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Summary.--This report is a continuation of three earlier ones by the present authors 1' 2, a (1947-9) and contains 
a theoretical investigation of subsonic flow past thin tapered unswept wings (of full or cropped-rhombus plan form), 
at zero incidence. Only the case of spanwise constant thickness ratio is considered in this first a t tempt  although alter- 
native cases also merit attention. The first order method of linear perturbation based on continuous systems of sources 
and sinks is shown to be still applicable to tapered wings, although mathematicaldifficulties are greatlyincreased. These 
have been overcome, at least in the simple case of the biconvex parabolic profile, so as to give general solutions and 
computable formulae for the velocity distribution over the entire wing area. Complete detailed solutions for the mid-chord 
line have been worked out numerically and two examples of complete numerical solutions, with corresponding isobar 
patterns, for the entire wing area are presented. These results are sufficient to illustrate the effect of uniform taper on the 
velocity field of unswept wings, and lead to a number of general conclusions. The most important of these is that, altho agh 
taper brings about noticeable decrease of supervelocities at the centre, higher values are encountered further outboard so 
that,  for cropped plan forms, two symmetrically placed maximum suction areas arise inside the two half-wings. These 
are relevant for determining critical Mach numbers, and the effect of taper may be, according to choice of geometrical 
parameters, either beneficial or detrimental as to the values of Motet, but practically never very considerable. 

The method wilt still be applicable to the more general, and more important,  case of tapered swept-back wings, 
especially for delta wings, and a general solution for the velocity distribution in the central sections of such wings is given 
in Appendix I and shown to be consistent with the earlier solution for untapered swept wings. However, for applying 
the method successfully (up to detailed numerical investigation) to the more general case, automatic high-speed integrating 
machinery seems indispensable--to replace classical methods of transforming integrals and manual computing, as used 
in the past and in the present report. 

1. In t ro&wt ion . - - In  two previous reports by the present authors 1, 2 (1947-9), solutions were 
given of the velocity distribution on thin untapered swept-back wings of infinite and finite 
aspect ratio at zero incidence and mainly for the simplest case of the biconvex parabolic profile. 
The results were extended to other profiles by the present author in Ref. 3 (1949). 

The object of tile present paper is to continue from this point and to find the velocity 
distribution on thin tapered wings with zero sweep-back of the mid-chord line. The method 
used to solve this problem is again that of linear perturbation in which the wing is replaced by 

* R.A.E. Report Aero. 2432, received 13th December, 1951. 
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a system of sources and sinks ; the required velocity field is then approximately obtai'ned as that  
of the velocity components, in the plane of the chord lines, given by this source system. The 
distribution of sources and sinks is chosen so that  the v, component is obtained correct to the 
first order of thickness ratio. 

The supervelocity vx may then be determined by direct integration. The vy component has 
not been calculated for the case of tapered wings as it was felt that  the work entailed would not 
be justified ; vy contributes only second order corrections to the resultant supervelocity, and the 
general trend can be implied from the previous work. 

The tapered plan forms considered in this paper (Figs. 2 and 3) must be defined by a carefully 
chosen set of geometrical parameters .  We introduce first an important new parameter ~, the 
spanwise rate of decrease of the semi-chord, which has been termed ' coefficient of convergence . 
This seems to be the most rational measure of taper, and becomes zero for untapered wings; 
it is the only parameter needed to determine the shape of a full rhombus plan form. A cropped 
straight tapered wing is then obtained by  cutting off certain triangular portions at the tips, and 
to determine these, another parameter ~o--the ratio of tip chord to root chord (the usual ' taper 
ratio ') has been used. If, finally, a swept-back tapered wing is to be considered, a third para- 
meter %; angle of sweep of the mid-chord line, is introduced. This set of parameters must not 
be considered as standard but it has been found the most convenient for the analytical solution 
of zero-lift problems. Some alternative sets of parameters for swept-back wings have been 
proposed by Thomas ~ (1951), and Warren 5 (1951), which may be more suitable for other purposes. 

As in Ref. 2, it was decided that  to minimise the possibility of errors we should begin with the 
simpler cases and build up to the more complex. Both algebraic and .numerical checks are then 
available at each stage of the calculations. Furthermore, in order to reduce the complications 
throughout, it has been decided to consider only the case of a wing with a biconvex parabolic 
profile along the entire span. This does not mean, however, that  the method cannot be extended 
to cover other profiles although the formulae would then become more complicated. To have 
the wing surface completely defined, we must then still determine the spanwise variation of the 
profile thickness ratio #. It  has been decided to limit this investigation to the case of ~ constant 
throughout the span; this is geometrically the simplest assumption but, curiously enough, not 
tha t  leading to the simplest mathematics (this would be simpler, e.g., for wings with constant 
thickness spanwise, i.e., with thickness ratio increasing towards the tips in inverse proportion 
to the chords; or, vice versa, for wings with thickness ratio decreasing proportionally to the 
chords, i.e., with thickness decreasing as chord squared). However, our assumption seems to 
be the most appropriate for the first theoretical attempt, and it is the only one which gives a 
reasonable wing in the case of the full-rhombus plan form*. 

The formulae for the supervelocity at the central section and, more particularly, for the central 
point of this section, for both full and cropped-rhombus wings, have been found first of all; and 
suitable computational methods have been evolved Iollowed by a fairly extensive numerical 
investigation, t 

Similar but more complicated results were worked out subsequently for the velocity distribution 
over the mid-chord lines of both full and cropped-rhombus wings, and finally for the complete 
velocity distribution over the entire wing surface of both wings. 

As work proceeded from th~ particular to more general solutions, the complexity of formulae 
and computational methods increased rapidly. The integrals involved, unlike those in the 
previous investigations, are no longer expressible in terms of elementary or tabulated functions 
and have to be expanded into infinite series before they  can be evaluated. Special procedures 

* The case of a tapered swept-back wing with thickness ratio proportional to the chord was treated briefly by A. Fiul 8 
(1948), obviously because of the simpler mathematical  analysis, bat  only very few numerical examples were presented. 
The case merit~ a fuller investigation. 

Preliminary results for this case were found by the present author already in 1948 and presented in tZef. 6. 
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are needed to ensure sufficiently rapid convergence of these series. I t  has, therefore, proved 
impossible to work out more than a few typical numerical examples for the more general cases; 
especially for the velocity distribution over the entire wing area, including isobar patterns. 
There seems to be no need for extensive calculations of this sort, as the few examples presented 
appear to be sufficient for obtaining a clear picture of the velocity fields and general trends. 

The main comlusio~s h-ore this investigation may be summarized as follows: 

(a) The method has been proved applicable to the case of straight tapered wings but the 
difficulties of computation are serious. I t  has been possible to overcome these, at least in the 
few examples which have been worked out and which suffice to give a general picture of the 
effect of taper. 

(b) The examination of the effect of taper at the central sectio~ of a straight tapered wing, 
especially at the centre, is comparatively easy, and has been made in a fairly exhaustive manner 
so tha t  a wide range of parameters ~ and ~ has been covered. The local maximum supervelocity 
occurs at the centre (for the biconvex parabolic profile) and the graphs on Figs. 4 and 5 give a 
comprehensive picture. I t  appears that,  for a full rhombus wing, with increasing ~, this maximum 
decreases markedly, and by cropping the wing (i.e., increasing ~ from zero upwards), we achieve 
a further decrease in maximum at the centre. 

(c) The latter conclusion might lead to the belief that  tapering a wing should be fundamentally 
beneficial so as to raise the critical Mach number. However, the case is not nearly as simple as 
that.  The examination of velocity distribution along the mid-cho~'d li¢4e (the locus of maxima at 
all spanwise stations) shows, rather surprisingly, that  the supervelocity has a clear tendency to 
increase when moving outboard from the centre (Figs. 6, 10 and 11). In the case of a full 
rhombus (Fig. 6) this tendency develops unchecked right to the sharp tips.where our theory gives 
a logarithmically infinite value; but  already, at little more than half-way along the semi-span, 
the maximum supervelocity reaches the two-dimensional value. Therefore, if only small bits 
are cut off at the tips of a rhombus wing, such a wing would present no advantage over an 
untapered one, and might even be at a disadvantage. The interesting difference is tha t  now- the 
danger sections would be located near the tips rather than at the centre. 

(d) When cropping a rhombus wing by a considerable amount, i.e., introducing larger values 
of the parameter % we encounter again, as for untapered wings, a decrease in the maximum 
supervelocity at the tips (Figs. 10 and 11) to roughly half the values at the same spanwise stations 
for the uncropped wing. This tip effect of reducing the supervelocity begins to check more and 
more the tendency for it to increase along the entire span, even quite near to the central section, 
when both e and ~o are large. A cropped tapered wing, therefore, may have somewhat better 
characteristics, as far as critical Mach number is concerned, than an untapered wing (Fig. 12). 
The danger section is more often than not at some spanwise station different from the central 
one. 

(e) I t  has been found possible, finally, to work out the velocity distribution over the entire 
wing area, in order to obtain isobar pat terns;  two examples of such patterns are given in Figs. 
13 and 14 (and discussed in more detail elsewhere in this report). I t  would probably have been 
very difficult to guess at even the most approximate pictures of the isobars disposition without 
this long and difficult computation, and the effort seems to be justified for the diagrams are so 
much different from what was obtained previously for untapered wings. The isobar patterns 
will, of course, yary  with geometrical parameters of the plan form, and they will be considerably 
affected by modifying the wing profile. General trends due to taper seem to be clearly demon- 
strated, however. 

(f) The results presented may be used for calculating critical Mach numbers for straight 
tapered wings, but this has not been at tempted here. A short qualitative discussion shows that  
critical Mach numbers may be reasonably defined only for cropped wings; that  the first danger 

3 
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points will usually be located symmetrically at spanwise stations within both half=wings 
(practically never at the centre if the profile has fore-and-aft symmetry);  and, finally, that  the 
advantage likely to be gained by taper will not be considerable for unswept wings (Fig. 12). 

.(g) We may expect the theory still to be applicable to the most general case (swept tapered 
wings, in particular delta wings), and partial results (for the central section) are presented in 
Appendix I of this report. T h e s e  are shown to be consistent with the previous ones for swept 
untapered wings, but no at tempt  at computation has been made thus far. I t  is clear that,  in 
this paper, we have reached the point beyond which the general integrals of tile theory can no 
longer be evaluated by a combination of analysis and manual computation without prohibitive 
labour. The most important  case, practically, of sweepback with taper (including the delta 
wing) is still more difficult, particularly as it necessitates exploration of the entire wing in almost 
every case. I t  is therefore proposed to solve this final problem with the aid of  automatic 
integrators. 

Acknowledgements are due to R. P. Purkiss who did an earlier part of the computational work, 
and to Miss S. A. Brown and W. P. Gillott who completed the remaining greater part of this 
and prepared the illustrations. 

2. Preliminary Considerations.-.-A wing of arbitrary plan form and with any symmetrical 
profile is shown in Fig. 1. P is any point on the surface of this wing and has co-ordinates (x, y). 
If we replace the wing by a continuous system of sources and sinks, and if Q represents a source 
element of area (d2 d2) , then the induced velocity in the x-direction at P due to the source 
dement  at Q is: 

v _ _ J ; q d 2 d y c ° s f l  
s 4zd2 . . . . . . . . . . . . .  (2.1) 

where q is the source strength at Q (per unit  area), l denotes the distance OP,/3 is t h e  angle QP 
makes with the x-axis, and the integration must be performed over the e~ffire wing area S. 

If the equation of the wing surface is : 

z--= F(x,y) . . . . . . . . . . . . . . .  (2.2) 

then q = -- 2 U .  F,,'(23) . . . . . . . . . . . . .  (2.3) 

and hence, from (2.1): 

(x - dy u-ffs . .  ( 2 . 4 )  i ( x  - + . . . . . . . . . .  

In this report only v.~ has been considered as vy contributes only second-order corrections to 
the supervelocity and has little practical importance. 

A less general wing planform is shown in Fig. 2 with straight leading and trailing edges. For 
describing this wing we use three geometric parameters: the taper ratio ~o ---- cJc,  the angle of 
sweepback of the mid-chord line 90, and the coefficient of convergence e = b/s', which is the 
rate of decrease of the semi-chord with the spanwise co-ordinate* (see Fig. 2). 

* The parameters for such a wing more usual in practical engineering would be : taper ratio ~0, aspect ratio A, and 
the angle of sweepback of some representative line, e.g., the leading edge or the quarter-chord line. For the present 
calculations, however, the parameters defined in the text  were found more convenient. The following formulae connect 
different parameters : 

A 2 1 - - v ~  
8 1 + ~ '  

t ang~  = t a n g o +  8, 
tan ~m = tan 9o + ½8. 

Several altenlative sets of parameters are suggested and discussed by Thomas ~ (1951) and Warren s (1951). 
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The plan form of this wing has a discontinuity at the central section and it is, therefore, 
necessary to consider the supervelocity as composed of two parts, namely the contributions to it 
of the right-hand half of the wing (v,,), and the left-hand half (v,z). The former becomes" 

.2~_ y S~ (~- ~)F~'(~,35) e~  . . . .  (2.5) 
u = 0d35 ; T [ ( x  - -  ~)~ + ( y  - -  35)'-]~/2 , - .  . .  

where &, xr are the values of 2 at the leading and trailing edges respectively and defined by the 
formulae : 

2L = b -- 35(tan ~o + e) = b -- 35 tan ~oL, ] 
(2.6) 2 r = - - b - - 3 5 ( t a n ~ o - -  e) = - - b - - 3 5 t a n ~ r .  

There will be an analogous formula for v,a which will differ only from (2.5) by the sign of y ;  
for the contributions of the left-hand'half-wing at a point P on the right-hand half-wing will be 
exactly the same as those induced by the right-hand half-wing at a symmetrically placed point P~ 
on the left-hand half-wing (see Fig. 3). 

Integrating (2.5) by parts with respect to 2 we obtain:  

2~v,r s [  F/(2,35) 35)~]~/~ i ;  ;L F/'(2,35) 
- / o [  - + - - - + - 9 ) w  ] ' (2.7) 

I t  will be seen that  the first term of (2.7) can always be integrated in terms of algebraic 
functions or elementary transcendents if F(x,y) is a polynomial. The second term, however, is 
more complex; for, if F(x,y) is a polynomial, the first integration with respect to 2 will give the 
integrand for the second integral in terms of algebraic functions and elementary transcendents 
and the subsequent integration (with respect to 35) will therefore be complex and will generally 
lead to higher transcendents. In view of the increased computational work involved in evaluating 
such integrals, it has been decided that  we should consider first only a simple case of a wing with 
biconvex parabolic profile, the equation of whose surface (right-hand half) is : 

b 2 ( l _ y / ~ , ) ~  , . .  (2.8) 

where b(1 - -y / s ' )  > x -¢-y tan ~o 0 > -- b(1 - -y / s ' ) ,  0 < y  < s. 

The second derivative of (2.8) with respect to x is independent of x. I t  may be mentioned that  
the thickness ratio 0. in (2.8) may still be chosen arbitrarily as either constant or as any function 
of the local chord, i.e., of (1 - - S s ' ) .  In this report, only a wing with zero angle of sweepback 
of the mid-chord line (~oo = 0) and with v~ constant along the entire span has been considered. 
Two cases have been investigated, namely, the rhombus wing with zero taper ratio W, and the 
cropped-rhombus wing with arbitrary taper ratio. 

It  should be noticed that  the method of evaluating supervelocities for tapered wings used here 
differs from that  used in the previous reports 1, 2 in that  the integration has been performed 
chordwise first and spanwise later, whereas in Refs. 1 and 2 the spanwise integration was performed 
first. This order of integration was found to be more convenient in this case. An interesting 
fact is that  if the velocity distribution at the central section of a swept-back fully tapered 
wing is found b y  this method directly (by putt ing y = 0 before integration) then in the 
limiting case e - 4  0 (i.e., the wing becomes an infinite swept-back one) the correct expression 
for supervelocity, as known from Ref. 1, is obtained. Appendix I shows this in more detail. 
This seems to indicate t]mt integrating chordwise before spanwise is to be preferred, as the same 
results do not follow if the order of integration is reversed while still putting y = 0 before 
integrating (see Ref. 1, sections 4, 5 and 6). 
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3. Velocity Distribution over Rhombus Wing with Biconvex Parabolic Profile and Sflanwise 
Constant T[cickness Rat io . - -The  rhombus wing plan form to be considered is shown in Fig. 3, 
and i t w i l l b e s e e n t h a t s = s ' ,  ~ = 0 , 9 o = 0 ,  t a n g L =  e and t a n g r = - -  s. The e q u a t i o n o f  
the surface (r ight-hand half) becomes, from (2.8)" 

where 

and 

b(1 - - y / s ' )  > x > - b(1 - y / s ' )  , 

x2 ) 

b~(1 --  y/s ')  ~ , 

O < y < s '  

(3.1) 

2v~x 
' , . . .  ( 3 . 2 )  .F++ (x ,y)  _ b(1 - y / s ' )  . . . . . . . . . .  • 

" , = - ( 3 . 3 )  F ,  (x, 3) b(1 --  y/s ')  . . . . . . . . . . . . . .  

The thickness ratio ~ in the above equations m a y  still be chosen arbi t rar i ly  bu t  if we now 
assume e to be constant  along the span and then subst i tu te  (3.2), (3.3) in (2.7), we obtain,  after  
in tegra t ing with  respect to 2, the  superveloci ty induced by  the r ight -hand half  of the  wing 
surface at P : 

=v.,. ' d2  + ' d~  _+. 1 x - -  e~  + r~ d~  
U,O --  r~ r7  o b ( 1 - - ¢ / s ' ) l n  x - - 2 r - / r l  

where (from 2.6) 

(3.4) 

/ & = b - - 9 ~ ,  
and . . . . . . . . . .  (3.5) 

r ? =  (x - ~ ) ~  + ( y -  ~ ) ~ ,  / " 

/ r~ ~ = ( x  - & ) ~  + ( y  - y ) ~ .  

The superveloci ty m a y  be expressed in non-dimensional  form by  subs t i tu t ing  the  following 
in (3.4)* : 

y - -  s ' ~ ] ' ,  

9 = ~ ' e , ,  . . . . . . . .  . . . . . .  ( 3 . 6 )  

x = b(1 --  y / s ' )~ .  

Then 

where 
UO -- o 01 oo~ ~ o 1 - - - ~  e # ( 1 - - V ' )  + ~ ( 1 - - 4 )  + d~,  

~1 ~ - -  (4 - ~ ' ) "  + ~F~(1 - ~ ' )  + 1 - < ~ ,  [ 

J 0~ ~ =  (4 - ,7') ~ + ~ [ ~ ( 1  - ~ ' )  - (1 - ~ ) ] ~ .  
i Q 

(3.7) 

( 3 . 8 )  

The contr ibut ion of the  lef t -hand half  of the  wing to the induced veloci ty at  P m a y  be found 
in a similar way  from (2.4) but  it  m a y  be more easily obtained direct ly from (3.7). For, the  
induced veloci ty at P due to the  lef t -hand half of the  wing is exact ly  the  same as t-hat at P1 

* 7' was chosen as the non-dimensional spanwise co-ordinate (varying from 0 to 1 for a full rhombus, and 0 to (1 - -  7') 
for a cropped wing). This is different from that  used in previous reports where the co-ordinate ~ = y/b was taken. 

is the chordwise non-dimensional co-ordinate and varies f r o m  (--  1) at the trailing edge to ( +  1) at the leading edge. 
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(a point placed symmetrically to P with respect to the central section, in the left-hand half of 
the wing ( s e e  Fig. 3)) due to the right-hand half of the wing. This latter supervelocity may be 
found from (8.4) simply by reversing the sign of y. If we write (3.4) in a shorthand form as 

~ v * * / U #  = f ( x , y )  , . . . . . . . . . . . . . . . . . .  (3.9) 

then ~v~ ~/Uv~ ---- f ( x ,  - -  y )  . . . . . . . . . . . . . . . . .  (3.10) 

Non-dimensionally" 

( . ,) 
u~  - g(~'~ = g ~(1 - y / s ' ) ,  y / s  , . . . . . . . . . .  ( 3 . 1 1 )  

and U~ -- g b(1 + y / s ' )  ' - -  y / s '  ; . . . . . . . . . . . .  (3.12) 

but as ~ is still defined by (3.6) for any point of the right-hand half of the wing, so the contribution 
of the left-hand half of the wing to the supervelocity at P is" 

~v,~ ( 1 - - , f f  , )  (3.13) 
u ~  - g  ~ 1 + - - - - - 7 , - ~  . . . . . . . . . . . . .  

In other words, the contribution of the left-'hand half is given directly from (3.7) by reversing 

1 - - , / '  This method of conversion must be used with the sign of ~' and replacing ~ by ~ 1 + ~'" 

caution throughout further calculations, however, as it is not applicable at every stage ( s e e  
Appendix II). 

The contribution of the left-hand half of the wing 

where 

is therefore" 

;gVxl fld_~ 1_ ~ld~ + 1 f I 1 l n ( 8 ~ ( 1  - -  ?~1) - -  ~(1 --- ?]) -~ ~4) 
u ~ =  0o~ -00~ 7 0 1 ~  ~ ( 1 - , ~ ' ) + ~ ( 1 - - ~ ) + L  d~,  

~;, = (~ + ~,)2 + ~r~(1 - ~') + 1 - ~]'~, j 

~,,~= (,~ + ~')~' + ~'E~(1 - - ~ ' )  - (1 - ~ )? .  [ 

(3.14) 

(3.13) 

The complete supervelocity at P is thus the sum of (3.7) and (3.14). To evaluate these formulae 
the terms involving logarithms were integrated by parts, and tile velocity distribution can then 
be reduced to the following form" 

--  :~v,,r/U~ = I,. + I2, } 

--:~v. I/U~ = I2 + I4, 

with I1 = - - f l  

I2 --  - -  f* o 

I2 = --  fl  0 

{1 q - ( 1 - - , ~ ' ) ( 1  + ~ ) i n ( 1 - - ~ )  } d {  

{ 1 + (1 -,~')(1 - e)>~1 - y ) }  ee 

1 +  ( l + v ' )  1 + ~  1 

1 -t- (1 -/- v') 1 - - ~  1 

(3.16) 

(3.17) 
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Now, if rj' is zero, we obtain from (3.11) the supervelocity distribution at the centralsection of a 
rhombus wing. For this particular section, of course, the contributions of the two halves of the 
wing are equal. The total  supervelocity at the central section is then:  

where 

--azv,/2U'# = I1 q- 12 . . . .  

I i = - - f l o { 1  + ( 1  + ~ )  

;{ I 2 2 -  0 1 + ( 1 - ~ )  

. . . . . . . . . . . . . .  (3.18) 

r/ {~2 -b s2(~ + 1 - -  {)2},/2 . .  (3.19) 
In (1 - - .7 )  } d*7 j 

*7 {3 ~= + , = ( ~ : -  1 + .7)2},/2. 

If, in addition, ¢ is equal to zero, we have tile value of the supervelocity at the mid-jboint of the 
central section • 

- -  4Ua -- -- o 1 q- ~ {.72 + e2(1 _ ,7)2}1/2 . . . . . .  (3.20) 

Next let us put ~ = 0 in (3.16) and (3.17) and we then obtain the supervelocity distribution 
along the mid-chord line (y-axis in Fig. 3). This is then given by:  

s u e  - f 1 + (1 - ~') in (1 - 5) d A _ f 1 + (1 + ~j') In (, - 4) d~ (3.21) 
0 *7 - -  V 01 0 *7 + */' ~8 ' 

the expressions for el, 02, Oa, e~ being now: 

0 2 - - _  ~ } ~1~ - =  ~ = (*7 _ ~,)= + ~2(1 *7)2 
ea 2--=o4 2--(~] + r ~ ' ) 2 +  s 2 ( 1 _ 4 )  2. l • . . . . . . . . .  (3.22) 

I t  may be seen tha t  the first integral (which represents the right-hand half contribution) has 
an infinite value for ~' -- 1. 

The integrals involved could not be evaluated exactly in terms of elementary or tabulated 
functions, and it has been decided to perform the integration by expanding the integrands into 
convergent power series and hence finding a sufficient number of terms in each series to ensure 
• a reasonable degree of accuracy. Details of the expansion of these integrals are given in Appendix 
II. The necessity of having to calculate the integrals by summing a number of terms of infinite 
series natural ly entailed a great deal of computation. Velocity distribution over the entire wing 
and the isobar pat tern has, therefore, been found for only one example of a rhombus wing with a 
coefficient of convergence ~ = 0.3. 

In view of the computational difficulties the first calculations were made for the simplest 
case of the wing centre only. Values of this induced velocity were found for a range of ~ from 
0 to 1.5. The values of the supervelocity ratio -- av,/4U,~ have been plotted against ~: for the 
central point of the central section of a rhombus wing and these values are given in Table 1 
(figures corresponding to w = 0 for various ~) ; the graph of this variation is shown in Fig. 4 
(~0 = 0 curve). It  would appear from these results tha t  tapering the unswept wing has.a wholly 
beneficial effect, but this cannot be accepted until a more detailed investigatio n has been made. 

The next step in the calculations is to find the supervelocity at various spanwise positions along 
the mid-chord line (# = 0) which, by comparison with the results for untapered unswept wings 
with biconvex parabolic profile, will probably be the locus of the local maxima. This spanwise 
supervelocity distribution has been found for rhombus wings with ~ varying from 0 to 1:0. 
These results are given in Table 2 and Fig. 6. I t  is clear from these that  the optimistic picture 
of the effect of taper on an unswept wing given by  Fig. 4 is par t ly  an illusion for, although v, 
at tile central point decreases as ~ increases, Fig. 6 shows that  v, increases along the span and 
finally tends to a logarithmic infinity as the tip is approached. 
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The singularity at the sharp wing tip, consisting of a logarithmically infinite supervelocity 
when approaching the tip along the mid-chord line, may seem surprising*. The singularity at 
the right-hand tip is due to the source-sink system of the right-hand half-wing only because, 
obviously, the other half-wing contributes merely a small finite increase. Fig. 7 represents, as 
an example, the respective contributions of the right-hand half-wing (curve A) and the left-hand 
half-wing (curve B) to the supervelocity along the right-hand half of the mid-chord line, in the 
case e = 0" 3; the total  being shown by curve C which corresponds to the 0-g curve of Fig. 6. 
The curve A represents the mid-chord line distribution for a separate tria~cg~dar zai~¢g (half of the 
full rhombus) and exhibits the same sort of singularity at the tip as previousIy observed on curve C. 
Suppose now that  the triangular planform gradually expands leftwards from its fixed tip, the 
coefficient e being kept constant so tha t  the shape of the triangle remains unchanged, its scale 
only being increased. Then curve A still represents the mid-chord supervelocity distribution if 
it is kept in mind that  ~' is a non-dimensional quanti ty denoting the  fraction of the (gradually 
growing) span. If, however, a point on the mid-chord line, at a fixed distance from the fixed tip, 
is considered, then ~' assumes higher and higher values as the wing expands leftwards, and the 
supervelocity increases accordingly. When the span ultimately becomes infinite, ~' at all points 
at a finite distance from the tip approaches 1, and supervelocities rise to infinity. This can also 
be checked immediately by examining the corresponding formula (first integral in 3.21) with 
- -  oc as the lower limit of integration. I t  would be vain, therefore, to t ry  to introduce the concept 
of a ' semi-infinite triangular plan form' as a simple representative of tapered wingst, analogous 
to semi-infinite or infinite untapered wings, which served us so well previously. 

I t  would have been difficult to predict whether the supervelocities on a fully tapered (in 
particular triangular) wing should be generally greater or less than those on an untapered 
(especially two-dimensional) one. At any section, the contribution of the adjacent tapering part 
must be smaller, that  of the adjacent diverging part  greater, than the corresponding amounts 
in tile case of a constant-chord wing, but it is not clear beforehand which effect will prevail. 
Our analysis shows that  the increasing tendency has the upper hand if the wider part  occupies 
a sufficiently large proportion of the span, more and more so as the section approaches the 
sharp tip. 

I t  will be seen, therefore, that  taper may have a detrimental effect on the critical Mach number, 
especially if the wing has fairly sharp tips. This, however, is not so serious as it appears at first, 
for the taper ratio ~ = c~/cr will always be an appreciable fraction, as sharp tips never occur in 
actual design. The supervelocities on wings with ~0 =# 0 are investigated in the next section. 

Before leaving the rhombus wing, it Was thought that  an at tempt  should be made to determine 
the velocity field over the entire surface of such a wing. The amount of computation involved 
made it impossible to consider more than one case, and a wing with ~ = 0-3 has been chosen. 
The supervelocities were found at various spanwise positions, and the isobars over the entire 
wing were found from these curves. Fig. 8 and Table 3 show the variation of -- ~v~/4~ with 

and ~' for this wing, and Fig.. 13 is a diagram of the isobars. I t  will be seen that  the results 
confirm the fact that  the sectional maximum supervelocities occur along the mid-chord line for 
the biconvex parabolic profile and that,  therefore, Fig. 6 does indeed give the variation of the 
local maxima spanwise with. coefficient of convergence e. 

* I t  may be stressed that  this singularity has been obtained entirely on the basis of the first-order method, and the 
results of an exact theory (or, at least, of a higher order approximation) may  be different. No appreciable corrections 
should be expected within a major part  of the span, but the nature of singularities at the sharp tips is unpredictable for 
the time being, so that  it must be left as an open question whether the supervelocity along the mid-chord line really 
increases indefinitely towards the tips in the exact solution. The answer may be different according to whether we 
consider a flow past a given wing (the system of sources and sinks being then slightly modified), or a flow with the 
assumed system of sources and sinks (in which case the wing shape would be somewhat altered). The problem is certainly 
an extremely difficult one, but its interest is purely academic, as only minute t ip portions are involved. I t  will be seen 
in section 4 that  this type of singularity will not occur at the tips of cropped wings, the only ones likely to be used in 
design. 

t At least on the assumption of thickness ratio being ifivariable spanwise, but alternative assumptions do not seem 
promising for any practical purpose. 
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The isobar pattern in Fig. 13 is very instructive, especially if compared to that  for an untapered 
finite wing (see, e.g., Fig. 26 of Ref. 2) from which it differs in a striking way. The dominating 
feature is that  all isobars converge to the sharp tip corner which presents a peculiar singularity. 
I t  is obvious that  all isobars corresponding to low and all negative supervelocities must converge 
to this corner, as the wing profile near to it contracts to zero length, and thus the stagnation 
points and points with gradually increasing velocities all tend to coalesce. However, isobars 
with indefinitely increasing positive supervelocities also radiate from this same point, although 
their dimensions become decreasingly small. This could be expected because the supervelocity 
along the mid-chord line has been shown to tend to logarithmic infinity' at this point. The 
mathematical singularity is physically of little importance by itself, but it results in the isobars 
with high number s (high-suction lines) doubling back on themselves and becoming closed contours 
within one of the half-wings, close to the mid-chord line; they do not reach the central section 
where the local maximum (0" 897 in the case of Fig. 8) is lower than their own parameter. 
Naturally, lower isobars do reach the central section which they cross a t  right-angles, and thus 
run through the entire wing span. There obviously exists one isobar (corresponding to the central 
section maximum) which separates the two groups, and this consists of two branches with a 
double point at the origin O. The entire picture thus differs from that  of an untapered wing 
(Ref. 2, Fig. 26) in that  the higher isobars are concave to tile tip instead of to the central section*. 

Fig. 13 represents, of course, only one particular case (for e = 0.3) but this example is typical, 
as may be concluded from the diagram in Fig. 6, which shows that  the maximum local super- 
velocities always increase continuously from centre to tip, the slope increasing with e. The 
isobar patterns for various ~ will, therefore, always resemble that  of Fig. 8, the only effect of 
increasing e being that  the higher (closed) isobars will be more crowded spanwise. A rough 
sketch for arbitrary ~ may be drawn by using a corresponding curve from Fig. 6 using in addition, 
if possible, the velocity distributions in the central section. 

Finally, if another profile, differing from the biconvex parabolic (in particular, not symmetrical 
fore-and-aft) is chosen, the isobar pattern will be essentially similar to that  of Fig. 13, but there 
will be no symmetry about the y-axis, the maximum supervelocities of particular sections will 
be numerically changed (generally increased) and be on a curvilinear locus, and the isobars will 
be more crowded in the region of greater curvature of the profile, etc. Apart from such distortion, 
we should not expect any qualitative changes, especially for moderate e, unless the profile itself 
is a bad shape with irregular two-dimensional characteristics. 

As regards critical Mach numbers, the position is rather peculiar, owing to the theoretically 
infinite supervelocity at the sharp tip which seems to be the first danger point. I t  is impossible 
to calculate the lower critical, and its significance would anyhow be negligible because the area 
initially affected would be small. However, it is clear that,  at increasing speeds, shock-waves 
would first appear in tip areas to spread gradually inwards until  they reach the central section. 
The matter  does not merit a numerical examination as sharp-tipped wings are never used in 
design. 

4. Velocity Distribution over a Cropped-Rhombus Wing with Biconvex Parabolic Profile and 
Sibanwise Constant Thickness Rat io . - -The  cropped-rhombus wing plan form which has been 
considered is shown in Fig. 3, and in this case s = s'(1 --  ~), where 0 < ~ < 1. 

As the velocity distribution has already been calculated for the rhombus wing it is convenient 
to calculate the effect of the ' cut off '  tip triangles and subtract this from that  of the complete 
rhombus wing. In this way the additional computation is shortened because the terms of the 
new series are small and so only a few of them need to be calculated to obtain the required 
accuracy. Also, the effect of the tip triangles on sections near the centre, to be subtracted from 
the full-rhombus values, is often so small as to be negligible. 

* This isobar pattern is obtained, of course, on the basis of the first-order theory. An exact pattern will only deviate 
slightly within a major part  of the planform, but some alterations, difficult to predict, may  occur in the nearest 
neighbourhood of the sharp tips. 
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The velocity contr ibut ion of the  ' cut  off '  r igh t -hand t ip tr iangle is given by  (3.7) and (3.8) 
when a suitable change of the  l imits of in tegrat ion is made;  thus :  

__ __ ~1 d q  1 1 1 In do, (4.1) 
U# 1 - ~  0 1  - -  - -  

! 

where ~o, and e= are defined in (3.8), and the non-dimensional  co-ordinates ~ ', q and ~ are the same 
as before (see 3.6). 

A s  for the rhombus wing, the  contr ibut ion of the lef t -hand tip triangle is obtained by  replacing 
( 1 - - ~ ' )  

~'  by  (-- ~') and ~ by  ~ 1 q - ~ '  in (4.1). 

The logari thmic term is then  in tegra ted by  parts,  and the limits subs t i tu ted  where possible; 
the  formula (4.1) then reduces to" 

- ~ C , / U # -  o + L + L ,  
, o , • . . 

A ' ' - ,~v~,l~;# - -  A + L + r_~, 

- + + 
1 In ~o in  [ _ e - ~  - -  ~?') eV q- ~ , ~ _ ~  where O = ~ . _ , 

A = - In ~ in ~ ( ~ - ~ - ~ + ~ o ,  , 

f3 --  --  

. . . . . . . .  (4.2) 

- -  - -  f 1 ~-  (2 - -  ~ ' ) (1  q- ~)ln__(1 - -q)  dq 
1 - v  ~ - - -  ~7 Q1 ' 

; [  ] 1 + (2 ~')(1 ~) in (1 - ~ )  d~ 

; [  ( 1 + ( 1 + ~ ' )  1 + ~  1 - ~ '  1 ( ~) do 
1_,.o 1 + ~ ~o-~ ' 

(4.3) 

with O ' 1 , 1 _ ~ o  

G 2 ,  I = - W  

~ - ( 1 + ~ '  G3, i--~# -- 

- ~). ~- ~ ( ;  - ;~,  + ~)~. 

- v)~ + ~ ( ;  - ~ ,  ~)~. 

- v)~ + ~(~ - ;~,  + ~)~, 
(4.4) 

a~,>/--- (2 + ~' - ~)~ + ~ ( ,  - ~ '  - ~)~. 
The integrals of (4.3) have been evaluated by  expanding t hem into convergent  power series as 
for the  whole rhombus,  and details of the  analysis are given in Appendix  I I I .  

If we subs t i tu te  ~ ---- 0, ~' = 0 in (4.2), (4.3) and (4.4), we get the  formula for the  centre of a 
cropped-rhombus wing:  

where 

A 

~rV~ Y2 

- - 4 U # - - 4  + I 1 ,  . . . . . .  

1 F ~ + {(2 - ~)~ + ~ } ~ / 2  -I 9 = - in  ~ In L - -  ~ o  -t- {(1 - -  ~0) ~ + ~ } ~ / 2 J  ' 

- -  1 +  

~o? = ~ + ~(1 - ~)~. 

. . . . . . . .  (4.5) 

dq . .  . .  (4.6) 
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Figs. 4 and 5 show the variation of the supervelocity at the centre 0f straight tapered wings 
with ~p and e. Fig. 5 also shows lines of constant aspect ratio A (see formula for A in the 
footnote under section 2). The values of A when ~0 = 1.0 are obtained directly from the values 
for rectangular straight wings (see Ref. 2, equation 4.2.3 and Fig. 2). 

If we put ~ = 0 while keeping ~' arbitrary in (4.2), (4.3) and (4.4), we get simplified formulae 
for the mid-chord line of the cropped wing : 

where (f2)~=. --_ 1_ in ~v In e ~o + [(1 -- ~' --, ~o) 2 if- ~2~o2] 1/2 
- + V(1 - - -  + ' 

e l - ln  ~o In e~v q- [(1 q- ~'  - -  V)" -}- e~°2~ */2 
- + E(1 + ,7' - w)  + ' 

. . . . . .  ( 4 . s )  ;1{ } 
*=~ ~ - -  ~ ~1 ' 

f l  { ,) ln (1 - -  q) } dq 1 + (1-t-v v' 

the expressions for e~ and 03 being now defined by  (3.22). 

The supervelocity along the mid-chord l ine of.the cropped wing has been computed for values 
of ~o of 0.3 and 0" 6 for values of e varying from 0 to 1.0. This again gives the local maximum 

supervelocities across the wing, and it is seen from Figs. 10 and 11 tha t  the effect of 
cropping the wing is to bring about a considerable reduction of the supervelocity at the 
tips which drops to roughly half its original value at the same spanwise station. The  tip 
effect for a tapered wing is therefore similar to tha t  for an untapered one. Thus it is clear tha t  
the effect of tapering and cropping a wing may be advantageous by comparison with an infinite 
untapered wing. If comparing with rectangular wings, the effect is more subtle and depends 
on the choice of the latter. We may, for example, make a comparison for either plan form families 
of constant s/b or constant aspect ratio A. Fig. 12 shows the variation of the true maximum 
supervelocities (wherever they occur) for wings of constant s/b or A, the values of either ratio 
being taken alternatively as 2.5 and 5.0. I t  should be noticed that  the effect of taper is only 
quite small in all cases but is more marked for the lower values of s/b or A and somewhat more 
significant when A is kept constant rather than s/b. For moderate to large values of ~, taper 
does reduce the maximum to a small extent but, with decreasing ~o, the effect is reversed. If, 
however, the local maximum supervelocity at the central sections had been compared for these 
wings this would have indicated a marked beneficial effect from taper which would be quite 
erroneous. I t  should be pointed out that  only two points on each of the curves of Fig. 12 have 
been determined accurately (from our Figs. 10 and 11, using interpo!ation as necessary), apart  
from the values for the rectangular wings (~0 - 1), which have been taken from Ref. 2, Fig. 24, 
and futly tapered wings (~, = 0) where the values are logarithmically infinite. The reason for 
this is that  our computation of v~ for cropped wings has been made for only two values of 

= 0.3 and 0.6. The curves of Fig. 12 do suffice, however, to show the general trend of the 
effect of taper. , 

I t  has been thought  justifiable to undertake one more computational effort so as to obtain 
an illustrative picture of supervelocity distribution over an en t i r e  cropped wing. The values 
of the parameters chosen are e =: 0.3 and ~o = 0.3. The numerical results are given in Table 4, 
supervelocity diagrams Jn Fig. 9, and the wing with its isobars is represented in Fig. 14. 

The isobar pat tern in Fig. 14 may be best examined by comparison with that  of Fig. 13 (full 
rhombus with the same e). I t  is seen tha t  the central area presents an almost identical picture 
in both cases because, obviously, the effect of the distant small tip triangles which have been cut 
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off is so slight. The pattern changes, however, in the remaining areas near the tips where super- 
velocities are greatly reduced so that  the higher isobars, instead of converging to the imaginary 
sharp tip, double again back on themselves becoming more or less similar to those in tile familiar 
cases of untapered tip areas (Ref. 2, Fig. 26). As a result, the high isobars become narrow ovals 
stretched spanwise, separate in each half-wing*. Somewhat lower isobars (with index little below 
the maximum of the central section, 0.897 in the present case) again Cross the central section, 
thus becoming large ovals extending over both wing halves---there being again a separating 
isobar of slender ' e i g h t '  shape with a double point at the centre. Even lower isobars, with 
index below the tip maximum (0.571 in our example) reach the tip section and thus split in to  two 
full-span branches of mild curvature. The taper effect dominates the central area, while the 
tip effect rules two regions of its own. 

Fig. 14 is again representative of a wide class of cropped-rhombus wings, but not to  such a 
degree as the typical full rhombus pattern of Fig. 13. In the previous case, only one parameter, 
,, affected the picture, resulting in merely quanti tat ive modifications. Now we have to deal 
with two parameters, s and ~, and the pattern may undergo even qualitative changes as either 
of the two prevails. Thus, as ~ increases the tip effects gradually suppress tha t  of taper even 
in the central area, producing a pattern more similar to that  of untapered plan forms of small 
aspect ratio. The changes m a y  be predicted approximately by examining the diagrams of 
supervelocity along the mid-chord line (as in Figs. 10 and 11). I t  is seen that  as the wing is 
cropped more and more (increasing ~), the two separated regions of closed ovals enclosing the 
two ' foci ' in both half-wings become increasingly narrow, the loci'themselves receding inboard. 
The effect is more pronounced at larger s's so that,  e.g., when s = 1 and ~ ---- 0.6, these two 
regions practically disappear. With even greater ~, the loci Would coalesce at the centre and 
then the pattern would consist of just ovals over both wing halves, and full-span branches. 
This, however, will only occur for wings of very small aspect ratio, with no practical significance. 

The change of profile will again produce modifications consisting in destroying the fore-and-aft 
symmetry, usually increasing the maxima and displacing them Chord-wise, crowding the isobars 
where the curvature of the profile increases, etc., but no important  qualitative changes are to be 
expected for well-shaped profiles. 

As for critical Mach number, the position is at least fundamentally clear, if not promising as 
far as actual computation is concerned. The first danger points in most cases (at least for profiles 
with fore-and-aft symmetry) will obviously be the two ' foci ', and these will determine the 
' lower criticals ' for the wing. Shock-waves, once started near the loci, will then spread both 
inboard and outboard as t h e  speed increases, the central area being reached quite soon. Only 
in cases of large values of both s and ~ will the root section be relevant for the lower critical 
when sh0ck-waves will gradually spread outboard from the centre towards both tips. The 
calculation would be troublesome as, in compressible flow, the G6ther t  s three-dimensional 
paraphrase of the Glauert-Prandtl law would have to be applied so that,  for each Mach number 
an ' analogous ' wing with span and thickness reduced to the ~/(1 -- M 2) fraction of their original 
values would have to be considered, the thickness ratio remaining spanwise constant, however. 
Diagrams as those of Figs. 10 and 11 would be needed, and the calculations would proceed on 
the lines of Ref. 6. I t  is not proposed to enlarge on the subject here, but it may be mentioned 
that,  according to the results of this paper as to maximum supervelocities, no considerable 
benefits are to be expected for tapered wings as against nntapered ones unless the aspect ratio 
is particularly small. In practice, small aspect ratio wings will usually be strongly swept-back 
leading to delta plan forms, and in such cases one more effort will be needed to overcome the 
combined theoretical difficulties of sweepback and taper. Even when the wing plan form has 
fore-and-aft symmetry but  its profile has not, some aspects of sweepback play a part  because 
the highest isobars then run obliquely to the main flow. 

* And enclosing respectively, the two ' loci ' with supervetocities max imum for the entire wing area (index 0.994 in 
our case). 
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LIST OF SYMBOLS 

Explanation of Typographical Signs and Suffixes.---The suffixes r, l refer to the right-hand and 
left-hand sides of the wing respectively. 

The suffixes L, T refer to the leading and trailing edges of the wing. 

The suffix 0 when used with ~0 refers to the mid-chord line. 

The suffixes 1, 2, 3, 4 for the square roots (r, e, R) indicate the in±egrals in which they occur, 
for instance rl occurs in 11, etc. The irrational factors of the square roots with limits substituted 
(~'s) have two suffixes, the first indicating tile integral in which they occur and the second suffix 
(0, 1, 2 or 1 -- ~0) indicating the upper or lower limit of integration which has been substituted. 

A similar system has been used for the series of ' I ' s  and T's (see Appendices). The first suffix 
refers to the integral of which the series is part  (11, 12, etc.), and the second is the number of the 
term in the power series. Thus I1 ~ is the m *h term of the power series of I ' s  in 11. Similarly 
for 7"1 m, etc. 

For the rhombus wing I1 and I2 are expanded in a different way over the outboard part  of the 
semi-span, and 11 and I= are split up into several integrals which are denoted by the additional 
suffixes h, j, k, p. Tile terms in the power series in these integrals (where it was necessary to 
expand in such series) therefore have three suffixes : the third indicating now the number of the 
term in the series. For example, Tlh,~ is the m t~ term in the power series in the integral 11t, 
(the h-part integral of I1). 

The suffixes 1, 0, (1 -- ~0) used with the auxiliary variables #, v, , denote the values of these 
variables at the upper and lower limits of integration. 

In the expansion of the I ' s  there are symbols of the form 11-1, I10, etc. ; the second suffix 
in these cases indicates the power of the variable (such as ~, v, ,) in the numerator of the integral  
For instance : 

f .1 d/~ 11 = 
I 1  --1 = /~0 / A R I '  o j / 2 o R -  1 • 

The sign ^ over a symbol indicates the values for the cut-off tips of a cropped wing and the 
supervelocities thus marked must be subtracted from those corresponding to the fully tapered 
wing. 

A 

a~, a4, etc. 

b 

C 

Cr 

C~ 

f (x ,y)  

f 
g 

I 

Aspect ratio 

Constants, see (11.43), (11.44) 
Semi-root chord 

Chord at any spanwise station (variable owing to taper) 

Root chord 

Tip chord 

Function determining wing surface or, for a fixed y, profile at any spanwise 
station, see (2.2) 

Function determining the contribution of right-hand half-wing to v~ in terms 
of dimensional co-ordinates x, y, see (3.9) 

Function determining tile contribution of right-hand half-wing to v~ in terms 
of non-dimensional co-ordinates ~, ~', see (3.11) 

Integrals appearing in the solution 
Carries appropriate sut~xes. 
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LIST OF S Y M B O L S - - c o n t i n u e d  

Vx, Vy 

x, y 

x, y 

2 

t ~7 

l Distance QP, see  Figs. 1, 2, 3 

m Index denoting arbitrary term in an infinite series 

P Terms of the power series of inverse square root occurring in the solution, 
see  (11.47) 

Carries appropriate suffixes 

q Source strength per unit area, s e e  (2.1) and (2.3) 

R Various non-dimensional expressions in #, ~,, T defined by (I. 10) (II.5), (11.52) 
and (111.6) 

Carries appropriate suffixes 

r Various dimensional expressions in x and y defined by (3.5) and (I.3) 
Carries appropriate suffixes 

S Wing area 

s Wing semi-span 

s '  Distance of point of intersection of wing leading and trailing edges from the 
root chord (this is equal to s for fully tapered wings) 

T Terms of the power series of logarithms occurring in the solution, see  Appendices 
Carries appropriate suffÉxes 

t = --  ~ Auxiliary variable, see  (11.43) 

U Undisturbed velocity of the air flow 

Components of induced velocity 
Carries appropriate suffixes 

Chordwise and spanwise co-ordinates 

Chordwise and spanwise co-ordinates of a source element, being fundamental 
variables of integration 

Values of 2 at  the limits of integration, i . e . ,  at leading or trailing edge 

Vertical co-ordinate 

Angle, s e e  Figs. 1, 2, 3 

= b / s '  Coefficient of convergence 

---= y / s '  Non-dimensional spanwise co-ordinate of a point on the right-hand part  
of the wing surface 

Similar co-ordinate for a chordwise source-and-sink strip 

v~ Thickness ratio of wing profile 

A Portmanteau symbol, see  (4.3) 

t~ Auxiliary variable, defined by (II.3) or, in the particular case of the central 
section, by (I.8) 

v Auxiliary variable defined by (1.8) 

x + y  tan)~0o Non-dimensional chordwise co-ordinate of a point on the 
= b(1 --  ~ right-hand part  of the wing surface 
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LIST OF S Y M B O L S - - c o n t i n u e d  

Various expressions in 4, v' and $, defined alternatively by (3.8), (3.15), 
(3.22), (4.6) 

Carries appropriate suffixes 

Various expressions in v' and ~ obtained from Rafter  substitution of limits of 
integration, defined alternatively by (I.17), (I.31), (II.15), (II.30), (II.S8), 
(III.12), (Ill.28) 

Carries appropriate suffixes 

Auxiliary variable defined by (II.50) 

Angle of sweepback 
Carries appropriate suffixes 

c~/c~ Taper ratio of wing 

Portmanteau symbol, see (4.3) 

No. Author 

1 S. Neumark . . . .  

2 S. Neumark and J. Collingbourne . .  

3 S. Neumark . . . . . . . .  

4 H . H . B . M .  Thomas . . . .  

5 C . H . E .  Warren . . . . . .  

6 S. Neumark . . . . . . .  • 

7 J. Edwards . . . . . . . .  

8 A. Fiul . . . . . . . .  
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A P P E N D I X  I (To Section 2) 

Velocity Distribution at the Central Section of a Fully Tapered Swe~)t-back Wing with Biconvex 
Parabolic Profile and Spanwise Constant Thickness Ratio 

In the following calculations the chordwise integration is performed before the spanwise and 
~/ is  equated to zero before the integration. The results thus obtained have been checked with 
the formula for an infinite swept-back wing by finding the limiting value when the convergence 
ratio e tends to zero. 

The general formula for the supervelocity at any point on the surface of a swept-back fully 
tapered wing (angle of sweepback of the mid-chord line 90, coefficient of convergence ~, and taper 
ratio ~, = 0, see Fig. 2) is found by substituting the first and second derivatives of (2.8), with 
respect to x, in the general formula (2.7). Hence, for the right-hand half-wing: 

= b(1 -- 9Is') [(x -- 2) ~ -}-(y --/f)211/~ ;r -- 

o r  

b ( !  - 2 / s ' )  
d~ 7 

d2 
[(x - e)~ + ( y  - ¢)~11.  J 

. .  . .  ( I . l )  

1 ( x - - b + ~ t a n ~ o L + r ~ ) l  
av,, (~ ' I1  1 q_ b(1 ~/s') In d~, . (I.2) 
Uv~ - - J o L r l  + r - ~  - -  x + b + g t a n ~ 0 r + r l  " . . . .  

where the limits of integration xr, xL are defined in (2.6) and 

rd = (x + b + 3~ tan ~0r) ~ + (y - -2 )  ~" , 

r22 = (x  - -  b + if tan ~%)~ + ( y  - - : 9 )  2 . . . . . . . . . . . . .  ( I . 3 )  

If we now put y = 0 in (I.2), we then obtain the supervelocity in the central section induced 
by the right-hand half-wing, which may be written in non-dimensional form" 

Uv~ 

where 

~ol 2 

o22 

The 

f ( - 
_ ~ d ' o  ldq 1 ~ q t a n g L  e (1 - -~ )  + dq 
- - J o ~  + 0 - o ~ + ; f o  In q t a n ~ o r + ~ ( l + ~ ) + ~ l  1 - - q '  

--=- q" sec 2 ~0r + 2~(1 + ~)q tan 9r + ~"(1 -~- ~)2, 
• . . . . . .  • 

= ~ s e c  ~ ~0c -- 2e(l -- ~)q tan ~L + d(1 -- ~)2. 

contribution of the left-hand half-wing will be exactly the same, owing to symmetry.  

(I.4) 

(i.s) 

Integrating the logarithmic term in (I.4) by  parts, and substituting the limits, 
we may present the formula for the total supervelocity in the central section in the form" 

--~v,/2U~ = Ii + 12 . . . . . . . . . . . . . . . . . . . . .  
with 

In (1 - -  ~) ) d~ 

ln(1 _-- q) ) d~0. 
~] 02 

where possible, 

(1.6) 

(1.7) 

The formula (1.6) applies for an arbitrary value of e, but it would not be permissible to let 
e--+ 0 at  this stage. This will only be possible after the following transformation. 
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N e i t h e r  of t h e  in tegra ls ,  (I.7), can  be  e v a l u a t e d  in t e r m s  of s imp le  t r a n s c e n d e n t s  or t a b u l a t e d  
func t ions ,  so it  has  been  dec ided  to  e x p a n d  t he  l o g a r i t h m s  in p o w e r  series a n d  i n t e g r a t e  t e r m  
b y  t e r m  for  a suff ic ient  n u m b e r  of t e r m s  to  g ive  t h e  r e q u i r e d  accuracy .  Before  do ing  th is ,  h o w e v e r ,  
t h e  va r i ab les  of i n t e g r a t i o n  h a v e  been  c h a n g e d  in an  a n a l o g o u s  way  to t h a t  w h i c h  will  be  u sed  
for  t he  r h o m b u s  w i n g  (see A p p e n d i x  II) .  

I n t r o d u c i n g  t h e  auxiliaLv variables def ined  b y  

~ = ~ 1 ( 1 -  ~) . . . .  

for  I1 a n d / 2 ,  r e spec t ive ly ,  we o b t a i n  : 

----- l q -  In {1 /~  - -  COS 9) r ~ 0  

w here  

+ , ) }  

1 ] &  
12 cos 9L ;0 • v --  - 1 + - i n { 1  - - 

RI~ = #2 + 2e~ sin 9> cos ~0r + d cos ~ ~0r, l 

R 0  =: ~,2 __ 2ev sin ~L cos ~% q- ,.2 cos ~ 9 c .  / "" 

. . . . . .  (I.S) 

. . . . . .  (I.9) 

w he re  

and hence 

o r  

1 " 1 =  ~11 0 COS ~0T --~ (1 + $)2 COS ~0T [ 1 . / 1 1  -JF 1 ( 1  _[._ ~ ) 1 1 '  2 ._~ 1 (1  i__t_ ~)2/1  3 _ ~ ,  . ]  

. . . . . .  (1.12) 

f 
l / l+~ jzm 

I1  m = - -  ~ . ,  . . . . . .  , . . . . . . .  ~o R1 @ (I. 13) 

fl/1-1-~ (~t ( 1  + e(1 + ~) sin 9 r  cos ~r  + (7~ 1)  . . . .  (I.14) 
I ~ .  --=- ~0 R-~ --~ In ~(1 q- ~)(1 + sin 9~) cos ~r  ' "" 

(71 1 
7i 1 -- 1 + ~ - -  ~ cos ~vr - -  ~I1 o sin qJr cos ~or . . . . . . . . .  (1.15) 

[1 - -  3 e (  
I1  2 --- 

1 + $) sin ~r  cos ~r](71 1 3e ~ sin Wr cos 2 ~r  
2(1 + ~)~ -b 2 

s~(1 - -  3 s in ~ ~r)I1 o cos ~ 9r  
2 . . . . . . . . . . .  ( I . l e )  

and  (71 12 is a f ac to r  a p p e a r i n g  in t he  express ion  for  R1 ~, o b t a i n e d  a f te r  s u b s t i t u t i n g  t h e  u p p e r  
l imi t  of i n t e g r a t i o n "  ~ 

(71 12 = 1 + 2~(1 -b ~) sin 9 r  COS 9r  - /  ~2(1 + ~)2 cos 2 ~r . . . . . . .  (1.17) 

I t  has  been  f o u n d  t h a t  t h e  series ~ .  ~r 1 ,~ is n o t  r a p i d l y  c o n v e r g e n t ,  a n d  so a n o t h e r  s e r i e s - -  
1 

t h a t  w h i c h  is f o r m e d  w h e n  e - ÷  0 in I1 1, I1 ~, e t c . - - i s  c o m b i n e d  w i t h - i t  in such  a w a y  as  to  
p r o d u c e  one  series whose  s u m  to  in f in i ty  is k n o w n  a n d  a n o t h e r  w h i c h  is q u i t e  r a p i d l y  c o n v e r g e n t .  

18 

Let us consider 11. E x p a n d i n g  t h e  l o g a r i t h m  in a power series (val id  t h r o u g h o u t  t h e  r a n g e  of 
i n t eg ra t i on ) ,  we ob t a in "  

- = Jo ~ + lye(1 + ~)2 + 1, ,2(1 + ~)~ 4-  . . .  ~ ,  . .  . .  ( I . 11 )  

( 1 . 1 o )  



As e- -+0 ,  I ~ - - + 1 / 1  q- ~, I~--+½/(1  + ~)'~, etc., and  hence" 

o .... x ( m q - 1 ) m  (1 q- ~)'* (/ ' 70)] 1 + ~)" - -  mI~ ,,~ cosC°S 9r 

o r  

or, finally • 

where  

L -- Z~o ~ cos 9~- + (1 + ~) ~ ,  (~ + 1)..~ 
1 1 

Zl = + 
1 " 

T 1  m - (m + 1 ) ~  

(1 4- ~)'" I~ ,,, cos 9T 
m + 1 COS 90" 

cos 90 . .  (I.18) 

cos 90, . . (I. 19) 

. . . .  (i.2o) 

For  the  c o m p u t a t i o n  a recurrence  formula  for T 1., WaS used. 
240, gives the  following re la t ionsh ip :  

x m  -- 2 

x "-~ (a + bx + CX2) ~/2 = (m --  1)a f (a + bx + cx2) ~/~ dx 

x m - 1  Xm 

+ ~(2~ - 1)b f (~ + ~ + ~,~2).~ ~ + ,~ f (~ + b~ + c~)1, d x  

. . . . . . . .  (1.21) 

E d w a r d s  7, on page  235, pa rag raph  

(I.22) 

F r o m  this  formula  we get" 
o'11 #" - -  1 

_ _  E 2 I~,,~ m(1 + ~)" m I~ .... 2 cos 2 9T 

and  subs t i tu t ing  for I~,,, f rom (I.20) in (I.23)" 

1 [ cos 9 r ]  
T~ , , - -  ( m +  1)m 1 - - a ~ c o s 9 0  

+ 

2 Y P b -  1 

q4~ 
- -  I~ .... ~ e sin 9r  cos 9 r ,  (1.23) 

e(1 q- ~) cos 9T [ (m - -  1)%(1 -t- ~) COS 9r q- (2m - -  1)(m - -  2) sin ~0T 
+ 1 ~ ( ~  - 1 ) ( ~  - 2) 

( m - - 1 )  2 e(1 + ~)T1 .... 2 c o s g r - -  ( 2 m - -  1)T~ .... l s i n g r ]  • . .  (1.24) 

This recurrence  formula  can be used  for all values  of m greater  t h a n  2, bu t  T , ,  and  T,  2 m u s t  
be found  f rom (I.15), ( 1 .16 )and  (I.21) • 

[ c°s~ 9~ 1 .. (I.25) 1 cos 9r  + e(1 +- ~) c°s~ 9r  + L o e(1 + ~) cos 9o 
T ~  - -  2 1 - -  o1~ cos  9~0 cos  9 ~  

1 E T12 --  6 1 - -  

COS a 9T ] . .  (1.26) - -3e2(1  + #)cos--9o s i n g z - t - I ~ 0  e 2 ( 1 - / ~ ) 2 ( 1 - - 3 s i n  29r)  cos 9 o - "  

sin 9T 

~ {1--  3e(1 + ~) sin 9r cos ~r} cos 9r 
COS 90 

COS3  9 T  

The corresponding formulae for I~ are found  by  replacing ~ by  ( - -  ~) and  9r by  (--  9L), t h e n  

I2 ' I2o $ cos 9L + (1 - -  ~)(1 - -  ~ ,  T2,,~) cos 90 . . . . . . . . . .  (1.27) 
1 

w h e r e  

(1.2S) I20 in ~ w  

L e ( 1 - -  ~:) ( 1 - -  sin 9L) cosgL J ' "" "" 
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• T 2 1  - -  

a n d  

T g  2 - -  

cos ~ 9L sin 9~] , . .  (1.29) 1 c o s g c + ,  e(1 --  $ ) c ° s~9~  I~o e ( 1 - -  $) cos90  
2 1 - - a ~ i c o s  9o cos 90 - -  

,[ 6 1 - -  ~2~ {1 + 3e(1 - -  ~) sin ~L cos ~L} cos9L 
COS ~o 

COS 3 

~Lsi n 9r -¢- 12o d(l -- ~)2(I -- 3 sin 2 9L) c°s3 9~] .. (1.30) + 3 ~ ( 1  - -  ~)~ cos 9~ cos ' 
w h e r e  

T U  ~ 

~212 = 1 - -  2 , (1  - -  ~) s in 9~. cos 9L + s2(1 - -  ~)2 cos ~ 9L . . . . . . .  . .  (I.31) 

T h e  r ecu r r ence  f o r m u l a  for T2 ,,, is t h e n "  

1 ( c o s )  _ _  9 L  

T=,, , --  (m-}- 1)m 1 - - a 2 1 c o s  90 

e(1 - -  ~) cos 9L ( ( m  - -  1)%(1 - -  ~) cos 9L - -  (2m - -  1)(m - -  2) s in 9r + 
m + 1 \ m ( m  - -  1 ) ( m  - - 2 )  

__ (m m-- 1)~ e(l - -  ~) T~,,~_~ cos 9L + (2m - -  1)T2,,,~_1 sin 9L)  . . . . . (1.32) 

A d d i n g  (I.20) a n d  (I.27), we o b t a i n  t h e  total supervelocity at  t he  cen t r a l  sec t ion"  

1 1 

- -  _~(I20 cos 9% --  I10 cos 9r) . . . . . . . . . . . . .  (1.33) 

T h e  a b o v e  f o r m u l a e  g ive  n o w  all t h a t  is n e e d e d  for  c o m p u t i n g  v~ in a n y  p a r t i c u l a r  case, b u t  
no  a t t e m p t s  a t  th i s  h a v e  been  m a d e  t h u s  far. 

L e t  us  n o w  cons ide r  t h e  l imit ing case e - ÷  O. T h e n  I1, ,--> l /m(1  + ~)m a n d  9L - -  9o = 9r  = ~o ; 
the re fo re ,  f r o m  (I.21), we f ind i h a t  all TI , , - -+ 0. S imi la r ly  T2,, t e n d s  to  zero for  a n y  va lue  of m 
f r o m  1 to  o% a n d  (I.33) t h e r e f o r e  r educes  to"  

~ Z '  x 
- -  1 - ½-~ l im ( I .  0 - L o) . . . . . . . . . . . . . . .  ( I . 3 4 )  4U~ cos ~ ~+o 

N o w  
- sin oos (1 + + sing ) cos ) 

_ _ 9~- . ( I . 3 5 )  I ~ o - - I ~ o = = l n  1-.~- e ( l +  ~ ) s i n g r c o s g r + a l ,  ( 1 - -  ~ ) ( 1 - -  s ingL)  cos ' • 

a n d  t h e  l imi t  of (I.35) w h e n  e t e n d s  to  zero is" 

[ 1  + ~  1 + s i n ; l  
l i m ( I ~ o - - I 1 0 ) - - l n  1 ~ 1 + s i n  . .  (I.36) 
s - - ~ - 0  - -  ' . . . . . . . .  

w h e r e  9L = 9r  = % 

T h e  s u p e r v e l o c i t y  d i s t r i b u t i o n  a t  t h e  c en t r a l  sec t ion  of all inf in i te  s w e p t - b a c k  w i n g  of c o n s t a n t  
c h o r d  wi th  b i c o n v e x  pa rabo l i c  profi le  is t h e r e f o r e :  

- - ~ v ~ / 4 U O . =  1 - - - ~ l n  1 - - ~  1 - - s i n g [  cos~o,  • . . . . . . .  (I.37) 

w h i c h  is as g iven  in Ref .  1, f o r m u l a  (6.1). Th i s . r esu l t  s eems  to  i nd i ca t e  t h a t  p e r f o r m i n g  t h e  cho rdwi se  
i n t e g r a t i o n  before  t h e  spanwi se  m a y  o f t en  be  p r e f e r r ed  to  t he  reverse  order ,  as, even  w h e n  y is 
p u t  equa l  to  zero before  i n t e g r a t i n g ,  t he  resu l t s  for  t h e  cen t r a l  s ec t ion  c o m e  o u t  correct .  I n  t h e  
case of a t a p e r e d  wing,  th i s  o rde r  of i n t e g r a t i o n  is c e r t a in ly  t he  on ly  a p p r o p r i a t e  one  a n d  has  
t he r e fo r e  been  u sed  t h r o u g h o u t .  
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APPENDIX I1 (To Section 3) 

Velocity Distributio~ over the Entire Surface of a Rhombus Wing with Biconvex Parabolic Profile 
a~d Spa~zwise Consta~# Thickmss Ratio 

The velocity distribution over a full-rhombus wing (where % = 0, w = 0) is given by (3.16): 

contribution of right-hand half wing -- =v,,/U,# = I1 Jr- I2, ] 
(I1.1) I contribution of left-hand half-wing -- =v, dUO = Ia + I4, 

I Q 

where I1, I,, la, I ,  are defined by (3.17). 

We shall now transform these integrals so as to make them computable. It  may be mentioned 
that  in preparing this report, we started with the simplest case of the wing centre (where 
/1 = I2 = /3 -- I,, and this one integral which has to be evaluated is very simple by comparison 
with the general case). We then considered the special cases of the central section (Ii = Ia, 
I2 - - /4 )  and the mid-chord line (11 - - I=,  I a  = I4) ; in both these latter cases only two integrals 
have to be calculated and the results doubled to give the supervelocity. Finally, the general 
case was investigated. In such a way it was possible to check the results at each stage• 

In the following calculations , however, the general case for arbitrary values of ~l' and ~ (entire 
wing surface) is investigated, and the transformation is rather long and complicated. However, 
for the special cases of the central section, mid-chord line and wing centre, the values ~' = 0 
and/or ~ = 0 should merely be substituted in the final formulae (which are thereby greatly 
simplified) ; this will often be all that  is necessary. 

(A) Cor~tributio~ of the Right-ha~d Half-Wi~g.--Let us consider 

I;  : -- f1{1  q-(1 q- # ) ( 1 -  ,7')In ( 1 - - q )  } dq . . . . . . . .  (II .2)  

Introducing an auxiliary variable 

# = ( 1  + ~ ) ( 1 - - v ' ) '  "" "" 

I1 may be written in a more convenient way" 

where 

Z 1 - -  - - - - . , o  1 q-. ~ - l n ( 1 - - ~ ' )  + ~ l n  [1 - - , , ( 1  q-~)]. R~(1-}- eY) ~/2 

8 2 8 2 

R12=,u = - 2 1  q- e - - - - -~/~  + 1 q- e 2 . . . . . . . . . . . . .  

which is much simpler than ~ol 2, and the lower and upper limits of integration become" 

so = - - + 
. . ° , , . ° o . ° . , ° . 

#1 = 1 /0  + 

(II.3) 

(11.4) 

(11.5) 

( i i •6)  

The power expansion of in [1 -- ~(1 q-- ~)] is not valid over the entire span for, when ~;' > 0"5, 
#0(1 + ~) < - -  1. If, however, we consider first the imwr part of the semi-spa~z (0 ~< ~' < 0.5), 
then" 

PF ' ] * I 1 2 o , 0 , ~  --  # - ln (1 - -~ ' ) -+ -½#(1  + ~ ) 2 + ½ ~ ( 1  q- ~ ) ' ~ + . . .  Rd 1 --, e2)1/2, (II.7) 
o r  

1 I.I1 
- (1  + 

1 4- 
0 --1 . . . .  1 r ~  -~-  1 

2 i  



where  the  pa r t i cu la r  t e rms  are defined (for m from --  1 to + co) by"  

I~,,~ - -  ~ d,u ; . . . . . . . . . . . .  

t hen  the  first four of these  become" 

(11.9) 

o r  

and  

= -- In e - -  e,, ÷ RI(1 ÷ e')  *P" *'1 
11- -1  J,,0,g R1 8 l~I . . . . .  ( l I . m )  

zi_i (1 + ~)~/~ - ') __ in ~ ÷ ~ ( 1  ,J + Olo (II.11) ~ ' ( ~  + ~ ~) , . . . . . . . . . .  

[ 1  d# (1 - -  ,7'){1 - ~ + ~11 (1 + ~)1/~!~)1/~ ' 
I 1 °  = :  "t'o R--1 --= ] n  _ '7'  - -  e'~ - -  8 2 ~ (  1 - -  7] t) -~- ° ' 1o  (1  + (II.12) 

~"l~t & __ (1 - -  '~')~1 1 - -  0.1o ~2 
[11 = -~,, 7R~- (1 - -  ,7')(1 ÷ ~)(1 @ e~) 1/2 ÷ 1 @ s ~ I l o ,  . .  (II.13) 

5 =: ~ - &  

' - -  v') = (I + ~)~ (1 + ~=)~/= 2(1 + P)~ 11o . . . . .  (11.14) 

0.i 0 2, 0"1 i 2 are the  fol lowing factors  appea r ing  in the  express ions  for R,  ~ ob ta ined  af ter  subs t i t u t i ng  
t he  lower and  upper  lirnits of in tegra t ion ,  respec t ive ly  • 

0.1 o ~ =  rJ '~ + P{1 ÷ ~e(1 - -  ,~')}~, [ 

0.i i 2 --  1 -t- ~2~.  J 
. .  (II.15) 

As in the  case considered in A ppend i x  I, the  s e r i e s . ~  i (  1 .~%~ ÷ ~),,,+1 /l i m ÷  1 "I1, ,  is found to be 

r a the r  s lowly convergent ,  bu t  the  diff icul ty m a y  be overcome b y  in t roduc ing  ano the r  series 
whose t e rms  are ob ta ined  b y  p u t t i n g  e = 0 in  I11, I1 ~, etc.,  thus"  

( 1 I - -  
(111)~=o - 1 ÷ ~ 1 - r~' 

( [ 1 2 ) ~ = o - 2 ( 1  ÷ ~)2 1 ÷ 1 ~] ;),l,etc.: J' (II.16) 

I1 m a y  therefore  be wr i t t en  as follows" 

I i - -  
1 F 

1 @ ~2)1[2 LIt 
(i ÷ ~),,+i [1.+. (__1),, ( rl' )"~ 

o $ -  I1_11n ( I - - , 7 ' ) ] - ~ - 2 ,  (m + 1 ) m  (I ÷ ~i '~---r]' 

l l  ÷ ( - - - 1 ) " ( ~ - r ] '  , ) "  
, . . . . . .  (11.17) 
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o r  

I , - - ( 1  + e~) 1/2 I , o ~ - -  [ 1 - ~ l n ( 1 - - v  ( m +  1)m 

where 

_ ~ :  ( - -  1),,+1 ,~ "~"~ . 1 - -  ~ .  T ,  . .  (II .18) 
1 - - , ; ' /  ( m +  1)m , " ' "" 

? )$n 
1 - t - ( - - 1 ) "  1 - ,~' (1 + ~),~ L,,~ 

T~,, = (m + 1)m -- (m + 1)(1 + ~2)1 /2  . . . . . .  (I1.29) 

We can now use the iden t i ty  (for v '  < 0.5) 

~'1 ( - -  1)re+l( 1 ~]! (~]~_~ 1),]~/~ = - - 7 1 n ( 1 - - V ' ) - - l ,  . .  (II.20) 

[which Can be easily verified by  expanding the r ight-hand side in powers of V'/(1 --  ~;')], and, 
therefore, f i n a l l y  " 

1 I 1, In (1 - -  r l ' ) -  ~ .  TI,,,] (II .21)  I 1 -  (2 + e2) ~/2 [I~o ~ - -  I~_~ in  (1 - - v ' ) ]  + (1 + ~) 2 + v  , " 

A recurrence fo rmula  for T~.,, has been obtained from tha t  given by  Edwards  ' and reproduced 
in (I.22). This formula, together  with (II. 19), gives the following recurrence formula for T~ ,,, : 

e 2 [ l + m ~ + ( m - - 1 ) = ~  '~ 
T~,,,--I_}_ e ~ (m-+- 1 ) r e ( m - -  1 ) ( m - - 2 )  

f~It -- 2 
~7 

+ ( -  1),,, (1 + ~)(2 - , 7 ' )  ,o-~ 
v ' [m '~ - 3m + 1 - (m - 1)2~] + (m - 1) ~ (1 + $) 

(m -}- 1 )m(m--  1 ) ( m -  2) 

( ~  1) 2 2m 1 + 7 

(1 + ~)~ r~ -1 (1 + ~) Z~ J - -  (m + 1)m ..... ~ m + 1 ..... * 

+ ( m + l ) m ( 1 - [ - s 2 )  1 - -  a, , + ( - - 1 ) "  (l _ v,),, l o • 

The above formula gives values of TI,, for m > 2. T11, T, 2 are found from (I1.13), (II.14) 
and (II.19). T h e y a r e "  

1 I (1  - -  2,;')(1 + e 2) - -  (1 - -  v')~** -~- ~1o 
T~I -- 2 (1 --  ~]')(1 -t- e =) 

~2(! + ~) f lo  7 
1 + e 2 (1 + e2)1/~2 ' ' "  (II .23)  

1 r{(1 - v,)2 + v,2}(1 + e2),~ _ (1 - ,7')2(1 -+- 4 s2 -t- 3s~e)al  i 
T,~ - - 8  L (1 - - ~ ' ) ~ ( 1  + s~) 2 

_ {~'(1 + 4e 2) - -  3e 2 - -  3e2~(1 - -  ~ ' ) } ~ o  
(1 - ,7')2(1 + ~2)2 

~'(1 - 2~2)(1 + ~)~ 11o + 
(1 q- e2) 2 (1 "@ 8-2)1/2 J • . .  (II.24) 

The above formulae give now all t ha t  is needed for comput ing 11 for the inner par t  of the semi- 
span in any  part icular  case. 
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For the  outer part of the semi-span (0" 5 ~< V' ~< 1), the integral  (11.4) requires a special t reat-  
ment.  Except  for the e lementary  term I1-1, the  range of integrat ion will be subdivided into 
three parts, viz. : 

0 </~ < #i 

--#i <~ < 0 

#o <# < --/~i 

corres- 
ponding 
respec- 
t ively 

to 

0 </~(2 -1- ~) < 1 

-I <,,,(2-F~) < 0 

--,~'/2--,~' <#(1478)  < - -  1 

o r  

to 

~' <:{ < 1  

2 r j ' - - 2  <¢~ < ~ '  

0 < ~  < 2 ~ '  - - 1  

and, in the  last one of them, the  in tegrand will be split into two addi t ive terms, so that ,  finally, 
I~ will be represented by a sum of five terms, thus" 

(1 47 P)1/511--=. Ilh - / I l j  + I ~ -  I1p - -  I~_1 In (2 ---r l ' ) ,  

where 
. . . . . . . .  (I1.25) 

I1~,=--  (.1 147 -11n [1--  ~(1 478)] ~ . . . . .  (11.26) 
a/z 0 .~( ,  . . . . . .  ;o{ } 

zl ;  . . . . .  ~ 2 + ~ In [1 ---~,(2 47 8)] &' - 1  R~' • . . . . . . . . .  (II.27) 

L ~  = - ~-,,1 & ,7' + ~ + ~8(1  - ,79 + ~1 o(1 + ~5)1n 
~,,0 R1 -- --  In (2 --  V'){1 47 2e 5 47 e2~ 47 a1~(2 47 e5)1/=} ' " . . . .  (I1.28) 

f-~l In [2 - ~ ( 2  + 8)q 
I~p = ~o ,,R1 -dz . . . . . . . . . . . . .  (II.29) 

Here ~ and RI are still defined by (II.3) and (II.5), ~1 o is given by (II.25), while ~15 is a new 
factor making  its appearance in R~ when subst i tut ing the  limit ¢ = --  ~q: 

~i 0 =  2 47 e~(8 47 2) 5 . . . . . . . . . . . . . . . . .  (11.30) 

This seemingly awkward subdivision leads to tractable integrals, each of wMch must be treated 
in an appropriate way. 

The logari thms occnrring in I1~, I l j  may  be expanded  in power series just as, previously, 
for I1 in the  inner range;  we then  obtain for I1~: 

where 

( ~ ) L 1 , = : I l l , 0 8 ~ , - ( 1 4 7 ~ )  1 - - ~ .  Tlh . . . .  
1 

1 - ~ + o~1(1 + d)  ~n 
I~l~o =: In 

(1 + 8){-- e~ 47 ~(1 47 ~)'/~} . . . . . . . . . . . . .  

1 (1 47 8)" 
T l t ,  m - -  ( m  @ 1)m m 47 1 Ilh,,~, . . . . . . . . . . . .  

1 ( ~ ,1--  e(2 47 8) P(1 47 8) ) 
T~, ,1--2 1 - -  (1 47 p)1/5 147 e 5 I1,~o , • . . . . . . .  

1 ( (1 47 4~ 5 47 3~58)~  1 - a ~ ( 1  47 8) 5 
T ~ - - 6  1 --  (1 47 ~)~n 

47 e~( 1 --  2e5 ) (17  8)2I~,,o)" 
(1 47 a,~-) ' " . . . . . . . . . . .  

(11.31) 

(II.32) 

(11.33) 

(II.34) 

(11.35) 
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the recurrence formula for T~ ~,. being' 

T1 h., 
d ( l + m ~ + ( m - 1 ) ~  :~ 

- - 1  + P \ ( m +  1 ) r e ( m - -  1 ) ( m - - 2 )  
( m -  1)'(1 + s)' 

(m + 1)m T1 h .~-2 

) , ( ) + (2m :-- 1)(1 -~ ~) T1 h .... 1 -~ (m -J[-- 1)m(1 --~- g2) 1 - -  ffl 1( 1 "-~ 82) 1/2 m,4-1 (II.36) 

Similarly for I l i  

where 
1 

(11.37) 

I~jo  = In 1 ~ 1 2 s  2 + ~'~ + a~ 2(1 -[- e,)1/2 + ~ ){~ '+  ~(1 + d) 1/~} ' . . . . . . . . . .  (I1.38) 

( 1 (1 + $)"° ) 
Tl jm  = (__ ])m+l (m-~ 1)~n ~g]{ + 1 11; . . . .  • . . . . . . . . .  (II.39) 

1 (  0" 1 2_(--8(1 "~- ~:) ,°,,2(1 -+-~) ) 
T l i l - - ~  1 - -  1 + s') 1/' " + 1 + s' Iljo , 

1 ( (1 - -  2e '  - -  3e '~) (h  ~ -+- 3s3(1 + ~)' 
Tla.2--= - - 0  1 -- (1 + e') a/' 

+ ~(1 - 2~)(1 + ~)~ ) 
(1 + d ) '  L j o  , 

the recurrence formula for T~g,. being" 

s' ( 3 m  ~ - 7 m - k 3 +  (4m ~ - 9 m + 4 ) #  + ( m - -  1)2~ ~ 
(-- 1) ''+1 T~,,~-- 1 +  d (m + 1 ) m ( m -  1 ) ( m -  2) 

T~ j,~_, -J- (-- 1)"" (2m --m 1)(lq_ 1 + ~) T,~- .... 1) + (-- 1)" ( m -  1)'(1 -+- ~)' 
(m + 1)m 

a l  ~ 1 

(m + 1)m(1 + e') 1/' + (m + 1)m" 

(I1.40) 

(11.41) 

(!1.42) 

As the integral I1 k is elementary, there remains only I1 p, and here we notice that the previous 
expansion of the logarithm in a power series is not valid, but instead the inverse square root may 
be expanded in negative powers of t = - -~,  thus" 

where 

_ , ,  o .  ) 
I l p - - - -_ , , 1  - + F  + # -  + ' ' "  ln[1 + t ( 1  + ~ ) ] d # ,  

B 2 
aa--  1 @ e "' a 6 - -  - -  

~(1  - -  2~ ~) 
a 4 - -  2 ( 1 +  s2) 2 ' a T = - -  

a~ = - .  2(1 + ~)~ ' ~8 := -- 

e~(3 -- 24s' + 8e 4) 
8(1 + ~')~ , 

~°(15 - -  40~' + 8~ ~) 
8 ( 1 +  d) 5 

e6(5 - -  90e  ~ + 120~ ~ - -  16e 6) 
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Part icular  terms of (I1.43) may  be integrated by parts" 

f t(1 + ~)] In [1 + t(1 -~- ~)] 1 + ~ f d t  
in [1 + t" dt  = - -  (n  - -  1)P -~ + n --  1 P-1 [1 + t(1 + ~)] '  

and then  the  second term in (II.45) by resolving into part ia l  fractions, and 

t(1 -~-~)] in [1 + t(1 + $)] 1 + ~ I 
In [1 + t '~ d t - -  - -  (n - -  1)P -~ + n --  1 

(1 -[-~)~ (1 + ~)'-~ 
(n - -  4)t ' --  q- - -  " ' "  ~ t 

1 1 + ~  
(n - 2)t "-~ + (~ - 3)t  o-3 

) ] . .  + (1 + ~)"-~ln(  1 + t(1 + ~) 

.. (11.45)  

( I I . 4 6 )  

Subst i tut ing the corresponding values of the above in (II.43) we obtain" 

Z i p  = - -  [PI p l --}- aaP~ ~ ~ - / a ~ P ~  ~ ~ + . . . ] . . . . . .  

where 

+ ,) ) -- ; In ( 1 - - ~  + l n 4 ~ '  

P ~  --= (1 -[- ~)~((1 --  v')~ in (1 --  w') --  ½1nv '  q- 

G ,  -- (1 + ~)~((1 - ~')~ ') 3r~ '~ " l n ( 1 - - ~  - J r - ½ 1 n 4 ~ '  

P 1 ,  = 4 ~ '  In  (1 - -  V ') - -  ~: i n  ~ '  + 

2V r ) 

(2r~' --  1) 3) 

(2~' - 1)(sv '~ - 5~ '  + 2) 
24v '-~ } 

' r - (2 : '  - 1 ) , ( s , , 3 _  4 , '  + 3 ) a  i%~ = ( 1 + ~ ) ~ \ ( 1  ~')71n(1 ~7')+~1n4~' 
5 5~  ,5 - -  ~ - -  60~7 4 Y 

P~ = (1 + ~)o((1 --v')° ,) 6 6~  '~ l n ( 1 - - V  - - ~ . l n ~ '  

(2~' --  1)(92~ '~ --  104rj '3 - /9&~ '2 --  51~7 
+ 360~ ,5 

P~, == (1 ~- ¢)~ ( ( l  -- ~')~ in (1 v') 7 , %/'7 - -  + } In 4~7' 

(2;?' -- 1)~(46,, '~ -- 44~ '3 + 57rj '2 --  32~ 
42%] ,6 

' +  1 2 ) )  

' +  10)) 

( I I . 4 7 )  

( I I . 4 8 )  

The above formulae give now all tha t  is needed for comput ing [1 for the outer  par t  of the semi- 
span in any  part icular  case. 

The corresponding formulae for I2 are found from those for I1 by  replacing ~ by  (--  $). 

(B) C o n t r i b u t i o n  o f  the L e f t - h a n d  H a l f - w i n g . - - L e t  us consider 

G o 1 4 - ( 1 + ~ ' ) 1 + ~ 1 +  ~ ,  # + , 7  ~o3 " ' 

( 1 --  ~]',~ for ~ (see (3.17)). This Ia has been obtained from I1 by  writ ing (-- ,]') for ~7' and ~ 1 -4- ~ / 

rule, however, cannot  be applied throughout  the subsequent  t ransformat ion  which, for tunately,  
becomes much simpler than  tha t  of I1. 
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In t roducing a new auxi l iary variable 

"C = 

(1-I-I,')(1 4- ~.114---.~,') ' 
I3 m a y  be wri t ten"  

where 

. . . . . . . . . . . . . .  (11.5o) 

Ill . . . .  1 4 - - l n ( 1  4 - ~  4 -  In 1 - -  
7 0 T 1 + ~ 1 + Rll(1 + 62) 1/2, (II.51) 

6 2 6 2 
Rll2 = z2 _ 2 1 4- e~ z 4- 1 4- 62, . . . . . . . . . . . .  (11.52) 

this  again being much simpler than  e~ ~, and the lower and upper l imits of in tegra t ion  become : 
# 

T 0 / 

(1 + ~')(, 1 + ~ - -  

1 
~1 = 1 - -  ~' " 

14 - -~1  4 - ~ '  

1 - ~ i ) '  
1 4 - ~  

(II.53) 

For  Ill, also, we m a y  expand the logar i thm in a power series, valid th roughout  the  range of 
integrat ion.  Ia then becomes: 

( ] 
1 [ ][ - -  ~]' - -  / 3 _ 1 1 n  (1 ~-  ,/ t) _}_ i 1 --~- ~ 1 @ 7 /  I3 ( I I , 5 4 )  

Ia - -  (1 4-  E~)1 /2  Iao ~ 1 4-----~-' ,,,=~ m 4-  1 '" ' "" 

where the par t icular  terms (for m from --  1 to 4- co) are defined b y :  

f 
Zl T m 

I 3  ;n ~--- R - a  d v  , . . . . 
7 0 

and  the first of them becomes" 

71 dr (1 4- 62) 1/= in 
I~ -I  = fTo ~Rll = --  

o r  

I l l  --1 - - -  (1 4-ee2)w2 In [ 

. . . .  (11.55) 

. .  (11.57) 

~a o 2, ~ll 12 are the following factors appearing in the expressions for Rll 2 obtained after  subs t i tu t ing  
the lower and upper  l imits  of integrat ion,  respectively" 

~ 0= = ,7 '~ + ~ [ I  -4,- ~ ( 1  - ~ ' ) ] ~  - Olo = , 

~ll? , + 6 2 ~ 2 (  ' - ' ' f  
= 1 + ~  

(II.58) 

I t  will be seen by  comparing (II.57) wi th  ( I i . l l )  tha t  the  general  rule for obtaining the 
contr ibut ion of the  lef t -hand half-wing from tha t  of the  r ight  (as obtained previously for 
~' < 0 '5)  does not  apply  for this case. This is due to the  modulus of the variable (F or r) in the  
denominator  of the  indefinite integral  (see II. 10 and II.56) which results in the factor ~7' occurring 
with a posit ive sign in the  denominators  of bo th  I1-1 and I3 -1. 
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The next three integrals of the type ( I 1 . 55 )  become" 

(1 + V')(1 -- e2~ 1 --~', -t- ~3~(1 + e~) */2) 
Ia o = in  1 + '7 

~'  - -  e~ - -  e=f(1 - -  v') q- ¢3 o(1 q- e=)*/~ ' . . . . . .  ( II .59)  

__ 8 ~' (1 +,~')<;3, °30 
I 3 , =  , ) (  1 - - , 7 ' )  e~) */~ k 1 4 -  e ' I 3 ° '  . . . . . .  ( II .60)  

( 1 + ~  1 + ~ 1 +  ~, ( l +  

( ,  + + + 1 - ,- 
1 + rl / ¢a z - -  ['7 (1 + 4 d )  + 3 d  + 3e2~:(1 - -  ~ )]¢a o 

2(1 4-i7')=(1 -I- 1 - - V ' " )  2 (1 -I- e2) 3i~ 
' 1 + V ' /  

~'~(1 - -  2~ =) 
2(1 + ~)~ S~o . . . . . . . . .  . . .  (II.61) 

We introduce, again, another series which is composed of the terms" 
! 

1 1 + ~ '  
( I 3 ~ ) ~ = o  ---: 1 - -  ~7' 

1 + $ 1 + ,  7' 

Jr- ~7'/ 
( 'a2),=o= ( 1--__ ' )2 'e tc '"  

2 l q - ~ l q _  , 

(the rule for converting I~ into I3 again does not apply), and G may be written 

where 

1 ( 1 - - ~ '  
1 3 - - ( 1 + ~ ) ~ / 2  I 3 0 ~ 1 + ~ ;  

+ (  1 + ~ 1  ' I 1 
1 -}- ; ~ )  ~ '  i]/]~ -q- 1) ~ ] q ' l  

- G _l ln  (1 + v ' ) )  

1 ,7' ~'~ 
~ ' ,  (m + 1)m(1  -7--';')  --  

. .  ( I1 .62 )  

r ~  , .. (II.63) 
1 

1 - - ( 1 + ~ '  (1 q- ~ l q - , 7 ' /  Ia,, 
s3,,, = ( ~  + 1)~  - ~ + 1 (1 + ~.,)1, . . . . . .  (I1.64) 

We can now introduce the following identity (valid for any positive r/'), analogous to (II.20) • 

1 ,, 
(mq- 1)m 1 -,iT' = 1--,e--in(1 q-v') . . . . . . .  (II.65) 

and therefore, f i n a l l y  • 

I .  - (1 + d) ~. /~° ~ 1 + v '  

1 q- ~7~ , In (1 q- V') - -  ~'1 T3 ,, . . . . . . . . .  ( II .66)  
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The first two terms of T~,, are found directly from (II.60), (11.61) and (11.64)" 

1 1 + , ~ - ( 1 + ~ ' ) ~ + ~ 2 0  1 + ~ '  & o  
T ~  = ~ (1 + ~)(~ + ~') - 1 + ~ (1 + ~)~/~J, . .  (11.67) 

- -  0"3 1 

+ {~'(1 + 4 ,  ") + 3 ,  ~ + 3 , , , (1  - ~'}~.0 
(1 + ~')~(1 + d) 2 

1 - -  V')  z 
~-(1 - 2~ ~) ( 1 + ~ 1 + ,~'.  I~0 

+ (1 -t- d) ~ (1 + ~)~/~ , . . . . . . . .  (11.68) 

and the recurrence formula for subsequent ones is found as before by using the formula given by 
Edwards 7 and reproduced in (I.22) • 

[ ( - )  p 1 + m ~ l  + r j '  + ( m - -  1) 2 ~  1 ~7' l + v '  
r~ ~ - -  1 + ~ (~  + 1)rn(~ - -  1 ) (~  - -  2) + 

1 + ~ 1 --  ~ ' )  
1 + ~  ~ 

(1 + ~')"-t 

X 
V' Em ~ - 3 m + l -  ( m - -  1)2~ 1 - v ' I -  (m- -  1)~(14-  1 - - ~ ; )  

1 + 7  1 +17 
(m + 1 ) m ( m -  1 ) ( m -  2) 

( m - 1 ) ~  1 + ~ 1 1 + 1 7 ~  ( 2 m - 1 )  1 + ~ 1 +  ~ 

+ ( m + l ) m ( l + e ~ )  1 - -  ~, l  -- (l + v,),,; v ' ( l + d ) - - ~ 0  . .. (11.69) 

The above formulae give now all that is needed for computing Ia in any particular case. 

The corresponding formulae for I~ are found from those for 13 by replacing ~ by (-- ~). 

T h e  formulae for the central section, mid-chord line and wing centre may now be found by 
substituting ~' = 0 and/or ~ = 0 in  these final formulae, without any di~,culties arising. The 
expansions for I1 and I2 break down at the sharp tip, but that was to be expected because these 
integrals present a logarithmic singularity for ~' = 1, as seen directly from (3.17). 
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A P P E N D I X  I I I  (To Section 4) 

Velocity Distribution over the Entire Surface of a Cropped Rhombus Wing with Biconvex Parabolic 
Profile and Spanwise Constant Thickness Ratio 

The veloci ty  distr ibut ion over the  surface of the  r ight -hand half  of a cropped-rhombus wing, 
due to the  r ight  or left cut-off t ip triangles, respectively, is given by  (4.2), vie. • 

- ,< ,~ /uo ,=  o + L + L ,  
( I I I . 1 )  

where 29, A, fl, /'=, fa, f4, are defined in (4.3) and (4.4). The above values must  be subtracted 
from those found in Appendix  I I  for the  full-rhombus wing. 

As for the full-rhombus wing, we shall consider here the  general  case of a rb i t ra ry  values of 
~v' and 2 wi thin  the wing area, but ,  as before, the  formulae will still apply  for the  special cases 
of central  section, mid-chord line and wing centre, and will become simpler for them, a l though 
not  so marked ly  as for the full-rhombus wing. 

(A) Contribution of the Right-hand Tip Triangle.--Let us consider 

"~1 = - -  1 + (1 - -~ ' ) (1  + 2)111__(1-- ) dq . 
1 ,p ~]--~1 ~1 ' 

subs t i tu t ing  the same auxi l iary  variable as before (see II.3) : 

= (1 --  ,7')(1 + ~) '  " . . . . . . .  

and expanding the  logar i thm as for the  complete rhombus,  we obta in  

where 

and 

~ /~i ~t m 
1~1m = - -  d~, . .  

I, t l - - y j  RI 

Hence 

- -  !"1--1 I n  ( i  - - ~ ] " )  + ~ (1 --I-- 2) ';¢+1 
m=l ~q4 + 1 -~lm , 

8 2 82 

1 - -  ~' --~?' 
tq-v, = (1 --  ~')(1 q- ~) 

1 
t q - -  1 + 2  " 

( e2(1 -- '7') -q-, eW q- G , ~ - ~  [ ~  d~, _ (1 + ~ ) l " l n  (1 - , ~  - 

fl o ---- In 1 - -  V'  - ~0(1 + ~2) _ ~ ( 1  -~ ~') + 9~,~_~(1  + s~) ~/2 ' 

(1 - -  ~1)~1,1 - -  a l ,  l--'p 82 
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[ : ,  _ _ (1 - -  ~ ' ) 2 ( 1  q -  4 e  = + 3 e 2 2 ) & :  ~ - -  [1 - -  r/' - -  ~o - -  e'~w + e2(1 - -  ~ ' ) ( 4  q -  3~)]G,:_v, 
s(1 + ~) ' (1-  ,')'(1 + P)". 

P(1 --  2~ 2) 
2(1 + ~) '  /10 . . . . . . . . . . .  (1II.11) 

a:, 1_~', a: ~ are the  fol lowing factors appear ing  in the  expressions for R: ~ ob ta ined  af ter  subs t i tu t ing  
the  lower  and  uppe r  l imits  of in tegra t ion ,  respect ively"  

~,~,,, :-,~3-- (1 - , ~ ' -  v,) = + ~{v, + 2(1 - , ~ ' ) } = ,  

al 1 ~ = ~ :  :~ 1 + d2" 
.. (III.12) 

The  expans ion  of the  loga r i thm in a power  series, used  here, is val id  t h r o u g h o u t  the  range of 
in tegra t ion .  

We  now consider  a series ob ta ined  f rom tha t  of (III .4) by  l e t t ing  e - +  0 in a s imilar  way  to 
t h a t  for t he  full r h o m b u s :  

1 ( 1 ~ ' - - . ~ ) ,  
( I ~ ) ~ + o = 1 ÷ . ¢  1 -  1 - ~ '  

(I ,  ,o),+0 --  2(1 + ~)2 1 - -  1 - -  ,7" , etc. 

[~ m a y  t h e n  be wr i t t en"  

o r  

w h e r e  

F 

In (1 --. ,,')] + Z L [ 
(1 + 2),,,.1 

-~ m=, (mq- 1)m 

1 - - ~ '  ~r,,~ 
(1 + 2 ;  ° + m (1 + ~!)*'~ 

. . . .  ( i i i . la) 

] _ ( 1  -'_~i _W)"' 
l - - r ]  

(1 + 2)" 

. . . .  (111.14) 

" i  E 

1 
( t  ,-}- e2) ~/2 05 - -  - - ~  

* 1 ( 1  - -  ~7' - -  
- - °  ~ k " - -  (m + 1)m. 1 ,~ I I 

1 ,~' (1 + 2)" If,, 
5>:,- = (m + 1)m - (m + 1)(1 + d) :/= . . . . . . . . .  (III.16) 

We can now use the  obvious  re la t ionship  (analogous to 11.20) 

1 1 _ , i  
a nd  t h e n  f i ~ a l Z y  • 

1 ~ 
I * - -  (1 + p)l/~ [11 °* - -  I* -11n  (1 - -  " ' ) ]  - -  (1 + 2) [ 1 _ v _ . to  
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) + 1  . (Ii1.17) In ( 1 - -  V' ' " 

1 r i m  
1 - -  ~ '  1 

. . . . . .  (III.18) 



Using the recurrence formula given by EdwardsL reproduced in 
(III.16), we get for TI,,~" 

e = [ l + m *  + ( m - -  1)~ '~ 
1 + e = ( m +  1 ) r e ( m - -  1 ) ( m - - 2 )  + 

X 

1.22), and the relationship 

(~ + ~ ) ( i  - ~ - w) ' ° -=  

(1 - -  V') "-1  

(1 - -  V') [m ~ - -  3 m  + 1 - -  (m - -  1 ) ~ ]  - - ,~o(2m'-'--  5 m  + 2) 
(m + 1)m(~n - 1)(r~ - 2) 

( m -  1)~(1 + $)~ ~ (2m -- 1)(1 + .~) T1 ] 
(m + 1)m T~,,_~ + m + 1 m--1 

(1 --  r~' --  ~o) "-1 ] 
31 , - -  (1 --  r]') '~ 1"(1 -- ,~' -- ~o)(1 + e ~) --  al, l_w] q- (m + 1)m(1 + ~) 1 - -  

. . . . . .  (111.19) 

This formula is applicable for all values of m greater than 2. 
(III.11) and (III.16)" 

r l  ^ 1 =  ~1 ~I[(1 - -  rl') - -  (1 - -  ~/' --(1 --~°)](1~')(I + + e'~) e ~)- (1 - -  ~')81 1 + 31,1_~ 

1 + ~ (1 + ~ ) (1  l o ) . ~  , . . . . . . . . . . . .  

TI~ ^ --  61 ~I [(1 --  v') ~ --  (1 --  v' --  ~)~](1(1 - -  +~')~(~)21 --+ (le~)~-- ~')~(1 + 4 d  + 3 ~ ) a l  1 

-1- (1 --  V ')~(1 -¢- e~) ~ 

(1 + s~) ~ (i __ o)~/~_ . . . . . . . . . . .  + 

The above formulae give now all tha t  is 

]Cl 1, 2b~ are found from (III. 10), 

(111.20) 

(111.21) 

needed for computing f~ in any part icular  case. 

The corresponding formulae for f~ are 

(B) Contribution of the Left-hand Tip 
the rule for obtaining the formulae for 

half-wing can be applied, i.e., we replace 

where 

found by  replacing $ by  (-- $) in those for 11. 

Triangle.--In this case (of a cropped-rhombus wing), 
the left-hand half-wing from those for the r ight-hand 

1 - - , / '  
r/' by  ( - -V' )  and $ by  ( $1 + v ~ ) '  f~ then becomes" 

E '-"'  ,/] fa--(l+ e~) I/~ fao~ 1 +~-- fa-iIn(l +V 

1 - - %  [ ~ l n (  ~ ) +  i 
- - ( l + ~ l q -  v ~ l q - ~  + y ,  l q - v '  1 

-i-- 1 - - V '  ~,~ , 

(1 -1-~]')(1 --  e~ :1 --  V' ' ) 

I ; o  - -  In 1 -~-'7' - -  ~p(1 + e ~) - -  s=~(1 - -  V') + aa, l_,p (1 + e~) 1/2 

. .  (III.22) 

. . . .  (111.23) 

, • • . .  III.24) 
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[ [(1 + ~') - (] + v' - ~ ) ] ( ]  + ,~) - (1 + ~')a~ ~ + as, ~_~ 
Taz - -2  (1 + ~')(1 + ~") 

l + v  . . . . . . . .  
- -  1 "q- O '  ( 1  ) 1 / 2  

1 [ [(1 

.. (111.28) 

+f l ' ) "  (1 + V '  ~)~](1 + P)~ (1 + V')"(1 -}- 4 P  + 3e"~ 1 - -  ~ : )  ^ - -  - -  - -  0~3 1 1 + ~  

+ [l + V' 

(~ + v')~(~ + ~)" 

- ~ - ~" v + 4P(~  + v') + 3 P $ ( ]  - v')]o~,,_~ 
(1 -F ~7')~(1 + P)~ 

~(] - 2~ ~) ( 1  + 
1 
l+v ' ) - -  I~o 

2 

+ (1 + ~)~ 

The recurrence formula for Ta .  is 

. .  ( I l l .26)  

1 -- v' (1 -- ~"~' 
1 + 1 + ~7 ~ -}- (~ - -  1)~P ,, 1 4- ~ ' J  8 2 

:Ya,~-- 1 + P (m + 1 ) m ( m -  1 ) ( m -  2) 

1 - -  V' - -  ~ ) , . - 2  

~- (1 + ~')'~-~ 

(1-}-V') m2---3m-}- 1 - - ( m - - 1 ) 2 ~ l  + ~ :  - -~ (2m ~ - 5 m + 2 )  
X (m + 1)m(m --  1)(m -- 2) 

t),(1 + , 1 -  ] 
-- (m + 1)m Ta,.-~ -]- m + 1 a,m-1 

' [ (' ( )] 
+ ( . ~ + 1 ) ~ ( 1 + ~ )  1 - a ~ , -  0 + ~ ' ~  x ( l + v ' - v ) ( l + ~ , ) - a ~ , , _ ~  • 

. . . .  (III.27) 
A 2 12 a8,1-~, 88 are the following factors occurring in expressions for Ra 2 when the lower and 
upper limits of integration are substituted, respectively: 

o~,̂  ~_~ -- (1 + ~' - v) ~ + ~ [ v  + ~(1 - ~')y 
(III.2S) 

= 1 + ~  " 

The above formulae are all tha t  is needed for computing In. The corresponding formulae for 
iv4 may  be found from those for ira by replacing ~ by (-- ~). 

The formulae for the central section, mid-chord line and wing centre may  now be found by 
substituting ~' = 0 and/or ~ ---- 0 in the general formulae for r ,  ~v2, In, I4. These formulae hold 
good for all values of ~' and ~, even at the tips of the cropped wing; although, in this last case, 
putt ing ~' = 1 --  ~ results in the formulae for Z~ and iv, becoming formally indeterminate. 
This is easily resolved, however, by finding the limiting values for ~'--~ 1 --  ~. 
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TABLE 1 

Supervelocities at the Centres of Straight Tapered Wings with Varying Taper Ratio ~ and 
Coefficient of Convergence ~. Biconvex Parabolic Profile. Illustrated in Figs. 4 and 5 

~zV~ 

4Uz9 

8 = 0 " 1  . ~ = 0 " 2  e = 0 " 3  8 = 0 " 4  ~ = 0 " 5  s = 0 " 6  8 = 0 " 7  8 = 0 " 8  s - = 0 ' 9  e = l ' O  

0 
0-1 
0-2 
0 - 3  
0-4 
0.5 
0-6 
0.7 
0"8 
0.9 
0.95 
0.98 

0-958 
0-958 

0 .958  
0.958 
0.958 
0.958 
0"956 
0.953 
0.941 
0"875 
0-723 
0.464 

0"925 
0.925 
0.925 
0,925 
0.924 
0.922 
0.918 
0.906 
0"86 

0.897 
0.897 
0.897 
0.896 
0.895 
0.891 
0.882 
0-859 

0.872 
0.872 

.0.872 
0.871 
0-868 
0-862 
0-847 
0.81 

0.850 
0.850 
0.849 
0-848 
0-844 
0-835 
0-814 

O" 667 
O. 471 
O" 304 

0.829 
0.829 
0-829 
0-827 
0-822 
0-810 
0-79 

0"811 
0.811 
0.810 
0-808 
0.801 
0.786 
0.752 

0.794 
0.794 
0-793 
0-790 
0.782 
0.763 

0"779 
0"779 
0"777 
0.774 
0 .764  
0.74 

0.764 
0.764 
0.763 
0"758 
0.746 
0 '72  
0.673 

0.480 

0.187 

4Uv~ 

e = l - 1  8 = 1 - 2  e = 1 . 3  8 = 1 - 4  I 8 = 1 " 5  
I 

0 
0.1 
0"2 
0-3 
0.4 
0"5 
0"6 
0"8 
0.95 

0.750 
0.750 
0.749 
0.743 
0.729 

0.738 
0"737 
0"736 
0"729 
0-714 

0"726 
0-725 
0-723 
0-716 
0"699 

0"714 
0.714 
0.711 
0.703 
0"685 

0.703 
O. 703 
0-700 
0-691 
0-67 
0-631 
O- 572 
0 -379 
O" 139 
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TABLE 2 

Supervdocities along the Mid-chord Lines of Rhombus Wings for D{~erent Values of Coefficient 
of Convergence e. Bivonvex Parabolic Profile 

Illustrated in Fig. 6 

ozV~ 

4U~9 

0"1 ] ~ = 0 ' 2  ~ = 0 " 3  s = 0 " 4  ~ = 0 " 5  s = 0 " 6  s = 0 . 7  s = 0 " 8  8 = 0 ' 9  s = l . O  
I 

0-958 
0-982 
0-993 
0.998 
1-001 
1-003 
1-005 
1-006 
1.008 
1-009 

1-014 

0 
0-1 
0 .2  
0"3 
0-4 
0"5 
0-6 
0-7 
0-8 
0-9 
0-95 
0"99 

0-925 
0-949 
0-972 
0-987 
0-997 
1-004 
1-009 
1-014 
1-019 
1-026 
1.031 
1-116 

0.897 
0.919 
0.947 
0-969 
0-986 
1.000 
1-011 
1.021 
1.032 
1.046 
1.057 
1.153 

0"872 
0"892 
0.924 

0"948  
0.970 
0.991 
1'008 
1.025 
1.042 
1.065 
1.084 
1.193 

0.850 
0.868 
0.897 
0.927 
0.953 
0.978 
1.001 
1.023 
1.048 
1.080 
1.108 
1.232 

0.829 
0.847 
0.875 
0.905 
0.935 
0.964 
0.991 
1.019 
1.050 
1.092 
1.129 
1.269 

0.811 
0.827 
0.855 
0.885 
0.917 
0.948 
0.979 
1.012 
1.049 
1.101 
1.146 
1.297 

0.794 
0.809 

0 ' 8 3 6  
0 '867 
0'899 
0.933 
0.965 

- 1.002 
1.044 
1.106 
1.159 
1.331 

0"779 
0"793 
0.818 
0.849 
0.881 
0"917 
0.951 
0"991 
1.039 
1"107 
1"168 
1"355 

0.764 
0'777 
0'802 
0"832 
0"865 
0.902 
0.937 
0.979 
1"031 
1"107 
1"174 
1.374 

TABLE 3 

Velocity Distribution over a Rhombus Wing with Coefficient of Convergence e = O. 3. 
Biconvex Parabolic Profile 

Illustrated in Figs. 8 and 13 

4U~ 

n' = 0 ~' = 0.1 ~' = 0.2 ~' = 0.5 ~' = 0 .6  n' ---- 0.7 

0 
0-2 
0-4 
0 " 6  
0-8 

0.897 
0"851 
0"706 
0.434 

--0"057 

0-920 
0-873 
0-740 
0:490 
0.039 

0"947 
0"907 
0.779 
0"539 
0"115 

0 '999 
0 '958 
0.831 
0 '588 
0 '137 

1-010 
0-970 
0.842 
0.599 
0-147 

1.020 
0.980 
0.852 
0.609 
0.157 
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TABLE 4 

Supervelocities along the Mid-chord Lines of Cropped-RhOmbus Wings with Taper Ratio ~ = O" 3 
and Different Values of Coefficient of Convergence e. Biconvex Parabolic Profile 

Illustrated in Fig. 10 

~ZVa 

4 U #  

~' e = 0"1 e = 0 " 2  e = 0 " 3  e = 0 "5  s = 0 " 7  8 = 1"0  

I 

0 
0 . 1  
0 " 2  
0 " 3  
0"4  
0"5  
0 " 6  
0 . 7  

0 - 9 5 8  
0 - 9 8 2  
0 - 9 9 3  
0 . 9 9 7  
1-O01 
1 - 0 0 2  
0 - 9 9 9  
0 . 5 2 6  

0 . 9 2 5  
0 ' 9 4 9  
0 . 9 7 2  
0 . 9 8 6  
0 " 9 9 8  
1"000  
0 " 9 9 2  
0 . 5 5 2  

0 . 8 9 6  
0 . 9 1 8  
0 . 9 4 6  
0 . 9 6 7  
0 . 9 8 3  
0 . 9 9 2  
0 . 9 8 6  
0 . 5 7 1  

0 . 8 4 8  
0 . 8 6 6  
0 . 8 9 5  
0 - 9 2 2  
0 . 9 4 6  
0 - 9 5 9  
0 - 9 3 9  
0 - 5 9 8  

0 - 8 0 8  
0 . 8 2 3  
0 . 8 5 0  
0 - 8 7 8  
0 - 9 0 3  
0 . 9 1 8  
0 . 8 9 3  
0 . 6 0 6  

0 . 7 5 8  
0 , 7 7 0  
0 . 7 9 3  
0 . 8 1 8  
0 , 8 4 2  
0 , 8 5 5  
0 . 8 2 6  

0 . 5 9 6  

TABLE 5 

Supervelocities along the Mid-chord Lines of Cropped-Rhombus Wings with Taper Ratio ~ = O. 6 
and D~erent Values of Coefficient of Convergence ~. Biconvex Parabolic Profile 

Illustrated in Fig. 11 

:gV~, 

4Uv~ 

~' e = 0"1  e = 0 " 2  e = 0 " 3  e ---- 0 " 5  e = 0 " 7  e ---- 1"0 

0 
0 . 1  
0 . 2  
0 . 3  
0 . 4  

0 " 9 5 6  
0 . 9 7 9  
0 " 9 8 8  
0 . 9 7 7  
0 " 5 2 2  

0 . 9 1 8  
0 . 9 3 4  
0 ' 9 4 8  
0 , 9 2 3  
0 ' 5 3 5  

0 - 8 8 2  
0 - 9 0 0  
0 . 9 1 2  
0 - 8 7 5  
0 " 5 3 6  

0 . 8 1 4  
0 . 8 2 6  
0 " 8 2 8  
0 " 7 8 3  
0 " 5 2 5  

0 - 7 5 2  
0 . 7 5 9  
0 ' 7 5 6  
0 . 7 1 0  
0 " 5 0 4  

0 " 6 7 3  
0 - 6 7 6  
0 " 6 6 9  
0 - 6 2 8  
0 - 4 7 0  

It will be seen that  in Tables 4 and 5 values of the supervelocity ratio have not been calculated 
for e = 0.4, 0-6, 0.8 and 0.9. The curves corresponding to these values shown in Figs. 10 and 
11 were found by interpolation from the calculated values. 
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TABLE 6 

Velocity Distribution over a Cropped:Rhombus Wing with Coefficient of Convergence ~ = O. 3 and 
Taper Ratio ~v ~ O" 3. Biconvex Parabolic Profile 

i l lustrated in Figs. 9 and 14 

4Uv q 

n' = 0 .5  ~' = 0 .6  n' = 0 -7  

0 
0 .2  
0-4  
0 . 6  
0"8 

0 .992 
0.951 
0.824 
0-582 
0-131 

0.985 
0 .947 
0.826 
0.591 
0 .153 

0"571 
0 ' 553  
O" 496 
O" 388 
O" 183 

Only the outboard values of ~' were taken for the velocity distribution over the cropped- 
rhombuswing with the parameters ~ and ~ b o t h  equal to 0.3. This was because, for the inboard 
values of v', the supervelocities were nearly the same as for t he  full-rhombus wing and so these 
values (given by columns 2, 3 and 4 of Table 3) have been taken to be the same in both cases. 
I t  will be seen that  even the values of supervelocities at ~' -- 0.5 vary  very little for the full- 
rhombus and the cropped wing with ~ ---- 0" 3 (see column 5 in Table 3 and column 2 in Table 6). 
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FIG. 1. Arbitrary wing plan form. 
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FIo. 2. Swept-back tapered wing plan form (full or cropped arrowhead). 
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FIG. 3. Straight tapered wing plan form (~o ---- 0, full or cropped rhombus). 
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FIc. 4. Variation of supervelocities at the centres of straight 
tapered wings with coefficient of convergence ~, for different 
values of taper ratio 9- Biconvex parabolic profile. From Table 1. 
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0 ' ~  
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C O'a 0 '~  0 ,6  O,B I'O 

FIG. 5. Variation of supervelocities at the centres of straight 
tapered x~ngs with taper ratio ~ for different values of 

coefficient of convergence e. Biconvex parabolic profile. 
Curves of constant aspect ratio A shown as thin lines. 

From Table 1. 
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0'7 
O 

FIG. (3. 

O.I O'P.. 0.3 0.4. 0,5 0 ,6  O'7 O'g, O.9 I.O 

Supervelocities along mid-chord lines of rhombus wings for different values of coefficient of 
conveIgence ~. Biconvex parabolic profile. From Table 2. 
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C" TOTAL SUPF-~VELC~CITY 
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CONTRIBUTION \ 
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0.I O,E . 0'3 O ' 4  0.5 0.8 
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FIG. 7. COntributions of the two ha]~-wings to the supervelocities along the mid-chord line o~ the 
right half of a rhombus wing, with , = 0.3. 
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FIG. 8. Velocity distribution over rhombus wing with 
coefficient of convergence ~-----0.3. Biconvex/ parabolic 

profile. From Table 3. 
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FIG. 9. Velocity distribution over cropped-rhombus wing 
with coefficient of convergence s = 0.3, and taper ratio 

= 0"3. Biconvex parabolic profile. From Table 6. 
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FIG. 10. Supervelocities along mid-chord lines of cropped- 
rhombus wings with taper ratio w --  0.3, for different vMues 
of coefficient of convergence s. Biconvex parabolic profile. 

From Table 4. 
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FIG. l l. Snperveloeities along mid-chord 
lines of cropped-rhombus wings with taper ratio 
~0 ---- 0.6, for different values of coefficient of 
convergence s. Biconvex parabolic profile. 

From Table 5. 
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FI'G. 12. Variation of maximum supervelocity 
with taper ratio ~ for unswept wings with 

constant s/b or constant aspect ratio A. 
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FIG. 13. Isobars over rhombus wing with  coefficient of 
convergence 8 = 0 .3 .  B iconvex  parabolic profile. From Table 3. 
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FIG. 14. Isobars over cropped-rhombus wing with  coefficient of convergence 8 = 0 . 3  and 
taper ratio ~ = 0 .3 .  B iconvex  parabolic profile. From Table 6. 
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