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Summary. An investigation is made into the manoeuvre of an aeroplane in the entry into and recovery from a true 
banked horizontal turn executed without sideslip or loss-of height, and the proper continuous co-ordination of aileron, 
elevator and rudder is deduced for all stages of the manoeuvre. I t  is shown that  the roiling motion is practically 
unaffected by the other modes of motion, enabling the kinematics of the rolling.mode to be solved in terms solely of 
the applied aileron movement or stick force. The aileron is regarded as the prnne initiator of the turn, operated in 
some pre-chosen manner, and the elevator and rudder loads are expressed as functions of the determinable rolling 
velocity and acceleration. The loads to tr im in the final steady turn are found as a particular case. 

Several different forms of aileron operation are examined, including a family in which the maximum value of the 
rolling velocity (or helix-angle in roll) is stipulated beforehand. The co-ordinating elevator load may, in adverse cases, 
attain peak values considerably in excess of the final load to trim, and the dependence of such peaks on the manner 
of aileron control operation is examined. I t  is shown that  rapid entries into a turn demanding large rolling velocities 
at high altitudes are likely to require a large pull back of the stick, followed by a hasty push forward. In  order t o  
ensure that  the elevator co-ordination should consist of a steady one-way movement of the stick, it is necessary that  
the aileron be applied in such a way that  maximum rolling velocity be obtained when the angle of bank is small. 

Two manoenvrabili ty criteria are suggested for the entry into the turn, the first relating the final elevator load to 
the amount of g generated, and the second relating maximum aileron toad to the maximum required rolling velocity 
and final angle of bank. Extensive information regarding this roiling aspect of the manoeuvre is presented in a set 
of charts using non-dimensional parameters. 

The mathematical  analysis is contained in appendices. 

1. The Nat~,~re of the Manoe¢~vre and the Basic Ph2sical Assumptions.--The problem investigated 
in this report is the three-dimensional manoeuvre of an aeroplane in the transition from steady 
horizontal symmetric flight into a steady horizontal turn at an assigned angle of bank. The 
manoeuvre may be as violent as the controls will allow, and particular at tention is paid to the 
manner in which the several cont'rols must be kept in step. The term ' co-ordination'  is 
normally used in some loose way to describe such a process, but a precise definition of co- 
ordination wil l  later be given in order to eliminate any ambiguity. 

The kinematics of the manoeuvre describing the velocities and angular velocities of the 
aeroplane, fall into three distinct phases. The first and third are the initial and final steady 
stages, which reasonably may be supposed to be without sideslip, while the intermediate phase 
consists of the unsteady transitional motion comprising the manoeuvre proper. As distinct 
from longitudinal manoeuvrabili ty theory, due attention is paid here to the precise manner in 
which the final steady stage is reached, so tha t  while the final loads to trim are fixed quantities 

* Revised version of original report dated January,  1945. 
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depending on the final angle of bank, the actual rolling transition may be performed as slowly 
or as quickly as desired. The differences in the kinematics are reflected in the total ly different 
kinds of intermediate control loads which are correspondingly required. 

Each co-ordinated manoeuvre represents a particular way of executing the required turn, 
but the act of co-ordination may be more difficult to perform in some cases than in others. Failure 
to co-ordinate the controls may result in an undue amount of sideslip or loss of height, and the 
mere movement of the controls straight to their final trim values (generally demanding quite 
small deflections), will not in itself guarantee that  the aircraft will take up the appropriate steady 
turning motion, particularly if the angle of bank is large. If the manoeuvre is to be achieved 
with any rapidity at all, substantial rolling velocities will be demanded, which in turn entails 
large aileron angles for some period during the transition--darge, that  is, compared with the 
final steady value. The ailerons at least, then, will perform some large excursion, and con- 
sequently may be looked upon as the dominant control. ' Co-ordination ' may then be interpreted 
as the keeping in step of the elevator and rudder with whatever motion is dictated b~y the 
ailerons, and will take a variety of forms depending upon how much sideslip or change in height 
is desired. A u~ique co-ordination is defined if it is stipulated that  there should be no sideslip 
or loss of height throughout the transition, whatever aileron operation be adopted. This will 
be a basic assumption of the present work. 

One additional assumption may be made that  there is no loss of speed during the manoeuvre. 
This cannot strictly be justified because in the final steady state the aircraft incidence will have 
been increased, and the speed will have dropped in the absence of a compensating increase in 
thrust. Typical rolling transitions will be virtually completed, however, in a matter  of a second 
or two, and as the only retarding force is the increased drag, negligible speed losses will ensue. 
Alternatively, constancy of speed may be postulated exactly, and the necessary thrust changes 
deduced as a further control co-ordination. 

2. Outli~¢e of the Method, a~¢d the Basic A~alytical Assum2btio~¢s.--The essence of the analytical 
method of solving tile problem is to leave the angle of bank ¢ as some unspecified function of 
time and only in the final stage to assign to it a time variation appropriate to the particular 
aileron operating technique. The remaining kinematic variables are then solved as functions 
of ¢ and its rate of change, following which the control loads may be expressed in terms of ¢ and 
the stability derivatives. 

In order to examine the feasibility of the method and to understand the assumptions involved, 
consider the form of the genei-al equations of motion. Using the standard system of moving 
axes there are four basic types of equations, namely 

(a) the three equations of resolution along the axes, involving tl, w ; p, q, r ; 0, ¢, W and the 
control displacement terms y~¢ and z~ 

(Note : v is absent on the assumption tha t  sideslip is maintained identically zero) 

(b) the three equations of moments, involving u, w; p, q, r; and the control moments l~$ 
m~, etc. 

(c) the three geometrical relationships between p, q, r and 0, ¢, ~o 

(d) the single geometrical equation between w, 0 and ¢ expressing constancy of height. 

Now ideally the function of a control surface is to produce a moment about the centre of gravity, 
and the fact tha t  in the case of the elevator and rudder there is also an unbalanced normal force 
may merely be regarded as accidental*. At any rate the terms y~¢ and z~ are generally omitted 
outright from ordinary stick-free stabili ty calculations, and a similar omission will be made 
here, though only after an examination of the error involved. Groups (a), (c) and (d) will then 

* The rudder, however, may be required to generate sideslip deliberately, and does so by means of the side force. 
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consist of seven equations in eight variables alone, viz., u, w ; O, 6, ~o ; p, q, r, and therefore each 
of the seven variables u, w ; 0, ~0 ; p, q, r can be expressed in terms of ¢. Their values can then 
be substituted in the elevator and rudder moment equations (group (b)) and the co-ordinating 
control angles deduced as functions of ¢. 

For a given aileron operation the determination of $ as a function of time at first sight seems 
rather involved. The appropriate moment equation, sideslip being zero, is, in non-dimensional 
form 

¢~ - (i. - i ~ ) ~ e -  # / 5  - z ,~  = ~ l g ( t )  . . . . . . . . . .  ( 1 )  

where t also is measured in non-dimensional units. 

Now in this it can be shown a posteriori that  even for the largest variations in ¢, the influence 
of the ~ and ~ terms is negligible. I t  can further be shown that  in this equation t5 can be replaced 
by  ¢. The reduced equation accordingly involves only ¢, its derivatives and the known time 
function ~ (t), and so can readily be solved. 

I t  must be stressed that  the manoeuvre is not regarded here as an extended case of a '  stabil i ty ' 
type disturbance, the theory of which is based on the notion of inf ini tesimal  displacements. 
Ordinarily the stability approach to manoeuvrabil i ty problems does give approximately correct 
results even for moderately large excursions in the variables. I t  suffers, however, from the 
defect that  product terms, for example, are always rejected outright. Now the unapproximated 
equations of motion, such as the one given above, do contain product terms in the variabies 
arising from two sources. First ly there are the kinematic products such as @ ,  ~', which enter 
on account of the rotation of the axes, and secondly there are terms involving stabil i ty derivatives. 
These consist of the explicit first order quantities like l,~" and the implicit higher order terms like 
l~p@. The latter are invariably neglected, and there is reason to believe they are unimportant  
here. A term like l j ,  however, normally regarded as first order, has an additional contribution 
due to the fact tha t  l, is proportional to incidence, which in the present manoeuvre generally 
undergoes a substantial increase. This variation is here taken into account, and to do so the 
further assumption is made tha t  there is no time lag between an increase in angle of incidence 
and the corresponding lift increment on the wing section. 

3. Formulae  for  the Control Co-ordination ." Dynami c  and Static V a l u e s . - - T h e  analytical 
expressions for the control displacements involve certain simple trigonometrical functions of ¢, 
which, in practice, may be tabulated once and for all. They are 

ql -- (sec ¢ - cos ¢) ,  

r l  - s i n  ¢ , 

The control angles are then given by  

T£ i~ 2 i~sec¢  r ~ + r ~  

c~ { 2~$ [dz~ 2~ aq~ ~'rj(t) = ~ -  T ~  +/5 Ld¢ + a d¢ 

i~n¢ $(t) = C~. { 2r2 Fdr~ 2~f dr2 

q 2 - s e e ¢  t a n ¢ ,  

r2 - sec ¢ -- 1 . 

a . ~ - . i .  a ~ - i U @ f "  

ic c~ + % -  - \ i c l + i T  

(2) 

(s) 

(4) 

where a - dCr/do~ and CL, l,, np are calculated at the original incidence. 

The expressions on the right-hand sides of these equations fall natural ly into two parts, those 
dependent and those independent of/5, the rolling velocity. The contributions to the control 
angles made by the/5 terms may aptly be called the ' dynamic ' control displacements since they 
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differ from zero only during the unsteady transit ion period. On the other hand the contributions 
of the remaining terms may be called the ' static ' control displacements, since they represent 
the control angles to hold the aircraft in a steady turn at the particular angle of bank $ pertaining 
at tha t  particular instant. 

The values of the ' static ' deflections are in general steadily increasing functions of ~, achieving 
their maxima at the final angle of bank. The ' dynamic '  deflections, however, starting from 
zero and finally returning thereto, necessarily at tain their maxima at some intermediate point 
of the manoeuvre, and have no influence at all on the final control displacements. 

Suppose it is desired to execute a turn at a particular angle of bank. Then a variety of different 
aileron operating techniques is available to the pilot, each having its particular type of elevator 
and rudder co-ordination. At any intermediate angle of bank the differences in control co- 
ordination correspond solely to the differences in the ' dynamic '  control values. Now in some 
cases it may well happen tha t  the maximum value of the dynamic elevator control angle is con- 
siderably in excess of the final ' static ' value. This demands a reversal in the elevator operation, 
the initial pull-back on the stick overshooting the mark, and having to be followed by a rapid 
push forward correction. Such co-ordination is natural ly more difficult to perform than when the 
dynamic values throughout are kept small. The merit of any particular aileron operating 
technique is therefore not simply to be judged by the efficiency with which the rolling motion is 
achieved, but also by the simplicity with which the elevator co-ordination may be performed, 
having particular regard to the question of reversal, or peaking, of the elevator movement. 

4. The Elevator Manoeuvrabili@ Criteria.--In the case when the dynamic elevator displacement 
is kept sufficiently small, the final elevator deflection is obtained by a steady pull back on the 
stick to its maximum, trimming, value, the operation taking perhaps a second to complete. 
The degree of manoeuvrabili ty of the aeroplane may then be assessed in terms of the ' stick 
travel per g '  or the ' stick load per g ' required to produce a given normal acceleration. The 
resulting quantities are purely functions of the aeroplane's characteristics, speed and altitude, 
and are independent of the piloting technique during the manoeuvre. They may therefore be 
used as manoeuvrabil i ty criteria, provided it i s  understood tha t  higher stick loads may be 
demanded if the wrong piloting technique is adopted. This introduces the notion of a ' preferred'  
kind of aileron operating technique, which does in fact keep the dynamic elevator loads small. 
The basic features of this technique will be dealt with at length later. 

The formulae for the manoeuvrabili ty criteria m a y  be obtained directly from equation (3). 
Taking n as the additional load factor (so tha t  the wing is generating a lift equal to (n + 1) 
times the weight of the aircraft) the elevator displacement to trim in the steady horizontal turn 
is given by 

- a.,.~ 2(~ + 1)~s~ . . . . . . . . . . . .  (5) 

where H,,~ is the longitudinal manoeuvre margin stick-fixed, I7 the tail volume coefficient, and 
l is the distance from the c.g. to the elevator hinge. Similarly the increase in stick load to trim 
is given by 

P -  ~ g ' g  ~ =  L ~ ' ' / +  2 ( ~ i T Y b s J  . . . . . . . .  (e) 
a2 g 

where K is a gearing factor, and H,,/, al '  the stick-free values of H~, and al respectively. These 
values of ~ and P exceed those for the manoeuvre of pulling out of a dive by the presence of 
the l? term in the brackets. 

The relation between n and ~ in the above.is simply 

: see ¢~ -- ] , 

¢ ~ being the final angle of bank. 



5. Methods for Obtaining ~ Variat ions.--There are two processes by which suitable expressions 
may be obtained for/5 and $ in terms of the independent time variable. The first process consists 
simply of prescribing a likely form of $ -- t variation, based possibly on flight test results, and the 
second process consists of those methods wherein either the aileron angle or aileron load variation 
is prescribed and the/5 and ~ variation deduced. 

In the first class the boundary conditions are tha t  $, 15 (=  d~/dt) and i~ should vanish initially, 
and tha t  15 and i~ should be zero at the final angle of bank. Also, if the final angle of bank is  
obtained without an overshoot, i5 will always be of the same sign. The shape of the/5  vs. t 
curve, then, is such that ,  starting initially tangential to the t-axis, it attains some peak value 
/5 ..... at some intermediate point of the manoeuvre before returning to the t-axis, either 
asymptotically, or else tangentially at a finite point. The asymptotic case arises when 
exponential expressions are used to describe ~, and also when the simplified rolling equation 

l,/5 ~d~ ~:(t) . . .  (7) - = . . . . . . . . . . .  

is used with chosen expressions for ~(t). The final angle of bank is then strictly obtained only 
after an infinite length of time, and on this account will be denoted by ~b,. The same symbol, 
however, will also be used even when, in other cases, it may be reached in a finite period of time. 

The basic geometric feature of the/5 vs. t curve is tha t  the area between it and the t-axis is 
proportional to $ ~. I t  follows, therefore, that  overshooting ~ ,  in general leads to a slower overall 
time. for the manoeuvre because of the negative values of/5 required to bring the aircraft back. 
This is in direct contrast to the case of the pull out from a dive at a given normal acceleratiosL 
for which the non-overshoot case represents the slowest manoeuvre. 

Equation (7) shows tha t  effectively the rolling equation is no different from the rolling equation 
as used in discussing simple roiling performance. Here, however, the actual roiling manoeuvre 
is different, demanding the ability not only to generate a large value of pb/2Uo (the helix angle 
in roll) but also of checking it within the compass of a given final angle of bank. The manoeuvre 
may in fact be specified ' geometrically '  via the /5 vs. t curve in terms of ~ , ,  the maximum 
required value of pb/2Uo, and also the instant  during the manoeuvre at which this peak rolling 
velocity is to be attained. This leads to the following two types of ~ or/5 analysis : 

(A. 1) An exploratory ' Synthet ic '  method in which the ~ -- t variation, based on actual 
flight results, is taken as 

= - e 

where x - ht and n and h are parameters. 

(A.2.) The ' Rolling Velocity ' method in which the /5 vs. t curve is regarded as being 
built up of four successive generalised parabolic-arcs enabling the magnitude and instant  
of the peak roiling velocity to be assigned. 

The second class of solution is based on prescribing the form of the aileron operation, and is 
itself divisible into two classes as follows : 

(B. 1.) The ' Aileron-Angle ' method, in which the ~ vs. t curve is built up of successive 
linear sections. (Alternatively the aileron load could be specified.) 

(B. 2.) The ' Aileron-Helix-Angle'  method, in which ~ and/5~_~ are specified and also, 
the shape (but not size) of the ailerorl load versus time curve. 

6. Elevator Co-ordination for the ' Synthetic ' Method . - -The  initial numerical work of the theory 
was carried out by  assigning a suitable value to the parameter n in the formula 

The value 2- 1 was chosen so as to give very close agreement with a rolling-velocity curve obtained 
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in flight tests of a Spitfire in a 3g turn (~ = 70.53 dog) at an aKitude of 6000 ft at 250 m.p.h. 
•.s.I. (Fig. 1). The theoretical peak rolling velocity was arranged to be equal to the actual 
measured value, given by 

1 

. . . .  - _  

The theoretical co-ordinating elevator load is shown in curve (a) of Fig. 2, and it is seen that  it 
increases monotonically to its final steady value. (Note: Discrepancy with the measured value 
in Fig. 1 may be attributed in part at least to some uncertainty in the values of bl and b~ for the 
elevator.) 

Curve (b) shows the effect of mass-balancing the elevator to the extent of arranging for its 
centre of gravity to lie on the hinge-line, the result being a general reduction, but also overshoot 
and reversal, in load. 

Curve (c) shows the effect of doubling the peak rolling velocity. This demands a very large 
increase in the ' dynamic '  elevator load, and as a consequence introduces a well-defined peak 
in the co-ordinating elevator load. 

Curve (d) shows the same load peaking phenomenon, but in a much aggravated form, resulting 
fiom a simultaneous increase in the maximum rolling velocity and altitude. 

The disturbing feature of these curves is the enormous increase in the ' dynamic ' elevator load 
due to increasing either the peak rolling velocity or the altitude. Reversal co-ordinations of 
this type are obviously very difficult to perform accurately, and it is therefore important  to 
discover whether suitable aileron operations can be found which will yield simple elevator co- 
ordinations. For this purpose it will only be necessary to make brief reference to method (B. !), 
but method (B.2) will be dealt with in some detail. This will indicate the steps necessary to ensure 
simplified co-ordination, after which a return will be made to method (A.2) to confirm in a general 
way the findings of method (B.2). 

7. The ' Ailero~-A~gle ' Method.--The chief use to which the ' aileron-angle ' method has been 
put has been to examine the validity of neglecting the yawing term 1,~ in the roiling equation (1). 
Fig. 3 shows the calculated aileron angles required to produce a 3g turn, the shape of the ~ vs. t 
curve being based on an actual Spitfire manoeuvre. In the curve OA1A2AaA4, yawing is neglected 
altogether, while in curve OAI'A2'A3'A,' a correction is made to ~ by inserting the term L~. 
Here the value of ~ has been calculated to a first approximation from equation (38) of Appendix I, 
viz., 

1 CL(c~o) sin ~b + (sec ¢ 1) a p  f = - f f  

using the values of ¢ and 13 previously obtained from the simplified rolling equation. It  is im- 
mediately obvious from the figure that  the yawing effect is quite negligible except in the ultimate 
stages of the manoeuvre, where the final steady aileron rolling moment is in any case required 
to nullify the wing rolling moment l~ due to steady yawing. 

8. The 'Aileron-Helix-Angle' Method.--8.1. The Rolli~g Aspect .--In the 'aileron-helix-angle'  
method a choice of three shapes is assigned to the curves of aileron stick load against time, 
namely" 

(a) An isosceles triangle with base on the horizontal t-axis (triangular loading), the aileron 
being applied for, say, time 2tl. 

(b) A trapezium with base on the t-axis, having equal period of increasing, constant, and 
decreasing stick load (trapezoidal loading), the aileron being applied for, say, time 3tl. 

(c) A parabola with axis perpendicular to the t-axis (parabolic loading), tile aileron being 
applied for, say, time t~. 

In addition to the shape of the curve, the values of ~b ~ and of the maximum required helix angle 
in roll, (pb/2Uo)m~ are specified beforehand. 
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A most valuable feature of the method is tha t  the magnitude and duration of the aileron load 
required for the manoeuvre may be read off directly from completely generalised charts. The 
values of ;3 and ~ are also readily obtainable for substitution in the expression for the co-ordinating 
elevator load. The method may in fact be regarded as providing, incidentally, a rolling perfor- 
mance criterion of an extended kind. Thus whereas one conventional rolling performance 
criterion is concerned merely with the ability of an aeroplane to generate an assigned peak rolling 
velocity without regard to the time taken for it to be achieved, the manoeuvres described above 
do take into account both rolling accelerations and retardations, and to tha t  extent are more 
realistic. 

8.2. The Analytical Resul ts . - -The solutions to the rolling motion in the cases (a), (b) and (c) 
above are based on the simplified rolling equation 

where 

h'-- Z,(1 +Z, bl) - -  Z;& " 

At the instant when the prescribed maximum roiling velocity is attained, i~ is zero, and denoting 
the aileron load at that  instant  by P, its value is given directly by  

= mb2h'iA(2P-@~o ) .... pS~c~Uo2/l, p 

where m is the gearing factor converting hinge moment to stick force. This value of the stick 
load has to be obtained whatever the piloting technique, and is the minimum aileron load capable 
of satisfying the kinematics of the manoeuvre. Now because the shapes of the load-time curves 
are prescribed, it is only necessary for their complete determination to find the maximum value 
Pma~ of the aileron load, and the duration 2t~, 3tl or tl of the load in the individual cases (a), (b), (c). 
The solutions of the problem are displayed in Charts (I), (II), (III) which show the value of 
PH,~.,/P plotted against a parameter A defined by the relation 

A -= ] ¢ ~  ~ 0  maxi'e" \/~'¢oo/" 
In addition the duration of the load is obtained in terms of a parameter X defined by X - h'tl. 
The analytical formulae from which the charts are derived are as given below, while the actual 
solution for case (a) is derived in Appendix II. 

Case (a) 
P ~  1 1 1 
p - - A x w h e r e A - - x  X ~ l o g o ( 2 - e  -x) 

Case (b) 

C a s e  (c) 

two equations 

/)max 1 1 1 
-- 2 A ~  where A -- 2X 2X 2 log~ ( 1 + e -x -- e -2x) 

Pmax 3 
p = 2 A X  where X is given by the elimination of the parameter k from the 

A = 6 k ( 1 -  - -  k) X - -  2 k X  2 .  
X ' (1 - e -'°x) - 

In a practical ease the value of A is determined from the known boundary conditions, and the 
corresponding values of X and Pmax/P are read off from the appropriate chart. 
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It  is possible to determine the relative merits of the aileron techniques (a), (b), (c) by finding 
which technique demands the smallest value of P .... for a given value of A. The result is shown 
in Fig. 4, whence it is seen tha t  the order of preference is trapezium, then parabolic, then triangular 
aileron loading. 

8.3. Elevator Co-ordi~atio~.mFor the purpose of comparison with the ' synthet ic '  method the 
co-ordinating elevator load is worked out for the same boundary conditions, namely a 38 turn 
at 250 m.p.h.A.S.I, at 27,000 ft, achieving a peak value 0. 08984 for the helix-angle in roll. Two 
cases are considered, corresponding to triangular and parabolic aileron loading, and the co- 
ordinating elevator loads are shown in Figs. 5 and 6. I t  is at once apparent tha t  the elevator 
peaks have disappeared. This gratifying feature indicates tha t  a smooth control co-ordination 
is possible even for the more adverse kinematical conditions, and one deduces tha t  the 
phenomenon of peaking co-ordination is not one ' built-in ' to the aeroplane, but is a consequence 
of the particular aileron operating technique adopted. I t  is not in  fact difficult to give a physical 
explanation of the phenomenon. 

9. The Origi~ of the Peak Loads.--Consider Fig. 7, showing the growth of rolling velocity and 
angle of bank plotted against time for two aileron techniques corresponding to the triangular 
loading case (a), and the ' synthetic ' method case with ~, = 2.9. The chief point of difference is 
tha t  in the first case the large rolling velocities occur for an angle of bank of about 20 deg, and 
in the second case for an angle of 40 deg. Now in order that  the aircraft should maintain height 
during t h e  manoeuvre, the vertical component of the lift force, L cos $ cos 0, must remain 
substantially unaltered. In order to ensure this at a given rolling velocity, the rate of growth 
of the total lift vector--and therefore also of incidence--will have to be greater, the greater 
the angle of bank. Consequently, quicker and also larger changes in elevator load are required if 
the largest rolling velocities occur when the angle of bank is already large. The increase in 
incidence, however, can only be imparted by a correspondingly rapid angular acceleration of 
the aeroplane, followed by an angular retardation. This in turn demands substantial elevator 
movement to overcome the damping and inertia in pitch. But irrespective of the intermediate 
control loads, the final value to trim is limited, being dictated solely by the steady conditions 
in the turn. Hence a peak is induced in the elevator load on account of the large roiling velocities 
occurring only late in the manoeuvre. 

It  is also easily seen that  if at the same A.S.I. and the same specified helix-angle in roll the 
altitude of the manoeuvre is increased, the tendency of the elevator load to peak is considerably 
aggravated. For in this case the true speed of the aeroplane is increased, as is also the actual 
peak rolling velocity. In particular, the pitching inertia effects are increased, and this more 
than anything else leads to the pull-push type of elevator co-ordination. 

Thus the aim of the pilot should be so to operate the aileron that  the largest rolling velocities 
are obtained when the angle of bank is still small. 

As a corollary it may be added that  since in the case of the recovery from a turn, the angle of 
bank is initially greatest, the largest rolling velocities should be delayed, so as to occur, as before, 
when the angle of bank is again small. 

10. The'  Rolling Velocity ' Method.- -As  a final verification of the above reasoning, a generalised 
' rol l ing veloci ty '  method is introduced, wherein considerable freedom is given to the shape of 
the/5 vs. t curve by simple changes in parameter. 

I t  is assumed as before tha t  ~/~max and ~b are assigned beforehand, and tha t  the manoeuvre is 
completed in a finite (non-dimensional) t ime tl, to be determined. I t  is convenient to take new 
non-dimensional variables defined by 

X - t/tl (so tha tO  ~<x < 1) 

Y - p//~m,~x (so that  0 < y ~ 1) 
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The general shape of curves of Y plot ted against X must  on geometrical  and physical grounds, 
possess the  following features (see Fig. 8a): 

(a) Be tangent ia l  to the  X-axis both  at the  origin and at the  point  D (1, 0). 
(b) Have  a horizontal  t angent  at some point  B (Z~, 1) be tween E and F. 
(c) Have  points Of inflexion at some points A (z:, ¢1) and C (Z~, ffa) between OB and BD 

respectively. 

The points A, I3, C may  be said to fix the  ' skeleton ' of the  curve, which therefore possesses 
five degrees of freedom corresponding to the  parameters  ~1, ~2, 43, ff~ and ff~. Once the  ' skeleton ' 

• is chosen, the  actual curve is fairly well defined because of the  addit ional  conditions of horizontal  
tangency at O, B and D. Hence given the  ' skeleton ', the  complete curve may  be sufficiently 
well represented by, for example, four individual  ' parabolic ' arcs OA, AB, BC, CD, each of t he  
form 

( Y  - = k (x - > 1), i = 1, 2, 3, 4. 

Here the  values of a~, b~ and k; are functions of the  2's and if's, and are enumera ted  in Fig. 8a. 
The exponents  m~ on the  other hand, can be chosen arbitrarily, subject only to the condit ion 
of continuous slope at the  joins A and C. However  from the practical point of view it is impor tan t  
also tha t  the  m~ should be integers, and this places l imitat ions on the  possible positions of A and C. 
They are not, fortunately,  severe limitations, as may  be seen from Fig. 8b, which shows the  loci 
of points A and C for convenient  integral  values of the  ~ .  In  the  actual numerical  cases 
considered below, all four values of m~ will be taken  equal to 2. 

10.1. T,/~e I~fl~e~ce of the Shape of the Rolli~g Velocity C~trve.--The manoeuvre  considered is 
the former high-al t i tude case, retaining the  same kinematical  boundary  conditions except for a 
minor  change in (pb/2Uo) .... from 0.08984 to 0.09. The aileron and the  ' d y n a m i c '  elevator 
loads are worked out for a range of values of the  three  main  parameters* Z~, 22, and 2~. 

In the  case of the  ' d y n a m i c '  elevator load the  chief interest  lies in the  m a x i m u m  value it 
attains, since reversal of control co-ordination certainly occurs whenever  the  ' d y n a m i c '  load 
exceeds the  final static value to trim. The results are p lo t ted  in Fig. 9 for three broad groups 
corresponding to values of ~2 of 0.2, 0 .5  and 0 .8  respectively. The final static load is about  
8 .4  lb weight, and it is seen tha t  this is considerably exceeded by the  dynamic  load in all cases 
for which ~ is greater than  0.5. In  fact it is only for selected cases within the  group ~2 equal 
to 0 .2  tha t  reversal in elevator control is avoided. This again brings out the  necessity for the 
large rolling velocities to occur quite early on in the manoeuvre.  

To complete the  picture it is instructive now to examine the  akleron loads which lead to the  
preceding co-ordinations. The values of the ' dynamic  ' elevator loads indicate tha t  ~ may  be 

Good-Fai r  , , t a k e n  as  a m e a s u r e  of  g o o d n e s s  of  the  aileron technique,  which may  be labelled ' ~ " ' 
Fai r -Poor  and Very Bad , corresponding to the  values 0.2, 0 .5  and 0 .8  of 2~ respectively. 

~fhe resulting sets of aileron load curves are shown in Figs. 10, 11 and 12, and it is instruct ive 
to compare these with the  sets of curves, Fig. 13, corresponding to the  ' a i l e ron-he l ix -ang le '  
and ' s y n t h e t i c  ' methods  respectively. The ' a i l e ron-he l ix -ang le '  me thod  clearly bears close 
resemblance to the  2~ = 0 .2  ' Good-Fai r  ' class, while the  resemblance between the  ' synthet ic  ' 
me thod  and t h e  case 22 = 0.5, 2~ = 0.25, ha = 0 .7  is even  more marked,  as is shown by the 
following tabular  comparison:  

Case A1=0"25, 22=0.5 ,  Za=0 '  7 Synthe t ic  

Max imum aileron load . . . .  14 lb weight  13-2 lb weight  
Aileron load  reverses af ter  . .  5 '  6 sec 5 .5  sec 
Minimum aileron load . . . .  - - 5 . 2  lb weight  - - 3 . 8  lb weight  
Peak e levator  load  . . . .  19.3 lb weight  18 lb weight  

This demonstra tes  the  versat i l i ty of the  ' rolling velocity ' method,  which thus  by  itself is capable 
of providing all the  information of the  previous methods.  

* W i t h  the ~h chosen a rb i t r a r i ly  to have  the valtte 2, the  two condit ions of con t inu i ty  of slope a t A  and C reduce 
the freedom of the  sys tem nomina l ly  to three.  
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The classifications given above for the various types of aileron techniques lead to the foilowing 
conclusion: 

For good elevator co-ordination it is necessary to apply the aileron load quickly, followed by 
an equally rapid removal of the load. Delay in attaining peak rolling velocities is penalised by 
peaking elevator loads. 

11. The Ma~oe~vre of Recovery from T~rns.--The manoeuvre of the recovery from a turn is 
best regarded as a continuation of the original rolling manoeuvre into the turn. The basic 
condition is taken as neutral aileron angle, and the incidence and elevator settings are those 
appropriate to the straight flight condition. I t  is assumed that  at the start of the manoeuvre, 
the above quantities differ from the basic conditions by the amounts made necessary to hold the 
machine into the turn. The word ' recovery ' is thus used literally, in so far as the manoeuvre 
is the return to a basic condition from one initially displaced therefrom, rather than the departure 
from an original basic circling condition into a new straight line motion. I t  follows tha t  the 
general analysis of stick loads and displacements continues to apply unchanged, the 0nly difference 
in detail being the different distribution of/5 and ¢ with time. 

A number of examples have been worked out confirming the indications of the previous sections. 
Fig. 14 shows the elevator recovery loads for the two cases, ' aileron-helix-angle' method (parabolic 
loading), and ' synthet ic '  method n ---- 2.9. The order of merit of the two techniques is dear ly  
reversed as compared with the entry into the turn. Further examples have been worked out 
using the 'roiling veloci ty '  method for the cases which are expected to produce the best co- 
ordination. These have been taken as 

~ = 0 -8 ,  ~1 = 0 -7 ,  ~ = 0.95 

,t~ = 0 . 8 ,  1-1 - 0 . 5 ,  13 = 0.9. 

The results are shown in Fig. 15, and the improvement is most considerable. The corresponding 
aileron techniques have already been drawn in the previous diagram, Fig. 12. 

The general conclusion is tha t  rapid recoveries from turns at high altitudes are more difficult 
to perform than the entry into the turn, and that  fundamentally7 different piloting techniques 
are required in accordance with the necessity, in both cases, of obtaining the largest rolling 
velocities when the angle of bank is small. 
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A P P E N D I X  I 

1. Equa t ions  of  M o t i o n  with Constant  F o r w a r d  Speed  and  Zero S i d e s l i p . - - I n  the standard fully 
dimensional notation, the equations of motion of an aeroplane having constant forward speed Uo 
and zero sideslip velocity are 

m ( W Q )  

m ( -  W P  -4- UoR) 

m ( W -  UoQ) 
A P  --, (B  - -  C)QR 

BO - ( c -  A)RP 

C _ R -  (A - -  B ) P Q  

where P 

Q 
R 

= - -  mg  sin 0 .. 

= + m g  cos 0 sin 

-- + m g  cos 0 cos 

• ° 

- - -  • • 

X 
. 

Y 

Z 

L . , ° ° 

M ° ° ° ° 

N ° ° ° ° 

¢ - -  ~ s in 0 

= 0cos6  + ~ c o s 0  sin~b 

= - -  0 s i n 6  + ~ c o s 0  cos 

( 1 )  

(2) 
(3) 
(4) 
(s) 
(6) 
(7) 

(s) 
(9) 

Let T* be the airscrew thrust assumed acting along the X-axis, and let C~o and To* represent 
the incidence and thrust acting in the steady horizontal flight condition immediately prior to the 
manoeuvre. The initial steady conditions are 

Y o = L o = M o = N o = P o = Q o = R o - - ~  0 o = 4 o = 0  

while also Wo is zero if wind axes are used• Equations (1) and (3) reduce to 

No = o = To* -- ½pSUo~C~ ( ~ 0 )  . . . . . . . .  ( 1 0 )  

and 
Zo + m g  = 0 . . . . . . . . . . . . . . .  (11) 

Assume that  during the course of the manoeuvre, terms like Z and L take values given by 

Z = Zo + Z~Q + Z ~ W  -+- Z ~  

L = Lo + L p P  + L~R + L ~  

and that  in these expressions the derivatives are functions of the actual incidence appertaining 
at any instant. The equations of motion may thus be written 

m ( W Q )  - X ~ W  - XqQ + mg  sin 0 = T* - -  To* 

m ( - -  W P  + UoR - -  g cos 0 sin ¢) = Y ~ . .  

m ( W  - -  UoQ - g cos 0 cos 6) - Zo - Z~Q - z ~ w  = z , v  •. 

A #  - -  (B  - -  C)QR - -  L~P - -  L~R = L f i  . .  

B O -  ( c -  A ) R P -  m ; ~ w -  ~ y -  M~O = M~ 

C f ~ -  (A - -  B ) P Q  - -  N ~ P -  N,R----- N~C 

while equations (7), (8) and (9) remain as before. 

. .  (12) 

. .  (13) 

. .  (14) 

. .  (15) 

. .  (16) 

. .  (17) 

2. The  N o n - D i m e n s i o n a l  F o r m  of  the E q u a t i o n s . - - I t  is convenient to denote the non- 
dimensional form of any variable by the same symbol in small type* with a bar above. An 
exception is made in the case of the non-dimensional symbol for time, from which the bar is 

* Symbols in small type, e.g., t5, w, are generally taken to mean the small, dimensional increases from the steady 
values of the variables P, W. The bar is here the distinguishing feature of non-dimensionality. 
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omit ted.  f h u s  T denot ing t ime in seconds, and v the  unit  of t ime defined by ~ --  m/pSUo,  the 
non-dimensional  t ime t is given by the relation 

T = t~. 

Taking, now the  semi-span s as the  unit  of length, the  scheme of non-dimensional isat ion is as 
shown below, it being understood tha t  an expression like zb means d W / d T  whereas w means 

Write 
W - -  ~(s/-c), etc., for linear velocities 

W = [~(s#=), etc., for linear accelerations 

P = / 5 ( 1 # ) ,  etc., for angular velocities 

,b = fi(l#~), etc., for angular accelerations 

X~, = *w(m#),  etc., for force-velocity derivatives 

Zq = z~(ms/z), etc., for force-angular-velocity derivatives 

M~ = m, /ms /v ) ,  etc., for moment -ve loc i ty  derivatives 

M ;  = m~(ms), etc., for moment-acce lera t ion  derivatives 

Lp = 1/ms2/~), etc., for moment -angular -ve loc i ty  derivatives 

Y¢ = y¢(mUo#) ,  etc., for force-control-angle derivatives 

M~ = m~(mUoS/~), etc., for moment-cont ro l -angle  derivatives 

X = ½pSUo2Cx for forces 

L = ½pSUo2bC~ for lateral moments  (b = 2s) 

M = ½pSUo2cC,,, for longi tudinal  moment s  (c = wing chord) 

Xo = Xo(mS/T2), etc., for initial forces 

A = ms2iA, etc., for lateral  monaents oI inertia 

B = ms2i~ for the longitudinal  momen t  of inertia 

= m/pSs  = Uo'c/s, the  height  parameter  

~[~ = ~2g/s, definition of/~. 

This differs somewhat  from the  normal  longitudinal  procedure because of the  use of the  semi- 
span s for the  uni t  of l e n g t h .  The expressions which occur in the  equations of motion,  however, 
do not ul t imately  depend on the  choice of length unit, since fundamenta l  terms like ~m~/iv, 
l / i a ,  etc., are equivalent  to M~ ~2Uo/B , L i, ~/A respectively, and these are fixed measurable physical 
quantities.  

Subst i tut ing the  above expressions in the  equations of motion,  and denot ing expressions like 
i~ -- % by A and neglecting Zq, Xq, X, which are small, the  equations take the form 

z ~ q -  x ~  + ~  sin 0 = (T* --  To*)(T2/ms) 

--  z~/5 + j --  ~ cos 0 sin ¢ =/zy~¢ ..  

--/z~ -- z~z~ --  z0 --/~k cos 0 cos ¢ = l~z,,~ o. 
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(20) 

(21) 
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together  with the  relations 

/5 = ~ - - ~ s i n 0  . . . .  

= 6 c o s ¢  + ~ c o s 0 s i n ¢  

e = - - . ~ s i n ¢  + ~ c o s 0 c o s ¢  . 

• • 

• • 

t I 

• ° • ° 

• ° 

• ° • ° 

(24) 

(25) 

( 2 6 )  

In  addi t ion there  is the condit ion for no loss of height  during the  manoeuvre,  namely  

U0s in0  = W c o s 0  cos¢  
z~ 

whence tan  0 = - cos ¢ . . . . . . . . . . . . . . . . .  (27) 

3. Solution of Equations of Motio~ i~¢ Terms of/5 a~¢d ¢.--(a)  Preliminary Rdations.--The 
increase in incidence from the  original s traight  flight condi t ion is W/Uo or z~/ff. Since this is 
not  l ikely to be more than  about  12 deg, we may  from equat ion (27) replace tan  0 by  0. This 
same equat ion on differentiation gives 

w 
= - cos ¢ -- - sin ¢~ . . . . . . . . . . . . . . .  (28) 

Consider now the  relation between k, CL and z0. 

By  definit ion of section 2, 

~s Uo pSUo ~ 
Hence k = ½CL(~o) . . . . . . . . . . . . . . . . .  (29) 

Again, 
7 2 

zo --  ms Zo. 

Hence by  (11), 

. . . . . . . . . .  (30) 
ZO - m s  ( -  = - s - 

(b) Solution of Equations for z~.--Equation (20) may  be wri t ten  by  vir tue of (30) 

w --  z~@ = ff[~ -¢- k(cos 0 cos ¢ --  1) -I- z~l] . . . . . . . . . . .  (31) 

Now from (25) and (26) 

= g tan  ¢ -t- 6 sec ¢ . . . . . . . . . . . . . .  (32) 

or from (19) and (28) 

i . e . ,  

- ~ sin 2 ¢ 
=ffw + / ~ _ t a n ¢ ( t S _ $ )  + ~ c o s 0  cos¢  + y ~ t a n ¢ "  

Subst i tu t ing in (31), we get 
A • - -  

- - - z ~  --  ~_z_Otan¢ ( / 5 - -~ )  + ~ c o s 0  cos¢  -+- cos¢ sec0 
/2 # ff ff 

+ z,,~ + y¢¢ tan  ¢ .  
Hence from (24), subst i tut ing for/~, 

- -  z~ --  t an  ¢ sin @ + k(cos 0 sec ¢ --  1) +z~2 +y~¢ t an  ¢ . # /* 
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In  the  expression on the  r ight -hand side we assume tha t  only the t e rm in k is of importance.  
This is not  quite  obvious in the  very  initial stages of the motion,  bu t  we can say t ha t  the  first 
t e rm is of the  four th  order  in small quanti t ies,  and t ha t  the  effect of neglecting z,~ and y¢~ t an  ¢ 
m a y  be assessed a poster ior i  f rom the  values of ~ and ¢ later  to be calculated.  The equat ion  there-  
fore reduces to 

- - A s = - - - - ( c o s 0 s e c ¢ - -  1) /1 Z~ " 

But  

hence 

dC~ __ k 
z~ -"- - ½ ds  ~'~o' 

z~ 
--  Ac~ = So(COS 0 sec ¢ --  1) . . . . . . . . . . . . .  (33) 

ff 

As a check on the  size of 0, (27) yields 

t an  0 = s0(cos 0 sec ¢ --  1) cos ¢ . 

Let  N denote  the  addi t ional  load factor  in the manoeuvre .  

N_~/~  , - - c o s 0  s e c ¢ - -  1 .  
S0 

c o s  0 
Therefore tai l  0 = c~oN cos ¢ = c%N N -1- 1 

c%N 
i.e., sin 0 = N + ~  c°s~ 0. 

Then  

Now the  to ta l  incidence is s0(N + 1) and  cannot  exceed about  0 .3  radians or else the  aircraft  
will stall. Hence  s0(N -¢- 1) = 0" 3 --  ~ where  s > 0, while 

s i n 0  = ( 0 " 3 - -  e - - s 0 ) S o c o s ~ 0 .  
( 0 . 3 -  ~) 

The m a x i m u m  value of this occurs when  ~o = 1-(0" 3 --  ~), giving 

(o. 3 - ~) 
(sin 0) .... < 4 - < 0. 075.  

I-Ience 
0 < 4 .3  deg. 

and  
(COS 0)mii t > 0 "9972 .  

We are therefore  justified in 
part icular ,  equa t ion  (24) gives 

while (33) above reduces to 

z~ 
- A~ = ~o(Sec ¢ - -  1) . . . . . . .  

# 

(c) So lu t ion  f o r  ~ . - -We  have  previously obta ined  the  relaidon 

~ 0 + _ ~ t a n ¢ ( 1 5 _ 6 )  + ~ c o s 0 - -  q = ~  

replacing sin 0 by  0 and cos 0 by  un i ty  wherever  it occurs. In  

sin ~ ¢ 
cos ¢ + y¢~ tan  ¢ .  
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Neglecting the y~ term, and using the results of (34) and (35), which yield 

-- ~o see ¢ tan ¢/5 . . . . . . . .  
# 

we get 

Define a - dCL/d~. 

~7=~oSeC¢ tan ¢/5 + h s i n  ~¢ s ec¢ .  

Then 

~=½CL(c~o) I ( s e c ¢ - - c o s ¢ )  + s e c ¢  t an¢ ! /51  

(d) Solution for ~.--Equation (19) yields on neglecting y~ 

whence from equation (35) 
2 -  

(e) Solution for ¢. - -Equat ion  (26) may be written 

= e s e c ¢  + t S t a n ¢ .  

But from (28), (35) and (36) 

= (~o sec ¢ tan ¢/5) cos ¢ -- ~o(sec ¢ -- 1) sin ¢t5 

(36) 

(37) 

(3s )  

or 0 ---- C~o/5 sin ¢ (see ¢ -- sec ¢ + 1) = ~o/5 sin ¢. 

Therefore v~={CL(~o) [ ( t a n ¢ ) + ( s e c 2 ¢ - - s e c ¢  + s i n 2 ¢  sec¢)2 /5 ] ,  

I t  is helpful at this stage to recall the assumptions adopted: that  the direct effects of the 
forces produced by the controls are small, and that  the controls primarily serve to produce 
moments about the c.g. On this understanding, equation (19), which so far has not been used, 
tells us how the thrust  must be adjusted to satisfy the requirement of constancy of speed. 

4. Basic ¢ Funct ions . - - In  the general case the values of 15 and ¢ will be known as functions 
of time, either directly as in the ' synthetic ' method, or as the result of the solution of the roiling 
equation, as in the ' a i l e ron '  methods. The values of ~, ~ and ~ may therefore be foundas 
functions of time from equations (21), (22) and (23). 

To facilitate the calculation of the control deflections and loads, we introduce new symbols as 
follows : 

q~ - ( s ec  ¢ - c o s  ¢)  . . . . . . . . . . . . . .  (40)  

q~ - sec ¢ tan ¢ . . . . . . . . . . . . . . . .  (41) 

rl -= s i n  ¢ . . . . . . . . . . . . . . . . . .  (42) 

r .  --- ( s ec  ¢ - 1) . . . . . . . . . . . . . . . .  (43)  

~01 = tan ¢ . . . . . . . . . . . . . . . . . .  (44) 

~ .  - s e c ' ¢  - c o s  ¢ . . . . . . . . . . . . . . .  ( 45 )  
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rhe  = + - -  • ° • ° • • . . . .  , , • • 

~= ½-CL(rI + r ~ 2 ~ )  . . . .  . . . . . . . . . . . . .  (47) 

while 
z~ 1 

- c,y~ . . . . . . . . . . . . . . . . . . .  (4e)  # a 

We also require expressions for ~, ? and @ft. 

Writ ing d d de d 
dt - de dt - 15 

[ (% 215 d,z~'~ 2 ] 
w e  g e t  ~ = ½CL 15 ~ d ¢  + ~ d¢  / + q~ ~ ~ . . . . . . . . . .  (50)  

and 

r = ½c~ 15\d4, + a d¢/+r~2~15 . .  (51) 

_ 1 c~(# d~,~ 215 d~,~ 

The values of the  differentials with respect of ¢ are 

dql 
de -- sec $ tan  ¢ + sin ¢ . . . . . . . . . . . . . .  (53) 

dq~ 
de -- sec $ (tan ~ ¢ + sec ~ 6) = sec ¢ (1 + 2 tan  ~ ~) . . . . . .  (54) 

dr/1 
d e  - -  c o s  ¢ . . . . . . . . . . . . . . . . . .  (55)  

d¢ -- sec ¢ t an  ¢ = q,~ . . . . . . . . . . . . . . .  (56) 

In  practice it is helpful to plot graphs of the  more impor tant  of the  above quanti t ies  on a very 
open scale with ¢ as abscissa, taking 1 cm for each degree of ¢. The functions ql and r~ are most  
convenient ly  plot ted together,  as are also q~ and dql/d¢, but  dq2/d¢ is p lot ted by itself. Each of 
these three  sets of curves occupies four sheets of quarto size graph paper, and the  ordinates are 
l imited to the  range zero to uni ty  by the  device of plot t ing the  reciprocals of the  functions 
whenever  un i ty  is exceeded. In  this way the  quantities,  in the  impor tan t  range of ~, may  always 
be read to three, and sometimes four significant figures. 

The advantage  of having these ready plot ted curves is very great, since q, q, etc., may  be 
evaluated with extreme ease, seeing tha t  15 and ¢ are presumed known. It  is more convenient,  
however,  to derive explicit expressions for ~, ~ and ¢ in terms of 15 and ¢ and the  derivatives. 
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We remember  in this case t ha t  since % and l, are l inear functions of incidence, their  values at  
any  ins tant  are 

i.e., 

~Zo + A~  c'-o + Ac~ 
np and  l~ , 

~0 ~-o 

~p sec 4' and  l, sec 6 . 

T h e  actual  values of ~, ~ and  ¢ are calculated from equat ions  (21), (22) and  (23). In  these 
we m a y  neglect  the  terms in A, B, C withou t  much  loss in accuracy.  The values thus become 

iA --  ~ + a i - - A ( r 2 s e c 4 , )  - - ½ Q  @lsec4,) . . . . . .  (57) 

and  

~.(t) 
G = ½cL -d-~ + 2  Ld4, + a d4, 

~,,~c(t) { 2,~2_. F~I 2~ d,,2 
ic " = ½CL 7 -  p + p  kd4, + a d $  ic CL + a j 

(~ 2 +? 

(58) 

(59) 

This is a complete  s t a t ement  of the  problem as far as control  deflections are concerned.  
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The ' A i leron-Hel ix-A ngle ' Method (a ) - -  Triangular Loading 

.1. Let  us assume tha t  the  aileron load is always applied 
l inearly in the  manner  of the  diagram, the  rate  of 
application being the  same as the  rate of reduct ion of 
load, each period taking t, units of time. 

We shall show tha t  a m a x i m u m  value of (pb/2Uo) is 
a t ta ined  between A and B and we shall fur ther  deduce 
rules for solving the  kinematics  of the  mot ion  completely 
when both  (pb/2Uo)m~x and ¢~ are assigned. 

2. T h e o r y . - - W e  write the  equat ion for rolling in the  
general form 

+ ~'~ = F, + <~ . . . . . .  (1) 

where suffix i applies to individual  l inear sections of the 
aileron load curve, 

and 

F,  + G,t - -  tde(CH) 
iA2b2 . . . . . .  

For  Stage OA,  

tde 
F1 ---- O, Gltl = (C~) .... iA2b2 " " " 

The solution for f is 

G~t G~ ( 1 - - e  -' ' ') . . 
~ -  h '  ( h ' )  ~ • - 

whence the  rolling velocity at A is given by 

g~tl g~ (1 e-'e'~) . . .  
~ = h-~- - - ( h , ) ~  - -  

% 

A P P E N D I X  II  

C 

From (4) 

f : G 1  G, . e_h, t gl  
F - (h') --: h-~ (1 -- e - " )  > O. 

Hence i3 increases steadily between 0 and A. 

For Stage A B ,  

+ ~ ' ~  = < ( t l  - t) . . . . .  

Here 
F~ = gltl 

G~ = - -  G1. 

The solution of (6) with initial condition 13 =/~1 is 

: ~i e - - h ' t  -- -- 
Glt 1 

~ e-") . a' + EGAh' + Gd (1 -- 
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Hence from (5) 

4]= L~G*t*77 (h') =G* (1 --  e--a't')l e -'~'t --  - -  
G~t G~ 
h' + ~ (1 + h'td(1 -- e-J"'). 

When  fi is a m a x i m u m  

O =  

o r  

i.~.j 

d}/dt = 0. This occurs when 

c~ [t~ (1 - e-"'") 
7? z~' ] ( - t~ 'e -"") -  c~ c~ F + ~ (1 + a%) e-"  

0 = e -~''' [ --  h't, + (1 -- e -~''~) q- (1 q-h't~)] -- 1 

1 
e -  h ' t  _ _  

- -  2 - -  e - h %  

Let the  solution of (7) be t - :  f. 

Then from (6) 

where 
- -  h , '  

1 
[ - - / T  " logo (2 -- e - " l ) .  

(7) 

(8) 

(9) 

We have  to verify in this t ha t  t, > [ since equat ion (6) only holds for t, > t. 

1 
We require t~ > ~-, logo (2 --  e-t"~). 

i.e., tha t  

or tha t  

Wri t ing h't~ - X we have to show tha t  

X > logo (2 --  e-X), 

e x > 2 --  e -x 

cosh X > 1. 

The condit ion is therefore satisfied, and the  peak value of fi necessarily occurs be tween A and B. 

We have  so far de te rmined  fi . . . .  in terms explicitly of the  quan t i ty  G, and implici t ly of h. 
We have  yet  to introduce the  known  value of ¢ co. 

In tegra te  equat ion (1) between limits of t of 0 and infinity. The lef t -hand side becomes simply 
h'¢~, while the  r ight-hand side represents the  area of tr iangle OAB, i.e., Glt~ ~. 

Hence 
h%® 

clt~ _ - t l  . . . . . . . . . . . . . . . . . .  ( lo) 

Subst i tu t ing in equat ion (8), we get with the  aid of (9). 

15max ¢ ~ Q e -'''') - -  tl  (h,)~ logo  (2  - -  , 

~max ¢ co ¢ co e_h,Q) 
- t~ a ,  (t~l~ logo  ( 2 -  . 

19 

therefore 

(63369) B 2 



Reintroducing the notation 

h'tl = X 
the relation becomes 

~max 1 
h'¢~ - - X  

1 
X ~ logo (2 - -  e--X).. ( t l )  

which may alternatively be written 

Pmax = -- logo (2e -x - -  e-2"v). 
h ' ¢ ,  X ~ (12) 

We have now in effect, a solution of the problem. For in any particular case, /5~ax and ¢ ~ will 
be prescribed, and h' known. Equation (11) therefore enables us to determine X,  and thence 
the duration of the control application. The magnitude of the peak load is finally obtained 
directly from equations (10) and (12). 

I t  is important  to note that  the soht ion is only of value so long as X is real. Consider then the 
function 

1 1 
f ( x )  =_ x x~logo (2 - e - X ) .  

We have already shown tha t  X -  logo ( 2 -  e -x) is always positive; so also must therefore be 
f(X).  I t  may also be shown without much difficulty that  f (X)--+ 1 as X - +  0 and tha t  f ( X )  
decreases monotonically to zero as X--~oo. Hence so long as 

Pmax [£ (pb/2 U0)ma x 
h'¢~ < 1, i.e., h'  < 1 . . . . . . . . . . .  (13) 

there exists a real value of X to satisfy equation (11); and this solution is unique. 

Equation (18) imposes an upper limit to the peal; helix angle which can be obtained within 
the compass of a roll from 0 deg to ¢o~ when the aileron load is applied in triangular fashion. I t  
is directly proportional to h'  and ¢ , ,  but inversely proportional to ft. 

3. Direct Evaluation of the Maximum Aileron Load.--Let  Pmax be the peak aileron load corres- 
ponding to the point A in the diagram of section 1 and le t /5  be the aileron load at the instant 
when the rolling velocity has attained a maximum. This occurs after time [ in the period CB of 
the figure. The relation between P ..... and t5 may be deduced from similar triangles, leading to 

VPm~x fl 

" P t l - - t  [. 

Hence from equation (8) 

P~ax &G1 
hpm~x 

- -  tC~max f r o m  (10) 

_ 1 

- \ Pm~x / (h%)" 
Hence 

1 
- g ~  - A x  . . . . . . . . . . . . . . . .  • . .  (14)  

20 



Now at the instant when t5 is a maximum, i~ vanishes, and equation (1) gives 

iA 2b~ - -  h t ~ m a x  " 

Therefore 

m. b2h'pmax lap S,c, Uo ~ ~ - -  
#l, 

where m is the control gearing. 

(is) 

All the quantities on the right-hand side of this equation are known, so P may be determined 
immediately. Chart I shows graphs of X and 1lAX plotted against A. The appropriate value 
of 1 /AX may be picked off from the chart and Pm~x finally obtained merely by multiplying by P. 
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\DOUBLE ROLLING ] 
!~ VELOCITY (6OOOft 
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.------=- __....___.._~-~'-- ~LEVATOR 

STICK LOADS FOR 3g TUR N 

~2"-~o)max = 0 . 0 8 9 8 4  
2 5 0  n~p.h.A.S.T. AT 27~000~'t .  

SECONDS. 
I'O • 2 1.4 1.6 

FIG. 5. Triangular aileron loading. 
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FIG. 6. Parabolic aileron loading. 
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VELOCITY ~' METHOD. 

A 2 = 0 .2  

CASE ( I )  A I : O . O 5  A3 :O .90  

CASE (2) X I : O.IO ~,3:O.70 
CASE (,3) )'1 = O.IO A3:O.SO - 

CASE (4) X I : O.15 A3:O-30 

D, D 2 D 3 

C I 

0'3 0 "4  0 '5  0"6 0"7 0 '8  0"9 
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FIG. I0. Elevator co-ordination ' Good to Fair '. 
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VELOCITY METHOD. 
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J CASE(4") ;kl :0,40 X3=O'60- 

/ D  
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O . I  0"2 0-3 0 . 4  0"5 0"6 0-7 0-8 
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FIG. 11. E l e v a t o r  co -o rd ina t ion  ' Fa i r  to Pool" '. 
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INITIAL ELEVATOR LOAD 
/ T O  TRIM iN 39 TURN. 

SPITFIRE ELEVATOR LOADS RECOVERY FROM "3g TURN. 25Ora.p.h.A.S.I. AT 27oOOOf~. 

C Pb/2Uo)mox = 0"08'984 'ROLLING VELOCITY' METHOD. 

CASE (1~ ,k2= O'8 A.I=O.7 A. 3=  0 -95  
CASE (,2) k 2 = O.8 ~.1 = O-S ~ '3 -  O" 9 

O O'1 0"2 O "3 O" 4. O'5 O" 6 0"7 0-8 O" 9 1"O 
SECONDS, 

FIG. 15. 
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R. & M. No. 215o. 
R. & M. No. 2250. 
R. & M. No. 23~o. 
R. & M. No. 245o. 
R. & M. No. 2550 

Is. 3d. (Is. 4~]d.} 
Is. (iS. i ~ )  
Is. (~,. ~½~) 
Is. 3d. (Is. 4~d.) 
Is. 3d. (Is. 4½d.) 
Is. 9d. (~,. ro{d.) 
zs. (2s. r½~.) 
2s. 6d. (2s. 7½/.) 

Prices i~ brackets i•c/ude postage. 

Obtainable from 

HER MAJESTY'S STATIONERY OFFICE 
York House, Kingsway, London, W.C.2 ¢ 423 Oxford Street, London, W.I (Post Orders: P.O. Box 569, London, 
$.E.z); 13a Castle Street, Edinburgh z ~ 39 King Street, Manchester 2; z Edmund Street, Birmingham 3 ; 
toq St. Mary Street, Cardiff: Tower Lane. Bristol, t ; 8o Chlchester Street. Belfast, or through any bookseller 

S.O. Code NO. -23-2838 

Ro & Mo Heo 28S; 


