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Summary.--A simple method is described for calcMati~lg the spanwise loading over wing-fuselage combinations. 
It is based on Multhopp's method ~, which is extended here to cover wings of finite thickness, large root chords 
compared with the body diameter and also swept wings. The method is restricted to wings of moderate and large 
aspect ratios (above about 2). The effect of different junction shapes above and below the wing in off-centre 
positions of the wing cannot yet be calculated. The calculation can be performed in about one computer-day, and 
comparisons with experimental results show good agreement in the symmetrical case. 

1. Introduction.--The mutual interference between wing and fuselage is the oldest of the 
interference problems in aeronautics, yet it has not been completely solved. Recent summary 
reports by Schlichting I (1946) and by Flax and Lawrence 2 (1951) show the great variety of 
problems involved and the methods so far employed in dealing with them. In the past, efforts 
have been mainly concentrated on straight wings of fairly large aspect ratio and the aim was 
to predict the changes of lift and pitching moment due to the body for aerodynamic and structural 
purposes. In general, the main effect of. the body was a reduction in lift because of the body 
usually being set at a negative angle relative to the no-lift line of the wing (see, e.g., Becker, 
Squire, and Callen a (1943)). 

The introduction of aircraft with swept wings of smaller aspect ratio (about 3) to fly at high 
subsonic speeds has stimulated interest in the effect of the body oi1 the span loading. In this 
case, the addition of the body to the wing may often result in an increase of overall lift. Since 
it may be necessary to vary camber and twist along the span of a swept wing to obtain a desired 
span loading, the body interference effects must be known previous to this design work. 

In this report, the load distribution over wing and body in incompressible non-viscous flow 
is t rea ted;  the influence of viscosity is only occasionally taken into account. Compressibility 
effects may be treated by the Prandtl-Glauert analogy. It is considered that  Multhopp's 
theoretical approach 4 provides a sound physical picture of the actual flow conditions, and his 
theory is therefore taken as a basis. However, this theory has to be extended in several respects 
as it is confined to thin unswept wings, the chords of which are small compared with the body 
diameters. In the present report it is extended to cover thick wings and larger chord-diameter 

* R.A.E. Report Aero. 2446, received 25th April, 1952. 
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ratios. The treatment of thick wings does not allow for changes in junction shape in asym- 
metrical settings. Multhopp's theory is also extended to swept wings. The method is applicable 
to wings of moderate or large aspect ratio (above about 2). For smaller aspect ratio, an approach 
on the lines indicated by R. T. Jones ~ (1946) will be more appropriate. 

To facilitate the use of Multhopp's theory, a brief outline of his main arguments is given first. 

2. Summary of Multhopp's Work.--Consider an isolated body at incidence in a uniform flow. 
The pressure distribution over its surface produces a lift force near the nose of the body and a 
download near the tail ; the sum of these forces is zero in non-viscous flow. To illustrate this, 
Fig. 1 shows the pressure distribution over the section in the plane of symmetry  of an ellipsoid 
at incidence from exact theory and also the load distribution along its length as integrated 
around the circumference at sections x = const. The exact theory is compared with the following 
approximation from the momentum theorem for slender bodies: 

1 dL(x) _ 2a sin o~ dr~ for axially symmetrical bodies, (1) 
½pVo dx  " "" 

where 2r is the body diameter 

d A ( x )  1 d L ( x ) _ 2 s i n ~ _ _  
l p Vo2 dx d x 

for any cross-section shape, 

where A (x) is the cross-section area. Although this approximation fails near the stagnation 
point the agreement is shown to be good enough for equation (1) to be used as a simple way of 
making an approximate estimate. 

In  most practical cases the centre part  of the fuselage is nearly cylindrical a n d  the fineness 
ratio of the fuselage is so large tha t  the flow at the centre part  is nearly the same as for an infinitely 
long cylindrical body, i.e., no forces exist there. The flows at the nose and the tail are then 
separated from one another and depend mainly on the individual fineness ratios of nose and 
tail. This is illustrated in Fig. 2. Equation (1) gives the lift on the cylindrical middle part to 
be exactly zero. The lift at the body nose is still counterbalanced by the download at the tail 
and only a moment remains. 

For a wing,body combination at incidence, tile lift on the wing will be carried across the body 
to some extent. The flow about the body upstream and downstream of the wing wi l l  also be 
affected, as illustrated in Fig. 3. Upstream of the wing, the upwash induces a lift force decreasing 
with distance from the wing. The front part  of the body is usually long enough for this lift 
not to overlap, or to overlap only by a small amount the lift on the nose of the body. Behind 
the wing, the lift induced by the wing will also fade out. The tail of the body however is always 
in the downwash field of the trailing vortices of the wing. Consequently, the local incidence 
and the download there are reduced. Apart from this effect, the lift on the body as induced 
by  the wing can be determined by considering the body to be cylindrical and of infinite length*. 

The  flow about the wing is also modified by the presence of the body. Wi th  the body at an 
incidence ~ to the main stream, 0nly the cross-flow component c~BV0 has to be considered. 
Because of the displacement of this flow by the body, a velocity increment is produced at the 
body junction and outside the body near the wing. This is in effect an additional upwash, 
producing, a lift on the wing and existing eveI1 when the wing is at zero incidence. For long 
cylindrical bodies, this upwash on the wing can be determined from the two-dimensional flow 

* This assumption is justified by experimental evidence, s e e  sections 6 and 7. 
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around the body cross-section. It  thus depends on the shape of the body cross-section and on 
the position of the wing on the body*. This is illustrated in Fig. 4 for the special case of a body 
with circular cross-section. As is well known, the velocity in the flow around a circle rises up 
to twice the free-stream velocity, i.e., the maximum velocity increment is c~BV0 and thus the 
additional upwash is ~ on the body side for a mid-wing. Along the span of the wing, the 
additional upwash decreases as o~B/(y/R) ~. This may be regarded as an effective twist of the 
wing. 

The load distribution over wing and fuselage must satisfy the condition that  the downwash 
field induced by it together with the free stream have no velocity component normal to both 
wing and body surfaces. This complicated three-dimensional problem is considerably simplified 
by assuming, in accordance with linearized theory, that  the wake follows the direction of the 
undisturbed flow and that the load distribution can be determined by considering the spanwise 
section of wing plus body which is equal to the section of the wake far behind the wing in the 
so-called Trefftz-plane as illustrated in Fig. 5. 

The circulation and thus the load distribution of this configuration can then be found if the 
configuration is made into a streamline in a uniform flow directed upwards in the Trefftz-plane. 
The load so obtained gives minimum induced drag. The solution .for high aspect ratio wings 
was given by Lennertz 7 (1927). It is closely related to the theory of very low aspect ratio 
wing-body combinations by Spreiter s (1948), which is based on R. T. Jones' theory where the 
boundary conditions are also satisfied in the Trefftz-plane.. The load distributions obtained 
by Spreiter are identical to those of Lennertz, as has been pointed out by Flax and Lawrence. 

Multhopp progressed from here by making the following two suggestions:-- Firstly, by using 
the assumption that the downwash of the trailing vortices at the wing and body is constant 
along the chord and equal to half its value at infinity, the boundary conditions in the Trefftz-plane 
can be related to those on the wing and body. The latter take account of the wing plan-form 
and local lift slopes CL/o~off, and thus the boundary conditions can be taken from the real wing 
but satisfied in the Trefftz-plane. This implies that the vortices replacing the configuration 
in the Trefftz-plane are still in the same position as in the minimum case, although this configura- 
tion is not a streamline. This is, of course, permissible within the linearized theory. The 
treatment is therefore not restricted to the minimum induced drag case only. Secondly, the 
configuration in the Trefftz-plane can easily be transformed into another in which the body 
cross-section appears as a vertical slit in the line of symmetry, which is automatically a streamline. 
The transformation being conformal, the potential and hence the circulation remain unaltered. 
This simplifies the calculation considerably compared with that of Lennertz, where the images 
of the vortices in the circle were considered. The boundary conditions in the Trefftz-plane and 
the transformation being known, the boundary conditions in the transformed Trefftz-plane 
are also known and the problem reduces to that of satisfying an integral equation which is of 
the same type as that  for the load on a wing without body. The load distribution over the real 
wing and across the body within the wing region can then be determined by transforming back 
from the transformed Trefftz-plane the results obtained there by an ordinary calculatiop of a 
wing loading. For the latter Mnlthopp's method from Ref. 9 can conveniently be used. 

3. Outline of the Extensions of Multhopp's Method.--Multhopp's theory can be extended to 
take account of wing thickness, finite ratio between wing chord and body diameter, and sweep- 
back. 

To take the finite wing thickness properly into account a three-dimensional treatment would 
be necessary. To avoid this, only a rough approximation is attempted here. One effect of 
the finite thickness is to produce different junction shapes on the upper and lower surfaces if 

* See, e.g., Liess and Riegels 6 (1942), where the flow around bodies of various cross-sections has been calculated. 
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the wing is in an off-centre position or at an angle to the body axis. This gives an additional 
lift at and near the junction, which does not change with incidence. This effect is not treated 
in this report. With  a mid-wing arrangement, the main effect of the finite thickness is to reduce 
the body upwash compared with tha t  of a thin wing. Since this reduction gives a second-order 
term to the load distribution, only a rough approximation is needed. If body and wing are 
replaced by singularities (sources, doublets), only those singularities that  replace the part of 
the body outside the wing contribute to the upwash. We take account of this fact by reducing 
the upwash produced b y  the isolated body by a factor k tha t  is taken as constant along chord 
and span. k is taken equal to the ratio of the body cross-sectional area above and below the 
wing to the total frontal area of the body. A similar method has been used for the calculation 
of the interference of the body in the wing-body junction at zero lift, and satisfactory results 
were obtained by arbitrarily taking this factor at the maximum wing thickness ; this has again 
been done in the present report. 

The body upwash is largest in the wing-body junction and fades out spanwise. In the case 
of a circular cylinder the upwash decreases from its maximum value at the junction to 1/9 
of this value at a distance of one diameter from the junction. The root chord is, in general, 
equal to or greater than the body diameter, so that  the part  of the wing tha t  is effectively twisted 
has an aspect ratio of one or less. The lift distribution caused by the twist produces a system 
of trailing vortices, for which the conditions on a small aspect ratio wing apply. We can no 
longer expect that  the induced downwash is constant along the chord and half the value far 
downstream. Now the mean dow~aawash on the chord is nearly equal to the value far downstream. 
The difference in the load distribution between taking half the value and taking the full value is 
not great enough to warrant a detailed investigation. The results of J. Ginzel 1° (1940) have 

b e e n  used where it has been shown that  with such rapid incidence changes of small 'aspect 
ratio' a good approximation for the spanwise lift distribution is obtained by taking the downwash 
on the wing as equal to the downwash at infinity. 

If in a special case the wing chord is small compared with the body diameter a second calculation 
can be done taking the downwash over the wing as half the value at infinity. I t  will be .found 
tha t  the two terms of the additional load distribution induced by the body upwash--which 
are small correction terms anyhow--differ  by less than a factor 2 from one another. 

Another consequence of the small 'aspect ratio' of the 'twisted' part  of the wing is tha t  the 
chordwise distribution of. the corresponding lift increment differs from the ordinary fiat-plate 
distribution in tha t  the lift is concentrated near the leading edge, producing a pronounced 
suction peak there. 

The third extension of Multhopp's theory concerns the effect of the bound vort ices,  which 
appears in the boundary conditions in the Trefftz-plane in the form of the sectional lift slope, a. 
For unswept flat wings the value of a is constant. This, however, is no longer true for swept 
wings, 

Generally, the bound vortices of the wing are reflected in the body wall. In the body junction 
of swept wings, however, similar conditions prevail as at the centre of swept wings without body, 
resulting in a distortion of the chordwise loading there and in a sectional lift slope different 
from that  of the two-dimensional aerofoil (see Kiichemann 11 (1950)). This has been confirmed 
by experiments (see R.A.E. Wind-Tunnel StafP 2 (1949)). The value of a thus varies along the 
span. With the transformation of the body into the vertical slit the body junction is transformed 
into the centre of the wing and therefore the calculation of the lift distribution in the transformed 
Trefftz-plane is the same as for the ordinary swept wing. The calculation method of Ktichemann lj- 
(1950) is used here. The effect of sweepback is thus taken into account only as a variation of 
the sectional lift slope along the span ; otherwise the same assumptions are made as above. The 
influence of the trailing vortex sheet can still be computed by using half the value of the induced 
downwash far behind the wing. Thus the calculation procedure for swept wing s is the same 
as tha t  for unswept wings. 
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4. The Load Distribution over the Wing.--4 .1 .  General Method of Caiculation.--The lift 
distribution over the wing is determined by the equation 

=fee,) c , . ( y )  , ~ .  . ~o, , (y)  

= a(y) .  e~,f(y) . . . . . . . . . .  (2) 

where a = dCL/dc~of~ is the sectional lift slope. The effective incidence ,off is determined by the 
velocity component v~ normal to the mainflow and the velocity V0 of the main f low:--  

v~ . . . . . .  (3) 
eff - -  VO . . . . . .  

The downwash can be split into three terms: 

v: = --  -wVo + v~, + v,~ . . . . . . . .  (4) 

where ew is the angle between the zero-lift line of the wing and the main flow direction, 
v~ the upwash produced by the body and v~ the velocity induced by the trailing vortices. 

• The velocity components v~B and v~ are calculated by means of a conformal transformation 
of the plane normal to the body axis as explained above. A rectangular co-ordinate system 
x,y,z  is used, where the y,z-plane is normal to the axis of the fuselage and the y-axis in spanwise 
direction. Let 

~ = z  + i y  . . . . . . . . . . . .  (5 )  

be the complex variable in the Trefftz-plane and 

= 2 + i y  . . . . . . . . . . . .  ( 6 )  

the variable in the transformed Trefftz-plane, where the body cross-section is transformed into 
a slit parallel to the 2-axis. If the body is at an incidence c~ to the main flow, then the main 
flow in the u:plane has the velocity -- ~BV0 parallel to the.z-axis aiId the additional upwash 
produced by the isolated body is 

= - ~ V 0 [ T ( y )  - -  11 . . . . . . . .  ( 7 )  

where T(y) = R(da/du) is the real part  of the differential quotient da/du.  We are not going to 
determine the conformal transformation of the body with the thick wing present. We take 
as an approximation for the upwash produced by a body attached to a thick wing the upwash 
of the isolated body reduced by  a factor k, constant along the span. 

v,B = - ~ j / , , k [ T ( y )  - -  1 1 .  ( s )  

In this report k is taken as the ratio of the body cross-section area above and below the wing 
to the total body cross-section area at the position of the maximum wing thickness; more 
experimental evidence may make another definition preferable. 
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i n  calculating the induced downwash v,~ we make use of the  fact t ha t  the circulation F(y) 
does not  alter when going from the u-plane to the ~-plane, since it is equal to the discont inui ty  
of the potent ia l  funct ion ¢ along the vor tex sheet in the  Trefftz-plane. 

r ( y )  = r ( y ) .  

The induced downwash in the t ransformed Trefftz-plane is given by  

1 f+~/~d-r' d35; , .  
= o r ,  y )  = dy'y 

The downwash v~ in the u-plane is obtained by  mult iplying g.~ by  T(y) = R(d~/du) for the thin 
wing: 

1 (+~ d/~ d / f ' y  . . . . . . .  (9) 
v~,(x = or, y) = ~ T(y) ~ - ~  df~' f~ 

For  the thick wing we replace T(y) by  T*(y): 

T*(y) ----- 1 + k iT(y)  --  11 . . . . . . . .  (10) 
similar to equat ion (8). 

We introduce the non-dimensional  circulation 

~(Y)-- -P(Y) ' ,  Y(~9)----F(Y)--b~(y)= - = . .  . .  . .  . .  (11) 
bVo bVo b 

where b and b are the wing span in the original and t ransformed planes, respectively. ~(y) 
can be wr i t ten  as the sum of two terms: 

(a) 7w which depends on ~w and not  on ~B, 

(b) yB which is propor t ional  to ~-B and independent  of ~w • 

Correspondingly, the downwasl~ far downstream can be wri t ten as a sum of v.~(~,w) and v.~(y~). 
As explained above we take  the downwash induced by  rw at the wing as ~v,~(Tw, x ---- oe) and 
the  downwash induced by  yB at the wing as equal to v,~(~'B,x = or). Together wi th  
Kut ta -Joukowski ' s  theorem: 

r(Y) --  F(y) _ CL(y) c(y) _ a(y) c(y).cz~ff(y) . (12) 
bVo 2b ~ 2b . . . . .  

we get from equations (3), (4), (8), (9) the final equations: 

Pw(~)- -a(~c-(v) to:  I=~ ~ T*(k,~) f+i d~w(~') d~' l (13) 
2b ( wt,,/ - -  2~ - d~' ~ - -  ~'j . . . .  

- 11  - -  
2b 

where the non-dimensional  spanwise co-ordinate 

y 

--  b/2 "" 
has been introduced.  

. 1T , (k ,~ ) I  + l d ~ , ( ~ ' )  d~' l . .  (14) 
-1 d~' ~ - - ~ ' )  

( 1 5 )  
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4.2. Details of  the Ca lcu la t ion . - -The  equations (13) and (14) can be solved using the method 
which has been developed by Multhopp for the unswept wing, see Refs. 9 and 11. The integral 
equations are replaced by a system of linear equations: 

2b "~ _ ~Zw(~) + ~ ,  b~,,Pw(~,~) . . . . . .  (16) + 
a(~,~) . C(~-~) Z*(~]v)] pW(~v) T * ( ~ v )  n = l  

1 2b  ~ p . ( ~ )  = ~ , ( T * ( ~ )  - -  1) ~ ,  
(b~, + 2 a ( ~ ) .  c ~ )  T*(~,)J 2T*(~) + ,=~ b~,p,(~,) .  . .  (17) 

Values of the fixed positions ~, and the coefficients b~ and b~,~ are given in Refs. 9 and 11. 

The values of ~w, a ,  c are known along the span of t, he given wing. They have to be deter- 
mined at the fixed points ~ .  The relation between ~, and the spartwise co-ordinate v~ = y~/lb 
on the given wing is given by the conformal transformation. For circular and elliptical body 
cross-sections the transformation is given in Ref. 4. 

If the cross-section of the body is a circle of radius R: 

R ~ a = u + . . . . . . . . . . .  ( l S )  
U 

so that  for a symmetrically placed'wing 

R 2 ~ = y - -  _ _  

Y 

and 

The span in the ~-plane is 

. .  . .  ( 2 0 )  

R 2 
T(y )  = 1 + y~ 

a n d  
R2 (21) ~, T*(y)  = 1 + k y-~ . . . . . . . . . .  , 

• with 

k = l - - 2 s i n - 1  t 2 t 1 . . . . .  (22) 
z~ 2 R  ~ 2 R  ~ " " 

where t is the wing-root thickness. In most cases this can be replaced by 

2 t  
k~- - -1  . . . . . . . . . . . . .  

~ R "  
J 
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If the cross-section of the body is an ellipse with height and width 2A' and 2B',  respectively, 
the transformation is given b y : - -  

1 
A' --  B'  [A'u -- B' V/(u~ --  A '~ + B'Z)l. (24) 

This results from an intermediary transformation of the flow around the ellipse (u-plane) into 
the flow around a circle of radius R1 (u~-plane): 

U = U ~  + 
A t 2  __ Bt2 

4u~ 

R l =  + 
" 2 

followed by the transformation of the u~-plane into the ~-plane 

For a symmetrically placed wing 

= ul + R(2 
Ul 

and 

9 -  Y FA'-  + B, !l 
A'  - -  B '  L. y J 

r(v). = )p ~_ ~ I N ' -  B' ~/(9~ + A'~---B~: A '2-) .... B'~) 1 

(2s) 

B' [ ~(Y~y ++--A!----B'2!lj . . . .  . (2~) T*(y)  = 1 + k.A, _ B, 1 - -  A'2 B,2 | 

Y 

From the values of ~ the y~ can thus be determined and hence 0~w(~), c(~) and T*(~). The 
local sectional lift slope a(~) and thus a(~) can be worked out as shown in Ref. 11 for an isolated 
swept wing. 

As all the coefficients in the systems of equations (16) and (17) are known, the unknown 
values of Pw and PB can be worked out. This may be done by successive approximations*, as 
explained in Refs. 9 and 11. From Pw and PB the loading over the original wing outside the body 
can be obtained from 

3 
~'(~) = P(v) ~ . . . . . . . . . .  :.. (27) 

. 5. The Load Distribution over the Body.--5.1.  L i f t  Induced by the W i n g . - - W e  consider first 
only the lift induced by the wing on the part of the body near the wing, i.e., we do not consider 
any effects at the nose and the tail of the body. 

* I t  will be sufficient in most cases to use 15 pivotal points aiong the span (m = 15) for ~w. For YB, which 
usually changes rapidly near the wing-body junction, the use of more points (m -~ 31) is recommended in that  

r e g i o n .  
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Whereas the ioad on the wing has been obtained from the lift force on the bound vortices by  
considering the distribution of trailing vorticity in the wake, a Similar procedure cannot be 
followed to determine the load on the body. As illustrated in Fig. 6 the bound vortices of the 
wing will run across the surface of the body, joined by another system of bound vorticity on 
the body of, in general, opposite sense. Trailing vortices, whose strength varies around the 
circumference, are shed from the body and are found on the circle far behind the wing. Their 
strength is zero at the highest and lowest points of the circle and they are of opposite sign at 
corresponding points on the right- and left-hand sides of the circle. Thus in transforming the 
circle into a vertical slit, two corresponding vortices fall on top of each other and cancel out. 
This is, of course, the reason why the calculation of tile flow is so much more easily done in the 
transformed plane. I t  implies, however, tha t  the trailing vorticity on the body cannot be 
determined in the transformed plane. 

Another way of determining the load on the body is to relate the integrated difference in  
pressure on the upper and lower surfaces of the body to the potential difference at certain points 
in the wake. Consider a section of the fuselage in a plane parallel to the plane of symmetry,  
as in Fig. 7. The local lift is equal to the difference between the pressure coefficients @ on 
upper and lower surface, and the total lift coefficient CL at that  spanwise station, y ,  can be found 
by  integrating the pressure difference along x' from far upstream to far downstream of the wing. 

The suffixes US and LS denote upper a~ld lower surface. The pressure coefficient is to a first 
order equal to twice the velocity increment v,, which .in turn is equal to the partial derivative 
of the potential function ¢ of the additional flow produced by wing and body : - -  

c ,  = - 2 = - 2 
Vo Vo ~x 

Thus 
2 C£-- 

cVo 
- - -  [ ¢ . s ( x  = o o )  - ¢  s(x • 

The difference ¢ us --  ¢ ~s can be calculated in the a-plane, since it does not alter with a conformal 
transformation. 

So far the potential has been determined only on the wing, where 

and 

oo)  

and the calculation method (equation (9)) is only suited to determine the values there. To 
find the potential at points on the vertical slit would be complicated and tedious. However, 
as there are no singularities outside the wing, ¢ (5) can be expanded in a power series with respect 
to ~ -- 5w, where iw corresponds to the junction with the thin wing ; if only the first-order term 
is taken*, 

* In  the  case of m i n i m u m  induced  drag  where the  downwash  is cons tan t  a long span,  the  po ten t i a l  a t  the  sli t  
can be de t e rmined  more  easily. I t  is found t ha t  the  quad ra t i c  t e rm in the  above  series modifies  the  lift  r educ t ion  
in the  p lane  of s y m m e t r y ,  where the  error  is grea tes t ,  b y  a fac tor  1 - -  2D/b. 
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Thus only the potential at the wing junction need be known. With the relations above, 

2_r'(~ = 0) 2L~(2w, x oo) (2us --  2w) --(2LS-- 2W) 
Q ....... c g , (  .... + " Vo c 

The values of 2~s and 2ns for a certain section of the fuselage can be found from the transforma- 
tion ~(u). For a circular body cross-section and a symmetrically placed wing ' (Zw-  2w = O) 
we obtain 

2 = 2 z  = 2 R  - -  <~,,:, ,~ ',, ~ ~ ,: .... 

so that  finally for the load distribution over the body at tached to a thin wing: 

In this relation the downwash is determined by the known load distribution: 

= = 1 (+1 dp d~' 
V O  - -  --t 3 

= 2[b;~Pv -- Y/b~,,.p,,,] . . . . . . . . . . .  (29) 

Thus the linear variation of tile potential along the slit causes an elliptical distribution of the 
lift reduction across the body. 

The reduction of the load over the body width from the junction to the centre-line is less 
for t h e  thick wing than the value given by equation (28) for the thin wing. We take account 
of this fact by replacing R by v ' k R ,  as we have done in equations (8)and  (10). If the bod, y 
diameter is equal to the wing thickness, k = 0 ,  the load is assumed constant across the body. 
For bodies with elliptical cross-section, the radius R in equation (28) has to be replaced by 

+ B'): 

5.2. Change of Download at the Ta i l . - -We  now consider the normal forces near the nose and 
the tail of the body. To a first approximation the wing does not affect the flow near the nose 
and so the lift there is unaltered. But the trailing vortices alter the effective angle of incidence 
of the flow at the rear end of the body and so affect the download. This gives a change of total 
lift which has to be added to the lift induced by the wing on the part of the body near the wing. 

An estimate for  the download acting on the tail of the isolated body can be obtained by 
integrating equation (1)" 

L 
: ,  pTo = - 2  o,A . . . . . . . . . .  ( a 0 )  

where A is the maximum cross-section area of the body and c~s~f~ the effective incidence of the 
body. The coefficient for the download at the tail of a body of circular cross-secti0n referred 
to the wing area is" 

_ L ( D I e ) 2  ' 

CL ½pVo2b { -- o~o~. -~ . AR . . . . . . . .  

where ~ is the mean wing chord and AR the  aspect ratio of the wing. 
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To obtain a second estimate for the download at the tail of the body, we use the calculated 
moments of ellipsoids in parallel flow, see, e .g . ,  Vandrey ~3 (1940). The moment is: 

( c '  B ' )  . . . .  (32) M __ 4 ~ A ' B ' C ' .  2o~Bo,fm ~ 
l pVo~ 3 ' " " " " 

where A ' ,  B '  and C' are the semi-axes of the ellipsoid. Vahles of the function m ( C ' / A ' ,  B ' / C  ') 
are given in Fig. 8. Assuming a lift L at the nose and a download - - L  at the tail, acting at 
points which are at a distance 1/2 away from the centre of the body, they produce a moment 

M = L . l .  

Thus the download on a b o d y  of circular cross-section is give n by: 
t 

tN cL = - 4z (D/e) EK ',/c' 1) 

where lB is the body length. For the body of circular section and high fineness ratio m will be 
about 0.9 (Fig. 8) and an approximate value of 1 / 4  will be 0.75, so that:  

C,. ~ , o , .  0 . 8  = (D/~)~ . ( 3 3 )  5 " . . . . .  " "  

i . e . ,  0.8 times the value estimated by  equation (31). The greater value of the first estimate, 
equation (31), can part ly be explained by the fact that  equation (t) overestimates the load near 
the stagnation point (see Fig. 1). 

If the trailing vortices produce at the rear part  of the body a downwash c~, then the effective 
incidence and the amount of download at the body are reduced and the lift of the wing-body 
combination is increased. Using the estimate of equation (31), we have 

(D/eF- . . . . . .  ( 3 4 )  
A CL = e~ ~ AR . . . .  

e~ varies across the body. At the wing-body junction of a thin wing attached to a circular 
body, e~ is equal to twice the value a~ given by equation (29) ; in the plane of symmetry,  c~: = 0 .  
To obtain a mean value it is suggested that  ei is taken as equal to at from equation (29). 

The lift on the body as determined by equation (28) together with the increment A CL from 
equat ion (34~ is what might be expected in non-viscous flow. A further lift increment arises 
in viscous flow. The vertical component of the skin-friction forces on the body produce a 
lift increment, as has been pointed out by  Multhopp 4. The additional lift depends on the 
square of the incidence and is therefore small at low values of CL. 

A further effect of the viscous flow round the body,is to give a thicker boundary layer above 
than below ; this effect intensifies as the point considered is further back on the body and has 
the effect of reducing the effective incidence still further. In consequence, the lift near the 
nose is little affected but the download at the tail may be much reduced. Particularly at low 
Reynolds numbers, t h e r e m a y  even be a breakaway of the flow at the rear of the body, in which 
case all the download may be lost, so that  the overall increase in lift is given by: 

(D/~)"  . . . . .  (35) ACL - o~, . . . . . .  
2 AR 

from equation (31). 
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6. Examples of Calculation Method.--In Fig. 9* the resuits of the present method are compared 
with those of Multhopp's method for thin wings in a particular case. The effect of the fuselage 
is smaller according to the present calculation, due to tile finite chord of the wing (full downwash 
for p~ in equation (14)) and to a lesser degree, due to the thickness of the wing (from the factor 
k in equation (10) i in this case k = 0-57). Experimental  values of the lift induced on the body 
by the wing, integrated from measured pressure coefficients, are also plotted in Fig. 9 and show 
good agreement with the calculated values. 

Figs. 10 and 11 give the calculated values of overall lift change due to a body on a s t r a i g h t  
and a 45-deg sweptback wing of aspect ratio 3. Of the three curves given, (a) denotes the 
calculation which includes only the load induced on the body near the wing, (b) includes the 
effect of wing downwash on the tail load,  from equation (34), and for (c) it has been assumed 
that ,  due to viscous effects, equation (35), there is no download on the tail of the body. 

The calculated span loadings for a series of bodies and wings having 0 deg and 45 deg of 
sweepback are shown in Figs. 12 and 13 for symmetrical arrangements. Only the lift induced 
on the body near the wing is considered. I t  will be seen tha t  the effect of sweepback is to 
modify the basic wing distribution and to reduce the decrease of lift over the fuselage because 
of the much smaller downwash in the junction (see Fig. 13). The overall lift change ACL due 
to the body has been calculated for the same series of bodies and is plotted in Fig. 15. This 
shows that  for large bodies on small aspect ratio wings, the lift increase over the wing may be 
cancelled by the loss of induced lift over the body. The overall lift difference then depends only 
on the download at the tail of the body. 

In view of the many parameters involved it is not possible to generalise these results, and any 
given wing-body arrangement has to be calculated anew. This does not, however, present 
any particular difficulties, since the calculation procedure is simple and can be performed in 
about one day. 

The overall lift slope of the wing-body combination is in itself not very informative as to the 
actual loads; in many cases the overall change in lift may be very small whereas there is an 
appreciable lift increment on the wing, compensated by a smaller load on the body. With 
swept-back wings in particular an overall increase 0f the lift due to the body is often observed. 
A reduction of the overall lift is usually caused by the body being set at a smaller angle of incidence 
than the wing. To illustrate this, Fig. 16 shows the effect of a wing-body angle i ,  on the load 
distribution ; the additional lift due to the different junction shapes is not taken into account. 
Comparing the results for i = 4 deg with those for i = 0 deg clearly shows the lift reduction 
which is particularly noticeable at small lift coefficients. In this example, the lift distribution 
over the wing is about the same as tha t  of the wing alone for a wing incidence e~v = 6 deg. 
This type of loading has often been considered as being a general characteristic of wing-body 
interference. We find, however, that  this occurs only in very special cases. 

7. Results from Systematic Model Testsl~.--Some experimental data are available for a system- 
atic series of bodies attached to straight cambered wings of aspect ratios 5 and 10, taper ratio 
2:1 ; for details see Anscombe and RanQy 14 (1949). Only the effect on the total lift has  been 
measured. 

Bodies with the same centre par t  (D/g -~ 0.9) but with nose and tail extensions of varying 
length were tested. The lift increments for a midwing arrangement aide shown in Fig. 17. The 
spacing of the lines enclosing the band of points corresponds to ~ 0 - 0 5  deg incidence, this 
represents the accuracy of the tests. No effect of the body length can be seen ; this independence 
of body length was assumed in the calculation method. 

* A lift slope of a 0 = 0.75 . 2z~ has been used in the calculations of Figs. 9, 10 and 11, since this value corresponds 
to the measured total lift coefficient CL/ct = 3.0 of the wing alone. 
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Mean values of the change in lift slope from the tests with different front and rear lengths 
are given in Table 1 and plotted for the mid-wing in Fig. 18. Calculated values (a), (b), (c), as 
explained in section 6, are also plotted. The loading of the wing alone is nearly elliptical ; since 
this is usually the case for unswept wings of large or fairly large aspect ratio, the data are applic- 
able to transport-type aircraft with thick wing roots. 

The data are of further interest since they show how large the effect of the difference in junction 
shape on the upper and lower surface can be. Fig. 17 shows that  a change in wing-body angle 
causes a lift reduction ACL0 independent of incidence. Mean values of ACL0 for the various 
body lengths are given in Table 1 and show that  ACL0 is 0.01 more negative for each degree 
of wing-body angle. The calculated value (case (b)) is - - 0 .  006. The difference between the 
measured and the calculated values is due to the different junction shapes, which are not taken 
into account in the calculation. I t  is not possible to generalize these results, since they depend 
on the wing section ; the model had a cambered wing, which was 18 per cent thick at the root. 

8. Co~d,isions.--Experiments have proved that  beyond a certain body length the lift 
distribution over a wing-body combination is independent of the body length. Therefore, for 
calculating the spanwise lift distribution over the wing and the part of the body near the wing, 
an infinitely long body' can be assumed. The effect of the wing on the tail of the body is 
considered separately. Multhopp's method 4 for calculating the lift distribution is extended to 
take account of: 

(i) sweepback, by using the corresponding sectional lift slope varying along span, as explained 
in Ref. 11 

(ii) the finite wing thickness, by reducing the upwash of the isolated body by a factor k 

(iii) the finite ratio of root chord to body diameter, by taking the downwash on the wing as 
equal to the full downwash at infinity when calculating the effect of the twist due to 
the body upwash. 

The wing induces a downwash at the tail of the body, reducing the download there and thus 
1 - ~ producing a lift increment approximately equal to ~ ( D / c ) ° / A R .  For wings in an off-centre 

position or at an angle to the body axis an additional lift is produced by the difference in junction 
shapes ; this lift increment, which does not change with incidence cannot be calculated, by this 
method. 
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LIST OF SYMBOLS 

Xjy,Z 

At, B' 

3~,~ 

• , #  = 

b 

R 

D 

C' 

AR 

0~ W 

i 

CL 

CL 

ACL 

~CL0 

,l =- 

Rectangular system of co-ordinates, x in wind direction, y sideways, z down- 
wards 

Co-ordinates in the transformed Trefftz-plane 

Complex variable in the Trefftz-plane 

Complex variable in the transformed Trefftz-plane 

Wing-body angle, angle between body axis and zer0-1ift line of the wing 

Local lift coefficient 

Overall lift coefficient 

Difference of the lift coefficients with and without body at the same incidence 

Value of A CL for zero-lift angle of the wing alone 

I'  Q c  Non-dimensional circulation r = b}/-,,= 2-b" 

p -- 
bVo 

7w The part of 7 that depends only on ~w 

~ The part of ~ that depends only on ~B 

a --  dCL local lift slope without trailing vortices 
d~ 

15 

z+iy .  
Z+iy,  

Y 
b/2 

5/2 
Local wing chord 

Mean wing chord 

Wing span 

Wing span in the transformed Trefftz-plane 

Wing thickness 

Radius of fuselage with circular cross-section 

2R 

Semi-axes of ellipse or ellipsoid, respectively 

b Aspect ratio 

Angle of sweep 

Angle of incidence of the wing to the main flow 

Angle of incidence of the body to the main flow 

Induced angle of incidence 



T *  

k 

b'cv ) b.¢]~ 

LIST OF SYMBOLS--continued 

Lift slope coefficient of the two-dimensional aerofoil 

R(du'~ real part of d~ 
',du/ du 

1 + k ( T -  1) 

Ratio of the body cross-section area above and below the wing to the total 
frontal area of the body 

Coefficients 

Number of pivotal point 

TABLE 1 

Change in Lift clue to Body 

Extract from Ref. 14) 

Body tested 

AR = 10 

9-in. diam. 

D 

0. 909 

D 
b 

0. 091 

Wing 
position 

High 

Mid 

Low 
(small 
fillets) 

Height 
relative to 

body 
centre-line 

zw/½D 

0.556 

0 

- -0 .688  

(Tile low wing agrees with high and mid if a minimum fillet is fitted. 
the changes in ZI~L0 cannot be generalised.) 

Wing-body 
angle from 8A CL 

No Lift ~CL 
(deg) 

2.1 0. 045 

2.1 0" 044 

2.1 0.043 

A CL iJ 

9-in. × 13½-in. 

4 ~-in. diam. 

13½--in. diam. 

AR = 5  

4~-in. diam. 

9-in. diam. 

0"909* 

0.454 

1.363 

0"454 

0 909 

0 '091" 

0"045 

0"136 

0-091 

0"182 

Mid 

Mid 

Mid 

Mid 

Mid 

Mid 

- - 0 .0 2 0  

- -0"017  

- - 0 .0 1 9  

With no fillet or large fillets 

0. 044 

0. 044 

0. 020 

0. 074 

--0.058 

-- O. 029 

- -  0.023 

--0.040 

- -0 .013  

- -  O. 034 

6.1 

2.1 

2.1 

2.35 

2 .2  

2-2 

O. 040 

0. 058 

* In this case, the  width of the body is used for D. 
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