Stress Concentrations at a Cut-out in a Swept Wing

By

E. H. Mansfield, M.A.

Crown Copyright Reserved

LONDON : HER MAJESTY'S STATIONERY OFFICE

Stress Concentrations at a Cut-out in a Swept Wing

By

E. H. Mansfield, M.A.
Communicated by the Principal Director of Scientific Research (Atr), Ministry of Supply

Reports and Memoranda No. 2823*
July, 195 I

Summary.-The stress concentrations are determined for a panel, bounded by main load-carrying members and an oblique edge, such as might occur at a cut-out in a swept wing.

The solutions given are exact and cover the effects of a member along the oblique edge and of closely-spaced stringers attached to the panel.

1. Introduction.-The determination of the stress distribution in a panel bounded by two main members and an oblique edge between the members is complicated by difficulties in satisfying the boundary conditions along the oblique edge ($\mathrm{R} . \& \mathrm{M} .2758^{1}$). The use of oblique co-ordinates (R. \& M. 2754 ${ }^{2}$) does not help since these still give rise to stress functions which are not orthogonal. It can be shown, however, that the stress distribution in the immediate vicinity of either main member and the oblique edge is independent of the stress distribution elsewhere. This means that such a localised stress distribution may be determined by ignoring the other main member and regarding the structure as an infinite wedge, bounded on the one side by one main member and on the other by the oblique edge. Furthermore, since the peak values of the shear stress in the actual panel occur where a main member and the oblique edge meet, the peak values of the shear stress can be determined exactly, and the distribution of stress near the peak values can be determined approximately*, if the structure is treated as an infinite wedge.

Fig. 1. Panel at cut-out in swept wing.

[^0]2. Assumptions.-In determining the stress distribution in the vicinity of the apex of the infinite wedge the following assumptions are made.
(a) stress-strain relations are linear
(b) buckling does not take place
(c) rivet flexibility is negligible
(d) the flexural rigidity of the main member and the oblique edge member, if any, is negligible
(e) if stringers (parallel to the main member) are present their stiffening effect may be adequately represented by assuming them to be spread out into an elastic sheet with equivalent directional properties.
Of these assumptions (d) is the most open to objection.
3. Plain sheet.-The analysis for the case when the sheet is not reinforced by stringers is simple and will be considered in detail. It is shown in Appendix I that the stress distribution in the immediate vicinity of the apex of the wedge is independent of the boundary conditions away from the apex; these boundary conditions may therefore be chosen to have the most convenient values to suit the analysis. They are chosen so that the stresses along the edges of the wedge are constant and equal to the values at the apex. This implies that the stress distribution in the wedge has a pattern which depends only on θ. See Fig. 2.

Fig. 2. The infinite wedge.
The most general form for the stress-function ${ }^{3}$ which gives rise to such a stress pattern is

$$
\begin{equation*}
\phi=\frac{1}{2} y^{2}\left(a_{1}-a_{2} \sin 2 \theta-a_{3} \cos 2 \theta+a_{4} \theta\right) \quad . . \quad . . \quad . . \tag{1}
\end{equation*}
$$

where the a 's are at present arbitrary. This function determines the following set of stresses,

$$
\left.\begin{align*}
\sigma_{r} & =a_{1}+a_{2} \sin 2 \theta+a_{3} \cos 2 \theta+a_{4} \theta \tag{2}\\
\sigma_{\theta} & =a_{1}-a_{2} \sin 2 \theta-a_{3} \cos 2 \theta+a_{4} \theta \\
\tau_{r 0} & =a_{2} \cos 2 \theta-a_{3} \sin 2 \theta-\frac{1}{2} a_{4}
\end{align*} \right\rvert\,
$$

[^1]3.1. Oblique Edge Free.-The conditions along the free edge, $\theta=\alpha$, are
$$
\sigma_{\theta}=\tau_{r \theta}=0,
$$
and if $\hat{\sigma}_{r, m}$ is the direct stress in the main member the conditions at $\theta=0$ are
$$
\sigma_{r}-\nu \sigma_{\theta}=\hat{\sigma}_{r, m}
$$
and by virtue of assumption (d)
$$
\sigma_{\theta}=0 .
$$

These four conditions are sufficient to determine the four constants of equation (1) and thence the complete stress distribution, which has been plotted in Figs. 6 to 10 for values of α the wedge angle equal to $45 \mathrm{deg}, 60 \mathrm{deg}, 90 \mathrm{deg}, 120 \mathrm{deg}$ and 135 deg.

The peak value of the shear stress is given by

$$
\begin{equation*}
\tau_{r 0, m}=\left[\frac{2 \sin \alpha(\sin \alpha-\alpha \cos \alpha)}{\sin 2 \alpha-2 \alpha \cos 2 \alpha}\right] \hat{\sigma}_{r, m} \quad . \quad . \quad \ldots \quad . . \quad . \tag{3}
\end{equation*}
$$

and the direct stress along the free edge is

$$
\begin{equation*}
\sigma_{r, e}=\left[\frac{\sin 2 \alpha-2 \alpha}{\sin -2 \alpha \cos 2 \alpha}\right] \hat{\sigma}_{r, m} . \quad . \tag{4}
\end{equation*}
$$

The peak value of the shear stress has been plotted against α in Fig. 11. The factors in the brackets in expressions (3) and (4) above become infinite when $\alpha=129$ deg and change their sense when $\alpha>129$ deg. The reason for this becomes clearer if the problem is considered from the more direct approach of applying a known shear stress $\tau_{r \theta, m}$ to the wedge along $\theta=0$ and then determining $\hat{\sigma}_{r, m}\left(=\sigma_{r, m}\right)$. The ratio $\hat{\sigma}_{r, m}: \tau_{r 0, m}$ has been plotted in Fig. 12. With the shear stress acting in the sense shown in Fig. $12 \hat{\sigma}_{r_{, m}, m}$ is a tensile stress from $0 \mathrm{deg}<\theta<129 \mathrm{deg}$ and a compressive stress for $\theta>129 \mathrm{deg}$, which might be expected as that part of the wedge for which $\theta>90$ deg tends to act in the nature of a buffer to the applied load.

In an actual construction the load is applied through a boom and equations (3) and (4) are no longer valid for $\alpha>129$ deg since they would then necessitate negative boom areas.

In practice it can be concluded that very high shear stresses will be developed when the wedge angle exceeds about 120 deg.
3.2. Oblique Edge Supported.-When there is a member along the oblique edge and the load is applied along the line of the main member, as in Fig. 3, there will be no load in the oblique edge member at the apex and the conditions along that edge in the simplified wedge structure will be

$$
\begin{aligned}
\sigma_{\theta} & =0 \\
\hat{\sigma}_{r, e} & =0 .
\end{aligned}
$$

Fig. 3. Load applied along line of main member.

The four constants of equation (1) are now determined and thence the complete stress distribution, which has been plotted in Figs. 13 to 17 for values of α the wedge angle equal to $45 \mathrm{deg}, 60 \mathrm{deg}, 90 \mathrm{deg}, 120 \mathrm{deg}$ and 135 deg.

The peak shear stresses occur at each edge of the wedge and are given by

$$
\begin{equation*}
\tau_{r 0, w}=\left[\frac{1}{4 \alpha}-\frac{\cot 2 \alpha}{2}\right] \hat{\sigma}_{r, m} \quad . . \quad . \quad . \quad \text {.. .. } \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau_{r 0, c}=\left[\frac{1}{4 \alpha}-\frac{1}{2 \sin 2 \alpha}\right] \hat{\sigma}_{r, m u} . \tag{6}
\end{equation*}
$$

The factors in the brackets of equations (5) and (6) become infinite when $\alpha=90 \mathrm{deg}$ and change their sense when $\alpha>90$ deg.

In an actual construction the load is applied through a boom and equations (5) and (6) are no longer valid for $a>90$ deg since they would then necessitate negative boom areas. In practice flexural rigidity of the edge members will prevent very high shear stresses developing. but it can be concluded that high shear stresses are likely when the wedge angle exceeds about 80 deg .
3.2.1. Oblique edge supported: loads in both edge members.-If the applied load is at an angle β to the direction of the main member as in Fig. 4 below the stresses in the edge members are given by

$$
\left.\begin{array}{l}
\hat{\sigma}_{r, m}=\frac{P \sin (\alpha-\beta)}{A_{m} \sin \alpha} \\
\hat{\sigma}_{r, e}=\frac{P \sin \beta}{A_{e} \sin \alpha}
\end{array}\right\}
$$

Fig. 4. Load applied at angle to main member.
The stress distribution is now obtained from a combination of those considered in section 3.2. In particular,

$$
\begin{align*}
\tau_{r 0, m} & =\left[\frac{1}{4 \alpha}-\frac{\cot 2 \alpha}{2}\right] \hat{\sigma}_{r, m}+\left[\frac{1}{2 \sin 2 \alpha}-\frac{1}{4 \alpha}\right] \hat{\sigma}_{r, e} \tag{8}\\
. & . \tag{9}\\
\tau_{r \theta, e} & =\left[\frac{1}{4 \alpha}-\frac{1}{2 \sin 2 \alpha}\right]
\end{align*} \hat{\sigma}_{r, m}+\left[\frac{\cot 2 \alpha}{2}-\frac{1}{4 \alpha}\right] \hat{\sigma}_{r, e} . \quad . \quad . \quad . \quad . \quad . \quad .
$$

4. Stringer-reinforced Sheet.-The stress function corresponding to equation (1) differs only in that the last term $a_{4} \theta$ becomes $a_{4} H_{0}(\theta)$, where $H_{0}(\theta)$ has been derived in Appendix II. This stress function determined a set of stress resultants* ($\bar{\sigma}_{r}, \bar{\sigma}_{0}, \bar{\tau}_{r 0}$) identical with that of equation (2)

[^2]except that the functions appropriate to a_{4} become $H_{1}(\theta), H_{2}(\theta), H_{3}(\theta)$. These functions, which have been derived in Appendix II, have been tabulated (Tables 1 to 5) for different values of the stringer reinforcement parameter X.
4.1. Oblique Edge Free.-The peak value of the shear stress, adjacent to the main member, is given by
\[

$$
\begin{equation*}
\tau_{r 0, m}=\frac{(1+X) \sin \alpha\left\{H_{2}(\alpha) \cos \alpha+H_{3}(\alpha) \sin a\right\}}{H_{2}(\alpha) \cos 2 \alpha+H_{3}(\alpha) \sin 2 \alpha} \hat{\sigma}_{r, m} . \quad \ldots \quad . . \tag{10}
\end{equation*}
$$

\]

These values have been plotted against α in Fig. 11.
4.2. Oblique Edge Supported.-When there is a member along the oblique edge and the load is applied along the line of the main member, as in Fig. 3, the shear stress adjacent to the main member is given by

$$
\tau_{r \theta, m}=\left[\begin{array}{c}
H_{1}(\alpha) \sin ^{2} \alpha\left\{1+X \sin ^{2} \alpha(1+v)\left(1+\cos ^{2} \alpha-v \sin ^{2} \alpha\right)\right\} \tag{11}\\
-H_{2}(\alpha) \cos ^{2} \alpha\left\{1+X \sin ^{4} \alpha(1+\nu)^{2}\right\} \\
+H_{3}(\alpha) \sin ^{2} \alpha \sin 2 \alpha X(1+\nu)\left(\cos ^{2} \alpha-\nu \sin ^{2} \alpha\right) \\
H_{1}(\alpha)\left\{1+X \sin ^{2} \alpha(1+v)\left(1+\cos ^{2} \alpha-v \sin ^{2} \alpha\right)\right\} \\
+H_{2}(\alpha)\left\{1+X(1+\nu)\left[1-\sin ^{2} \alpha \cos ^{2} \alpha(1+\nu)\right]\right\} \\
+H_{3}(\alpha) \sin 2 \alpha X(1+v)\left(\cos ^{2} \alpha-v \sin ^{2} \alpha\right)
\end{array}\right] \frac{(1+X) \hat{\sigma}_{r, m}}{\sin 2 \alpha} .
$$

5. Range of Validity.-The present analysis gives only the peak values of the stresses with no suggestion as to the rate at which these die away. Some indication of this rate may, however, be obtained from a consideration of Fig. 18. Fig. 18 shows contours of constant shear stress $\tau_{x y}$ in a rectangular panel with the booms tapered so as to be uniformly stressed. It will be seen that the ' θ-distribution' considered in this report has an approximate range of validity extending over regions within about $\frac{1}{3}$-panel width from each corner. If the booms are untapered the range of validity will be somewhat smaller. Further, the integral of the shear stress along each edge must equal the total load transferred to the sheet, so that in a swept panel bounded by untapered booms the greater shear stress will die away at a greater rate than the smaller shear stress. Thus we expect the range of validity of the θ-distributions to be increased at an acute angle and decreased at an obtuse angle.
6. Conclusions.-Exact solutions have been obtained for the stress concentrations which occur at a cut-out in a swept wing. The solutions include the effects of a member along the oblique edge and of closely spaced stringers attached to the panel. The analysis has been simplified by using the fact that the stress distribution in the immediate vicinity of either main member and the oblique edge is independent of the stress distribution elsewhere.

LIST OF SYMBOLS

FIG. 5. Direction of positive stresses.

γ, θ	Polar co-ordinates
ϕ	Stress function
$a_{1}, a_{2}, a_{3}, a_{4}$	Arbitrary constants
σ_{r}	Direct radial stress
σ_{0}	Direct tangential stress
$\tau_{r 0}$	Shear stress
$\hat{\sigma}_{r}$	Direct radial stress in tension member attached to sheet
α	Angle of wedge
β	Offset angle of applied load
A	Section area of member
t	Sheet thickness
X	Relative section area of stringer reinforcement
	Stringer area $\div(t \times$ stringer pitch $)$
$\bar{\sigma}_{r}, \bar{\sigma}_{\theta}, \bar{\tau}_{r \theta}$	Stress resultants for reinforced sheet
$H_{0}(\theta)$	Stress function for reinforced sheet
$H_{1}(\theta), H_{2}(\theta), H_{3}(\theta)$	Stress resultants appropriate to $H_{0}(\theta)$
Suffices ${ }_{m}$ and erefer to the main member and edge member respectively ; e.g.,	
$\hat{\sigma}_{r, m}$	Direct stress in main member
$\tau_{* 0, \ldots}$	Shear stress in sheet adjacent to main member
A 。	Section area of edge member

REFERENCES

No.
 Author

1 E. H. Mansfield
2 W. S. Hemp
3 S. Timoshenko

Title, etc.
Elasticity of a sheet reinforced by stringers and skew ribs, with applications to swept wings. R. \& M. 2758. December, 1949.
On the application of oblique co-ordinates to problems of plane elasticity and swept-back wings. R. \& M. 2754. January, 1950.
Theory of Elasticity. p. 114. McGraw-Hill Book Company.

APPENDIX I

To show that the Stress Distribution in the Immediate Vicinity of the Apex of a Wedge is Independent

 of the Boundary Conditions away from the ApexIf we preclude the possibility of singularities at the apex the most general form for the stresses in the wedge (in plain sheet) can be expressed as ${ }^{3}$

$$
\begin{align*}
\sigma_{r}= & -2 D_{0} \theta+\sum_{n=0}^{\infty} r^{n}\left\{(n+2) A_{n} \cos (n+2) \theta+(n-2) B_{n} \cos n \theta\right. \\
& \left.+(n+2) C_{n} \sin (n+2) \theta+(n-2) D_{n} \sin n \theta\right\} \\
\sigma_{\theta}= & -2 D_{0} \theta-\sum_{n=0}^{\infty} r^{n}(n+2)\left\{A_{n} \cos (n+2) \theta+B_{n} \cos n \theta\right. \\
& \left.+C_{n} \sin (n+2) \theta+D_{n} \sin n \theta\right\} \\
\tau_{r \theta}= & +D_{0}-\sum_{n=0}^{\infty} r^{n}\left\{(n+2) A_{n} \sin (n+2) \theta+n B_{n} \sin n \theta\right. \\
& \left.-(n+2) C_{n} \cos (n+2) \theta-n D_{n} \cos n \theta\right\} \quad \ldots \quad \ldots \quad \ldots \quad \ldots \tag{12}
\end{align*}
$$

The most general form for the boundary conditions expressed in terms of the stresses is

$$
\left.\left.\begin{array}{l}
{\left[\lambda_{1} \sigma_{r}+\lambda_{2} \sigma_{\theta}+\lambda_{3} \tau_{r \theta}\right]_{h n}=\sum_{n=0}^{\infty} K_{n} r^{n}} \tag{13}\\
{\left[\lambda_{1} \sigma_{r}+\lambda_{5} \sigma_{\theta}+\lambda_{6} \tau_{r \theta}\right]_{n n}=\sum_{n=0}^{\infty} L_{n} r^{n}} \\
{\left[\lambda_{7} \sigma_{r}+\lambda_{8} \sigma_{\theta}+\lambda_{9} \tau_{r \theta}\right]_{c}=\sum_{n=0}^{\infty} M_{n} r^{n}} \\
{\left[\lambda_{10} \sigma_{r}+\lambda_{11} \sigma_{\theta}+\lambda_{12} \tau_{r}\right]_{c}=\sum_{n=0}^{\infty} N_{n} r^{n}}
\end{array}\right\} \quad \begin{array}{llll}
\end{array}\right\} \quad \ldots \quad \ldots
$$

where the λ 's are constants.
Equating coefficients of powers of γ in equations (12) and (13) gives sets of simultaneous equations from which $A_{n}, B_{n}, C_{n}, D_{n}$ may be determined. In particular taking $n=0$ shows that $A_{0}, B_{0}, C_{0}, D_{0}$ are functions of $K_{0}, L_{0}, M_{0}, N_{0}$, and are independent of the other K, L, M, N 's. Now at the apex r is zero so that $K_{0}, L_{0}, M_{0}, N_{0}$ are the boundary values at the apex. It follows from equation (12) that the stress distribution in the immediate vicinity of the apex of a wedge is independent of the boundary conditions away from the apex.

APPENDIX II

Stress Functions for Stringer-reinforced Sheet

The sheet is reinforced by stringers of relative section area X in the $O x$ direction, i.e., parallel to $\theta=0$.

In Cartesian co-ordinates the stress-function (R. \& M. 2758 ${ }^{1}$) equation is

$$
\begin{equation*}
\left(k_{1}{ }^{2} \frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)\left(k_{2}{ }^{2} \frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) \phi=0 \quad . \quad . \quad . . \quad . \tag{14}
\end{equation*}
$$

where

$$
\left.\begin{array}{l}
k_{1}{ }^{2}=1+(1+\nu)\left[X+\sqrt{ }\left(X+X^{2}\right)\right] \tag{15}\\
k_{2}{ }^{2}=1+(1+\nu)\left[X-\sqrt{ }\left(X+X^{2}\right)\right]
\end{array}\right\} \quad \ldots \quad . \quad . \quad . \quad . . \quad . \quad .
$$

and ν is Poisson's ratio.
If we search for a solution of equation (14) in the form

$$
\left.\begin{array}{rl}
\phi & =x^{2} F(y / x) \tag{16}\\
& =x^{2} F(\lambda), \text { say }
\end{array}\right\} \quad . \quad .
$$

the equation for F reduces to

$$
\begin{equation*}
\frac{d}{d \lambda}\left[\left(\dot{k}_{1}^{2} \lambda^{2}+1\right)\left(k_{2}^{2} \lambda^{2}+1\right) \frac{d^{3} F}{d \lambda^{3}}\right]=0 \quad . \quad . \quad . . \quad . \tag{17}
\end{equation*}
$$

so that

$$
\frac{d^{3} F}{d \lambda^{3}}=\frac{a \text { constant }}{\left(k_{1}{ }^{2} \lambda^{2}+1\right)\left(k_{2}{ }^{2} \lambda^{2}+1\right)}
$$

and

$$
\begin{equation*}
F=\int_{0}^{\lambda} \int_{0}^{\lambda} \int_{0}^{2}(d \lambda)^{3} \cdot \frac{a \text { constant }}{\left(k_{1}{ }^{2} \lambda^{2}+1\right)\left(k_{2}^{2} \lambda^{2}+1\right)}+a+b \lambda+c \lambda^{2} \quad \ldots \quad \ldots \quad \ldots \tag{18}
\end{equation*}
$$

the three constants of integration corresponding to the three simple solutions of equation (14), namely $\phi=a x^{2}+b x y+c y^{2}$.

The integral of equation (18) may be integrated to give

$$
\begin{equation*}
F \propto\left(\frac{k_{1}^{2} \lambda^{2}-1}{2 k_{1}}\right) \tan ^{-1} k_{1} \lambda-\left(\frac{k_{2}^{2} \lambda^{2}-1}{2 k_{2}}\right) \tan ^{-1} k_{2} \lambda-\frac{\lambda}{2} \log \left(\frac{k_{1}^{2} \lambda^{2}+1}{k_{2}^{2} \lambda^{2}+1}\right) . \quad . \tag{19}
\end{equation*}
$$

The appropriate stress function in polar co-ordinates is therefore

$$
\begin{align*}
& \frac{r^{2}}{2}\left\{\left(\frac{k_{1}{ }^{2} \sin ^{2} \theta-\cos ^{2} \theta}{k_{1}}\right) \tan ^{-1}\left(k_{1} \tan \theta\right)-\left(\frac{k_{2}{ }^{2} \sin ^{2} \theta-\cos ^{2} \theta}{k_{2}}\right) \tan ^{-1}\left(k_{2} \tan \theta\right)\right. \\
& \left.-\sin \theta \cos \theta \log \left(\frac{1+k_{1}{ }^{2} \tan ^{2} \theta}{1+k_{2}{ }^{2} \tan ^{2} \theta}\right)\right\}=\frac{r^{2}}{2} H_{0}(\theta) \text {, say } \tag{20}
\end{align*}
$$

The stresses are related to the stress function by the relations

$$
\begin{align*}
\bar{\sigma}_{r} & =\frac{1}{r} \frac{\partial \phi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \phi}{\partial \theta^{2}}, \\
\bar{\sigma}_{\theta} & =\frac{\partial^{2} \phi}{\partial r^{2}} \tag{21}\\
\bar{\tau}_{r \theta} & =-\frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial \phi}{\partial \theta}\right)
\end{align*}
$$

i.e.,

$$
\begin{align*}
\bar{\sigma}_{r}= & \left(\frac{k_{1}{ }^{2} \cos ^{2} \theta-\sin ^{2} \theta}{k_{1}}\right) \tan ^{-1}\left(k_{1} \tan \theta\right) \\
& -\left(\frac{k_{2}{ }^{2} \cos ^{2} \theta-\sin ^{2} \theta}{k_{2}}\right) \tan ^{-1}\left(k_{2} \tan \theta\right) \tag{22}\\
& +\frac{\sin 2 \theta}{2} \log \left(\frac{1+k_{1}{ }^{2} \tan ^{2} \theta}{1+k_{2}{ }^{2} \tan ^{2} \theta}\right) \\
= & H_{1}(\theta), \operatorname{say}, \\
\bar{\sigma}_{\theta}= & \left(\frac{k_{1}{ }^{2} \sin ^{2} \theta-\cos ^{2} \theta}{k_{1}}\right) \tan ^{-1}\left(k_{1} \tan \theta\right) \\
& -\left(\frac{k_{2}{ }^{2} \sin ^{2} \theta-\cos ^{2} \theta}{k_{2}}\right) \tan ^{-1}\left(k_{2} \tan \theta\right) \tag{23}\\
& -\frac{\sin 2 \theta}{2} \log \left(\frac{1+k_{1}{ }^{2} \tan ^{2} \theta}{1+k_{2}{ }^{2} \tan ^{2} \theta}\right) \\
= & H_{2}(\theta), \text { say, }
\end{align*}
$$

$$
\begin{align*}
\bar{\tau}_{r 0}= & -\frac{\sin 2 \theta}{2}\left\{\left(\frac{1+k_{1}^{2}}{k_{1}}\right) \tan ^{-1}\left(k_{1} \tan \theta\right)-\left(\frac{1+k_{2}^{2}}{k_{2}}\right) \tan ^{-1}\left(k_{2} \tan \theta\right)\right\} \tag{24}\\
& +\frac{\cos 2 \theta}{2} \log \left(\frac{1+k_{1}^{2} \tan ^{2} \theta}{1+k_{2}{ }^{2} \tan ^{2} \theta}\right) \\
= & H_{3}(\theta), \text { say. }
\end{align*}
$$

A complete set of stress resultants which are independent of γ is therefore

$$
\left.\begin{array}{rl}
\bar{\sigma}_{r} & =a_{1}+a_{2} \sin 2 \theta+a_{3} \cos 2 \theta+a_{4} H_{1}(\theta), \\
\bar{\sigma}_{\theta} & =a_{1}-a_{2} \sin 2 \theta-a_{3} \cos 2 \theta+a_{4} H_{2}(\theta), \tag{25}\\
\bar{\tau}_{r \theta} & =\quad a_{2} \cos 2 \theta-a_{3} \sin 2 \theta+a_{4} H_{3}(\theta),
\end{array}\right\}
$$

where the a 's are arbitrary constants.
Tables of these H functions follow.

TABLE 1
H functions for $X=0.25$

$\begin{gathered} \theta \\ (\mathrm{deg}) \end{gathered}$	$H_{1}(\theta)$	$H_{2}(\theta)$	$H_{3}(\theta)$
0	0	0	0
5	$0 \cdot 12146$	$0 \cdot 00031$	-0.00530
10	$0 \cdot 23996$	$0 \cdot 00246$	-0.02100
15	$0 \cdot 35276$	$0 \cdot 00821$	-0.04648
20	$0 \cdot 45755$	$0 \cdot 01920$	-0.08075
25	$0 \cdot 55250$	$0 \cdot 03683$	-0.12251
30	$0 \cdot 63637$	$0 \cdot 06230$	-0.17020
35	$0 \cdot 70844$	$0 \cdot 09649$	-0.22211
40	$0 \cdot 76851$	0.13997	-0.27639
45	0.81683	$0 \cdot 19301$	-0.33114
50	0.85395	$0 \cdot 25550$	-0.38466
55	$0 \cdot 88084$	$0 \cdot 32709$	-0.43507
60	$0 \cdot 89866$	$0 \cdot 40710$	-0.48080
65	$0 \cdot 90877$	0.49457	-0.52042
70	0.91267	$0 \cdot 58833$	-0.55273
75	0.91192	$0 \cdot 68703$	-0.57675
80	0.90809	$0 \cdot 78914$	-0.59179
85	0.90277	$0 \cdot 89305$	-0.59742
90	$0 \cdot 89748$	0.99712	-0.59348
95	0.89370	$1 \cdot 09967$	-0.58012
100	$0 \cdot 89287$	1-19909	-0.55771
105	$0 \cdot 89638$	1-29386	-0.52693
110	0.90559	$1 \cdot 38259$	-0.48868
115	0.92177	$1 \cdot 46407$	-0.44409
120	$0 \cdot 94611$	1.53732	-0.39451
125	0.97967	$1 \cdot 60158$	-0.34144
130	1-02334	$1 \cdot 65639$	-0.28654
135	1.07777	1-70158	-0.23150
140	1-14338	1-73732	-0.17826
145	$1 \cdot 22023$	$1 \cdot 76402$	-0.12847
150	$1 \cdot 30805$	$1 \cdot 78247$	-0.08391
155	1-44769	$1 \cdot 79371$	-0.04618
160	$1 \cdot 51338$	$1 \cdot 79907$	-0.01671
165	1-62812	$1 \cdot 80009$	+0.00334
170	$1 \cdot 74502$	$1 \cdot 80395$	+0.01149
175	1-87126	1-79616	+0.01200
180	1.99423	1-79495	0

TABLE 2
H functions for $X=0.5$

$\begin{gathered} \theta \\ (\mathrm{deg}) \end{gathered}$	$H_{1}(\theta)$	$H_{2}(\theta)$	$H_{3}(\theta)$
0	0	0	0
5	$0 \cdot 18787$	$0 \cdot 00048$	-0.00821
10	$0 \cdot 36946$	$0 \cdot 00380$	-0.03244
15	$0 \cdot 53930$	0.01267	-0.07153
20	$0 \cdot 69314$	$0 \cdot 02953$	-0.12365
25	$0 \cdot 82822$	0.05646	-0.18651
30	0.94309	$0 \cdot 09510$	-0.25742
35	1.03744	$0 \cdot 14662$	-0.33354
40	$1 \cdot 11180$	$0 \cdot 21166$	-0.41193
45	1-16735	$0 \cdot 29037$	-0.48970
50	1-20580	$0 \cdot 38240$	-0.56410
55	$1 \cdot 22921$	$0 \cdot 48693$	-0.63260
60	$1 \cdot 23991$	$0 \cdot 60274$	-0.69295
65	$1 \cdot 24042$	0.72823	-0.74323
70	$1 \cdot 23331$	$0 \cdot 86150$	-0.78190
75	1-22115	1.00042	-0.80781
80	1-20639	$1 \cdot 14270$	-0.82025
85	1.19133	1-28594	-0.81889
90	1-17809	1.42775	-0.80383
95	1-16865	1.56576	-0.77554
100	1-16485	1.69774	-0.73421
105	1-16848	1.82163	-0.68298
110	1-18127	1.93559	-0.62142
115	$1 \cdot 20494$	$2 \cdot 03808$	-0.55198
120	$1 \cdot 24110$	$2 \cdot 12793$	-0.47674
125	1-29124	$2 \cdot 20429$	-0.39800
130	1-35669	$2 \cdot 26679$	-0.31823
135	$1 \cdot 43849$	$2 \cdot 31547$	-0.24004
140	1.53740	$2 \cdot 35083$	-0.16606
145	$1 \cdot 65379$	$2 \cdot 37383$	-0.09893
150	$1 \cdot 78757$	$2 \cdot 38591$	-0.04121
155	$1 \cdot 93810$	$2 \cdot 38890$	$+0.00474$
160	2-10395	$2 \cdot 38506$	$+0.03682$
165	$2 \cdot 28275$	$2 \cdot 37696$	$+0.05330$
170	$2 \cdot 47098$	$2 \cdot 36744$	+0.05295
175	$2 \cdot 66384$	$2 \cdot 35949$	+0.03514
180	$2 \cdot 85550$	$2 \cdot 35618$	0

TABLE 3
H functions for $X=0.75$

$\stackrel{\theta}{(\mathrm{deg})}$	$H_{1}(\theta)$	$H_{2}(\theta)$	$H_{3}(\theta)$
0	0	0	0
5	$0 \cdot 24813$	$0 \cdot 00063$	-0.01085
10	$0 \cdot 48581$	$0 \cdot 00502$	-0.04278
15	0.70433	0.01669	-0.09400
20	$0 \cdot 89767$	0.03879	-0.16176
25	1.06264	0.07388	-0.24272
30	1-19820	$0 \cdot 12405$	-0.33303
35	1-30500	0.19049	-0.42885
40	1.38468	0.27384	-0.52626
45	1-43964	$0 \cdot 37406$	-0.62152
50	1-47272	$0 \cdot 49047$	-0.71113
55	1-48713	$0 \cdot 62178$	-0.79198
60	1-48630	0.76625	-0.86134
65	1-47378	$0 \cdot 92165$	-0.91699
70	1-45311	$1 \cdot 08544$	-0.95722
75	1.42773	$1 \cdot 25482$	-0.98086
80	1-40457	$1 \cdot 42682$	-0.98728
85	1-37529	1.59843	-0.97638
90	$1 \cdot 35372$	1.76666	$\underline{-0.94855}$
95	1.33842	1.92861	-0.90467
100	1-33575	$2 \cdot 08159$	-0.84605
105	$1 \cdot 33503$	$2 \cdot 22317$	-0.77441
110	$1 \cdot 35093$	$2 \cdot 35126$	-0.69179
115	$1 \cdot 38117$	$2 \cdot 46416$	-0.60066
120	1-42761	$2 \cdot 56060$	-0.50372
125	$1 \cdot 49202$	$2 \cdot 63982$	-0.40394
130	1.57595	$2 \cdot 70162$	-0.30447
135	$1 \cdot 68074$	$2 \cdot 74631$	-0.20858
140	$1 \cdot 80740$	$2 \cdot 77483$	$-0 \cdot 11960$
145	$1 \cdot 95661$	$2 \cdot 78865$	-0.04082
150	$2 \cdot 12864$	2.78985	+0.02459
155	$2 \cdot 32316$	2.78107	$+0.07361$
160	$2 \cdot 53903$	$2 \cdot 76526$	+0.10367
165	$2 \cdot 77366$	${ }^{2} \cdot 74607$	$+0.11247$
170	$3 \cdot 02260$	$2 \cdot 72733$	+0.09845
175	3.27891	$2 \cdot 71303$	$+0.06085$
180	$3 \cdot 53331$	$2 \cdot 70744$	0

TABLE 4
H functions for $X=1 \cdot 0$

$\stackrel{\theta}{(\mathrm{deg})}$	$H_{1}(\theta)$	$H_{2}(\theta)$	$H_{3}(\theta)$
0	0	0	0
5	$0 \cdot 30583$	$0 \cdot 00078$	-0.01339
10	$0 \cdot 59615$	$0 \cdot 00618$	-0.05265
15	$0 \cdot 85869$	$0 \cdot 02052$	-0.11528
20	1.08595	$0 \cdot 04757$	-0.19754
25	$1 \cdot 27478$	$0 \cdot 09036$	-0.29493
30	$1 \cdot 42520$	$0 \cdot 15112$	-0.40262
35	1.53912	$0 \cdot 23121$	-0.51568
40	$1 \cdot 61954$	$0 \cdot 33115$	-0.62934
45	$1 \cdot 67010$	$0 \cdot 45066$	-0.73910
50	1.69480	0.58868	-0.84088
55	1.69792	$0 \cdot 74351$	-0.93104
60	1.68390	0.91282	-1.00653
65	1.65721	1.09385	-1.06491
70	1.62226	1.28344	-1.10437
75	1.58326	1.47818	-1.12378
80	1.54407	$1 \cdot 67452$	$-1 \cdot 12265$
85	1.50810	1-86888	-1.10116
90	1.47833	$2 \cdot 05775$	-1.06003
95	$1 \cdot 45737$	$2 \cdot 23783$	-1.00054
100	1.44755	2.40604	-0.92448
105	$1 \cdot 45103$	$2 \cdot 55970$	-0.83407
110	1-46997	$2 \cdot 69651$	-0.73192
115	1.50644	$2 \cdot 81468$	-0.62105
120	1.56248	$2 \cdot 91297$	-0.50474
125	1.63999	$2 \cdot 99076$	-0.38656
130	1.74067	$3 \cdot 04802$	-0.27026
135	1.86599	$3 \cdot 08543$	-0.15968
140	$2 \cdot 01716$	3.10432	-0.05872
145	$2 \cdot 19515$	3-10671	$+0.02880$
150	$2 \cdot 40060$	3.09526	$+0.09918$
155	$2 \cdot 63375$	$3 \cdot 07329$	+0.14893
160	$2 \cdot 89400$	3.04466	+0.17491
165	$3 \cdot 17919$	3.01378	$+0.17443$
170	3.48442	$2 \cdot 98543$	+0.14552
175	$3 \cdot 80088$	${ }^{2} \cdot 96469$	$+0.08723$
180	4-11551	$2 \cdot 95667$	0

TABLE 5
H functions for $X=1.5$

$\stackrel{\theta}{(\mathrm{deg})}$	$H_{1}(\theta)$	$H_{2}(\theta)$	$H_{3}(\theta)$
0	0	0	0
5	$0 \cdot 41747$	$0 \cdot 00107$	-0.01830
10	$0 \cdot 80686$	$0 \cdot 00843$	-0.07167
15	1-14817	$0 \cdot 02788$	-0.15589
20	1-43195	$0 \cdot 06430$	-0.26502
25	$1 \cdot 65691$	$0 \cdot 12145$	-0.39227
30	1.82630	0.20188	-0.53071
35	1.94534	0.30696	-0.67360
40	$2 \cdot 01992$	$0 \cdot 43690$	-0.81464
45	$2 \cdot 05615$	$0 \cdot 59088$	-0.94808
50	$2 \cdot 06016$	$0 \cdot 76711$	-1.06880
55	$2 \cdot 03815$	$0 \cdot 96296$	$-1 \cdot 17243$
60	1.99630	1-17515	-1.25540
65	1.94073	1-39982	-1.31499
70	$1 \cdot 87733$	$1 \cdot 63270$	-1.34934
75	1.81166	$1 \cdot 86930$	$-1 \cdot 35751$
80	$1 \cdot 74872$	$2 \cdot 10503$	-1.33939
85	1-69284	$2 \cdot 33535$	-1.29568
90	1-64769	$2 \cdot 55590$	-1.22784
95	$1 \cdot 61633$	$2 \cdot 76266$	-1.13797
100	$1 \cdot 60142$	$2 \cdot 95200$	-1.02876
105	$1 \cdot 60538$	3:12083	-0.90340
110	$1 \cdot 63052$	3-26662	-0.76555
115	1.67907	$3 \cdot 38756$	-0.61925
120	1.75318	$3 \cdot 48254$	-0.46886
125	1.85481	$3 \cdot 55125$	-0.31898
130	1.98571	$3 \cdot 59423$	-0.17438
135	$2 \cdot 14744$	$3 \cdot 61271$	-0.03986
140	$2 \cdot 34138$	3.60898	+0.07978
145	$2 \cdot 56888$	$3 \cdot 58600$	+0.17984
150	$2 \cdot 83139$	3.54760	+0.25583
155	3-13047	$3 \cdot 49835$	+0.30346
160	$3 \cdot 46738$	$3 \cdot 44355$	+0.31877
165	$3 \cdot 84196$	3.38917	+0.29822
170	$4 \cdot 25017$	$3 \cdot 34171$	+0.23896
175	$4 \cdot 68054$	$3 \cdot 30810$	+0.13941
180	$5 \cdot 11181$	$3 \cdot 29537$	0

Fig. 6. Stress distribution in the neighbourhood of a 45 -deg corner (constant-stress edge member along $\theta=0 \mathrm{deg}$; free edge along $\theta=45 \mathrm{deg}$).

Fig. 7. Stress distribution in the neighbourhood of a $60-\mathrm{deg}$ corner (constant-stress edge member along $\theta=0 \mathrm{deg}$; free edge along $\theta=60 \mathrm{deg})$.

Fig. 8. Stress distribution in the neighbourhood of a 90 -deg corner (constant-stress edge member along $\theta=0$ deg; free edge along $\theta=90 \mathrm{deg}$).

Fig. 9. Stress distribution in the neighbourhood of a 120 -deg corner (constant-stress edge member along $\theta=0 \mathrm{deg}$; free edge along $\theta=120 \mathrm{deg}$).

Fig. 10. Stress distribution in the neighbourhood of a 135 -deg corner (constant-stress edge member along $\theta=0 \mathrm{deg}$; free edge along $\theta=135 \mathrm{deg}$).

Fig. 11. Variation of $\tau_{\pi 0, m / \hat{\sigma}_{\pi, n}}$ with α and X.

Fig. 12. Variation of $\hat{o}_{\pi, m} / \tau_{\pi \theta, m}$ with α and X.

Fig. 13. Stress distribution in the neighbourhood of a 45 -deg corner (constant-stress edge member along $\theta=0$ deg; stiff edge member along $\theta=45 \mathrm{deg}$).

Fig. 14. Stress distribution in the neighbourhood of a 60-deg corner (constant-stress edge member along $\theta=0 \mathrm{deg}$; stiff edge member along $\theta=60 \mathrm{deg}$).

FIG. 15. Stress distribution in the neighbourhood of a 90 -deg corner (unit shear applied along edge $\theta=0$ deg; stiff edge member along $\theta=90 \mathrm{deg}$).

Fig. 16. Stress distribution in the neighbourhood of a 120 -deg corner (constant-stress edge member along $\theta=0$ deg; stiff edge member along $\theta=120 \mathrm{deg}$).

Fig. 17. Stress distribution in the neighbourhood of a 135 -deg corner (constant-stress edge member along $\theta=0$ deg; stiff edge member along $\theta=135 \mathrm{deg}$).

Fig. 18. Contours of constant $\tau_{x y} / \hat{\sigma}_{x, m}$ for a rectangular panel, showing the approximate range of validity of the θ-distributions.

Publications of the Aeronautical Research Council

ANNUAL TEGHNICAL REPORTS OF THE AERONAUTICAL IRESEARCIF COUNCII（BOUND VOLUMES）
1936 Vol．I．Aerodynamics General，Performance，Airscrews，Flutter and Spinning．40s．（4is．Id．）
Vol．II．Stability and Control，Structures，Seaplanes，Engines，etc．50s．（5Is．Id．）
1937 Vol．I．Aerodynamics General，Performance，Airscrews，Flutter and Spinning．4os．（4rs．Id．）
Vol．II．Stability and Control，Structures，Seaplanes，Engines，etc．6os．（6is．Id．）
1938 Vol．I．Aerodynamics General，Performance，Airscrews．50s．（5Is．Id．）
Vol．II．Stability and Control，Flutter，Structures，Seaplanes，Wind Tunnels，Materials．zos． （3Is．Id．）
1939 Vol．I．Aerodynamics General，Performance，Airscrews，Engines．505．（5Is．rd．）
Vol．II．Stability and Control，Flutter and Vibration，Instruments，Structures，Seaplanes，etc． 63 ．（64s．2d．$)$
1940 Aero and Hydrodynamics，Aerofoils，Airscrews，Engines，Flutter，Icing，Stability and Control， Structures，and a miscellaneous section．50s．（5Is．Id．）
1941 Aero and Hydrodynamics，Aerofoils，Airscrews，Engines，Flutter，Stabilisy and Control， Structures． 63 s．（ 64 s .2 d ．）
1942 Vol．I．Aero and Hydrodynamics，Aerofoils，Airscrews，Engines．75s．（76s．3d．）
Vol．II．Noise，Parachutes，Stability and Control，Structures，Vibration，Wind Tunnels． 47s．6d．（48s． 7 d ．）
1943 Vol．I．Aerodynamics，Aerofoils，Airscrews．8os．（8rs．4d．）
Vol．II．Engines，Flutter，Materials，Parachutes，Performance，Stability and Control，Structures． 90s．（91s．6d．）
1944 Vol．I．Aero and Hydrodynamics，Aerofoils，Aircraft，Airscrews，Controls． 845 ．（85s．8d．）
Vol．II．Flutter and Vibration，Materials，Miscellaneous，Navigation，Parachutes，Performance， Plates and Panels，Stability，Structures，Test Equipment，Wind Tunnels． 84s．（85s． $8 d$. ）
Ammual Reports of the Aeromauticall 忍esearclin Councill－

1933－34	Is． 6 d．（rs． 8 d．）	1937	25．（2s．2d．）
1934－35	1s． 6 d ．（ Is .8 d ．）	I938	1f． 6 d．（1s． 88 l ）
5 to Dec．3I， 3936	4s．（4s． 4 d．）	1939－48	3 sc （ $3 \mathrm{~s}_{0} 2 \mathrm{~d}$ ）

April I， 1935 to Dec． 3 I， 2936 4s．（4s．4d．）\quad 1939－48 \quad 3s．（3so 2d．）
Indez to all Repports and Niemoranda published in the Ammual Techmicall Reports，and separrately－

April， 1950 －－－R．\＆M．No．2600．2s． $6 d$. ．（25． $7 \frac{1}{2}$ d．）
Author Index to ali Reports and \mathbb{N} Iemoramda of the Aeromautical inesearel Comineilb
1909-1949. R. \& M. No. 2570. I5s. (15s. 3d.)

Hndezes to the Techmicall Reports of the Acromanticall Resemrch Coumeil－

December x， 1936 －June 30 ， 1939. July I ， 1939 －June 30 ， 1945 ． July I， 1945 －June 30 ，1946． July x ， 946 －December 3 I ， 1946 ． January I，1947－June 30， 1947. July， 5951 ．

R．s M．No． 1850. R．\＆M．No． 1950. R．\＆M．No． 2050. R．\＆M．No． 2150. R．\＆M．No． 2250.
R．\＆M．No． 2350

Prices in brackets include posiage．
Obtainable from
HER MAJESTY＇S STATIONERY OFFICE
York House，Kingsway，London，W．C． $2 ; 423$ Oxford Strect，London，W． 1 （Post Orders ：P．O．Box 569，London，S．E．1）； 13a Castle Street，Edinburgh 2；39，King Street，Manchester 2； 2 Edmund Street，Birmingham 3；1 St．Andrew； Crescent，Cardiff；Tower Lane，Bristol i： 80 Chichester Street，Belfast，or through any bookselier

[^0]: * R.A.E. Report Structures 114, received 1st October, 1951.
 (61800)

[^1]: * The values of $\partial \sigma / \partial r$ and $\partial \tau / \partial r$ at a corner in the actual panel are not determined by this analysis, but if the main members are tapered so as to have constant stress characteristics it can be shown that these derivatives are zero.

[^2]: *. Stress resultants are here defined as (the resultant force in the stiffened sheet per unit length) $\div t$. They therefore have the dimensions of a stress, and when there is no reinforcement the stress resultants are the actual stresses in the sheet.

