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SUMMARY

The effect of phasing error on the stability of a two-dimensional
linear servomechaniam 1s considered and it is shown that the system will
be stable if ths phase margin at the cut-off frequency cxceeds the
phasing error.

The more goneral case of a number of identical servos with cross-
coupling 1s investigated snd a generalisation of the Nyquist eriterion
for stability 1z formulated.
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1 Introduction

The ganeral theory of coupled linear servomechanisms is extremely
ccnrplic:a.ted1. In the case where the servos controlling eacn slement or
cocrdinate are identical, however, rather zinple criteria for stability
can be given., An important practical case is that of phasing error in two
dimenzaons and this will be considered first., A statement of the criterion
in this case is given towards the end of section 2.

Consider, for example, a radar set whose axis is required to
follow a moving object. There are two elements to be controlled: nemely,
the lerft-right and up-down positions of thc radar axis. If the error
signals are resolved along the correct axes and the error componcnts are
used to control the appropriate motion of the radar axis, then the system
can be regarded as two separate one-dimensionsl servo-mechanisms, If,
however, owing to imperfections in the resolver mechanism the error signals
are resolved salong axes displaced from the correct axes, the system can
no longer be regarded as two distinct one-dimensional servomechanisms,
since errors in the poaition of each element occur as input components
to both the control mechanisms.

The above system is an example of the so-called phasing error problem
in & two-dimensional system. The effect of this phasing error on the
stability of the system will be shown below. A more general system
congigting of a number of interacting variables will then be comnsidered,
and & gencralisation of Nyguist's stability oriterion will be derived.

2 Effect of phasing error on stability

Let y,, ¥, be the coordinates of a target point in a plane =nd
X4, X» be the cGordinates of the follow-up point. It will be supposed
that the follow-up point is moved by two ideatical linear servos each
acting parallel to one of the axes of coordinates. Normally, the error
vector is resolved slong the coordinate axes and the error components
F4=%4» p=X, used %o drive the appropriate servos. If there is a phasing
error a, however, the error vector 1s resolved along a palr of axes
obtained from the coordinate sxes by rotating them an angle a, with the
result that the motion of the system is represanted by the equations

Z(I)).:fc,l Y(I))[(;y‘,t -x,!) cos & + (yz- xz) gin o)

(1)

Z(D).xz Y(D)[(yz—xz) cos a - (y1—x_l) sin a} ,

where Y(D), Z(D) are polyncmials in D = d/dt,
This is a pair of linear simultaneous differential equations 1n
x4 and Xp. On solving for x, and X,, one obtains

(2.'2 + 22Y cos a + Yz)x1 (Z7 cos o + Yz)jr,i + (2Y sin a::c)y2

Il

(2)

(2.2 + 27Y cos o + Yz):rz = (ZY cos « + Yz);;r2 ~ (ZY &in a)y_l

The stability of the system is therefore determined, in the usual
way, by the polynomial

G(s) = 2(s) + 22(s).Y(s) cos a + Xz(s) )
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For the system to be stable it is necessary and sufficient
that the real parts of all the rcots of G(s) should be negative.

In order to transform this to a useful practicel criterion
two steps are performed, The first 18 to factorise G(s) into two
factors which gives an intermediate criterion and the sceond may
be compared wrlh the deraivation of the Nyquist criteraon.

G{s) 1s factorised in terms of Y(s)/4(s), giving
a(s) = [2(s) + i® ¥(s)1[2(s) + gin 1(s)].

Writmng Y(s)/Z(s) = F(s), the tronsfer function of the sysiem,
the stebility criterion takes on the following intermediate fomm.
The system will be stable 1f and only if the roots of the two equations

(s) + X% 2 0 all lie in the left half of the complex s-plane.

Thus, as s traverses the imaginary axis and the infinite semi-

circle in the right-hend s-plane, F(s) + % must cnclese no zeros

for stability, i.e. F{s) must not enclose the points -3, But this

statement is precisely the Nyquist eriterion3 with the conjugate

points -t replacing the point -1 +i0,

Now the points -~ 3138 on the unit cirele sbout the origin,
each subtending, with the rcal axis, an angle a at the origin. It
is thus geen that the system will bc stable if and only if a < ¢c’
where ¢G is the angle subtended by the point at whach F(jw) cuts the
unit caifele. But ¢, is sumply the phase margin of the system in the
sbsence of phasing error, so that the stability criterion wakes the
simple form:

THE SYSTEM WILL BE STABLE IF AND ONLY IF THE PHASING ERROR IS
ILESS THAN THE PHASE MARGIN IN THE ABSENCE OF PHASING ERROR.

The degree of stability 1s readily assessed, since the phase
margin is suuply ¢, = @ .

As an example consider the case where
2
F(s) = k(1 + sD)/s

As s traverses the imaginary axas (with an indent at the
origin) and en infinite circle in the right half s-plane, F(s)
traverses the parabola Fgu) = i%-(—1-—ij) and part of an infinite
circle to the right (Fig.1). Tge phase margin 4 (in the absence
of phasing error) is given by the equation sin® $o = KT% cos ¢
so that, with a phasing error o, the condition for stability is

that X1° > sin? «/cos a.

3 Generalisation to a clacs of multi-element servomechenisms

The two-dimensional system represented by equations (1) has
the following two properties.



(1) The transfer function F(s) = ¥(c)/Z2(s) is the same for the
servos controlling ¢ach coordinate.

(2) The input to each servo 1s a linear function of the error
components.

A system of n clements possessing the sbove propertaes is called
a uniforn. n-dimensional linear servomechanism, It should be noted that
the gains of the separate servos need not be identical, since the
appropriate factors may be included in the coefficients of the error
componsnts.

The remainder of this paper i1s concerned with the derivation of #
criterion for the stability of such a system.

4 The stability polynomial

Let y, (2 = 1,2,...,n) be the inputs to, %3 (i = 1,2,4.4,n) be the
outputs from and F(s) = ¥(s)/Z(s) be the transfer function of a uniform
n-dimensional. linear servomechanism. Then the motron of the system 18
represented by the n equationa

n ———

2(D).x, = x(n)[ Z o (ya-x.)J, (i =1,2,000,m)  (2)

J
j=1

[

where the a,  are constants (real or complex).

These equations may be Zocked uvon as a set of n linear simultaneous
equations for the X, in terms of the s and the solution may be written
in the form

(0, = ) 9y () vy, (3)

3=

where the P, (D) and Qi,j (D) =are polynomials in D,

In order to determine these polynomials it is convenient to write
equations (2) in vector notation.

_ Lel X be the column vector whose components are x,(i = 1,...,n),
7 be the colum vector whose camponen®s are y; (i = 1,...,n) and let

A be the matrix whose i,)-th element is a; .~ Then equations (2) can
be replaced by the single equation

(D) X = ¥(D).A(y - X) (4)

It is seen that the serve is completely described by its transfer
function and by the matrix 4 which will be called the coupling matrix.

Rearranging equation {4)
[z(D}.I + ¥(D).A] X = ¥(D).A Y , (5)

where I is the n~th order unit matrix,
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The sclution of +this equation, in componcnt form, 1s well-known
to be

n

] x, = %(p) Z R (6)

=1

[}
=
n
i’y

where M = {mllj is the matrix [Z(D).I + ¥(D).A]} and M_; is the co~factor
of m; m {I\f[ . Por a proof, see, for example, Ref.l4 p.hh3,

In writing equation {€) 1t 18 tecitly assumed tnat |M] # O; the case
|M| = 0 is trivaal.

It follows that the system will be stable, that i1s to say, each
and all the separate clements are under stable control, if and only 1f
the roots of the polynomial

G(s) = |a(s) I + 1(s) 4} (7)

lie in the lefi half of the complex s-plane.

5 The generalised Nyquist criterion

As in the phasing error case, G(s) can be factoriscd and the
stability critericn related to the behaviour of the transfer locus of
the system.

From (7):

#

Yn(S}Tj(‘%%'M)

0P ] (@) + xe)en)

1=

]

where the Xy are the eigenvalues of A, i.e, the roots of the pelynomial
Iaz - 4] =0,

The stability condition is thus that the roots of F(s) + R;1 = 0
lie in the left half of the s-plane, for every 'Ai .

The final step is to transform from a criterion in the s-plane to

one in the F-plane. To do this use 1s made of the principle of ihe argu-
ment in snalysis.



Let H(s) be a regular function of s within and on a closed contour
C save for P poles within the contour, so that 1f s describes C in the
positive sense, H(s) describes a closed contcur I' in the H-plane, Then
the thcorem states that i1f' the point s encircles Z zeros and P poles
(taking into account any multiplicity of zercs and poles), the point H(s)
in the H-~plane encircles the origin N = Z-P times in a positive sense.

This theorem will now be applied to the function H(s) = F(s) + 7»;1 .

Since the map of a contour in the s-plane on to the F-plane ¢an be
obtained from the corresponding map on the H-plane by a shift of the
origin {without axis rotation) to the point H = + ?x;'f it follows that the
contour C in the s-plene, described in a positive sense, will map into
a contour I' in the F-plane which will encircle the point -A7" in a
positive sense N = Z-F times.

The contour C is taken to consist of the imaginary axis from ~jw
to +je closed by a large semi-circle in the raght half plane with the
proviso that poles of #(s), 1.e. zeros of 2(s), lying on the imaginary
axis are detoured by =small semi-circles so as to exclude them from the
contour,

If the system 18 stable this contour must have no zeros of H(s)
on or within it, i.e. £ = O, so that the contour T' 1n the F-plane, which
1s called the transfer locus of the servo, must encircle the point -?»]'-'_1
exactly -P times 1n a positive sense, where P is the number of poles of
H(s), 1.e., the number of zeros of Z(s), lying in the raght holf plone.

The generalisation of the Nyquist criterion can now be stated.

Theoren

If F(s) = Y(s)/Z(s) is the transfer function and A the coupling
matrix of a uniform n-dimensional servomechanism, the servo will be stable
if and only if the transfer locus encircles each of the points —-7&'{1
(2 = 1,2,...,n) exactly ~P times in a positive sense, where P is the
number of zceros of Z(s) lying in the right half of the s-plane and the
')\.i ares the eigenvalues of the matrix A.

If the coupling matrixzx A 1s composed of real elements then the
eigenvalues of A are either real or occcur in congjugate pairs and if the
transfer function F(s) is a real function of s then the transf'cr locus
is symmetrical about the real axis.

Thus, in practice, as in the application of the ordinary Nygquist
eriterion, it is only nccessery to consider the eagenvalues and transfer
locus lying on or below the real axas.
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