MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

A Generalisation of the Nyquist Stability Criterion with particular reference to Phasing error

By
R.H.Merson, B.A.

U.D.C. No. 621-526:512.831:517.941.4

Technical Note No. G. W. 316
May 1954

ROLA ATRCPAMT ESTABLISHFINT

A generalisation of the Nyquast stability criterion with particular reference to phising error
by
R. H. Merson, B.A.

SUMMARY

The effect of phasing error on the stability of a two-dimensional linear servomechanism is considered and it is shown that the system will be stable if the phase margin at the cut-off frequency exceeds the phasing error.

The more goneral case of a number of identical serros with crosscoupling is investigated and a generalisation of the Nyquist criterion for stability is formulated.
LIST OF CONPENTS
Page
1 Introluction 3
2 Effect of phasing error on stabuity 3
3 Generalusation to a class of multi-element 4servomechanisms
4 The stability polynomial 5
5 The generalised Nyquist criterion 6
Ref'erences 8
IEST OF ITUUSTRATIONS
Figure
The Nyquist criterion in the presence of phasing error 1

Introduction

The general theory of coupled linear servomechanisms is extremely complicated ${ }^{1}$. In the case where the servos controlling eacn element or coordinate are identical, however, rather sinple criteria for stability can be given. An important practical case is that of phasing error in two dimonszons and this will be considered first. A statement of the criterion in this case is given towards the end of section 2 .

Consider, for example, a radar set whose axis is required to follow a moving object. There are two elements to be controlled: namely, the lext-right and up-down positions of the radar axis. If the error signals are resolved along the correct axes and the error compononts are used to control the appropriate motion of the radar axis, then the system cari be regarded as two separate one-dimensionsl servomechanisms. If', however, owang to imperfections in the resolver mechanasm the error signals are resolved along axes displaced from the correct axes, the system can no longer be regarded as two distinct one-dimensional servomechanisms, sunce errors in the position of each element occur as input components to both the control mechanisms.

The above system is an example of the so-called phasing error problem in a two-dimensional system. The effect of this phasing error on the stability of the system will be shown below. A more general system consisting of a number of interacting variables will then be consldered, and a gencralisation of Nyquast's stability criterion will be derived.

2 Effect of phasing error on stability

Let y_{1}, y_{2} be the coordnates of a target point in a plane and x_{1}, x_{2} be the coordinates of the follow-up point. It will be supposed that the follow-up point is mored by two identical Inear servos each acting parallel to one of the axes of coordinates. Normally, the error vector is resolved along the coordinate axes and the error components $y_{1}-x_{1}, y_{2}-x_{2}$ used to drive the appropriate servos. If there is a phasing error α, howevor, the error vector is resolved along a pair of axes obtained from the coordinate axes by rotating them an angle α, with the result that the motion of the system is represonted by the equations

$$
\begin{align*}
& Z(D) \cdot x_{1}=Y(D)\left[\left(y_{1}-x_{1}\right) \cos \alpha+\left(y_{2}-x_{2}\right) \sin \alpha\right] \tag{1}\\
& Z(D) \cdot x_{2}=Y(D)\left[\left(y_{2}-x_{2}\right) \cos \alpha-\left(y_{1}-x_{1}\right) \sin \alpha\right],
\end{align*}
$$

where $Y(D), Z(D)$ are polynomials in $D=d / d t$.
This is a pair of linear simultaneous differential equations in x_{1} and x_{2}. On solving for x_{1} and x_{2}, one obtains

$$
\begin{align*}
& \left(Z^{2}+2 Z Y \cos \alpha+Y^{2}\right) x_{1}=\left(Z Y \cos \alpha+Y^{2}\right) y_{1}+(Z Y \sin \alpha) y_{2} \tag{2}\\
& \left(Z^{2}+2 Z Y \cos \alpha+Y^{2}\right) x_{2}=\left(Z Y \cos \alpha+Y^{2}\right) y_{2}-(Z Y \sin \alpha) y_{1}
\end{align*}
$$

The stability of the system is therefore determined, in the usual way, by the polynomial

$$
G(s)=Z(s)+2 Z(s) \cdot Y(s) \cos \alpha+Y^{2}(s)
$$

For the syster to be stable it is necessary and sufficient that the real parts of all the roots of $G(s)$ should be negatave.

In order to transform this to a useful practical criterion two steps are performed. The first is to factorise $G(s)$ into two factors which gaves an intermediate criterion and the sccond may be compared wh the derivation of the Nyquist criterion.
$G(s)$ is factorised in terms of $Y(s) / Z(s)$, giving
$G(s)=\left[Z(s)+e^{i \alpha} Y(s)\right]\left[Z(s)+e^{-i \alpha} Y(s)\right]$.
Wiriting $Y(s) / Z(s)=F(s)$, the transfer function of the sysuem, the stabilaty criterion takes on the following intermediate form. The system will be stable af and only if the roots of the two equations $E(s)+e^{+1 \alpha}=0$ all lie in the left half of the complex s-plane.

Thus, as s traverses the imaginary axis and the infinite semicircle in the right-hand s-plane, $F(s)+e^{ \pm i \alpha}$ must onclose no zeros for stabllity, i.e. $F(s)$ must not enclose the points $-e^{+1 \alpha}$. But this statoment is precisely the Nyquist criternon 3 with the conjugate points $-e^{+i \alpha}$ replacing the point $-1+i 0$.

Now the points $-e^{+i \alpha}$ lie on the untt curcle about the origin, each subtending, with the rcal axis, an angle α at the origin. It is thus seen that the system will $b c$ stable if and only if $\alpha<\phi_{c}$, where ϕ_{c} is the angle subtended by the point at which $F(j \omega)$ cuts the unit circle. But ϕ_{c} is sumply the phase margan of the system in the absence of phasing error, so that the stability criterion rakes the simple form:

THE SYSTEM WITL BE STABLE IF AND ONLY IF THE PHASING EIRROR IS LESS THAN THE PHASE MHRGIN IN THE ABSENCE OF PHASING ERROR.

The degree of stability is readily assessed, sunce the phase margin is smply $\phi_{c}-\alpha$.

As an example consider the case where

$$
F(s)=k\left(1+s^{\prime} L\right) / s^{2}
$$

As s traverses the imaginary axis (with an indent at the origin) and an infinite circle in the right half s-plane, $F(s)$ traverses the parabola $F(j \omega)=\frac{k}{\omega}(-1-j \omega T)$ and part of an infinite circle to the right (Fig.1). The phase margan ϕ_{c} (in the absence of phasing error) is given by the equation $\sin ^{2} \phi_{c}=\mathrm{kr}^{2} \cos \phi_{c}$ so that, with a phasing error α, the condition for stability is that $\mathrm{kT}^{2}>\sin ^{2} \alpha / \cos \alpha$.

3 Generalisation to a clars of multi-element servomechanisms
The two-dimensional system represented by equations (1) has the following two properties.
(1) The transfer function $F(s)=Y(s) / Z(s)$ is the same for the servos controlling each coordinate.
(2) The input to each servo is a linear function of the error components.

1 system of n elenents possessing the above propertzes is called a uniform. n-dimensional linear servomechanism. It should be noted that the gains of the separate servos need not be identical, since the appropriate factors may be included in the coefficlents of the error components.

The remainder of thas paper is concerned with the deravation of a criterion for the stability of such a system.

4 The stability polynnmial

Let $y_{1}(z=1,2, \ldots, n)$ be the inputs to, $x_{i}(i=1,2, \ldots, n)$ be the outputs from and $F(s)=Y(s) / Z(s)$ be the transfer function of a uniform n-dimensional linear servomechanism. Then the motion of the systen as represented by the n equations

$$
\begin{equation*}
Z(D) \cdot x_{i}=Y(D)\left[\sum_{j=1}^{n} a_{i j}\left(y_{j}-x_{j}\right)\right],(i=1,2, \ldots, n) \tag{2}
\end{equation*}
$$

where the a_{ij} are constants (real or complex).
These equations may be looked unon as a set of n linear simultaneous equations for the x_{1} in teris of the y_{i} and the solution may be written in the form

$$
\begin{equation*}
P_{i}(D) \cdot x_{2}=\sum_{j=1}^{n} Q_{i j} \text { (D) } y_{j} \text {, } \tag{3}
\end{equation*}
$$

where the P_{i} (D) and $Q_{i j}(D)$ are polynomials in D.
In order to determine these polynomials it is convenient to write equations (2) in vector notation.

Let $\overline{\mathrm{x}}$ be the colum vector whose components are $\mathrm{x}_{1}(\mathrm{i}=1, \ldots, n)$, \bar{J} be the columm vector whose components are $y_{i}(i=1, \ldots, n)$ and let A_{i} be the matrix whose i, j-th element is $a_{i j}$. Then equations (2) can be replaced by the single equation

$$
\begin{equation*}
Z(D) \bar{x}=Y(D) \cdot A(\bar{y}-\bar{x}) \tag{4}
\end{equation*}
$$

It is seen that the servo is completely described by its transfer function and by the matrix A which will be called the coupling matrix.

Rearranging equation (4)

$$
\begin{equation*}
[Z(D) \cdot I+Y(D) \cdot A] \bar{x}=Y(D) \cdot A \bar{y} \tag{5}
\end{equation*}
$$

where I is the n-th order unit matrix.

The solution of this equation, in component form, is well-known to be

$$
\begin{equation*}
|\mathbb{M}| x_{i}=Y(D) \sum_{J=1}^{n} \sum_{k=1}^{n} M_{J I} a_{J k} y_{k}, \tag{6}
\end{equation*}
$$

where $M=\left[m_{I, I}\right]$ is the matrix $[Z(D) \cdot I+Y(D) \cdot A]$ and $M_{j i}$ is the co-factor of $m_{j i}$ an $\left|\frac{M_{i}}{}\right|$. For a proof, see, for example, Ref. 4 p. 443 .

In writing equation (6) It .ss tacitly assumed that $|M| \neq 0$; the case $|M|=0$ is trivial.

It follows that the systom will be stable, that is to say, each and all the separate clements are under stable control, if and only if the roots of the polynomial

$$
\begin{equation*}
G(s)=|L(s) I+Y(s) A| \tag{7}
\end{equation*}
$$

lie in the left half of the complex s-plane.

5 The generalised Nyquast criterion

As in the phasing error case, $G(s)$ can be factoriscd and the stability criterion related to the behaviour of the transfer locus of the system.

Frors (7),

$$
\begin{aligned}
G(s) & =\left.Y^{n}(s)\right|_{\left\lvert\, \frac{Z}{Y}(s)\right.} ^{Y(s)} \cdot I+A \mid \\
& =Y^{n}(s) \prod_{z=1}^{n}\left(-\frac{Z(s)}{Y(s)}-\lambda_{i}\right) \\
& =(-1)^{n} \prod_{i=1}^{n}\left(Z(s)+Y(s) \cdot \lambda_{i}\right)
\end{aligned}
$$

where the λ_{i} are the eigenvalues of A, i. e, the roots of the polynomial $|\lambda I-A|=0$.

The stability condition is thus that the roots of $F(s)+\lambda_{i}^{-1}=0$ lie in the left half of the s-plane, for every λ_{i}.

The final step is to transform from a criterion in the s-plane to one in the F-plane. To do this use as made of the pranciple of the argument in analysis.

Let $H(s)$ be a regular function of s within and on a closed contour O save for P poles within the contour, so that if s describes C in the positive sense, $H(s)$ describes a closed contcur I in the Hmplane . Then the thoorem states that af the point s encircles Z zeros and P poles (taking into account any multiplicity of zercs and poles), the point $H(s)$ in the H-plane encircles the origin $N=Z-P$ times in a positive sense.

This theorem will now be applied to the function $H(s)=F(s)+\lambda_{i}^{-1}$.
Sance the map of a contour in the s-plane on to the F-plane oan be obtanned from the corresponding map on the $\mathrm{H}-\mathrm{plane}$ by a shift of the orygin (without axis rotation) to the pount $H=+\lambda_{i}^{-1}$ it follows that the contour C in the smolone, described in a positive sense, will map into a contour l in the $F-p l a n e$ wheh will encircle the point $-\lambda_{i}^{-1}$ in a positive sense $N=Z-P$ times.

The contour C is taken to consist of the magnnary axis from -jo to $+J \infty$ closed by a large semi-circle in the right half plane wath the proviso that poles of $\mathrm{F}(\mathrm{s})$, 1 . e. zeros of $Z(s)$, lying on the maginary axis are detoured by small semi-circles so as to exclude them from the contour.

If the system is stable this contour must have no zeros of $H(s)$ on or within it, i.e. $\mathbb{Z}=0$, so that the contour Γ in the F-plane, which Is called the transfer locus of the servo, must encurcle the point $-\lambda_{i}^{-1}$ exactly $-P$ tames an a positive sense, where P is the number of poles of $H(s)$, l.e. the number of zeros of $Z(s)$, lying in the right half plane.

The generalisation of the Nyquast criterion can now be stated.

theorem

If $F(s)=Y(s) / Z(s)$ is the transfer function and A the coupling matrjx of a unform n-dimensional servomechanism, the servo will be stable if and only if the transfer locus encircles each of the points $-\lambda_{i}^{-1}$ ($1=1,2, \ldots, n$) exactly $-P$ tames in a positive sense, whore P is the number of zeros of $Z(s)$ lying in the right half of the s-plane and the λ_{i} are the elgenvalues of the matrax A.

If the coupling matrix A is composed of real elements then the eigenvalues of A are either real or occur in conjugate pairs and if the transfer function $F(s)$ is a real function of s then the transficr locus is symetrical about the real axis.

Thus, in practice, as in the application of the ordunary Nyquast critemon, it is only necessary to consider the elgenvalues and transfer locus lying on or below the real, axis.

RETERENCES

No.	Authors	Title, etc.
1	M. Golomb and E. Usdin	Mathematical theory of multidimensional servo systems J. Franklin Inst. 253, 29-58 (Jan. 1952)
2	James, Nicholls and Phillips	M.I.T. Handbook No. 25 - Theory of servomechanisms MeGraw Hill, 1947
3	Durell and Robson	Advanced Algebra, Vol.III G. Bell and Sons, Ltd. 1937

FIG. I.

FIG. I. THE NYQUIST CRITERION IN THE PRESENCE OF PHASING ERROR.

Crown copyright reserved
Published by
Her Majesty's Stationery Office
To be purchased from
York House, Kingsway, London w.c 2 423 Oxford Street, London w.i P.O Box 569, London S.E i ${ }_{13}{ }^{\text {A Castle Street, Edinburgh } 2}$ 109 St. Mary Street, Cardiff ${ }_{39}$ King Street, Manchester 2 Tower Lame, Bristol i 2 Edmund Street, Birmingham 3 80 Chuchester Street, Belfast or through any bookseller

