table 2. 

Scale Effect" 

ac,-~ = (aci'~ 
(~-~/ttight CQ \~-(X/test" )~A 

where 

with 

( ~CH'~ " 

(:c,,,.'~ 

( ~Cu'~ 

4 

(]g)test \-~-(Z .,'tes, -t- 2(1 + Z) k-gT/te,t { 1 

- . . i  
1 + 0.3183(1 + ,)p + 0.032p~/~ 

~"A = 1 +  0"3!"-83(1 + z)q + 0"032q a/2 

: b' pa/2 
1 + 0.3183(1 + ,)15 + 0.016~, 

~'B -~:  b 
! 

1 q- 0-3183(1 q- :)q + 0.016T1qa/2 

COS A, cos M, 

tan A' =: { 1 
0s} 

A(Z+ 1) t a n A .  

C,,, is the coefficient of pitching moment about the mean elliptic quarter-chord axis. 

h is determined from Ref. 15, Fig. 65 for the appropriate values of a:/(a:)r. 
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At small lifts, 
aCH 

where 

(C,,,)~,~<- a~ 

acuax (x),,i~h<}. 
- (~0).igh, } , 

With deflected flaps the aerodynamic coefficients are split intct contributions due to c~ and ~. 
The latter contributions are corrected as follows : 

( . 

-~/~i~< = t32 \-g~-/~o~< " ;tA 

] 1 

- (~2/<~2)<o,< \ ~  I<o,< 

+ 

4 
1 - -  ~ (1 -- ~) (aCL'~ (m2/a,), i ,~- (m2/a2),,~ d 

2(1 + t) \-~-/,~.~t }E{m--~la2),o,-~t J 

where m2 may be estimated from Ref. 15, Figs. 65 and 67, for the appropriate values of ax/(al)T 
(interpolating or extrapolating for the required value of E). I t  shou!d be noted that, in the 
notation of Ref. 15, 

~/~2 7441 T]4 ]4¢, a ~ - a ,  a 2 - ( l _ k ) T a ~ .  

(aC~/a~)tost requires two corrections, firstly from the symmetrical loading on the half-model to 
the practical condition of antisymmetrical ailerons at the Reynolds number of test, and secondly 
a scale effect. (oC~/a~)~ght should be estimated from a special computation by the procedure of 
section 5.2, which includes the effect of compressibility. 
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A'  

a t 

b 

b~, b~ 

b~, 5~ 

b' 

C 

Cv 

C~, C~' 

CL, Ci.' 

Cz, G' 
G,G~' 

C~o, G,o 
(cD,, (cD  

6 

Co, Cl 

C I 

ei 
d 

E 

e f f .  

f,g 
h 

K, K0, K1 
L 

8. NOTATION 

Aspect ratio 

Cross-sectional area of wing 

Free-stream, measured, two-dimensional oCd~c¢. 
Free-stream, measured, two-dimensional OCL/~ 
Free-stream two-dimensional OCL/~7 
Breadth of tunnel (along span of model) 

Two-dimensional ~ C,/~c¢, spanwise average 

Two-dimensional OC~/O ~, spanwise average 

Two-dimensional OC~/O~, 
'Cross-sectional area of working-section of tunnel 

*Profile drag force/(½pV2S) 
Free-stream, measured, hinge moment/(½p V2Ss@ 

*Free-stream, measured, L/(½pV2S) 

*Free-stream, measured, .£~/(½p V2S. 2s) 

*Free-stream, measured, ~,/¢(½pV2S~) 

Valueg of C~, C,, at zero lift 

Contributions to CL' due to ~, 

Chord of wing, measured in direction of wind 

Value of c at root, tip of wing 

Mean chord (-= S/2s) 
Chord of flap measured downstream from hinge 

Mean chord of flap S/(yo -- 3',) 

Diameter of transition wire 

Flap chord ratio (c/c) 
Suffix denoting value for the three-dimensional wing 

Parameters defined in equation (44) 

Height of tunnel (at right-angles to span of model) 

Corresponding two-dimensional aerodynamic centres (Ref. 15, Fig. 65) 
i 

Strengths of horse-shoe vortices (section 4.5) 

Aerodynamic lift force 

* If  measurements are made on a half-wing, the coefficients C~, C~', G ' ,  C~' should of course be determined by  replacing 
S by  ½S, e.g., 

G '  - Measured ~ on tile half-wing 
½pV2.½S.2s 

where ½S is the surface area of the half-wing. 
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~x 
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~o~ O~o t 
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NOTATIONmcontinued 

Aerodynamic rolling moment 

Centre of pressure of wing section (fraction of chord from leading edge)  

Value of I defined in section 4.5, equation (27) 

l due to c~, ~ (12 given in Table 1) 

Suffix denoting lifting-line theory 

Mach number 

Aerodynamic pitching moment (about axis through mean elliptic quarter- 
chord point, unless otherwise stated) 

Two-dimensional OC,,,/O~, ~C,,,/~ ~, ~C,,~/~ 

Parameter  occurring in lifting-line theory---usually m =; 15 

Vaiues of al cos A '/~A corresponding to test, flight conditions 

Reynolds number (Vc/v) 

Surface area of wing 

Surface area of flap (or aileron) 

Semi-span of wing or span of half-model 

Suffix denoting two-dimensional strip theory 

Suffix denoting theoreticai value 

Thickness of wing (section 4.1) 

Spanwise co-ordinate measured from wing root denoting semi-span of 
horse-shoe vortex 

Undisturbed velocity of free stream 

• Volume occupied by model 

Upward component of velocity induced by tunnel interference 

Chordwise distance (from leading edge of root section) 

Value of x at centre of pressure of half-wing 

Local position of lifting-line corresponding to equation (19) 

Distance of transition wire from leading edge (section 8.1) 

Distance from wing root measured along span 

Spanwise extent of aileron 

Value of y at centre of pressure of half-wing 

Incidence of wing in free stream 

Measured incidence of wing 

Free-stream, measured, value of c~ at zero lift 

Local incidence at three-quarter chord due eo tunnel, interference 

~/(1 -- M~), compressibility factor 
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~1,  ~2 

F 

A 

~o(y,t), ~l(y,t) 

rl, r/o, rh 

0 

01, 02 

A 

A'  

Al (Ao, A1, A~/~) 

2 

2 

2A, ~ 

P 

p 

p 
Cl 

7; 

x 

NOTATION--con t inued  

Circulation round wing 

Camber defined in Ref. 2, equation (13.01) 

Prefix denoting increment to a quanti ty due to tunnel interference 

Thickness of boundary layer (section 3.1) 

Interference parameter (equation (24)) 

Parameters representing w at y due to K of semi-span t (equation (17)) 

y/s, yo/s, y~/s" spanwise parameters 

Parameter of chordwise distance ( =  cos -1 (1 -- 2x/c)) 

Value of 0 at hinge-line, nose of flap 

Angle of sweepback of quarter-chord line 

Equivalent angle of sweepback (equation (44)) 

Angle of sweepback at /-chord (l = lo, O. 3, ~) 

cl/Co or (4s/Aco -- 1), taper parameter 

Nose balance as fraction of flap chord (section 4.2) 

Parameters used in correction for Reynolds number (section 6.1) 

Parameters used in computing lift and rolling moment (section 5.2/ 

Kinematic viscosity 

Suffix used in lifting-line theory (section 5.1) 

Angle of deflection of flap 

Density of fluid 

s/b 
Parameter in approximate formula (43) 

Spanwise parameter (defined by y = s cos ~) 

Ex(upper surface transition) -- x(lower surface transition)7/c 
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t/c = 0.10 ; 

The assumed values 

(a~)r -- 0"78 ; 

9. Calc~tlated Examples.--In conclusion a number of examples have been worked out in 
order to illustrate the orders of magnitude of corrections due to tunnel interference and due to 
scale effect. 

From the approximate formulae, given in section 7.2, the interference in a square tunnel 
has been evaluated for two particular plan-forms over a range of spans. The examples include : 

(a) complete models placed symmetrically, 
(b) half models with aileron mounted on one wall. 

In case (b) the scale effect has also been estimated under certain conditions. 

The calculations have been carried out for wings 4 and 6 (Ref. 27, Fig. 3) of uniform taper,  
defined b y  

A = 4 ;  ~ - -{ - ;  t a n A  = 0 a n d ~ r e s p e c t i v e l y ,  

with an outboard half-span aileron of constant chord ratio, E = 0.2. 

The basic sectional data in Table 5A have been determined from Refs. 11, 15, and 26 for a 
conventional aerofoil with 

trailing-edge angle = 10 deg. 

(a~) n~h~ 0" 90 

correspond to a change of Reynolds number from approximately 

(R)t~st = 2 × 106 to (R),i~,,t = 5 X 107 . . , 

Rough values for the derivatives of test, corrected to free-stream conditions, have been 
estimated from the two-dimensional data by considering approximate lifting-surface theory 
(Table 5B). The following have been used in the evaluation of wind-tunnel interference- 

Corrected Wing 4 Wing 6 
derivative A = 0 deg A -'- 34 deg 

aCL/ac~ 3" 57 3" 23~ 
aCz/a~ 0-757 O. 6865 
aC~x/a~ --0.204 --0.  187 
OCL/a~ 0.628 O-569 

It  has been further assumed that  

2s aCz/af __ 0-62s.  
2 - -  L - -  aCL/a~ 

The quantities (A~), (A C~), (A C,,~) and (A Cz~) have been computed directly from section 7.2 
for various sizes of wing 

= s/b = 0.2, 0"3, 0"4, 
using the values of a0(y,t), al(y,t) from Ref. 27. 

Curves of 

~-~,) and (cC~'~) against ~ 

are shown in Fig. 6 for cases (a) and (b), in which the wing is at incidence but the aileron 
undeflected. I t  should be noted tha t  (AC,,~)/CL' is negligible for ~ < 0.25, but may increase 
rapidly With ~, so that  a correction o f  the order 0.0056 to the aerodynamic centre is likely 
to occur, when ~ =- 0.35. 
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Acum (Ref. 27) has shown that  although the distribution of (Aa)~/4, is greatly influenced 
by sweep, its mean value (A ~) is practically independent of sweep for both square and duplex 
tunnels, when an elliptic distribution of lift is assumed (Ref. 27, Figs. 4 and 5). After the 
correction (A ~/ has been applied to the incidence of test, the residual corrections (A C,,,), (A C~) 
and (A Cu) to the measured coefficients of pitching, rolling and hinge moments, defined in section 
712, are dependent on : 

(i) the spanwise distribution of {(A a)~/~ -- (d ~)} 
(ii) the distribution of induced camber (A),). 

For a given spanwise distribution of lift, it is supposed tha t  the chordwise variation of induced 
upwash is linear. I t  follows tha t  A~, is independent of sweep, although it has a marked effect 
on {(A~)~/a -- (d~)}. Since by the definition of (A~) there is no appreciable residual correction 
(A Cc), (AC,,) is virtually independent of pitching axis, but  nevertheless can vary  a good deal 
with sweep. (AC~) is determined entirely by (i) and though usual ly  not large may change its 
sign for different angles of sweep. (A CH). on the other hand is largely influenced by (ii) since the 
camber derivative b' is large compared with b~ ; the effect of sweep is therefore less marked in 
this case. 

The values of (Ao:)/Cc' and (AC,,~)/CL' have been compared in Fig. 6. For a given Co', (A~) is 
practically the same for both wings, but for the complete wings in the square tunnel there is 
some increase in (AC,,,) with sweep. 

The interference on corresponding half-wings fitted with outboard half-span ailerons of constant 
chord ratio E = 0.2 in a square tunnel has also been computed. The growth of (A~), (AC,~,), 
(d C~) and (~ CH) with model size is shown in Fig. 7, where the influence of change of sweep is 
seen by comparing the dotted and full curves. The measured lift coefficient is split into two 
contributions 

(c h + 
which correspond to a uniform incidence u. and to an aileron deflection 8 respectively. The tunnel 
interference due to (CL), is precisely that  in Fig. 6 for a duplex tunnel and tha t  due to (CL)~ is 
considered separately. 

The values are shown plotted against a in Fig. 7. I t  is found that,  apart  from the main 
correction (A c~) to incidence, the residual corrections to the aerodynamic coefficients are negligible 
for a < 0.25. The rapid numerical increase in these corrections for larger values of a is very 
considerable. Some of the formulae of section 7.2 are then unreliable; and it is emphasised 
tha t  wind-tunnel staff should be prepared to carry out calculations of wall interference by the 
methods of section 4.6 when ~ :> 0.35. 

For a model of span ~ = 0.35, the following values are obtained : - -  
Interference Wing 4 Wing 6 
correction A = 0 deg A ----- 34 deg 

(A ~) per radian e 0.114 0" 104 
(A C,,,) per radian ~ 0- 020 0. 018 
(A Cz) per radian c~ 0. 005 --0.  001 
(A C~) per radian c~ 0- 0055 0. 008 

(Ac~) per radian ~ 0-0156 0.0123 
(A C,3 per radian ~ 0- 0035 0. 0046 
.(ACz) per radian ~ --0.0002 --0.0008 
(A C~) per radian ¢ 0" 0017 0" 0019 

It  is concluded that  the corrections due to (CL), are often determined reasonably well by neglecting 
sweepback. But  when aCL/O~ is large the variation in (Ac,.)/(CL)2 with sweep may become 
appreciable. For large models at incidence the corrections (Au.)/c~, (A C,,)/c~, (A Cz)/~ and (A C~z)/cz 
may all be important  and should always include the effect of induced camber. For all practical 
purposes (A c~)/c~ is decreased by sweep in the ratio of the lift slopes aCL/aa. 
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C a l c u l a t e d  C o r r e c t i o n s  to D e r i v a t i v e s  

T A B L E  5A 

Deriva t ive  
Test  Fl ight  

R = 2  x 10 ° R = 5 X 10 7 Rat io  

~t 1 . .  

~t  2 . .  

81 . . . .  

b~ . . . .  

~ . . . .  

_ _  V f t 2 / a  2 . . 

0.78  

5"293 

2" 392 

--0" 328 

- -0-  597 

0.237 

0.441 

0.90 

6.107 

3.163 

--0.333 

- -0 .733  

0.251 

0.453 

% = 1" 154 

%----1.322 

~ = 1 . 0 1 6  

f i 2 = 1 ' 2 2 8  

1.060 

1. 027 

T A B L E  5B 

= 0 .35  

Deriva t ive  

~ c d ~  . .  

8G/8¢¢ . .  

~ C ~ / ~  . .  

OG/a~ . .  

~ G / ~  . .  

3 C R / 3 ~  . .  

~ c ,  d a ~  . .  

Measured 
R = 2  × 106 

. .  3 .608 

. .  0 .767 

. .  - -0 .215  

.. 0.031 

. .  0.612 

. .  - -0 .344  

. .  - -0 .253  

Test  
R = 2  × 106 

3-235 

0-686 

- -0 -  187 

0.046 

0.569 

- -0 -340  

- -0 .249  

Fl ight  
R = 5  x 107 

3.567 

0.757 

- -0 .179  

- -0 .003  

0.719 

- -0 .399  

--0.327 

Tunnel  
interference 

- -0 .373  

- -0 .081 

+ 0 . 0 2 8  

+0"015  

- -0 .043  

+ 0 . 0 0 4  

+ 0 . 0 0 4  

Scale 
effect 

+0"  332 

+0"  071 

÷O.008 

- -0 -  049 

+ 0 -  150 

--0-059 

- -0 .078  
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For the purpose of illustrating the magnitudes of tunnel interference and scale effect on the 
various aerodynamic derivatives the swept half-wing with aileron (Ref. 27, Wing 6) has been 
taken. The size of model ~ = 0.35 has been selected for Table 5u, where on the basis of the 
given free--stream derivatives of test the corresponding hypothetical measured values (with 
corrections for tunnel blockage but no further interference) have been obtained : 

e . g . ,  

where 

(A~), _0.1155.  

where 

(Am) _ 0.0132.  

In Table 5B, also, the scale effects corresponding to the two-dimensional data have t~een calculated 
in accordance with section 7.2. The derivative aC~/a$ has not been estimated, as the large 
correction from symmetrical loading to the practical condition of antisymmetrical ailerons 
requires a special calculation (section 5.2). 

In practice the changes in the derivatives due to tunnel interference and scale effect should 
not normally exceed the values illustrated in Table 5B, except in the case of scale effect on hinge 
moments, where, because a trailing-edge angle of 10 deg has been assumed, there is little 
variation in bl and b2 with change in al (Ref. 11, Figs. 29 and 31). 

Tunnel interference is never likely to be large for the derivative OCu/a~. 
Apart from aC,,Jac~ the largest percentage correction due to interference will often occur 

for aC~/ac~. 
Scale effect on OC~./a~ (and aC~/a.~) will often be large and scale effect in the case of hinge 

moments will become very important, when the trailing-edge angle is much differentfrom 10 deg. 

I t  is stressed that,  in deducing control derivatives from tests, corrections for scale effect may 
be more important  than corrections for tunnel interference. As a routine both corrections should 
be applied by wind-tunnel staff. 

No. 
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2 

3 
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A. D. Young and H. B. Squire 
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J. S. Thompson . . . .  
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A P P E N D I X  I 

Validity of Elliptic Loading in Sectio# 4.4 

Further calculations are given to test the validity of assuming an elliptic spanwise loading 
when determining the tunnel interference on wings at a uniform incidence or with a deflected 
full-span control. 

At the outset of section 4.4, it has been assumed that an elliptic distribution of lift may be 
used to determine the tunnel interference on a complete wing inclined to the undisturbed stream 
or a symmetrical tail model with a deflected full-span elevator. This assumption was partly. 
based on the evidence given by Glauert in Ref. 2, Fig. 10, where it is shown that uniform loading 
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may be taken if only 10 per cent accuracy is required. This evidence suggests that calculations 
for a square tunnel are likely to reveal any serious deficiencies in the assumption. The interference 
has therefore been computed by the method of Ref. 27 (Acum, 1950) for constant-chord wings 



of 45-deg sweepback, and aspect ratio 4 placed symmetrically ill a dosed tunnel of square section. 
The following extreme spanwise loadings have been taken : 

(0.75 + ~)  ~/(1 -- ~) and (1.25 -- ~) X/(1 -- ~1~), 

where -- 1 ~< r~ -- y/s  ~< 1 denotes the wing span. 

In  Fig. 8 the interference correction to incidence as a percentage of the incidence of test 
100(A~)/a has been plotted against 

wing semi-span 
= tunnel b read th '  

using a measured lift slope aCL/'ao: = 3.25. In the special case ~ = 0.35 the local percentage 
tunnel-induced upwash angle at the three-quarter chord locus of the wing 

100 

has been plotted against y/b. The effect of the extreme variation in spanwise loading is shown 
to be trivial in each case. The variation in (Ao~)/o: with spanwise loading for a given measured 
CL' never exceeds ± 0.1 per cent and the maximum variation in the local (4 ~)a/,/~ is only ~ 0 . 2  
per cent, when ~ = 0.35. I t  is concluded tha t  for the purpose of computing tunnel interference 
(section 4.4), it is accurate enough to assume an elliptic spanwise loading. 

A P P E N D I X  II  

Methods of Comput ing ao and ~ 

The quantities ~o and dl are defined in section 4.4 by equation (17). Given a tunnel of height 
h and sectional area C, the wall interference is equivalent to sets of images of a single horse-shoe 
vortex of strength K, of span -- t  < y < t and with bound vortex position x = x0. At a distance 
y from the centre of the tunnel the images produce an upwash angle eo(y,t) + q(y,t), which is 
represented by the two parameters 

C V  
- 4Kt   o(y,t) 

C V  h 
al(y,t) - -  4 K t  x - -  Xo el(y,t) 

For most purposes 6l(y,t) is taken to be independent of x, so tha t  the upwash angle varies linearly 
along each wing chord. I t  is usual to place a wing in the centre plane of the tunnel (midway 
between the roof and floor in the ease of a horizontal stream), but it may be necessary to consider 
a wing above or below the centre plane. This problem has been examined by Brown ~9 (1938) 
for rectangular tunnels. 
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R e c t a n g u l a r  T u n n e l s . - - I m a g i n e  a uniformly loaded horizontal model of span 2t placed 
symmetrically in the plane z 0 at a distance d above the floor of the tunnel of breadth b and 
height h. Then from Ref. 29, page 3, due to tunnel interference the upwash angle at the bound 
vortex or centre of pressure is 

eo(y,t) - -  4zcV E E 
- - o 3  

b m ~ - y + t  
(bin - -  y + t) ~ + 4 h M  ~ 

bm =:y- . -  t ~} 
- ( b i n  - -  y - -  t) ~ + 4 / ~ q  

- -  ,,=-Z ,=-~E (bin - -  y 4-- tP + 4 (hn  - -  d) ~ -  (bin - -  y - -  t) 2 + 4 (hn  - -  ~1 ' 

,,,here ( ~ } ) '  indicates tha t  ( m , , n ) t a k e s  all possible pairs of integral values except (0,0). Then 

E eo(y,t) - -  + ~ Y2 + c a (  , 

where 

(~ - ~)= + ( ~ f u =  

o~ co 

-- X E m - - ~  
. . . . . . . . . .  ( m  - ~)~ + ~ - ; 

1 +=b 
--~ 9~,. x 

' = - - o o  

coth ~b(m -- ~) 
2h 

s i n h ~ b ( m -  ~) 
h 

cosh :~b(m -- ~) 2=d 
h cos - U  

W h e n  t h e  m o d e l  is in t h e  cen t r e  p lane  a n d  d = ½h, 

~b ~ =b 
O(~) 1 4_ cosech (m -- a) .  

Hence 

h 
ao(y,t) - -  16~t .o 

For a small wing, it follows that  

ao ao(O,O) = a d a  

d~2 1 ~2b~ 
& -- ~ 4- 4 ~  

r _ 2~bcr 
cosech - ~  -+- 

=b~ cos ~ } 

c°sh T--!cos J 

~-L 2 6 2  

~ , t = I  

cosech ~ a b ( m  - -  ~) 
2h 
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Therefore, in the  l imit ing case 

dO =~b = 
d~ - +  4-U 

=2D2 

Thus 

as ~ -÷  0, 

1 --  cos 

I o~ ~ =bin 2 
X /cosech ~ + 

~;t = I L 

=bin 2~d } 
1 --cosh ~ - c o s  -77- 

cosh =bin cos 2=d} ~ -  

ao = ~o(0,0) --  =b I 1 1 
16h - -  @ + 2=d 

• L 1 - c o s  

=bin 2 (1  -- . =bin 2=d'~ ] cos. ~/-  cos~7)  

+,,51 + [ - J 
Therefore, for a small model  in the centre plane, where d ---= ½h, 

~ b r L  oo =bm ~bm] 
c3° - - :  4-~ LI¼ -~- E c o t h - 7 [ -  cosech -~-  j ,  

, ~ =  1 

which is evaluated in Table 3. 

The chordwise increment  in 
from Ref. 29, page 9, whence 

<y,t) - 

I 1 

- - c l o  i 

the  upwash angle from the  rectangular  tunnel  walls is de termined 

where G,,.(y) = 

K ( x - -  Xo) [ { 1 1 } y + t 
4 = V  (X - -  Xo) 2 + 4d  ~ + (y + t) ~ + 4d ~ ((X - -  Xo) ~ + (y + t) ~ -+- 4d~} ~/~ 

1 } y - - t  
4d 2 + ( y - t )  2 + 4 d  2 {(x Xo) ~ + ( y - t ) ~ 4 - 4 d 2 }  ~/2 

- b~ + t) - G o ( y -  b~ -- t)}] ,  

1 1 } 
(x ~o)~+4(h~ d) ~ + y ~ + 4 ( l ~  d) ~ {(x ~o) ~ + y ~ y  . . . .  + 4(hn -- d)~} 1/~ 

1 1 } y 
(x - Xo) ~ + 4 ~ n  ~ + y~ + 4h~n ~ {(x - xo) ~ + y~ 4 4a~,~} 1/~" 

I t  is advisable to de termine  the  upwash correction at  the  tail of a complete model  of an aeroplane 
from this exact form for ~l(y,t). But  as far as tile interference on a single wing is concerned, 
el(y,t) may  be expanded  in odd powers of (x --  x0) and terms of the order (x -- x0) 3 tufty be neglected. 
This is equivalent  to an assumption tha t  the  chordwise upwash gradient  is constant ,  and gives 

" bh2[ ~ l  1 1 1 1 I 
( ~ I ( Y ' ~ )  - -  t6=t _ ½ .~1 l (bin + y t) ~ + (b~a - -  y t)~ - -  (bin + y + t) 2 - -  (bin - -  y + t) 2 

J 

- - 2  E X H ~ . ( y - -  bm + t) - -  H~.(y  - -  b e n - -  t , 
n=l m= -- m 

y(y~ -+: 2h~n ~) 
where for n ~> 1, H,,(y) = h2n2(y~ + h~n~)a/~. 
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The  infini te double  series m a y  be eva lua t ed  by  Brown ' s  ~" process, in which  t he  res idue of t e rms  
in the  double  s u m m a t i o n  for which  e i ther  Ira I >  M or I~1> N is ca lcu la ted  b y  the  s imple 
a p p r o x i m a t i o n s  

--(~+1) [ - -  b~v]~ -~  ~) - -  f-I2(:'~--d/h)(Y - -  b~/~v - -  1) 1.A 

- -  Z H 2 ( ~ _ ~ / ~ , ) ( y  - -  b m  + ½b) - -  H~(,,_~/~,)(y - -  b m  - -  ½b) 

--  b .=_ZN 4(hn --  d) ~ --  Hw'-e/~'/(Y + b M  + ½-b) ; 
and 

Z , , Z  ~o Hw~-~/h)(Y - -  b m +  1) - -  H~l,,_d/~,)(y - - b i n  - -  t) 

2t  -(N+~) 1 

- b 2(h  - d ) "  
Hence 

,, Z ~ H2(,,_,,~) (y - -  bm + 1) - -  H~ , ,_ , , , ) (y  - -  bm - -  t) 
= - -  j ~ j ~ =  - -  c o  

+ b . . . .  N - -  - -  - -  

2t ~ 1 
+ _ 

where 
1 ~ c o s e c  2 (~d/h) 

Z~ 2 (hn  - -  d) ~ -  2h  ~ 

The  four  infini te series in the  first b racke t  of ~l(y,t) are T r i g a m m a  funct ions*,  

g "  1 + = b ~,,~=Ix (bin + y)~" 

T h e n  d~(y,t) m a y  be eva lua t ed  f rom the  fo rmula  

h ~ 

+ Yg~t 2 Z Hw~_a:,, ) (y - -  b m +  t) - -  H~(~_d,,,)(y - -  b m  - -  E) 

- - 2  Z X H~, (y  - -  b m +  t) - -  H2 , (y  - -  bm - -  t) 
n=l m= --M 

]~2 N 

+ 27~ ~ c ° sec~  h g ~  " 

y-t) 
b } 

* Tabulated values of the Trigamma function ~' will be found in Tables of the Higher Mathematical Funetio1,s, Volume 
II by H. T. Davis. The Principal Press Inc., Indiana, U.S.A. 1935. 
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in  the usual case, when the model is in the centre plane, d = ½h and this reduces to the simpler 
expression 

h~ I (  y - - t )  'p ' (1  y + t )  ku,(l + y + t ) _  g~,(1 y - - t ) }  
a l ( y , t ) -  32~bt [ ~" \1  + b + b -- b b 

bh 2 N 

8=t E E (-- 1)" {H,,(y -- ben + t) -- H,,(y -- bm -- t)} 
n = l  m = - - M  

( - 1 )  . . . . . .  

In practice M and N may be taken as small integers, M = 2, N = 2 say, and Oa(y,t) is easily 
evaluated from the approximate formula 

]Ca {}l(y,t)--32~bt{ W ' ( 1 - t - ~ - - t ) - t  - W ' ( 1 - - Y  + t ) _ _  ~ ' ( 1  + y _ @ t )  W ' ( 1 - - Y  t )/ 
bh ~ ~ M 

E E (--I~"rH " t) - - b i n - -  R~v, 
8 2 ~ t  n = l  . . . . .  M ] t .(Y -- ben + -- H.(y  t)} + 

where the small remainder is virtually independent of y and may be calculated as 

1 u 1),~ b(2M + 1){b~(2M + 1) ~ + 8h~n ~} 
R~vzN-- 2-4 -1- ~ ,,=iN (-- n~{b~(2M + 1)~ + 4h~n2}3/... 

For a small wing it follows that  

~1(0'0) -- h~b O I ~ 1 co co 
--16~---t2tot -- 1 (ben+t)  2 - 2  E X 

n = n = l  m =  - oz  

Now 
OH. 2h2n2 __ y2 
~y (y~ + h~n~)~/~ 

(-- 1)'~H,,(ben -I- t) 1 
t =(1 

Hence 

dl(0,0) - -  4 a b  ~ , = 1  en~ 
co 

where 2] 1/m 3 =  1.2020569. 
1 

co co 

Values of $1(0,0) for a small wing 

rectangular tunnel are given in Table 3 of section 4.4. 

placed symmetrically in a 

A more precise method of evaluating ~h(y,t), when the  modeUs in the centre plane, is to trans- 
form the double series 

co co 

z Z ( -  1 ) , *{H. (y  - ben + t) - -  H , , ( y  - ben  - -  t )} 

into a more rapidly convergent series of modified Bessel functions 28 (01vet, 1949). In this form 
dl(y,t) is easily computable to any given accuracy. This method is preferable to the foregoing 
procedure, which has, however, been used satisfactorily. 

Values of ~o(y,t) and $l(y.t) for rectangular tunnels (b/h = 1, 9/7, 2. 18/7) are tabulated in 
Ref. 27 (Acum, t950). 
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Circular T u n n d s . - - F o r  a uniformly loaded Wing of span 2t symmetrically placed along a 
diameter of a tunnel of circular section of radius a, it follows at once from Ref. 2, p. 13, that  

a~tK 
 o(y,t) = 2 v(a4 _ 

Hence 
a 4 

8o(y,t) - -  8(a' -- t~y~) " 

There is no corresponding expression for d~(y,t). But Eisenstadt 25 (1947) has produced an 
exact theory and tabulated values of 

. . 4~a 2 
K t  w(y,t) 

f0r a circular tunnel with a horse-shoe vortex of strength K and span 0 < y < t. Hence 

- { I do(y/) + x Xo 1 4~a ~ w(y,t) + w( - -  y,t) J 
2a dl(y,t) = ]~ K t  } • 

Eisenstadt includes swept bound vortices with - - 4 5  deg < A < 45 deg and gives zo(y,t) for 
several values of (x -- xo). By definition 01(y,t) corresponds to an unswept  bound vortex and 
is determined by the limiting condition as x--+ &. Numerical values of ~0 and 01 are given in 
the following tables • 

TABLE 6 

Values of  do(y,t) and ~l(y,t) for  a Circular Tunne l  

do(y,t ) for t /a  = 
y/a 

0 0"25 O" 45 O" 70 0"90 

0 
0"2 
0"5 
0 '7  
0"9 

0"1250 
0"1250 
0"1250 
0"1250 
0'1250 

0-1250 
0-1253 
0-1270 
0"1289 
0-1317 

0"1250 
0"1260 
0"1317 
0"1388 
0"1495 

0"1250 
0"1275 
0"1425 
0"1645 
0"2073 

0-1250 
0-1292 
0"1567 
0"2073 
0-3635 

61(y,t ) for t /a  = 

y/a 

0 0"25 0" 45 0.70 0.90 

0 
0-2 
0.5 
0.7 
0.9 

0.2500 
0-250 
0.263 
0-278 
0-301 

0.250 
0.253 
0-269 
0.290 
0.32~ 

0.251 
0:258 
0-290 
0-325 
0-40  

0.254 
• 0.264 
0.33 
0 '44 
0.67 

0.258 
0-275" 
0.40 
0.65 
1.7 

For a wing of sheared elliptical plan-form there is a simplification in the approximate method 
of interference correction, when an elliptic distribution of lift may be assumed (section 4.4). 
For this purpose it will be supposed that Ol(y,t) is proportional to Oo(y,t) the ratio being determined 
from Table 6. 
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From equat ions (20) and (24) of section 4.4 

( A (~t~) S C Lt 4' 1 
: - ~ ~ = S 0 ( ~ - ) . ' * / { ~  - ( ~ / ~ ) ' }  ~(~/S), 

where 
• , . , . 

" 4SC~' ~ " . X - - X o  

, . .  . . 

(t/s) ~} d(t /s) ,  (A @~/g - -  - -  

where x(y) and Xo(t) denote  values of x at ~c and lc respectively. Fig. 6 shows tha t  ~ is not  sensitive 
to angle of sweep, and this is chosen so tha t  the  locus of the  lifting line Xo(t) is unswept  and x0 is 
independent  of t. Then  

(~ - ~o) = c ( ~  - z) = c0(~  - z ) ~ / { 1  - ( y / ~ ) ' } .  

On writ ing 3' = s cos ¢, t = s cos ~, 

4SCL' c51 Co 
cos ~p } sin ~ d~p 

4SCL' { ~l C° }f~/~" a~COSe~° d~o 
z C  1 + ~o ~ (~ - -  1) s in ¢ 8(a ~ - -  s ~ cos S ¢ cos S ~o) 

Therefore 

4,eL.{ ,..o }... { o. 
- -  z C  1 - } - ~ 2 a  ( ~ - l )  s i n ¢  l ~ s e c S  ¢ ~ / ( a  ~ - s  ~cos  ~¢) -1}. 

°°r"{ }/ °' / 
- -  1 + ( } - - l )  s i n ¢  s~ --  1 t an  ~ ¢ d ¢  = ~ s ' . o  ~o ~ ~ / ( a  ° - c o s  S ¢) 

°'r'"t ,1.o I °' = --  ~s --a -o tan  ¢ + Uo ffa (~ --  l) sec ¢ sin S ¢ ~/(a ~ _ s ~ cos ~ ¢) 

where* 

and 

, [ { .  } ,.co 
- . ~ k s  2 - E 1  + ~0 f f~  (~  

E ~  = ~ / ( 1  - k S c o s  ~ ¢ )  d e  
J 0  

t 1 1] =-l)  2 - - ~ / ( 1 - - k  S ) - ~ s i n  - l k  , 

]~ --- S~/t~ ~ . 

A chart  in the  form of Figs. 2 and 3 can be obta ined by  subst i tu t ing 

1 = 1  ! 

k ---- 4~, S } ,- 
Co/2a = 8~/~A 

and by  tak ing  the  appropriate  ratio dl/Oo from Table 6. 

Octagonal T u n n e l s . - - T h e  interference on a wing placed symmetr ica l ly  in a tunne l  of octagonal  
section is best  calculated by  a me thod  due to Batchelor,  which is presented in a general form 
in Ref. 8 (1943). The upwash induced by  the  t r iangular  corner fillets is expressed as 

* Tabulated values of the complete elliptic integral E 1 will be found in Tables of the Complete and Incomplete Elliptic 
Integrals by Legendre with an introduction by Karl Pearson. Cambridge University Press, 1934. 

55 



an increment to the larger contribution induced by the basic rectangular tunnel. The derived 
formula expresses do in terms of the mean upwash along the span of a uniformly loaded wing. 
The values of d0(y,t), defined in this report, are given further consideration in Ref. 9 (1947), 
which extends the theory of Ref. 8 to calculate the interference on a half-wing in an octagonal 
tunnel. 

The chordwise variation of upwash is obtained approximately by adding to its value ill the 
basic rectangular tunnel an amount proportional to the corresponding increment to do(y,t) : 

i.e., E~l(y,t)~ octagonal = [d0(y,t)] octagonal 
[dl(y,t)J rectangular [O0(y,t)~ rectangular" 

h b + C  
2hb may be used as a rough approximation to this ratio. 

Should tables of do(y,t) and dl(y,t) be required for wings placed above Or below the centre p l a n e  
of the tunnel, the quantities should first be computed for the basic rectangular tunnel and then 
corrected in the above ratio to account for the corner fillets. 

{1340) Wt. 1819296 I(.S 5/5~'; Hw. 
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