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Summary.—This report is a continuation of three earlier ones by the present authors® 2 3 (1947-9) and contains
a theoretical investigation of subsonic flow past thin tapered unswept wings (of full or cropped-rhombus plan form),
at zero incidence. Only the case of spanwise constant thickness ratio is considered in this first attempt although alter-
native cases also merit attention. The first order method of linear perturbation based on continuous systems of sources
and sinks is shown to be still applicable to tapered wings, although mathematical difficulties are greatly increased. These
have been overcome, at least in the simple case of the biconvex parabolic profile, so as to give general solutions and
computable formulae for the velocity distribution over the entire wing area. Complete detailed solutions for the mid-chord
line have been worked out numerically and two examples of complete numerical solutions, with corresponding isobar
patterns, for the entire wing area are presented. These results are sufficient to illustrate the effect of uniform taper on the
velocity field of unswept wings, and lead to a number of general conclusions. The most important of these is that, althoagh
taper brings about noticeable decrease of supervelocities at the centre, higher values are encountered further outboard so
that, for cropped plan forms, two symmetrically placed maximum suction areas arise inside the two half-wings. These
are relevant for determining critical Mach numbers, and the effect of taper may be, according to choice of geometrical
parameters, either beneficial or detrimental as to the values of M, but practically never very considerakle.

The method will still be applicable to the more general, and more important, case of tapered swept-back wings,
especially for delta wings, and a general solution for the velocity distribution in the central sections of such wings is given
in Appendix I and shown to be consistent with the earlier solution for untapered swept wings. However, for applying
the method successfully (up to detailed numerical investigation) to the more general case, automatic high-speed integrating
machinery seems indispensable—to replace classical methods of transforming integrals and manual computing, as used
in the past and in the present report. .

1. Introduction—In two previous reports by the present authors®? (1947-9), solutions were
given of the velocity distribution on thin untapered swept-back wings of infinite and finite
aspect ratio at zero incidence and mainly for the simplest case of the biconvex parabolic profile.
The results were extended to other profiles by the present author in Ref. 3 (1949).

The object of the present paper is to continue from this point and to find the velocity
distribution on thin tapered wings with zero sweep-back of the mid-chord line. The method
used to solve this problem is again that of linear perturbation in which the wing is replaced by

* R.A.E. Report Aero. 2432, received 13th December, 1951.
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a system of sources and sinks ; the required velocity field is then approximately obtained as that
of the velocity components, in the plane of the chord lines, given by this source system. The
distribution of sources and sinks is chosen so that the », component is obtained correct to the
first order of thickness ratio.

The supervelocity », may then be determined by direct integration. The v, component has
not been calculated for the case of tapered wings as it was felt that the work entailed would not
be justified; v, contributes only second order corrections to the resultant supervelocity, and the
general trend can be implied from the previous work.

The tapered plan forms considered in this paper (Figs. 2 and 3) must be defined by a carefully
chosen set of geometrical parameters. We introduce first an important new parameter ¢, the
spanwise rate of decrease of the semi-chord, which has been termed ¢ coefficient of convergence °.
This seems to be the most rational measure of taper, and becomes zero for untapered wings ;
it is the only parameter needed to determine the shape of a full rhombus plan form. A cropped
straight tapered wing is then obtained by cutting off certain triangular portions at the tips, and
to determine these, another parameter y—the ratio of tip chord to root chord (the usual  taper
ratio ’) has been used. If, finally, a swept-back tapered wing is to be considered, a third para-
meter ¢,, angle of sweep of the mid-chord line, is introduced. This set of parameters must not
be considered as standard but it has been found the most convenient for the analytical solution
of zero-lift problems. Some alternative sets of parameters for swept-back wings have been
proposed by Thomas* (1951), and Warren® (1951), which may be more suitable for other purposes.

As in Ref. 2, it was decided that to minimise the possibility of errors we should begin with the
simpler cases and build up to the more complex. Both algebraic and numerical checks are then
available at each stage of the calculations. Furthermore, in order to reduce the complications
throughout, it has been decided to consider only the case of a wing with a biconvex parabolic
profile along the entire span. This does not mean, however, that the method cannot be extended
to cover other profiles although the formulae would then become more complicated. To have
the wing surface completely defined, we must then still determine the spanwise variation of the
profile thickness ratio #. It has been decided to limit this investigation to the case of ¢ constant
throughout the span; this is geometrically the simplest assumption but, curiously enough, not
that leading to the simplest mathematics (this would be simpler, e.g., for wings with constant
thickness spanwise, 7.e., with thickness ratio increasing towards the tips in inverse proportion
to the chords; or, vice versa, for wings with thickness ratio decreasing proportionally to the
chords, ¢.e., with thickness decreasing as chord squared). However, our assumption seems to
be the most appropriate for the first theoretical attempt, and it is the only one which gives a
reasonable wing in the case of the full-thombus plan form®*. : B

The formulae for the supervelocity at the central section and, more particularly, for the central
point of this section, for both full and cropped-rhombus wings, have been found first of all: and

suitable computational methods have been evolved followed by a fairly extensive numerical
investigation.t ‘

Similar but more complicated results were worked out subsequently for the velocity distribution
over the mid-chord lines of both full and cropped-rhombus wings, and finally for the complete
velocity distribution over the entire wing surface of both wings.

As work proceeded from the particular to more general solutions, the complexity of formulae
and computational methods increased rapidly. The integrals involved, unlike those in the
previous investigations, are no longer expressible in terms of elementary or tabulated functions
and have to be expanded into infinite series before they can be evaluated. Special procedures

* The case of a tapered swept-back wing with thickness ratio proportional to the chord was treated briefly by A. Fiul8

(1948), obviously because of the simpler mathematical analysis, but only very few numerical examples were presented.
The case merits a fuller investigation.

T Preliminary results for this case were found by the present author already in 1948 and presented in Ref. 8.
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are needed to ensure sufficiently rapid convergence of these series. It has, therefore, proved
impossible to work out more than a few typical numerical examples for the more general cases;
especially for the velocity distribution over the entire wing area, including isobar patterns.
There seems to be no need for extensive calculations of this sort, as the few examples presented
appear to be sufficient for obtaining a clear picture of the velocity fields and general trends.

The main conclusions from this investigation may be summarized as follows:

(2) The method has been proved applicable to the case of straight tapered wings but the
difficulties of computation are serious. It has been possible to overcome these, at least in the
few examples which have been worked out and which suffice to give a general picture of the

effect of taper.

(b) The examination of the effect of taper at the central section of a straight tapered wing,
especially at the centre, is comparatively easy, and has been made in a fairly exhaustive manner
so that a wide range of parameters ¢ and u has been covered. The local maximum supervelocity
occurs at the centre (for the biconvex parabolic profile) and the graphs on Figs. 4 and 5 give a
comprehensive picture. It appears that, for a full thombus wing, with increasing ¢, this maximum
decreases markedly, and by cropping the wing (z.., increasing ¢ from zero upwards), we achieve
a further decrease in maximum at the centre.

(c) The latter conclusion might lead to the belief that tapering a wing should be fundamentally
beneficial so as to raise the critical Mach number. However, the case is not nearly as simple as
that. The examination of velocity distribution along the mid-chord line (the locus of maxima at
all spanwise stations) shows, rather surprisingly, that the supervelocity has a clear tendency to
increase when moving outboard from the centre (Figs. 6, 10 and 11). In the case of a full
rhombus (Fig. 6) this tendency develops unchecked right to the sharp tips.where our theory gives
a logarithmically infinite value; but already, at little more than half-way along the semi-span,
the maximum supervelocity reaches the two-dimensional value. Therefore, if only small bits
are cut off at the tips of a rhombus wing, such a wing would present no advantage over an
untapered one, and might even be at a disadvantage. The interesting difference is that now the
danger sections would be located near the tips rather than at the centre.

(d) When cropping a rhombus wing by a considerable amount, 7.¢., introducing larger values
of the parameter u, we encounter again, as for untapered wings, a decrease in the maximum
supervelocity at the tips (Figs. 10 and 11) to roughly half the values at the same spanwise stations
for the uncropped wing. This tip effect of reducing the supervelocity begins to check more and
more the tendency for it to increase along the entire span, even quite near to the central section,
when both ¢ and v are large. A cropped tapered wing, therefore, may have somewhat better
characteristics, as far as critical Mach number is concerned, than an untapered wing (Fig. 12).
The danger section is more often than not at some spanwise station different from the central

one.

(¢) It has been found possible, finally, to work out the velocity distribution over the entire
wing area, in order to obtain isobar patterns; two examples of such patterns are given in Figs.
13 and 14 (and discussed in more detail elsewhere in this report). It would probably have been
very difficult to guess at even the most approximate pictures of the isobars disposition without
this long and difficult computation, and the effort seems to be justified for the diagrams are so
much different from what was obtained previously for untapered wings. The isobar patterns
will, of course, vary with geometrical parameters of the plan form, and they will be considerably
affected by modifying the wing profile. General trends due to taper seem to be clearly demon-

strated, however.

(f) The results presented may be used for calculating critical Mach numbers for straight
tapered wings, but this has not been attempted here. A short qualitative discussion shows that
critical Mach numbers may be reasonably defined only for cropped wings; that the first danger

3
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points will usually be located symmetrically at spanwise stations within both half-wings
(practically never at the centre if the profile has fore-and-aft symmetry) ; and, finally, that the -
advantage likely to be gained by taper will not be considerable for unswept wings (Fig. 12).

(¢) We may expect the theory still to be applicable to the most general case (swept tapered
wings, in particular delta wings), and partial results (for the central section) are presented in
Appendix I of this report. = These are shown to be consistent with the previous ones for swept
untapered wings, but no attempt at computation has been made thus far. It is clear that, in
this paper, we have reached the point beyond which the general integrals of the theory can no
longer be evaluated by a combination of analysis and manual computation without prohibitive
labour. The most important case, practically, of sweepback with taper (including the delta
wing) is still more difficult, particularly as it necessitates exploration of the entire wing in almost

every case. It is therefore proposed to solve this final problem with the aid of automatic
integrators. :

Acknowledgements are due to R. P. Purkiss who did an earlier part of the computational work,

and to Miss S. A. Brown and W. P. Gillott who completed the remaining greater part of this
and prepared the illustrations.

2. Preliminary Considerations~~A wing of arbitrary plan form and with any symmetrical
profile is shown in Fig. 1. P is any point on the surface of this wing and has co-ordinates (x, ¥).
If we replace the wing by a continuous system of sources and sinks, and if Q represents a source

element of area (d% dj), then the induced velocity in the x-direction at P due to the source
element at Q is:

_ ([ gd%dicosp .

where ¢ is the source strength at Q (per unit area), [ denotes the distance QP, § is the angle opP
makes with the x-axis, and the integration must be performed over the entire wing area S.
It the equation of the wing surface is:
z = F(x,), ce .. . .. .. .. (2.2
then g=—2U.F/(Z7), .. . .. .. .. .. (2.8)
and hence, from (2.1): |

%, ([ F/(&3)(x — %) di dj
—U—‘Hs[(x—ae)“r(y—y‘)ﬂm' N .73

In this report only v, has been considered as v, contributes only second-order corrections to
the supervelocity and has little practical importance

A less general wing planform is shown in Fig. 2 with straight leading and trailing edges. For
describing this wing we use three geometric parameters: the taper ratio v = ¢,/c,, the angle of
sweepback of the mid-chord line ¢,, and the coefficient of convergence & = b/s’, which is the
rate of decrease of the semi-chord with the spanwise co-ordinate* (see Fig. 2)

.

* The parameters for such a wing more usual in practical engineering would be : taper ratio y, aspect ratio 4, and

* the angle of sweepback of some representative line, ¢.g., the leading edge or the quarter-chord line.” For the present

calculations, however, the parameters defined in the text were found more convenien

t. The following formulae connect
different parameters : -

21 — vy
A=317 y’
tan ¢, = tan g, -+ e,
tan ¢y, = tan @ + 1.
Several alternative sets of parameters are suggested and discussed by Thomas* (1951) and Warren® (1951).
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The plan form of this wing has a discontinuity at the central section and it is, therefore,
necessary to consider the supervelocity as composed of two parts, namely the contributions to it
of the right-hand half of the wing (v,,), and the left-hand half (v,,). The former becomes:

v, [ (v —AFES)
—T_fodyj%[(x—ﬁ)z—l—(y—j"/)z]a/zdx’ .. .. .. .. (2.5)

where #;, £7 are the values of 7 at the leading and trailing edges respectively and defined by the
formulae:

¥ =0b—F(tan 9, + &) = b — § tan ¢, ,

2.6
¥r=—b—Ftan g, — &) = — b — § tan ¢, . (26)

There will be an analogous formula for v,, which will differ only from (2.5) by the sign of y;
for the contributions of the left-hand half-wing at a point P on the right-hand half-wing will be
exactly the same as those induced by the right-hand half-wing at a symmetrically placed point P,
on the left-hand half-wing (see Fig. 3).

Integrating (2.5) by parts with respect to # we obtain :
200, Js l: F.(%,9)
U T

[(x — 2 + (v — 3)"

It will be seen that the first term of (2.7) can always be integrated in terms of algebraic
functions or elementary transcendents if F(x,y) is a polynomial. The second term, however, is
more complex; for, if F(x,y) is a polynomial, the first integration with respect to & will give the
integrand for the second integral in terms of algebraic functions and elementary transcendents
and the subsequent integration (with respect to ) will therefore be complex and will generally
lead to higher transcendents. In view of the increased computational work involved in evaluating
such integrals, it has been decided that we should consider first only a simple case of a wing with
biconvex parabolic profile, the equation of whose surface (right-hand half) is:

F(x,y):-ﬁb(l——%)(1-(922—(’13/_%?37)’2)2),.. L @y

where b(1 — y/s') > x 4 ytan g, > — b(1 —y/s’), 0 <y <s.

1

L F,(%,9) 27 e
o jzr [(x — %)%+ (y —?)ﬂ”adx] g. (27)

The second derivative of (2.8) with respect to » is independent of . It may be mentioned that
the thickness ratio # in (2.8) may still be chosen arbitrarily as either constant or as any function
of the local chord, s.e., of (1 — y/s’). In this report, only a wing with zero angle of sweepback
of the mid-chord line (¢, = 0) and with & constant along the entire span has been considered.
Two cases have been investigated, namely, the rhombus wing with zero taper ratio v, and the
cropped-rhombus wing with arbitrary taper ratio.

. It should be noticed that the method of evaluating supervelocities for tapered wings used here
differs from that used in the previous reports“? in that the integration has been performed
chordwise first and spanwise later, whereas in Refs. 1 and 2 the spanwise integration was performed
first. This order of integration was found to be more convenient in this case. An interesting
fact is that if the velocity distribution at the central section of a swept-back fully tapered
wing is found by this method directly (by putting y = 0 before integration) then in the
limiting case &> 0 (4.e., the wing becomes an infinite swept-back one) the correct expression
for supervelocity, as known from Ref. 1, is obtained. Appendix I shows this in more detail.
This seems to indicate that integrating chordwise before spanwise is to be preferred, as the same
results do not follow if the order of integration is reversed while still putting y = 0 before
integrating (see Ref. 1, sections 4, 5 and 6).
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3. Velocity Distribution over Rhombus Wing with Biconvex Parabolic Profile and Spanwise
Constant Thickness Ratro.—The rhombus wing plan form to be considered is shown in Fig. 3,
and it will be seen that s = s, v = 0, ¢, = 0, tan ¢, = ¢ and tan ¢, = — e. The equation of
the surface (right-hand half) becomes, from (2.8): ' ‘

Vz:F(x,y):ﬁb( ~2(1—; y/s)> U ¥ )

where b(1 — yjs") >x > —b(1 — »/s"), | 0<y<s’,
. 29x%

and Fx (x,y): __b(l———y/s’)’ .o N N . .o . (32)
, 29 ]

The thickness ratio ¢ in the above equations may still be chosen arbitrarily but if we now
assume 4 to be constant along the span and then substitute (3.2), (3.3) in (2.7), we obtain, after

integrating with respect to %, the supervelocity induced by the right-hand half of the wing
surface at P:

757);” - s/ dy s’ dy st 1 X% — x—L__I_yz] _ . 4
J.o 7y 0 ¥y + J l—y/s)ln X — % 7 dy, .. .. (3)
where (from 2.6)
—T:—b—-}—j—}gy
xL:b'—y—S,
and 35

The supervelocity may be expressed in non-dimensional form by substituting the following
n (3.4)%:

y=s'n", ,
Yy =37, .. .. .. .. .. .. (3.6)
%= B(1 — yjs')8 "
Then
AT tdi ef(1 — ') — (1 —7) + 02 ,_
=Lt L i s n G e 67
where

Il

(3.8)

Il

orf = (1 — )" + [E(1 —9) + 1 —7]*, ]
02" = (1 —n')* + &’[£(1 —»") — (1 —4)]*. '
The contribution of the left-hand half of the wing to the induced velocity at P may be found

in a similar way from (2.4) but it may be more easily obtained directly from (8.7). For, the
induced velocity at P due to the left-hand half of the wing is exactly the same as that at P,

* ' was chosen as the non-dimensional spanwise co-ordinate (varying from 0 to 1 for a full rhombus, and 0 to (1 — #)
for a cropped wing). This is different from that used in previous reports where the co-ordinate » = y/b was taken.
& is the chordwise non-dimensional co-ordinate and varies from (— 1) at the trailing edge to (- 1) at the leading edge.
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(a point placed symmetrically to P with respect to the central section, in the left-hand half of
the wing (se¢ Fig. 3)) due to the right-hand half of the wing. This latter supervelocity may be
found from (3.4) simply by reversing the sign of y. If we Wr1te (8.4) in a shorthand form as

| xv,,/US = flx,y), .. . .. . . - .. . . (3.9)
then nv, /U8 = flx, —v) . .. .. . . .. .. .. .. (8.10)

- Non-dimensionally :

T = elen) g<b = WST), e e e (31D
and mj’” (b TR y/s’) ;. . . o ..o (8.12)

but as & is still defined by (8.6) for any point of the right—hand half of the wing, so the contribution
of the left-hand half of the wing to the supervelocity at P is:

nw,_ (él-kn W}-‘ O : <)

In other words, the contribution of the left:hand half is gi;\fen directly from (8.7) by reversing

the sign of »’ and replacing & by §& i%z, This method of conversion must be used with

caution throughout further calculations, however, as it is not applicable at every stage (sece
Appendix II).

The contribution of the left—hand half of the wing is therefore:

vy 1d17 dn 1 c&(1 — g e(l —
Uﬂ_Jogg 00,4 fol——nl <s§1—77 e(l —

where o = (i + )"+ S%O—n)+1—ﬂﬂ}
=7+ ')+ (1 — ") — (1 — 7).

+ o0\ ;.
;+1)@, (3.14)

[ =

(3.15)

The complete supervelocity at P is thus the sum of (8.7) and (3.14). To evaluate these formulae
the terms involving logarithms were integrated by parts, and the velocity distribution can then
be reduced to the following form:

— w0, /U =1, +1,, 516
— a0, JUS = I, + I,, .
- , ! ) In(1—7) ) d7
with L;_JJ1+H_WML+@f%:?}£,
: In (1 — )| d7
) ) 'NIn (1 "y .. .. (8.17)
—_— n —_—
L=—[ltrasn(ee D) RE=D1E
' , 1 —»'\In(1 —7)]dq
and I4=—J0{1—|—(1—{—17)<1—£1_l_77,> P }é;—




Now, if 5’ is zero, we obtain from (3.11) the supervelocity distribution at the central section of a
rhombus wing. For this particular section, of course, the contributions of the two halves of the
wing are equal. The total supervelocity at the central section is then : '

— 70, j2U9 = I, + I,, (3.18)

ma_mf di ]
7 EE ST |

1 In(l—4)) a7

L=f—Lh%%1~ﬂlwﬁ m}wh+&@j1+m?@ J

If, in addition, & is equal to zero, we have the value of the supervelocity at the mid-point of the
central section : -

where L=—ﬂh+a+a
‘ (3.19)

v, ! In (1 — ) } a7
__Mm__jd1+ o ETE e B2
Next let us put &£ = 0 in (3.16) and (3.17) and we then obtain the supervelocity distribution
along the mid-chord line (y-axis in Fig. 3). This is then given by :

Y, ! AAn (1 — 7)) d7 ' Ao (1 —7)) dj
—ﬁ%z—ﬂﬁ+u~nﬁ%:%”£*ﬂ“+“+w%%ﬁﬁ”L,‘””

Qs
the expressions for gy, s, 04, 0, being now:
0 = 0’ = (7 — ') + (1 — 7)?, }
o = 0 = (7 + ') + (1 — 7)°.

It may be seen that the first integral (which represents the right-hand half contribution) has
an infinite value for ' = 1. L :

(3.22)

The integrals involved could not be evaluated exactly in terms of elementary or tabulated
functions, and it has béeen decided to perform the integration by expanding the integrands into
convergent power series and hence finding a sufficient number of terms in each series to ensure
-a reasonable degree of accuracy. Details of the expansion of these integrals are given in Appendix
II. The necessity of having to calculate the integrals by summing a number of terms of infinite
series naturally entailed a great deal of computation. Velocity distribution over the entire wing

and the isobar pattern has, therefore, been found for only one example of a thombus wing with a
coefficient of convergence ¢ = -3, :

In view of the computational difficulties the first calculations were made for the simplest
case of the wing centre only. Values of this induced velocity were found for a range of ¢ from
0 to 1-5. The values of the supervelocity ratio — 7v,/4Ud have been plotted against & for the
central point of the central section of a Thombus wing and these values are given in Table 1
(figures corresponding to v = 0 for various ¢); the graph of this variation is shown in Fig. 4
(v = O curve). It would appear from these results that tapering the unswept wing has a wholly
beneficial effect, but this cannot be accepted until a more detailed investigation has been made.

‘The next step in the calculations is to find the supervelocity at various spanwise positions along
the wmid-chord line (¢ = 0) which,

by comparison with the results for untapered unswept wings
with biconvex parabolic profile, will probably be the locus of the local maxima, This spanwise
supervelocity distribution has been found for rhombus wings with & varying from 0 to 1-0.

These results are given in Table 2 and Fig. 6. It is clear from these that the optimistic picture

of the effect of taper on an unswept wing given by Fig. 4 is partly an illusion for, although v,

at the central point decreases as & increases, Fig. 6 shows that v, increases along the span and
finally tends to a logarithmic infinity as the tip is approached.
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The singularity at the sharp wing tip, consisting of a logarithmically infinite supervelocity
when approaching the tip along the mid-chord line, may seem surprising®. The singularity at
the right-hand tip is due to the source-sink system of the right-hand half-wing only because,
obviously, the other half-wing contributes merely a small finite increase. Fig. 7 represents, as
an example, the respective contributions of the right-hand half-wing (curve A) and the left-hand
half-wing (curve B) to the supervelocity along the right-hiand half of the mid-chord line, in the
case ¢ = 0-3; the total being shown by curve C which corresponds to the 0-3 curve of Fig. 6.
The curve A represents the mid-chord line distribution for a separate ériangular wing (half of the
full thombus) and exhibits the same sort of singularity at the tip as previously observed on curve C.
Suppose now that the triangular planform gradually expands leftwards from its fixed tip, the
coefficient = being kept constant so that the shape of the triangle remains unchanged, its scale
only being increased. Then curve A still represents the mid-chord supervelocity distribution if
it is kept in mind that ' is a non-dimensional quantity denoting the fraction of the (gradually
growing) span. If, however, a point on the mid-chord line, at a fixed distance from the fixed tip,
is considered, then 7’ assumes higher and higher values as the wing expands leftwards, and the
supervelocity increases accordingly. When the span ultimately becomes infinite, " at all points
at a finite distance from the tip approaches 1, and supervelocities rise to infinity. ~This can also
be checked immediately by examining the corresponding formula (first integral in 3.21) with
— o as the lower limit of integration. It would be vain, therefore, to try to introduce the concept
of a ‘semi-infinite triangular plan form’ as a simple representative of tapered wingst, analogous
to semi-infinite or infinite untapered wings, which served us so well previously.

It would have been difficult to predict whether the supervelocities on a fully tapered (in
particular triangular) wing should be generally greater or less than those on an untapered
(especially two-dimensional) one. At any section, the contribution of the adjacent tapering part
must be smaller, that of the adjacent diverging part greater, than the corresponding amounts
in the case of a constant-chord wing, but it is not clear beforehand which effect will prevail.
Our analysis shows that the increasing tendency has the upper hand if the wider part occupies
a sufficiently large proportion of the span, more and more so as the section approaches the
sharp tip.

It will be seen, therefore, that taper may have a detrimental effect on the critical Mach number,
especially if the wing has fairly sharp tips. This, however, is not so serious as it appears at first,
for the taper ratio y = ¢,jc, will always be an appreciable fraction, as sharp tips never occur in
actual design. The supervelocities on wings with y # 0 are investigated in the next section.

Before leaving the thombus wing, it was thought that an attempt should be made to determine
the velocity field over the entire surface of such a wing. The amount of computation involved
made it impossible to consider more than one case, and a wing with & = 0-3 has been chosen.
The supervelocities were found at various spanwise positions, and the isobars over the entire
wing were found from these curves. Fig. 8 and Table 3 show the variation of — =v,/4U¢ with
¢ and 4’ for this wing, and Fig. 13 is a diagram of the isobars. It will be seen that the results
confirm the fact that the sectional maximum supervelocities occur along the mid-chord line for
the biconvex parabolic profile and that, therefore, Fig. 6 does indeed give the variation of the
local maxima spanwise with, coefficient of convergence e.

# It may be stressed that this singularity has been obtained entirely on the basis of the first-order method, and the
results of an exact theory (or, at least, of a higher order approximation) may be different. No appreciable corrections
should be expected within a major part of the span, but the nature of singularities at the sharp tips is unpredictable for
the time being, so that it must be left as an open question whether the supervelocity along the mid-chord line really
increases indefinitely towards the tips in the exact solution. The answer may be different according to whether we
consider a flow past a given wing (the system of sources and sinks being then slightly modified), or a flow with the .
assumed system of sources and sinks (in which case the wing shape would be somewhat altered). The problem is certainly
an extremely difficult one, but its intercst is purely academic, as only minute tip portions are involved. Tt will be seen
(iin section 4 that this type of singularity will not occur at the tips of cropped wings, the only ones likely to be used in

esign. :

t At least on the assumption of thickness ratio being invariable spanwise, but alternative assumptions do not seem
promising for any practical purpose. - ’
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The isobar pattern in Fig. 13 is very instructive, especially if compared to that for an untapered
finite wing (see, e.g., Fig. 26 of Ref. 2) from which it differs in a striking way. The dominating .
feature is that all isobars converge to the sharp tip corner which presents a peculiar singularity.
It is obvious that all isobars corresponding to low and all negative supervelocities must converge
to this corner, as the wing profile near to it contracts to zero length, and thus the stagnation
points and points with gradually increasing velocities all tend to coalesce. However, isobars
with indefinitely increasing positive supervelocities also radiate from this same point, although
their dimensions become decreasingly small. This could be expected because the supervelocity
along the mid-chord line has been shown to tend to logarithmic infinity at this point. The
mathematical singularity is physically of little importance by itself, but if results in the isobars
with high numbers (high-suction lines) doubling back on themselves and becoming closed contours
within one of the half-wings, close to the mid-chord line; they do not reach the central section -
where the local maximum (0-897 in the case of Fig. 8) is lower than their own parameter.
Naturally, lower isobars do reach the central section which they cross at right-angles, and thus
run through the entire wing span. There obviously exists one isobar (corresponding to the central
section maximum) which separates the two groups, and this consists of two branches with a
double point at the origin O. The entire picture thus differs from that of an untapered wing
(Ref. 2, Fig. 26) in that the higher isobars are concave to the tip instead of to the central section*,

Fig. 13 represents, of course, only one particular case (for ¢ = 0-3) but this example is typical,
as may be concluded from the diagram in Fig. 6, which shows that the maximum local super-
velocities always increase continuously from centre to tip, the slope increasing with e. The
isobar patterns for various ¢ will, therefore, always resemble that of Fig. 8, the only effect of
increasing e being that the higher (closed) isobars will be more crowded spanwise.” A rough
sketch for arbitrary ¢ may be drawn by using a corresponding curve from Fig. 6 using in addition,
if possible, the velocity distributions in the central section.

Finally, if another profile, differing from the biconvex parabolic (in particular, not symmetrical
fore-and-aft) is chosen, the isobar pattern will be essentially similar to that of Fig. 13, but there
will be no symmetry about the y-axis, the maximum supervelocities of particular sections will
be numerically changed (generally increased) and be on a curvilinear locus, and the isobars will
be more crowded in the region of greater curvature of the profile, etc. Apart from such distortion,
we should not expect any qualitative changes, especially for moderate ¢, unless the profile itself
is a bad shape with irregular two-dimensional characteristics.

As regards critical Mach numbers, the position is rather peculiar, owing to the theoretically
infinite supervelocity at the sharp tip which seems to be the first danger point. It is impossible
to calculate the lower critical, and its significance would anyhow be negligible because the area
initially affected would be small. However, it is clear that, at increasing speeds, shock-waves
would first appear in tip areas to spread gradually inwards until they reach the central section.

The matter does not merit a numerical examination as sharp-tipped wings are never used in
design.

4. Velocity Distribution over a Cropped-Rhombus Wing with Biconvex Parabolic Profile and
Spanwise Constant Thickness Ratio.—The cropped-rhombus wing plan form which has been
considered is shown in Fig. 8, and in this case s = s’(1 — y), where 0 < ¢ < 1.

As the velocity distribution has already been calculated for the thombus wing it is convenient
to calculate the effect of the ‘ cut off * tip triangles and subtract this from that of the complete
rhombus wing. In this way the additional computation is shortened because the terms of the
new series are small and so only a few of them need to be calculated to obtain the required

~accuracy. Also, the effect of the tip triangles on sections near the centre, to be subtracted from
the full-thombus values, is often so small as to be negligible.

* This isobar pattern is obtained, of course, on the basis of the first-order theory. An exact pattern will only deviate

slightly within a major part of the planform, but some alterations, difficult to predict, may occur in the nearest
neighbourhood of the sharp tips.
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The velocity contribution of the  cut off * right-hand tip triangle is given by (3 7) and (3.8)
when a suitable change of the limits of mtegratlon is made; thus:

nﬁxr . t @ t 1 {85(1—7/)—8(1—77)_*—92 _
Uﬁ_J’—w{h_;_-f—sz Jl wl—ﬁrln 85(1— I)+ (1“77)’*“91 dﬂ’ (4'1)
where g, and g, are defined in (3.8), and the non-dimensional co-ordinates %', 7 and & are the same
as before (see 3.6).

As for the rhombus wing, the contribution of the left-hand tip triangle is obtained by replacing

!

1—7"Y.
n' by (—n’) and ¢ by(f T Z) in (4.1).

- The logarithmic term is then integrated by parts, and the limits substituted where posstble ;
the formula (4.1) then reduces to:

__7.67’)‘“/(]7_9:52-{—f1—+—j2, 4.2)
—ﬂ‘ZI)‘xl/Uﬁz"1+I3+I4: ()
‘ 1 65(1 —7’]/) gy +- 811 —y
where Q Zgln%”ln }:35(1 77') — &Y ‘[—021 w} ’
1 e6(1 — ) + ep + Goay
Zzlnwln[gg(l ’)—Sq)+041—w]’
LT In(l1—7)]4
L= [tra—mna+ o2
- ) (4.3)
o )]
I, — jl_w_1+(1 7)1 — §) ﬁ—n’:|92}
- Tor , 1—7' 11‘1(1—77) @
e I LR PRI R = Ok =l P
B 1 F , 1—77 ln(l_‘ﬁ) dﬁ
j'4__n—Jl_w_l—l—(l—{—ﬂ)(l_‘fl_}_q;’ 17—!—1’// :|a)
with Giay = (1 —n" — ) 4 (& — &' + 9)°,

2

7' — g (& — &n' + v)?,
+ ' — p) 4 P — &' — )",

The integrals of (4.3) have been evaluated by expanding them into convergent power series as
for the whole rhombus, and details of the analysis are given in Appendix IIL

oA
O3,1—p

( e )

52,1 1p2 (1_77_1/'))2-1_82( 77_1)0)2:
4 . | R £ )
(1

A
G41w

If we substitute £ = 0, ' = 0 in (4.2), (4.3) and (4.4), we get the formula for the cenire of a
cropped-rhombus wing :

7, 0 ‘
—mzz—FIl, .. P . . « . . . (45)
1 e 1 — »)2 .2,,211/2
where — —lnwl [—wszj_—i({(l _wzp ;:68? };}1/2:] )
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Figs. 4 and 5 show the variation of the supervelocity at the centre of straight tapered wings
with ¢ and . TFig. 5 also shows lines of constant aspect ratio A (see formula for 4 in the
footnote under section 2).  The values of 4 when ¢ = 1-0 are obtained directly from the values
for rectangular straight wings (see Ref. 2, equation 4.2.3 and Fig. 2). :

If we put & = 0 while keeping " arbitrary in (4.2), (4.3) and (4.4), we get simplified formulae
for the mid-chord line of the cropped wing:

it J2US = 30 1 I,
— af, J2US = 34 + I, ’ (7)
‘where (@), = %m pln— ‘“;;r[([l(l— _77;7,__?”);)? = 2;’;3)1]/1,2 ,
(o= 7m0 =1L ;7,‘_"’););;823;21;,;, | 48
L=l—-—[_{1+0 M)mn—(:?—”)}?

the expressions for ¢, and ¢, being now defined by (3.22).

The supervelocity along the mid-chord line of the cropped wing has been computed for values
~of v of 0-3 and 0-6 for values of ¢ varying from 0 to 1-0. This again gives the local maximum
supervelocities across the wing, and it is seen from Figs. 10 and 11 that the effect of
cropping the wing is to bring about a considerable reduction of the supervelocity at the
tips which drops to roughly half its original value at the same spanwise station. “The tip
effect for a tapered wing is therefore similar to that for an untapered one. Thus it is clear that
the effect of tapering and cropping a wing may be advantageous by comparison with an infinite
untapered wing. If comparing with rectangular wings, the effect is more subtle and depends
on the choice of the latter. We may, for example, make a comparison for either plan form families
of constant s/b or constant aspect ratio 4. Fig. 12 shows the variation of the true maximum
supervelocities (wherever they occur) for wings of constant s/b or A4,the values of either ratio
being taken alternatively as 2-5 and 5-0. It should be noticed that the effect of taper is only
quite small in all cases but is more marked for the lower values of s/b or A and somewhat more
significant when 4 is kept constant rather than s/b. For moderate to large values of v, taper
does reduce the maximum to a small extent but, with decreasing v, the effect is reversed. If,
however, the local maximum supervelocity at the central sections had been compared for these
wings this would have indicated a marked beneficial effect from taper which would be quite
erroneous. It should be pointed out that only two points on each of the curves of Fig. 12 have
been determined accurately (from our Figs. 10 and 11, using interpolation as necessary), apart
from the values for the rectangular wings (y = 1), which have been taken from Ref. 2, Fig. 24,
and fully tapered wings (y = 0) where the values are logarithmically infinite. The reason for
this is that our computation of v, for cropped wings has been made for only two values of
p = 0-3 and 0-6. The curves of Fig. 12 do suffice, however, to show the general trend of the
effect of taper. - '

It has been thought justifiable to undertake one more computational effort so as to obtain
an illustrative picture of supervelocity distribution over an entire cropped wing. The values
of the parameters chosen are ¢ == 0-3 and » = 0-8. The numerical results are given in Table 4,
supervelocity diagrams in Fig. 9, and the wing with its isobars is represented in Fig. 14.

The isobar pattern in Fig. 14 may be best examined by comparison with that of Fig. 13 (full
rhombus with the same ¢). It is seen that the central area presents an almost identical picture
in both cases because, obviously, the effect of the distant small tip triangles which have been cut
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off is so slight. The pattern changes, however, in the remaining areas near the tips where super-
velocities are greatly reduced so that the higher isobars, instead of converging to the imaginary
sharp tip, double again back on themselves becoming more or less similar to those in the familiar
cases of untapered tip areas (Ref. 2, Fig. 26). As a result, the high isobars become narrow ovals
stretched spanwise, separate in each half-wing*. Somewhat lower isobars (with index little below
the maximum of the central section, 0-897 in the present case) again cross the central section,
thus becoming large ovals extending over both wing halves—there being again a separating
isobar of slender ‘ eight ’ shape with a double point at the centre. Even lower isobars, with
index below the tip maximum (0-571 in our example) reach the tip section and thus split into.two
full-span branches of mild curvature. The taper effect dominates the central area, while the
tip effect rules two regions of its own.

Fig. 14 is again representative of a wide class of cropped-rhombus wings, but not to such a
degree as the typical full rhombus pattern of Fig. 13. In the previous case, only one parameter,
¢, affected the picture, resulting in merely quantitative modifications. Now we have to deal
with two parameters, ¢ and v, and the pattern may undergo even qualitative changes as either
of the two prevails. Thus, as y increases the tip effects gradually suppress that of taper even
in the central area, producing a pattern more similar to that of untapered plan forms of small
aspect ratio. The changes may be predicted approximately by examining the diagrams of
supervelocity along the mid-chord line (as in Figs. 10 and 11). It is seen that as the wing is
cropped more and more (increasing v), the two separated regions of closed ovals enclosing the
two ‘ foci’ in both half-wings become increasingly narrow, the foci themselves receding inboard.
The effect is more pronounced at larger e’s so that, ¢.g., when ¢ = 1 and y = 0-6, these two
regions practically disappear. With even greater v, the foci would coalesce at the centre and
then the pattern would consist of just ovals over both wing halves, and full-span branches.
This, however, will only occur for wings of very small aspect ratio, with no practical significance.

The change of profile will again produce modifications consisting in destroying the fore-and-aft
symmetry, usually increasing the maxima and displacing them chord-wise, crowding the isobars
where the curvature of the profile increases, etc., but no important qualitative changes are to be
expected for well-shaped profiles.

As for critical Mach number, the position is at least fundamentally clear, if not promising as
far as actual computation is concerned. The first danger points in most cases (at least for profiles
with fore-and-aft symmetry) will obviously be the two *foci’, and these will detérmine the
“lower criticals ’ for the wing. Shock-waves, once started near the foci, will then spread both
inboard and outboard as the speed increases, the central area being reached quite soon. Only
in cases of large values of both ¢ and y will the root section be relevant for the lower critical
when shock-waves will gradually spread outboard from the centre towards both tips. The
calculation would be troublesome as, in compressible flow, the Géthert’s three-dimensional
paraphrase of the Glauert-Prandtl law would have to be applied so that, for each Mach number
an ‘ analogous " wing with span and thickness reduced to the 4/(1 — M?) fraction of their original
values would have to be considered, the thickness ratio remaining spanwise constant, however,
Diagrams as those of Figs. 10 and 11 would be needed, and the calculations would proceed on
the lines of Ref. 6. It is not proposed to enlarge on the subject here, but it may be mentioned
that, according to the results of this paper as to maximum supervelocities, no considerable
benefits are to be expected for tapered wings as against untapered ones unless the aspect ratio
is particularly small. In practice, small aspect ratio wings will usually be strongly swept-back
leading to delta plan forms, and in such cases one more effort will be needed to overcome the
combined theoretical difficulties of sweepback and taper. Even when the wing plan form has
fore-and-aft symmetry but its profile has not, some aspects of sweepback play a part because
the highest isobars then run obliquely to the main flow.

* And enclosing respectively, the two * foci’ with supervelocities maximum for the entire wing area (index 0-994 in
our case).
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LIST OF SYMBOLS

Explanation of Typographical Signs and Suffixes.—The suffixes 7, [ refer to the right-hand and
left-hand sides of the wing respectively.

The suffixes L, T refer to the leading and trailing ‘edges of the wing.
The suffix , when used with ¢ refers to the mid-chord line.

The suffixes 1, 2, 3, 4 for the square roots (7, ¢, R) indicate the integrals in which they occur,
for instance 7, occurs in I;, etc. The irrational factors of the square roots with limits substituted
(¢’s) have two suffixes, the first indicating the integral in which they occur and the second suffix
(0, 1, 2 or 1 — ) indicating the upper or lower limit of integration which has been substituted.

A similar system has been used for the series of I’s and T’s (see Appendices). The first suffix
refers to the integral of which the series is part (I, I,, etc.), and the second is the number of the
term in the power series. Thus I,,, is the m® term of the power series of I's in I;. Similarly
for T,,, etc. '

For the thombus wing I, and I, are expanded in a different way over the outboard part of the
semi-span, and I, and [, are split up into several integrals which are denoted by the additional
suffixes %, 7, &, p. The terms in the power series in these integrals (where it was necessary to
expand in such series) therefore have three suffixes: the third indicating now the number of the
term in the series. For example, Ti,, is the w' term in the power series in the integral Iy,
(the A-part integral of I,).

The suffixes 1, 0, (1 — ) used with the auxiliary variables x, », = denote the values of these
variables at the upper and lower limits of integration.

In the expansion of the I’s there are symbols of the form I, ,, I, ,, etc.; the second suffix
in these cases indicates the power of the variable (such asy, », v) in the numerator of the integral.
For instance: :

%y, d/l, ﬂ1dlu
I1_1=L0;R‘1, L= w Ry

The sign * over a symbol indicates the values for the cut-off tips of a cropped wing and the
supervelocities thus marked must be subtracted from those corresponding to the fully tapered
wing. ‘

A Aspect ratio
- a, a4, etc. Constants, see (I1.43), (I1.44)

b Semi-root chord
¢ Chord at any spanwise station (variable owing to taper)
c, Root chord
c, Tip chord

F(x,y) Function determining wing surface or, for a fixed y, profile at any spanwise

station, see (2.2)

I Function determining the contribution of right-hand half-wing to v, in terms

of dimensional co-ordinates x, y, see (3.9)

g Function determining the contribution of right-hand half-wing to v, in terms
of non-dimensional co-ordinates &, n’, see (3.11)

I Integrals appearing in the solution

Carries appropriate suffixes.
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LIST OF SYMBOLS——continued

Distance QP, see Figs. 1, 2, 3
Index denoting arbitrary term in an infinite series

Terms of the power series of inverse square root occurring in the solution,
see (11.47)

Carries appropriate suffixes

Source strength per unit area, see (2.1) and (2.8)

Various non-dimensional expressions in p, », v defined by (1.10) (IL5), (I1.52)
and (I11.6) ‘

Carries appropriate suffixes

Various dimensional expressions in x and y defined by (3.5) and (I1.3)

Carries appropriate suffixes

Wing area
Wing semi-span

Distance of point of intersection of wing leading and trailing edges from the
root chord (this is equal to s for fully tapered wings)

Terms of the power series of logarithms occurring in the solution, see Appendices

Carries appropriate suffixes

— pAuxiliary variable, see (11.43)
Undisturbed velocity of the air flow

Components of induced velocity

Carries appropriate suffixes

Chordwise and spanwise co-ordinates

Chordwise and spanwise co-ordinates of a source element, being fundamental
variables of integration

Values of # at the limits of integration, 7.e., at leading or trailing edge
Vertical co-ordinate

Angle, see Figs. 1, 2, 3

b/s” Coefficient of convergence

y/s’ Non-dimensional spanwise co-ordinate of a point on the right-hand part
of the wing surface

Similar co-ordinate for a chordwise source-and-sink strip
Thickness ratio of wing profile
Portmanteau symbol, see (4.3)

Auxiliary variable, defined by (II.3) or, in the particular case of the central
section, by (L.8)

Auxiliary variable defined by (I.8)

%+ ytan ¢, Non-dimensional chordwise co-ordinate of a point on the
(1 —7') right-hand part of the wing surface
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LIST OF SYMBOLS—continued
0 Various expressions in 7, #’ ‘and &, defined alternatively by (3.8), (3.15),
(3.22), (4.6)

Carries appropriate suffixes

¢ “Various expressions in ' and & obtained from R after substitution of limits of

integration, defi
(I11.12), (II1.28)

ned alternatively by (I.17), (I1.31), (I1.15), (11.30), (IL.58),

Carries appropriate suffixes

T Auxiliary variable defined by (I1.50)
@ Angle of sweepback

Carries appropriate suffixes
vy = c¢fc, Taper ratio of wing
Q Portmanteau symbol, see (4.3)
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APPENDIX I (To Section 2)

Velocity Distribution ai the Central Section of a Fully Tapered Swept-back Wing with Biconvex
Parabolic Profile and Spanwise Constant Thickness Ratio

In the following calculations the chordwise integration is performed before the spanwise and
7' is equated to zero before the integration. The results thus obtained have been checked with
the formula for an infinite swept-back wing by ﬁndmg the limiting value when the convergence

ratio e tends to zero.

The general formula for the supervelocity at any point on the surface of a swept-back fully
tapered wing (angle of sweepback of the mid-chord line g,, coefficient of convergence ¢, and taper
ratio p = 0, see Fig. 2) is found by substituting the first and second derivatives of (2.8), with
respect to x, in the general formula (2.7). Hence, for the right-hand half-wing:

MYy, f“[ % + 7 tan @, e 1 L ax } i
U b(1 —3/s') Uz — 2" 4 (y — 9912 lzr - O(1 — F/s') Vo [(w — ) + (y — )"
. . (1.1)
or
av,,  ('T1 x——b—{—j‘/tanq:L—i—er _
Uﬁ' _JDI: _I_ +b( j)/s ]. <x+b—f—_’)7tan(pT—}—1’1> d/, .« .. « . (I.Z)
where the limits of integration #;, #, are defined in (2.6) and
1’12:(%—i—b—[—_’)_/ta.n(PT)z_"(y_'y)ga ] (I?,)
7t — (5 — b §tan g + (v — 5. .. .. .. .. .. .. )

If we now put y = 0 in (1.2), we then obtain the supervelocity in the central. section induced
by the vight-hand half-wing, Wthh may be written in non- dlmensmnal form:

TV, s 1 tan ¢, — (1 — aq
U :Jognl oo j <Ztanzz+ +£;j:ij 1,—7777 R
where ‘
0.2 = 7% sec® pp + 2¢(1 - &)7 tan g, + &1 4 &), } s
0. = 77 sec® ¢, — 2¢(1 — &)ij tan ¢, 4 X1 — &)%.

The contribution of the leﬂ—ha%d half-wing will be exactly the same, owing to symmetry.

Integrating the logarithmic term in (I.4) by parts, and substituting the limits, where possible,
we may present the formula for the total supervelocity in the central section in the form :

S O ( H5)
with '
——_J-(l 11’1(1—77) d_ﬁ,
K o A (1.7)
In (1 —7)\dq .

12:~f:(1+(1—5)

7 Q2

The formula (I1.8) applies for an arbitrary value of &, but it would not be permissible to let
e— 0 at this stage. This will only be possible after the following transformation.
17
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Neither of the integrals, (I.7), can be evaluated in terms of simple transcendents or tabulated
functions, so it has been decided to expand the logarithms in power series and integrate term
by term for a sufficient number of terms to give the required accuracy. Before doing this, however,

the variables of integration have been changed in an analogous way to that which will be used
for the thombus wing (see Appendix II).

Introducing the auxiliary variables defined by

MZWU+®+ (1.8)
v = /(1 — &) |
tfor I, and I,, respectively, we obtain :
1/14& 1 d
L:—COSQJTJO [1+/;111{1—M(1+5)}}R%:
(1.9)
1/1-¢ 1 dy
Iz—_——cosqoLJ0 [H— ;]n{l — ”(1—5)}}?2;
where -
R12 = ILL2 -+ 28/1 sin @7 COS @ + g* cos® Pr 1 1.10
R22 = 2% — 2ey sin @ COS ¢, "{“ ¢* cos? @ . l ( ' )

Let us consider I,. Expanding the logarithm in a power series (valid throughout the range of
integration), we obtain:

1/1+¢ adp
T, = cos t]?TJO [5 + 3 (1 4 8)" - Ju*(1 4 £)° + }E Coee e (1)
or .
L;shwm%wwl+®%%%{yh+%u+ﬂﬂé+ﬂl+Sqm+.l
S (L.12)
where
1/14-¢& #m .
L= S OO S T
and hence ’
LA+E 1+ &(1 4 &) sin ¢, cos ¢ + oy,
Iig=], E:m( e(1 4 &)(1 + sin ¢;) cos ¢ ) T (1.14)
]11:%—1[—1_5_ € COS @p — &l ¢ sin @4 cos guf, e .. .. (I.15)
[ [1 — 3e(l + &) sin @7 cos ¢rlo; , n 3e? sin ¢y cos? g,
1e = o9 + &) 2
(13 sin22¢T)Il o COS® @ , - L .. .. (I.16)

and ¢,," is a factor appearing in the expression for R?, obtained after substituting the upper
limit of integration: ’

o1 = 14 2¢(1 4 £) sin ¢4 €os o7 - (1 + &2 cos? . .. .. .. (I1.17)

It has been found that the series > I 1w 15 not rapidly convergent, and so another series—

1
that which is formed when ¢-> 0 in 7,,, I, . etc.—is combined with it in such a way as to
produce one series whose sum to infinity is known and another which is quite rapidly convergent.

18



As e—0, I, ,— 1/1 + &, I, ,— /(1 + &)? etc., and hence:

(1 + &yt [ 1 1 cos pr :|

I, =1,,&cos %%—% o+ Om LT+ 5)’”_<(1 —}—5)’”_7%11"%0?;9;) COS @g .. (I.18)
or

I =1I,,&cos or + (1 + &) [Z e + T IZ Tm] cos @, , .. (1.19)
or, finally : ‘

Iy =1 4&coser+ (1 + 8 (1— Tlm CoS @q , .. .. .. (1.20)
where :

. 1 (1 + é:)m Il wm COS @r
Tin= (m-+1Om  m+ 1 cosg (1.21)

For the computation a recurrence formula for 7, was used. Edwards’, on page 235, paragraph
240, gives the following relationship:
xm—2

xm—l (Gl _+_ bx + sz)l/z — (’14/1/ — l)aj ((l "l‘ bx + Cx2J1/2 dx

m 1 xm
+ 3(2m bJ ey Ean U me | G e (122
From this formula we get:
w — 1 2m — 1 )
Il m m(lo'ii_l é_—)m - "W Il m—2 ‘92 C052 Pr T Ilm—l € s Pr cos 9T, (123)
and substituting for I,,, from (I.20) in (I.23):
1 COS cpT]
Tom = (m + Dm ':1 T %11505 ¢,
I e(l + &) cos ¢r I:(m — 1)2e(1 + &) cos g + (2m — 1)(m — 2) sin ¢r
m 4 1 m(m — 1)(m — 2)
(m — 1)® : 9
— g(l + &) T e cos or — (2w — 1)1y, sin g7 | . - .. (1.24)

This recurrence formula can be used for all values of m greater than 2, but 73, and 7, , must
be found from (I.15), (I.16) and (1.21):

1 Cos @ cos? ¢ : or .
T11:§,:1_‘011K¢T0‘|‘8(1"l"E)COSq?T“{“IloS( +§)COS TSln(pT:|’ t (I.25)
1 ‘ ) cos
T, .= 3 [1 — 04 {1— 8¢(1 + &) sin g7 coS ¢y} oo Q;TD
0s® @r . . cos® ¢
31+ £) - Sos g, Sor 4 Lo (1 + £(1 — 8 sin® pr) %T : .. (1.26)

The corvesponding formulae for I, are found by replacing & by (— &) and ¢, by (— ¢;), then

12:‘—1“5c05%+(1—5)(1—2 T,,) COS @y .. . . . .o (1.27)
where
1 — ¢(1 — &) sin ¢, cos ¢, + 021:‘
I, zln[ o0 — £)(1 — sitl z) 05 9r , .. .. .. .. (1.28)
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1 cos ¢ cos® ¢ cos® ¢ .
‘TZI:Q[I—GHW—{—‘ e(l — &) COS(pf_I“S(l—S) COSq)jSln(pL}’ .. (1.29)
and
1 . cos
T,, = & [1 — o031 {1 + 3¢(1 — &) sin ¢, cos (pL}cosszz
cos® ¢, . . ) cos® %}
+ 3:%(1 — £)* —— Jo Sint er +- Iy 65 (1 — &)*(1 — 3 sin® ¢;) cos pe .. (L30)
where . :
021" = 1 — 2¢(1 — &) sin ¢, cos ¢, + £2(1 — &)2 cos® g, . .. .. .. . (1.31)
The recurrence formula for 75, ,, is then:
1 CoS g
Tap = (m +- 1)m<1 T %2109 %)
e(l — &) cos ¢ < (m — 1)%(1 — &) cos @, — (2m — 1)(m — 2) sin ¢,
- m 4+ 1 m(m — 1)(m — 2)
— 1)
— (7_”_?%_) e(1 —¢&) Ty u_z cos @ + (2m — 1) T, ,,_, sin (pL> : .- o (1.32)

Adding (1.20) and (I1.27), we obtain the tofal supervelocity at the central section :

o0

- :77:7):17,/2(j19 == [2 —' (1 - E) z T2m - (1 ;i— §) z Tlm] COS @y
1

1 .
— &Iy cos @, — I, COS @7) . .. .. .. . .. .. (1.33)

The above formulae give now all that is needed for computing v, in any particular case, but
no attempts at this have been made thus far.

Let us now consider the limiting case ¢ -+ 0. Then I, w—> 1/m(l 4 &)" and ¢, = tp;) = g@;r=¢;

therefore, from (I.21), we find that all 7, — 0. Similarly T5,, tends to zero for any value of
from 1 to w, and (1.88) therefore reduces to:

y, . »
_WPZI_%EISEO(IZO_IIQ)' .. .. .. .. N .. N (134)
Now ' | :
I — ¢(1 — &) sin g, cos @p + 054 (1 4 £)(1 4+ sin ®r) COS @r
L"ﬁ"hnzdn<l+~41+—®sm¢Tam¢T%—ml(1——@0——sm¢gcm¢m) (1.35)
and the limit of (I.35) when ¢ tends to zero is:
. 14+ &1+ sing
}Eﬂﬁomfw%=m[1_§1+ﬁm¢J: (1.36)

where ¢, = ¢, = ¢.

The supervelocity distribution at the central section of an infinite swept-back wing of constant
chord with biconvex parabolic profile is therefore :

I+ &1 4 sin g '
_nv"/4Uﬁ:[1_%51n{1—§1—sin¢l}cos¢’ .. .. .. . (1.37)

which isas given in Ref. 1, formula (6.1). Thisresult seems to indicate that performing the chordwise
integration before the spanwise may often be preferred to the reverse order, as, even when v is
put equal to zero before integrating, the results for the central section come out correct. In the

case of a tapered wing, this order of integration is certainly the only appropriate one and has
therefore been used throughout.
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APPENDIX II (To Section 3)

Velocity Distribution over the Entive Surface of a Rhombus Wing with Biconvex Parabolic Profile
and Spanwise Constant Thickness Ratio

The velocity distribution over a full-rhombus wing (where ¢, = 0, v = 0) is given by (3.16):
contribution of right-hand half wing — zv,,/U8% = I, + 1,
contribution of left-hand half-wing — #v, ,/U8% == I, 4+ I, ,

where I,, I,, I;, I, are defined by (3.17).

We shall now transform these integrals so as to make them computable. It may be mentioned
that in preparing this report, we started with the simplest case of the wing centre (where
I, = I, = I, = I,, and this one integral which has to be evaluated is very simple by comparison
with the general case). We then considered the special cases of the central section (I, = I,
I, = I,) and the mid-chord line (1, = I,, I; = I,); in both these latter cases only two integrals
have to be calculated and the results doubled to give the supervelocity. Finally, the general
case was investigated. In such a way it was possible to check the results at each stage.

(IL.1)

In the following calculations, however, the general case for arbitrary values of 4’ and & (entire
wing surface) is investigated, and the transformation is rather long and complicated. However
for the special cases of the central section, mid-chord line and wing centre, the values 5’ = —0
and/or ¢ = 0 should merely be substituted in the final formulae (which are thereby greatly
simplified) ; this will often be all that is necessary.

(A) Contribution of the Right-hand Half-wmg —Let us consider

In (1 — 7)) éﬁ :
~~f(1+ +a0—n) 5= (I.2)
Introducing an auxiliary variable
i—n
LA o
I, may be written in a more convenient way :
1 | ] dy ,
L=—LA1+—mﬂ—n) ol [l —u(l + 81| gy L (IL4)
. where
2 .2
R12:‘U'2_21_|_ 82M+ 1+ o2 (IIS)
which is much simpler than ¢,?, and the lower and upper limits of integration become:
' = — ' [(1 —n)(1 + &),
Ko 7'[(1 —n')(1 -+ ¢) (11.6)

py= 1/(1 4+ &) .
The power expansion of In [1 — (1 + £)]is not valid over the entire span for, when 1, > 0-5,

mo(l + &) <.— 1. If, however, we consider first the snner part of the semi- spom 0<% <0-5),
then:

or

41 1 . dA.
I, :LO [E — =) el 8+ hu(l 467+ . JW (I1.7)
1 _|__ 5 m+1
Il:(l——l—-gT)l—El:Ilog_- Il 1 1—-17)"’_;:1 7%+] Ilnz)], .. (II.S)
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where the particular terms are defined (for » from — 1 to -+ «) by:

1
Ilmr—-J#D%ldy; O £
then the first four of these become:
“odp 1+ e )1/2 e — ey + Ry(1 4 &8)2 M
L=~ ‘ h = (11.10)
or
(14 &) e+ eé(l —9n)+o
I, = —— In TET o) = . .. . . .. (IT.11)
and
mde (1 — 9 )1 — % 4+ oy4 (1 4 &2
Lho= ] g~y = t o, q e oo (L1
(e du (1 —%)ors — 01, e®
Lo=] 7 =momasan A treehe o (L1

_. J,ullu d N (] _IL_ 452 _[_ 3825)0‘11
Le= ) R™ 7 ol 7 (1 F o7
L4 — 868 — 8e%(1 — gy, M1 — 2¢%)
201 — 7")* (1 4 £)2 (1 + &¥°/* 21 + &) Il»(] C .o (11.14)

oy 0%, 01 1° are the following factors appearing in the expressions for R,* obtained after substituting
the lower and upper limits of integration, respectively :

o1’ =" 4 {1+ £(1— "), | (I1.15)
oy =14 &%, J a o o e )

m+1
As in the case considered in Appendix I, the series Z{ - _f) i +1; . tis found to be

1

rather slowly convergent, but the difficulty may be overcome by introducing another series
whose terms are obtained by putting ¢ =0 1in I,,, I, ,, etc., thus:

\

(111),;:0:;5(1—“11,,7'): |
1

1
(11 )50 == % TGk [1 -+ <1 ZI )],>2} , etc.

(11.16)

I, may therefore be written as follows:

o (L g [1 = (1)

(1 -+ &3 [I” f=Lon(l—=7) ] T z (m +1)m (L4 &)

e )
~ T+ o T ]
22
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or

1 , o 1
Il:(l—i—e)”z[‘r”f ey (1_—77)}_*—(1_}_5)[21: (m + D)m
< w41 ?7, " . 1 S '
_Z{(_1)+<1_n,> T ] >, . .oy
where '
" T]’ "
o 1 —{‘ (—“ 1) (1 _ 77/) B (1 _I_ §)m—[1m (II 19)
1m (m + l)WL (m + 1>( _I__ )1/2 . . P . .

We can now use the identity (for " < 0-5)

i [(— 1)m+1< 1 ”_n>(m+1 1)m} — _%111(1 ) =1, .. (IL.20)

[which can be easily verified by expanding the right-hand side in powers of 4’/(1 — ’)], and,
therefore, finally :

1 1 0
T e ook — Lol (L—n)] + (L + 9) 2 + () = = T..). (L

I]_ =
A recurrence formula for 7, has been obtained from that given by Edwards” and reproduced
n (1.22). This formula, together with (I1.19), gives the following recurrence formula for 7 ,:

ro [ 1+ mé + (m — 1)%&®
=15 LG T o D~ 3

. ™2 q'lm*—3m + 1 — (m— 1)) + (m— 1)* (1 4 £)
4+ (= 1) (1 'IL ‘f) (1 —5)» / (m + Dm(m — 1)(m — 2)

(m — 1)°

— T L+ O T ,,,2+m+1( T 1,,,_]

fm—1
n

1 . [ 2
T T OmI >[1—“u+<—1> T—77 " <1+e>—m}] . (I1.22)

The above formula gives values of 73,, for m > 2. T,,, T, are found from (I1.18), (II.14)
and (II.19). They are:

1T =21+ &) — (1 —7Yos+o,o (148 I,
Tll = 2|: (1 . 1,]’)(1 _I_ 82)/ - 1 + Py (1 _|_ 82)1/2] 3 e (1123)
[{(1 — ") 401+ &9 — (1 —4)°(1 + 4¢° + Be%)o,
(1 — )2(1 T 82)2

_ {n'(1 4 4¢7) — 3&® — 38 (1

(1 — 7)1 + &%)?
82(1 — 282)(1 + £)* I, J

(1 + 82)2 (1 + 82)1/2

The above formulae give now all that is needed for computing 7, for the inner part of the semi-
span in any particular case.

T,=

[erI o

— ¥ I)}U1 0

+ (I1.24)
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For the outer part of the semi-span (05 < 5’ < 1), the integral (I1.4) requires a special treat-

ment. Except for the elementary term I, _,, the range of integration will be subdivided into
three parts, viz.:

0 <p < | coOrTES- O <p(l4-8 < 1 n < <l
ponding : or
—p <p < 0 ! respec- — 1 <u(l4-8 < O to ' —1 <4 <9’
tively
o <@ < — py to — 'l —y <p(l+8&) < —1 0 <7 <29’ —1

and, in the last one of them, the integrand will be split into two additive terms, so that, finally,
I, will be represented by a sum of five terms, thus: - :

(14 372 = 1I,, —}Qllj—l—I]k—Ilj,—Il_l In (1--4%"), .. . . .. (I1.25)
where
#y 1 a
IM:—‘*LO(I%*-I;ln[l—,u(l—l—&)]}-é, . .. e . .. (11.26)
) o 1 - an .
I, =— J_ﬂll 1—[—/;111 1 — u(l 4 E)J]Fl’ . .. .. (I1.27)
 (mde 0 4 et (1 — ') + oy o1 F &P
R P i R A | R IR
— ~ln [1 - :U<1 -+ §>—| )

- =, R, Gk (11.29)
Here 4 and R, are still defined by (I1.3) and (IL.5), o, , is given by (II.15), while o, , is a new
factor making its appearance in R, when substituting the limit g = — p,:

oit = 1 E20. L. L. . ... ... .. (130

This seemingly awkward subdivision leads to tractable integrals, each of which must be treated
in an appropriate way.

The logarithms occurring in 1, I;; may be expanded in power series just as, previously,
for I, in the inner range ; we then obtain for I, ,:

Iiy== I, &+ (1+5)(1—-,Z Tlh,,) , T 0 6 153
where '
1 — &% 4 o (1 4 &%)1/2 :
L =T F = ;_1(8(1 - 22)1,2}, L sy
] 1 _’_ E m ‘ '
Tlhm:(M“*“l}%’&—(m—l—i -[lhm, e . . .. . .. (11.33)
1 — (148 (¢ \
Tl,u:,g(l—a“(l J:(EZ)I,E, )—Aél(jaz)zl,m), O 0 #: )
L/ (14 4e? + 82280, , — 3e3(1 + &)°
Type = é(l - (1 4 82)3/2
' 2(1 0.2 2
SRRt ek )S)jg) Lo ); (11.35)
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the recurrence formula for 7,,, being:

. ( Lt me+m— 1% (m— 1148
12m 1 __I_ m + 1 (m N 1)(7’]’2/ _ 2) (m + 1)m 1hm—2
(21%——1)( _I"f) 1 A 211/2
m —l— 1 Tlhm—1> + (m + l)m(l —l" 82) (1 — Uy 1(1 "l— 8) /> (1136)
Similarly for I,; :
Ly=ILé—0+8(2me—1->17,,), .. .. .. .. (I3
where '
14 28% + &% + oy 5(1 + &322 .
Ii;jo=1In T+ o F (L 7 .. .. .. .. .. (IL1.38)
- 1 1 Em
.lem:(_ ])m+1<(m+ ) ('m—|—)1 I1jm>>-- . . . .. (II.39)
Topn= (12 )}bf’ . (llj'fz) L), - oo e .. (IL40)
(1 — 2e® — 3e%8)ay 5 + 3631 + &)°
lez—'—-—é(l— (1+82)3/2
e’ (1 — 2&%)(1 + &)*
T+ &) 11](,), (I1.41)
the recurrence formula for T3;, being:
[y T &? < 3m* — Tm + 3 + (4m* — 9m + 4)& + (m — 1)%¢°
(= 1) Lim ™ ] 4 gt (m + Dym(m — 1)(m — 2)
(e — 11 + &) pia (2 = 1)(1 + 8)
+ (_“ 1) (,m + 1)m lem—2+ (”‘ 1) * " _{_1 lem—l)
01 1
= G Dm{l £ + T Dm- .. .. .. .. (11.42)

As the integral I, is elementary, there remains only I ,, and here we notice that the previous
expansion of the logarithm in a power series is not valid, but instead the inverse square root may

be expanded in negative powers of £ = — u, thus:
~#0
Ly=—], Gresfr Inp+at+d, .. .. .. (143
where
_ &* &3 — 24¢* 4 8¢
a3~—1+82, g = — 8(1—[—82)4‘ s
(1 — 26 (15 — 40¢* + 8:*)
ay = — 201 + 2 y = — 8(1 + & ) (11.44)
(3 =28 &5 — 90e® + 120&* — 16:°)
LTI ep BT 611 e ot
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Particular terms of (I1.43) may be integrated by parts:

In[1+ ( + &1, ln[1+t(1—l—§)} 14 ¢ dat
J == =T TaoilioraTap (11.45)
and then the second term in (I1.45) by resolving into partial fractlons, and
In[l+41+8]  In[l4+#1+8)] 1+§[’ 1 1+ ¢
J 7 == "= Ta—il w9 m—gr
(1 +¢)° 1+ " ¢ }
.__( )#14—} —_ .+ ; i(l—}—-f) Zh'l(m) . .. (1146)
Substituting the corresponding values of the above in (I1.43) we obtain:
Iy= — [Py + P, + aPiys + ... ] .. .. . o .. (I1.47)
where
1 . ’
P,i=(1+ 5)( (1 — ) —|—1n417’)
o (1 —1n')? , , 2yt —1
Poe= 48 (U m g — ) — gy 4 25
(L —7 , 2y — 1)2
Prpy= (1 %5) <<3T) In(1—#')+ $Indy’ — %)
(=) , L (2 — D8y — 5y’ + 2
Py = (1+8) ( 477,4)1n(1—77)—%;ln77 +( 1 )(27747113‘ " ))
p s(L—n7) Nl ;%0 =18y — 4" +3)
P,y = (1+8) ( 5 (1 —n') 4+ 3Indy — 807 ) (I1.48)

1 —
Pipo = (1+5)6<(617;77)1n (1—n")—glny
(2n' — 1)(927"* — 104y"® + 98y — 51y + 12)>
+ 360"
1 —5')
Pyyp= (1 5)7<(—7,,/’17_
(27" — 1)°(465" — 447" + 575" — 32" + 10)>
B 42078

In (1 —7%") -+ Lln4y’

The above formulae give now all that is needed for computing 7, for the outer part of the semi-
span in any particular case.

The corresponding formulae for I, are found from those for I; by replacing & by (— &).
(B) Contribution of the Left-hand Hotlf—wmg.—Let us consider

Iy = _ﬁ[l + (1 +T’/)‘<1 + E 1 —|—17 lnnl—l—_nn :| 03

I, has been obtained from I, by writing (— ') for " and < & T - 1 )for ¢ (see (3.17)). This

(I1.49)

rule, however, cannot be applied throughout the subsequent transformatlon which, fortunately,
becomes much simpler than that of 7,.
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Introducing a new auxiliary variable

= 7 L s

(14 et

I; may be written:

L=——|

]

{1+%1n(1+,7') +i-1n[1_.1(1+51+n )“ 7, (IL51)

this again being much simpler than g,*?, and the lower and upper limits of integration become:

where

RI—ct_2 (T1.52)

’

Y
Tn —
0 1__7,]
(1+n’)(1+51
+ 7
. (11.53)
T4 = ————3 7 .
1 1__,)7’

For I, also, we may expand the logarithm in a power series, valid throughout the range of
integration. I, then becomes:

. 1 11— I+7 I }
I3_(1—W2[13°51—+—77’_1“ toy +zl . swl, .. (I154)

where the particular terms (for m from — 1 to 4 ) are defined by:

3,n_j”—dr, OO 0§ -1

and the first of them becomes:

™ _e2yi/2 & — 2\1/2 | 71
=t LT, ”Jrl]fr(“r‘s) .. .. (1L56)
or ,
gy et et(l—n) +ose]; L. .. . . .. (IL57)
3-1 = P ) 1_77/
[’7 (sfﬂ—n'“uﬂ

o5 o5, 05 1 are the following factors appearing in the expressions for R;* obtained after substituting
the lower and upper limits of integration, respectively :

it =k el =) =,

1 — - .. .. .. .. (IL.58
031—-—1_|‘25(1_|_Z ‘ ( )

It will be seen by comparing (I1.57) with (II.11) that the general rule for obtaining the
contribution of the left-hand half-wing from that of the right (as obtained previously for
n’ < 0-5) does not apply for this case. This is due to the modulus of the variable (« or z) in the
denominator of the indefinite integral (see I1.10 and II.56) which results in the factor »” occurring
with a positive sign in the denominators of both I, ; and I, _,.
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The next three integrals of the type (I1.55) become:

’ 21_ , 2\1/2
(140 (1 — % T 4 oasll + €7 )

L=l — e (IL.59)
m: (+“%;°' ‘Hiﬂm .. .. (1Le0)

T € =y

(147 (1 + 46 4 8o 1—;—’) 091 — [1'(1+ 4%) + B2* + 3%(1 — n)]oa,s
b 21+ o7 (14 6 70 ) (1 4 e

“%ﬁ%%” T P 8 K3

We introduce, again, another series which is composed of the terms:

’

] — —1
A =7 .
(I31)5=0 = —-——T—I_—Ln'
I+¢7 + 7’
>2 (I1.62)
77
I —
(s 1+ ,z,etc.:
A 2(1+514_

(the rule for converting I, into I, again does not apply), and I, may be written

1 11—
I3: (1—-_—821—/2(I3U§TTI_—Z",—I3_11H(1-|—1"')>

+(1+51+ >[ 71—1) 2(7%—: 1+17> Z[‘m]’ h (H“:),

where

1—77
T . <1 + ( +§1 + IBm
3m — _‘_ ) m _I__ 1 (1 + 8‘4)1/2

We can now introduce the following identity (valid for any positive ), analogous to (I11.20):

® 1 n’ k& 1 , .
Z[(m—{—l)m 1_|..«,7’>:|=1_",,7_'1n(1+77), .. .. .. (I1.85)

1

(I1.64)

and therefore, finally :

. 1 1_,/ . ,
1'3:(‘1?2)—1/2[1305?2/—13_1111(1%-77)]

+O+ﬁ+ [ )—inJ  ... .. (1168)
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The first two terms of 75, are found directly from (11.60), (I1.81) and (I1.64):

| 2 1 —7'
7. :1 1+82_(1‘f‘7],)0‘31+0‘30_8<1+§1+77/) I3o :| (1167)
el I+ A+ I+ OF el -+ (L
(42000 + o9 — (14 79 (1 + 42t 4 8ot 170 )0
Ty, =1 ! ! 1L+5'/ 700
voel T+ 270+

(L 4 4 86+ 3 (1 — w'Jan,
(T + 7)1 4 &%) .

. : 1L —nV .
8~(1—28«)(1+5—1+2, L }
(] - 82)2 (1 + PROREE K

and the recurrence formula for subsequent ones is found as before by using the formula given by
Edwards” and reproduced in (1.22): -

(I1.68)

1‘—‘77I 1_77, : 1_77’ tin—
&2 [l—l“mf'l_’__—n,—F(M—l)zfz(m) <1—|‘§ n'"

T. — 1+

L S (m + Dm(m — 1)(m — 2) 1T+ 4y
’ 2 2 1_‘7’], N 1—1’],
><77 [1%—3m—|—1—(m__1)§1+77,]_(m__1) <1+§1+17')

(m + Vym(m — 1)(m — 2)

I —75"\? 1 — 5’
(m~1)2<1—}—§1+2, (2m—1)(1—|—§ﬁni, }
B (m _I— l)m T3’m~2 + w _-I_. 1 T3,m—1

1 fim—1 , .
+(m+1)m(1—[—32)[1—031_(1+77/)M{77(1+8)_‘030}:]. . (IIGQ)

The above formulae give now all that is needed for computing I, in any particular case.
‘The corresponding formulae for I, are found from those for I, by replacing £ by (— &).

" The formulae for the central section, mid-chord line and wing centre may now be found by
substituting 4" = 0 and/or £ = 0 in these final formulae, without any difficulties arising. The
expansions for I, and I, break down at the sharp tip, but that was to be expected because these
integrals present a logarithmic singularity for 4" = 1, as seen directly from (3.17).
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APPENDIX TIII (To Section 4)

Velocity Dzsimbutwn over the Entive Surface of a Cropped Rhombus Wing with Biconvex Parabolic
Profile and Spanwise Constant Thickness Ratio

The velocity distribution over the surface of the right-hand half of a cropped-rhombus wing,
due to the right or left cut-off tip triangles, respectively, is given by (4.2), vz. .

—af,, /U8 =@ + I, + I,
*‘“'ﬁxz/U‘?:A +T3+ j4,

where 2, A4, I, I,, I,, I,, are defined in (4.3) and (4.4). The above values must be subtracted
from those found in Appendix II for the full-rhombus wing.

(TTL.1)

As for the full-thombus wing, we shall consider here the general case of arbitrary values of
n’ and & within the wing area, but, as before, the formulae will still apply for the special cases
of central section, mid-chord line and wing centre and will become simpler for them, although
not so markedly as for the full-thombus wing.

(A) Contribution of the Right-hand Tip Triangle.—Let us consider

1— 7))\ di
:—L,,(l + (1 —7')( +5)—(—77,i) Q—’f; L (L)

substituting the same auxiliary variable as before (see I1.3):

o 7—n .
/4"’“(1__,'7/)(1_|_§), . . .. .. .. .. - (1—113)

and expanding the logarithm as for the complete rhombus, we obtain

1 1 §m+1
T1:(1+82)1/2{§j10_j1 111’1 1—-77 —szl W:LI——I—)l flfnj|: (III'4)
where
1, "
Lo=[, Ba . . (Y
and
R g?
R12:/L2_2‘u1+82+1+ o2 (1116)
11—y —2n'
b1y — 7
P T =)0+ 9 (L7
1
Ml:l—_f‘—f.
Hence
N ¢ I o eé(1 —n') + ey + 61,1 ,
La=[ =5t ln<(1_77,_w)(8§_|_6“)>, ... (ULS)
— )1 — &% 4 o4(1 + ¢ 1/2} 1I1.9
Lo =l fr T — () T o (09
S ek 1 ¥ S ¢ II1.10
f“"—(1+§(1—77')(1-|— )1,2+1+871 S .. .. .. (IIL.10)
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I, = (1 =71 446 4+ 868, — [1 — 9" —p — &’ + (1 — 9")(4 + 34161,
Lz 21 + &)*(1 — 5")*(1 4- %32
. e?(1 — 2¢%)
2(1 -+ &)*
G61,1-,% 01 1 are the following factors appearing in the expressions for R,* obtained after substituting
the lower and upper limits of integration, respectively :
011y = (L — 9" — 9)" 4 Ny + £(1 — 9"},
3112:0112:1‘}‘3252- o

I,. 05 B

(I11.12)

The expansion of the logarithm in a power series, used here, is valid throughout the range of
integration.

We now consider a series obtained from that of (II1.4) by letting ¢ — 0 in a similar way to
that for the full thombus:

(jll)e—ﬂ):l_,_g(l 1——177—'—1;)>

(I1 8)eso = mz [1 “(1:1—,;#) 2] , ete.

I, may then be written:

(IT1.13)

| ey ]_<k:L:E”
| I Lo
jl :——mm[jlof“jl_llll(l - 77):] _I_-mz=1:I l:(m —}* 1)74'5[

(1 + 5)1)»
(Ll =" =y
! 1 _ 7} Ilm
1+ —I—M(—_l‘_——)r,z , .. .. - .. (IT1.14)
or
f———l—[f I (1 —n) | 1 =
1_(1+82)1/2 108 — 1—111( _77) ‘{‘( ‘l—§) 1 m
B ] G Rt Oy U 11115
- (WZ+1)W1 1_17/ - T | » . .. v ( . )
where
1—n"—v
oo=( jg— ) (14 &1
T, = — ' > I11.18
Lom (m + 1)m (m 4+ 1)(1 + &¥)*/2- (LI1.16)
We can now use the obvious relationship (analogous to II1.20)
1 . 7,}’ — m_ ” v )
T "1—W—wﬁ%1-w>+l“'aﬂw)

and then finally :

1 ' 0 R
= T =iz 10 —j1—1 — 7’ — L ki
I, (1+82)1/2|:j & 111(1 7)] (1—|—§)[1_n,_wh’ll_n,—|—2 Tlm:|-
(II1.18)
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Using the recurrence formula given by Edwards’, reproduced in (I.22), and the relationship

(IT1.16), we get for Tlmz
(1+§)1—~?7 — )

.8 1+ mé 4 (m — 1)&* (
hn=17 2[(1%—]— Tmlm — N —2) T 1 =5
(l—n)[m —3m + 1 — (m — 1)%] — q)(Zm"—Sm—{—Z)
(m + Lm(m — 1)(m — 2)

(m — 1)1 + &)* @m — 1)(1 4 &) 4

m T1m—2+ m_l_l Tlm le

1 (1—n" — )" , n A

CERE 2>[1—"“‘ A = — 1+ ) = 8100
... .. {IL19)

This formula is applicable for all values of m greater than 2. T, T, are found from (II1.10)

(III.ll) and (I11.16):
2) — (1 _ 77')31 1+ 31,1—w

L=y — y))(1+ e

w17 —7") —(
Tll_z[ (1—77/)(1+82)
g? I,

“Traltd m} ; (111.20)

fﬂ _1 [[(1 — P — (1 — 75" — )2 (1 + %) — (1 —¢)*(1 4 4&* + 36%)6; 4
_ 6 (1 . 77/)2(1 _i__ 82)2
-+ (1 —n —p — ey 4 4e*(1 —n') +- 31 —7)]04,1,
; (I — 7)1 + &%)?
(I11.21)

(1 — 2631+ &2 I,
T O e O+ 82)1/2} :

The above formulae give now all that is needed for computing I, in any particular case

The corresponding formulae for I, are found by replacing & by (— &) in those for I,
(B) Contribution of the Left-hand Tip Triangle—In this case (of a cropped-rhombus wing),
the rule for obtaining the formulae for the left-hand half-wing from those for the right-hand

half-wing can be applied, 4.¢., we replace 5’ by (— #’) and & by (E 1”+—Z> I; then becomes:

L 1 1'—77, ’
L= [ Bt T — Lol (L0

1—75'
_<1+§1+n,) [“H] Jﬂ/)m(lJr )+Z Tm], (I11.22)
where
PO L g 85(1—77')-1—81/’4‘331?»
=L ; P ’ (I11.23)
(1479 —‘P)< 1+ >
' , 2 1—77 A N7
| { (14—1;)(1—851—_!_7-}-031(1‘*‘8)/ } . .. (I11.24)
Loo=In | T T o) = S — ) F Gouy (1 F &7 |
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] o
{[(1 ) (L — )0+ e — (k) (1 40t Be T ) 8

. (
145" —p— ety + 431
- (1+5")?
1-_. 4

% L= :
sl )
(1 + &% (14 &%)re
The recurrence formula for ’_7"3,” is
1 —17' 1 — 5'\?
o [1 + mé T + (m - 1)2§2<1_:|——Z'>
(m + Lym(m — 1)(m — 2)

(I11.26)

T:im: 1 _l_ e?
1—n' , o
(1 e ) Ut n' =y
(145
1 —9'

) [ e 0 | — v — 5t
© (m 4 Dym(m — 1)(m — 2)

2 =7’y 1=
(m—l)(1+§1+n,-)f @m—1)(1+e770) ]
(m + 1)m am—z T m + 1 3,m—1

1 ~ (1 _I_. 4 )m—l ~, . R .
T F Dl + & [1 e (177+ 77/)5» X ((1 + ' =) (1 4 &) — ag,l_w)}

. (I11.27)

Gs,1-,5, 03, are the following factors occurring in expressions for R, when the lower and
upper limits of integration are substituted, respectively:

Gs1-y = (L + 0" — )" + [y + &1 —4")]%,

TN O € 1 :23)
6312:0312:1+8252<1+Z'> ] .

The above formulae are all that is needed for cbmputing I,. The corresponding formulae for
I, may be found from those for I, by replacing & by (— £).

The formulae for the central section, mid-chord line and wing centre may now be found by
substituting 4’ = 0 and/or £ = 0 in the general formulae for I, [,, I;, I,. These formulae hold
good for all values of " and &, even at the tips of the cropped wing ; although, in this last case,
putting %’ = 1 — » results in the formulae for I, and I, becoming formally indeterminate.
This is easily resolved, however, by finding the limiting values for #'— 1 — ».
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TABLE 1

Supervelocities at the Centres of Straight Tapered Wings with V. oiyying Taper Ratio p and
Coefficient of Convergence ¢. Biconvex Parabolic Profile. Illustrated in Figs. 4 and 5

7Y,

4U%H

D=

0-958 0-925 0-897 0-872 0-850 0-829 0-811 0-794 0-779 0-764
0-958 0-925 0-897 0-872 0-850 0-829 0-811 0-794 0-779 0-764
-0-958 0-925 0-897 0-872 0-849 0-829 0-810 0-793 0-777 0-763
0-958 0-925 0-896 0-871 0-848 0-827 0-808 0-790 0-774 0-758
0-958 0-924 0-895 0-868 | 0-844 0-822 0-801 0-782 0-764 0-746
0-958 0-922 0-891 0-862 0-835 0-810 0-786 0-763 0-74 0-72

OCODODODOODODOOO
CWORNTI®NWN -

0-956 0-918 0-882 0-847 0-814 0-79 0-752 0-673
0-953 0-906 0-859 0-81
0-941 0-86 0-667 0-480
0-875 0-471 .
5 0-723 0-304 0-187
8 0-464

<

0-750 0-738 0-726 0-714 0-703
0-750 0-737 0-725 0-714 0-703
0-749 0-736 0-723 0-711 0-700
0-743 0-729 | 0-716 |- 0-703 0-691
0-729 0-714 0-699 0-685 0-67
0-631
0-572
0-379
S 0-139

SO0 O00OO
OWDUTEWN =
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TABLE 2

Supervelocities along the Mid-chord Lines of Rhombus Wings for Different Values of Coefficient
of Convergence . Bivonvex Parabolic Profile

IMustrated in Fig. 6

7,
409
7 e=01]e=02|e6=03|e6=04]e6=05]|e6=06|¢6=07|e6=08]¢=09]|e=10

0 0-958 0-925 0-897 0-872 0-850 0-829 0-811 0:794 0-779 0764
0-1 0-982 0-949 0-919 0-892 0-868 0-847 0-827 0-809 0-793 0777
0-2 0-993 0-972 0-947 0-924 0-897 0-875 0-855 | 0-836 0-818 0-802
0-3 0-998 0-987 0-969 | 0-948 0-927 0-905 0-885 0-867 0-849 0-832
0-4 1-001 0-997 0-986 0-970 0-953 0-935 0-917 0-899 0-881 0-865
0-5 1-003 1-004 1-000 0-991 0-978 0-964 0-948 0-933 0-917 0-902
0-6 1-005 1-009 1-011 1-008 1-001 0-991 0-979 0-965 0-951 0-937
0-7 1-006 1-014 1-021 1-025 1-023 1-019 1-012 -| 1-002 0-991 0-979
0-8 1-008 1-019 1-032 1-042 1-048 1-050 1-049 1-044 1-039 1-031
0-9 1-009 1-026 1-046 1-065 1-080 1:092 1-101 1-106 1-107 1-107
0-95 — 1-031 1-057 1-084 1-108 1-129 1-146 1-159 1-168 1-174
0-99 1-014 1-116 1-153 1-193 1-282 1-269 1-297 1-331 1-355 1-374

TABLE 3

Velocity Distribution over a Rhombus Wing with Coefficient of Convergence ¢ = 0-3.
Biconvex Parabolic Profile

Mlustrated in Figs. 8 and 13

_aw,

4U9
& 7' =0 7 =0-1 7 =02 7 =05 7 =06 7 =07

|

0 0-897 0-920 0-947 0-999 1-010 1-020
0-2 0-851 0-873 0-907 0-958 0-970 0-980
0-4 0-706 0-740 0-779 0-831 0-842 0-852
0-6- 0-434 0:490 0-539 0-588 0-599 0-609
0-8 —0-057 0-039 0-115 0-137 0-147 0-157
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"TABLE 4

Swupervelocities along the Mid-chord Lines of Cropped-Rhombus Wings with Taper Ratio v = 0-3
and Different Values of Coeffictent of Convergence e. Biconvex Parabolic Profile

Tllustrated in Fig. 10

72U,
409
%' e=0-1 e=0-2 e=0-3 e=0-5 e=0-7 g=1-0
0 0-958 0-925 0-896 0-848 0-808 0-758
0-1 0-982 0-949 0-918 0-866 0-823 0-770
0-2 0-993 0-972 0-946 0-895 0-850 0-793
0-3 0-997 0-986 0-967 0-922 0-878 0-818
0-4 1-001 0-998 0-983 0-946 0-903 0-842
0-5 1-002 1-000 0-992 0-959 0-918 0-855
0-6 0-999 0-992 0-986 0-939 0-893 0-826
0-7 0-526 0-552 0-571 0-598 0-606 . 0-596
TABLE 5

Supervelocities along the Mid-chord Lines of Cropped-Rhombus Wings with Taper Ratio v = 0+6
and Different Values of Coefficient of Convergence e. Bzconvex Parabolic Profile

Tlustrated in Fig. 11

_ W
4UH
%' e=0-1 e=0-2 g=0-3 e=0-5 e=0-7 g=1-0
0 0-956 ‘ 0-918 0-882 0-814 0-752 0-673
0-1 0-979 0-934 0-900 0-826 0-759 0-676
0-2 0-988 0-948 0-912 0-828 0-756 0-669
03 0-977 0-923 0-875 0-783 0-710 0-628
0-4 0-522 0-535 0-536 0-525 0-504 0-470

It will be seen that in Tables 4 and 5 values of the supervelocity ratio have not been calculated
for e = 0-4, 0-6, 0-8 and 0-9. The curves corresponding to these Values shown in Figs. 10 and
11 were found by interpolation from the calculated values.
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TABLE 6

Velocity Distribution over a Cropped-Rhombus ngvwz'th Coefficient of Convergence ¢ = 0-3 and
Taper Ratio v = 0-3. Biconvex Parabolic Profile

Tllustrated in Figs. 9 and 14

_mw,

4U9
& 7 =05 7 =06 7 =0-7
0 0-992 0985 0-571
0-2 0-951 0-947 0-553
0-4 0-824 0-826 0-496
0-6° 0-582 - 0-591 - 0-388
0-8 0-131 0-153 0-183

Only the outboard values of #’ were taken for the velocity distribution over the cropped-
rhombus wing with the parameters ¢ and y both equal to 0-3. This was because, for the inboard
values of »’, the supervelocities were nearly the same as for the full-rhombus wing and so these
values (given by columns 2, 3 and 4 of Table 3) have been taken to be the same in both cases.
It will be seen that even the values of supervelocities at 4’ = 0-5 vary very little for the full-
rhombus and the cropped wing with v = 0-3 (see column 5 in Table 3 and column 2 in Table 6).
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Fi1c. 2. Swept-back tapered wing plan form (full or cropped arrowhead).
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F16. 8. Straight tapered wing plan form (g, = 0, full or cropped rhombus).
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F1G. 4. Variation of supervelocities at the centres of straight
tapered wings with coefficient of convergence e, for different
values of taperratio y. Biconvex parabolic profile. From Table 1.
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Fic. 5. Variation of supervelocities at the centres of straight
tapered wings with taper ratio u for different values of
coefficient of convergence e. Biconvex parabolic profile.
Curves of constant aspect ratio 4 shown as thin lines.
From Table 1.
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Fic. 6. Supervelocities along mid-chord lines of rhombus wings for different values of coefficient of
convergence . Biconvex parabolic profile. From Table 2.
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Fic. 7. Contributions of the two half-wings to the supervelocities along the mid-chord line of the
right half of a rhombus wing, with ¢ =0-3.
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Fie. 8. Velocity distribution over rhombus wing with

coefficient of convergence &= 0-3. Biconvex parabolic

profile.

From Takle 3.
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Fi1c. 9. Velocity distribution over cropped-rhombus wing
with coefficient of convergence e¢=0-3, and taper ratio
y = 0-3. Biconvex parabolic profile. From Table 6.
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Fic. 10. Supervelocities along mid-chord lines of cropped-
rhombus wings with taper ratio y = 0-3, for different values
Biconvex parabolic profile.

of coefficient

of convergence e.

From Table 4.
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Fic. 11. Supervelocities along mid-chord

lines of cropped-rhombus wings with taper ratio
v = 0-6, for different values of coefficient of

convergence e,

Biconvex

parabolic profile.

From Table 5.
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Fic. 12. Variation of maximum supervelocity
with taper ratio o for unswept wings with

constant s/b or constant aspect ratio 4.




) 'Q‘

(re)-i
Fic. 13. Isobars over thombus wing with coefficient of
convergence & = 0-8. Biconvex parabolic profile. From Table 3.

F16. 14. Isobars over cropped-rhombus wing with coefficient of convergence ¢ = 03 and
taper ratio y = 0-3. Biconvex parabolic profile. From Table 6.
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