$B y$
H. C. Garner, B.A.
of the Aerodynamics Division, N.P.L.

Croon Copyright Reserved

LONDON: HER MAJESTY'S STATIONERY OFFICE

Theoretical Calculations of the Distribution of Aerodynamic Loading on a Delta Wing

By
H. C. Garner, B.A. of the Aerodynamics Division, N.P.L.

Reports and Memoranda No. 2819*
March, 1949

Summary.-The distribution of velocity potential difference has been calculated for a thin flat plate in the form of a delta wing at small incidence. The method introduces novel functions with 10 arbitrary constants to express the doublet distribution over the wing and a special numerical integration to evaluate the downwash at 10 chosen points on the surface. Three different forms of the doublet distribution (a), (b) and (c) are employed and lead to three independent solutions of the resulting simultaneous equations; solution (c) is considered to be the most accurate.

The plan form selected for this investigation is that of a delta wing, of aspect ratio 3, shown in Fig. 1. One object of the laborious calculations is to form the first step towards a fundamental comparison with pressure distributions measured on a model of the wing in the National Physical Laboratory Duplex Wind Tunnel. Solution (c) has been compared with two solutions of the identical problem by vortex-lattice theory as given in R. \& M. 25962, Tables 37 and 38 (Falkner, 1948), using respectively 6 and 8 simultaneous equations, viz., solutions 33 and 34 of which the latter involves an auxiliary function P to allow for discontinuities at the median section.

Conclusions.-1. The valucs of $\partial C_{L} / \partial \alpha$ and positions of the aerodynamic centre relative to the trailing edge determined from solutions (a), (b) and (c) lie within 1 per cent and $\frac{1}{2}$ per cent respectively.
2. The pressure differences compare very well over most of the plan form, the discrepancies only becoming appreciable near the apex of the delta wing and the outboard trailing edge.
3. The calculated values of $\partial C_{L} / \partial \alpha$ in R. \& M. 2596^{2} are about 3 per cent (or perhaps 5 per cent) greater than those determined from the present method.
4. For a given C_{L}, the spanwise distribution of lift from vortex-lattice theory compares very well over most of the span but becomes too great towards the tips, as the conclusions of R. \& M. 2225^{3} (Jones, 1946) would suggest.
5. The position of the aerodynamic centre as given by solution 34 agrees better than solution 33 with the results of the present method near the median section, but both solutions give a notable difference in the distribution of loading at the median section, as shown in Fig. 6. This suggests that the mathematical form of the doublet distribution near the median section of a delta wing is of some importance (R. \& M. 2721 ${ }^{1}$).
6. The values of $\partial C_{L} / \partial \alpha$ and positions of the aerodynamic centre are in excellent agreement with experiment. Favourable comparisons between the theoretical and experimental pressure distributions are shown in Fig. 6.

Further Devolopments.-It is intended that the theoretical calculations should be extended to allow for wing thickness and further to provide an estimate of the pressure distribution in viscous incompressible flow. The calculated values would then be directly compared with the results from the pressure plotting experiments on the model of the delta wing.

It is suggested that a similar investigation should be undertaken to establish the aerodynamic characteristics associated with a swept trailing edge.

[^0]1. Introduction.-It is generally recognised that there is a great need for a well-founded independent check on the existing theoretical methods of determining the pressure distribution on thin swept-back wings in inviscid, incompressible flow. A critical survey of the position has been presented in R. \& M. 2721^{1} (October, 1948) ; and the recommendations made in that report, in particular the second proposal, should be considered in the light of the results given in this report.

It is explained in R. \& M. 2721 ${ }^{1}$, section 1, that the potential flow past a thin wing gives a distribution of lift per unit area

$$
\begin{equation*}
\left(p_{b}-p_{a}\right)=\rho V \frac{\partial}{\partial x}\left(\Phi_{a}-\Phi_{b}\right), \quad \ldots \quad . . \quad . \quad . \quad . \quad . . \tag{1}
\end{equation*}
$$

where the uniform undisturbed velocity V is in the direction $O x$ (Fig. 1) and $\left(\Phi_{a}-\Phi_{b}\right)$ is the difference between the velocity potentials on the upper and lower wing surfaces and is equivalent to the strength of the doublet distribution which defines the vortex sheet. $\left(\Phi_{a}-\Phi_{b}\right)$ is determined from the equations

$$
\begin{array}{rllllll}
w & =\lim _{z_{1} \rightarrow 0}\left(\frac{\partial \Phi}{\partial z_{1}}\right)=V \frac{\partial z(x, y)}{\partial x}, & \ldots & \ldots & \ldots & \ldots & \ldots \\
. \tag{3}\\
\Phi\left(x_{1}, y_{1}, z_{1}\right) & =V x+\frac{1}{4 \pi} \iint_{c}\left(\Phi_{a}-\Phi_{b}\right) \frac{\partial}{\partial z_{1}}\left(\frac{1}{r}\right) d x d y, & \ldots & \ldots & \ldots & \ldots
\end{array}
$$

where $z(x, y)$ is the contour of the wing surface relative to the undisturbed stream, C is an area bounded by the leading edge of the wing and extending to infinity in the wake, and

$$
r^{2}=\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}+z_{1}^{2} .
$$

In the wake $\left(\Phi_{a}-\Phi_{b}\right)$ is a function of y only determined by its value at the trailing edge. A solution is obtained by assuming a general form for $\left(\Phi_{a}-\Phi_{b}\right)$ with arbitrary coefficients, by substituting $\left(\Phi_{a}-\Phi_{b}\right.$) in equation (3) to determine w in equation (2), by using the boundary condition expressed in equation (2) at a number of solving points to determine the arbitrary coefficients, and by evaluating ($p_{b}-p_{a}$) from equation (1).

There are four questionable features, at least one of which appears in each practical method of solution considered in R. \& M. 2721 ${ }^{1}$, section 2.2.
(a) The assumed form for ($\Phi_{a}-\Phi_{b}$) adheres rigidly to the basic two-dimensional chordwise distributions.
(b) w is evaluated by splitting the continuous doublet distribution $\left(\Phi_{a}-\Phi_{b}\right)$ into a finite number of discrete vortices.
(c) w is inevitably infinite at virtually all points of a wing section at which the direction of the leading or trailing edge is discontinuous.
(d) The boundary condition (2) is satisfied at certain positions by a system of discrete vortices related two-dimensionally to $\left(p_{b}-p_{a}\right)$.

An independent check on the accuracy of such methods must steer clear of these possible sources of error. The theoretical calculation described in this report does achieve this at the expense of lengthy computation and therefore is unsuitable for general use.

The delta wing selected for this investigation has the plan form, shown in Fig. 1, with aspect ratio $A=3$, a right-angled leading edge and cropped tips such that

$$
\frac{\text { tip chord }}{\text { root chord }}=\frac{1}{7} .
$$

Various suitable forms for the doublet distribution $\left(\Phi_{a}-\Phi_{b}\right)$ with 10 arbitrary coefficients have been chosen. A numerical method is used to evaluate the double integral for the downwash

$$
\begin{equation*}
w=\lim _{z_{1} \rightarrow 0} \frac{\partial}{\partial z_{1}}\left[\frac{1}{4 \pi} \iint_{C}\left(\Phi_{a}-\Phi_{b}\right) \frac{\partial}{\partial z_{1}}\left(\frac{1}{r}\right) d x d y\right] \quad . . \quad . \quad . \tag{4}
\end{equation*}
$$

corresponding to each coefficient at the 10 points of the half plan-form, shown in Fig. 1. The investigation has been restricted to the uncambered wing in an inclined uniform stream. The boundary condition (2) then simplifies to

$$
\begin{equation*}
w=V \alpha, \quad . . \quad . \quad . \quad \text {.. } \tag{5}
\end{equation*}
$$

which provides 10 simultaneous linear equations to determine the unknown coefficients. By this process three different solutions have been obtained and the resulting pressure distributions from equation (1) are compared.
2. General Form for Doublet Distribution.-The problem is expressed in terms of rectangular co-ordinates (x, y, z) referred to the apex of the delta wing in the plane of symmetry, as shown in Fig. 1. The leading and trailing edges of the wing are denoted by

$$
\left.\begin{array}{l}
x=|y| \\
x=h
\end{array}\right\}
$$

respectively, and the semi-span is

$$
s=\frac{6}{7} h .
$$

The order of magnitude of the doublet distribution $\left(\Phi_{a}-\Phi_{b}\right)$ at the perimeter of the plan form is necessarily expressed by the conditions

$$
\begin{align*}
\frac{\Phi_{a}-\Phi_{b}}{h V} & =O\left(\frac{x-|y|}{h}\right)^{1 / 2} & & \text { near the leading edge } \\
\frac{\partial}{\partial x}\left(\frac{\Phi_{a}-\Phi_{b}}{V}\right) & =0 & & \text { at the trailing edge } \tag{6}\\
\frac{\Phi_{a}-\Phi_{b}}{h V} & =O\left(\frac{6}{7}-\frac{|y|}{h}\right)^{1 / 2} & & \text { near the wing tip }
\end{align*}
$$

Two-dimensional conditions suggest that furthermore

$$
\begin{equation*}
\frac{\partial}{\partial x}\left(\frac{\Phi_{a}-\Phi_{b}}{V}\right)=O\left(\frac{h-x}{h}\right)^{1 / 2} \text { near the trailing edge. } \tag{7}
\end{equation*}
$$

In order to satisfy (6), consider

$$
\frac{\Phi_{a}-\Phi_{b}}{h V}=\left(\frac{x^{2}-y^{2}}{h x}\right)^{1 / 2}\left[1-\left(\frac{x^{2}-y^{2}}{h x}\right) f(y)\right]
$$

Then $f(y)$ is chosen such that

$$
\begin{aligned}
\frac{\partial}{\partial x}\left(\frac{\Phi_{a}-\Phi_{b}}{V}\right)= & \frac{1}{2}\left(\frac{h x}{x^{2}-y^{2}}\right)^{1 / 2}\left(1+\frac{y^{2}}{x^{2}}\right)\left[1-\left(\frac{x^{2}-y^{2}}{h x}\right) f(y)\right] \\
& +\left(\frac{x^{2}-y^{2}}{h x}\right)^{1 / 2}\left[\left(-1-\frac{y^{2}}{x^{2}}\right) f(y)\right]=0
\end{aligned}
$$

when $\quad x=h$,
i.e., $\quad f(y)=\frac{h^{2}}{3\left(h^{2}-y^{2}\right)}$.

Then the three conditions of (6) will be satisfied by

$$
\begin{align*}
\frac{\Phi_{a}-\Phi_{b}}{h V} & =\left(\frac{x^{2}-y^{2}}{h x}\right)^{1 / 2}\left[1-\frac{h^{2}}{3\left(h^{2}-y^{2}\right)}\left(\frac{x^{2}-y^{2}}{h x}\right)\left\{1-\left(\frac{7 y}{6 h}\right)^{2}\right\}^{1 / 2}\right] \\
& =\Phi_{0} \text {, say } \\
& =\left(\frac{x^{\prime 2}-4 y^{\prime 2}}{28 x^{\prime}}\right)^{1 / 2}\left[1-\frac{196}{3\left(196-y^{\prime 2}\right)}\left(\frac{x^{\prime 2}-4 y^{\prime 2}}{28 x^{\prime}}\right)\right]\left(\frac{144-y^{\prime 2}}{144}\right)^{1 / 2}, \tag{8}
\end{align*}
$$

where

$$
\left.\begin{array}{l}
x^{\prime}=\frac{28 x}{h} \\
y^{\prime}=\frac{14 y}{h}=\frac{12 y}{s}
\end{array}\right\}
$$

Numerical values of Φ_{0} are tabulated for integral and certain half values of x^{\prime} and y^{\prime} in Table 1. All the solutions are expressible in the general form

$$
\begin{equation*}
\left(\Phi_{a}-\Phi_{b}\right)=h V \Phi_{0} \sum_{p} \sum_{q} A_{p q}(1-X)^{p}(Y)^{q}, \tag{9}
\end{equation*}
$$

where X, Y denote $\frac{x}{h}, \frac{y}{s}$ respectively,
p takes values $0, \frac{3}{2}, 2,3,4$
and q takes values $0,2,4,6$.
Three particular forms of equation (9) have been used

$$
\begin{align*}
(a) \frac{\Phi_{a}-\Phi_{b}}{h V}= & \Phi_{0}\left[\left\{A_{1}+A_{2}\left(X-\frac{1}{2} X^{2}\right)+A_{3}\left(X-X^{2}+\frac{1}{3} X^{3}\right)\right.\right. \\
& \left.+A_{4}\left(X-\frac{3}{2} X^{2}+X^{3}-\frac{1}{4} X^{4}\right)\right\} \tag{10a}\\
& +Y^{2}\left\{A_{5}+A_{6}\left(X-\frac{1}{2} X^{2}\right)+A_{7}\left(X-X^{2}+\frac{1}{3} X^{3}\right)\right\} \\
& \left.+Y^{4}\left\{A_{8}+A_{9}\left(X-\frac{1}{2} X^{2}\right)\right\}+Y^{6}\left\{A_{10}\right\}\right] ; \\
(b) \frac{\Phi_{a}-\Phi_{b}}{h V}= & \Phi_{0}\left[\left\{A_{1}\left(1-\frac{4}{3 \pi}(1-X)^{3 / 2}\right)+A_{2}\left(X-\frac{1}{2} X^{2}\right)\right.\right. \\
& \left.+A_{3}\left(X-X^{2}+\frac{1}{3} X^{3}\right)+A_{4}\left(X-\frac{3}{2} X^{2}+X^{3}-\frac{1}{4} X^{4}\right)\right\} \\
& +Y^{2}\left\{A_{5}\left(1-\frac{4}{3 \pi}(1-X)^{3 / 2}\right)+A_{6}\left(X-\frac{1}{2} X^{2}\right)\right. \\
& \left.+A_{7}\left(X-X^{2}+\frac{1}{3} X^{3}\right)\right\} \tag{10b}\\
& +Y^{4}\left\{A_{8}\left(1-\frac{4}{3 \pi}(1-X)^{3 / 2}\right)+A_{9}\left(X-\frac{1}{2} X^{2}\right)\right\} \\
& \left.+Y^{6}\left\{A_{10}\left(1-\frac{4}{3 \pi}(1-X)^{3 / 2}\right)\right\}\right] ;
\end{align*}
$$

(c) $\frac{\Phi_{a}-\Phi_{b}}{h V}=\Phi_{0}\left[\left\{A_{1}-A_{2} \cdot \frac{4}{3 \pi}(1-X)^{3 / 2}+A_{3}\left(X-\frac{1}{2} X^{2}\right)\right.\right.$

$$
\begin{align*}
& \left.+A_{4}\left(X-X^{2}+\frac{1}{3} X^{3}\right)\right\} \\
& +Y^{2}\left\{A_{5}-A_{6} \cdot \frac{4}{3 \pi}(1-X)^{3 / 2}+A_{7}\left(X-\frac{1}{2} X^{2}\right)\right\} \tag{10c}\\
& +Y^{4}\left\{A_{8}-A_{9} \cdot \frac{4}{3 \pi}(1-X)^{3 / 2}\right\}+Y^{6}\left\{A_{10}\right\}
\end{align*}
$$

where

$$
X=\frac{x}{h}, \quad Y=\frac{y}{s} .
$$

(a) ignores the condition (7). (b) includes a somewhat rigid introduction of this condition. (c) is more flexible in that respect. The factor $4 / 3 \pi$ is chosen in (b) because the chordwise distribution of pressure corresponding to

$$
\left(\Phi_{a}-\Phi_{b}\right)=h V \Phi_{0}\left(1-\frac{4}{3 \pi}(1-X)^{3 / 2}\right)
$$

at the median section $y=0$ gives a ratio of circulation to the limiting value of

$$
\left(\frac{h}{h-x}\right)^{1 / 2} \frac{\partial}{\partial x}\left(\frac{\Phi_{a}-\Phi_{b}}{V}\right)
$$

at the trailing edge consistent with two-dimensional theory. It is noteworthy that the downwashes over the central half of the wing span due to the coefficient A_{1} in (b) are remarkably uniform, as shown by the second column of Table 68.

In general the lift coefficient is

$$
C_{L}=\int_{0}^{s} \frac{4 K d y}{V S},
$$

where K, the circulation round a wing section, is equal to the value of $\left(\Phi_{a}-\Phi_{b}\right)$ at the trailing edge, $x=h$, and the surface area of the wing is

$$
S=\frac{48}{4} \frac{8}{9} h^{2} .
$$

Hence

$$
\begin{equation*}
C_{L}=\frac{7}{2} \int_{0}^{1}\left(\frac{\Phi_{a}-\Phi_{b}}{h V}\right)_{x=h} d Y . \quad . \quad . . \quad . . \quad . . \quad . \quad . \quad . \tag{11}
\end{equation*}
$$

The pitching-moment coefficient about the trailing edge is given by

$$
\begin{aligned}
\frac{1}{2} \rho V^{2} S \bar{c} C_{m} & =2 \int_{0}^{s} \int_{y}^{h}\left(p_{b}-p_{a}\right)(h-x) d x d y, \\
\text { i.e., } \quad \frac{1}{2} \rho V^{2} h^{3} \cdot \frac{48}{49} \cdot \frac{4}{7} C_{m} & =2 \int_{0}^{s} \int_{y}^{h} \rho V(h-x) \frac{\partial}{\partial x}\left(\Phi_{a}-\Phi_{b}\right) d x d y .
\end{aligned}
$$

Therefore, on integration by parts,

$$
\frac{96}{343} h^{2} C_{m}=2 \int_{0}^{s} \int_{y}^{h}\left(\frac{\Phi_{a}-\Phi_{b}}{h V}\right) d x d y .
$$

Hence

$$
\begin{equation*}
C_{m}=\frac{49}{5} \int_{0}^{1} \int_{y / h}^{1}\left(\frac{\Phi_{a}-\Phi_{b}}{h V}\right) d X d Y . \quad . \quad . . \quad . . \quad . \quad . \tag{12}
\end{equation*}
$$

The chordwise centre of pressure along a wing section is at a distance p from the trailing edge given by

$$
\begin{equation*}
\frac{p}{h}=\frac{\int_{y}^{h}\left(p_{b}-p_{a}\right)(h-x) d x}{h \int_{y}^{h}\left(p_{b}-p_{a}\right) d x}=\frac{\int_{y / h}^{1}\left(\Phi_{a}-\Phi_{b}\right) d X}{\left(\Phi_{a}-\Phi_{b}\right)_{x=h}} . \quad \ldots \quad \ldots \quad \ldots \quad \ldots \tag{13}
\end{equation*}
$$

The hinge of the elevon is taken at a distance 0.85 chord from the leading edge of the wing. Therefore the hinge-moment coefficient is given by

$$
\frac{1}{2} \rho V^{2} S_{j} \bar{c}_{f} C_{H}=-\cos \beta \int_{y_{1}}^{y_{0}} \int_{x_{h}}^{h}\left(p_{b}-p_{a}\right)\left(x-x_{h}\right) d x d y .
$$

where

$$
\begin{aligned}
x_{h} & =0 \cdot 85 h+0 \cdot 15 y, \\
\beta & =\cos ^{-1} \frac{1}{\sqrt{ }(1 \cdot 0225)}=\cos ^{-1} 0 \cdot 988936
\end{aligned}
$$

is the inclination of the hinge line to the y-axis, and

$$
y_{1}<y<y_{0}
$$

is the spanwise extent of the elevon. It is convenient to consider the distribution of hinge moment on an elevon of full span $0<y<s$. Then

$$
\frac{48}{343}(0 \cdot 15 h)^{2} C_{H}=-\cos \beta \int_{0}^{5}\left[0 \cdot 15(h-y) \frac{K}{h V}-\int_{x_{h}}^{h}\left(\frac{\Phi_{a}-\Phi_{b}}{h V}\right) d x\right] d y
$$

and
and

$$
X_{h}=\frac{x_{h}}{h}=0.85+0.15 \frac{y}{h}=0.85+0.0107143 y^{\prime} .
$$

In order to calculate p / h from equation (13) and C_{h} from equation (14), it is necessary to evaluate the integrals

$$
\begin{equation*}
\int_{Y}^{1} \Phi_{0} P d X \text { and } \int_{x_{h}}^{1} \Phi_{0} P d X, \quad . \quad . . \quad . \quad . \quad . \tag{15}
\end{equation*}
$$

where Φ_{0} is defined in equation (8) and given in Table 1 , and in accordance with the equations (10) P represents each of the five functions of $X=x / h$

$$
\begin{aligned}
& \text { 1, }\left(X-\frac{1}{2} X^{2}\right),\left(X-X^{2}+\frac{1}{3} X^{3}\right) \\
& \left(X-\frac{3}{2} X^{2}+X^{3}-\frac{1}{4} X^{4}\right) \text { and } \frac{4}{3 \pi}(1-X)^{3 / 2}
\end{aligned}
$$

The resulting integrals (15) are tabulated for the required values of $y^{\prime}=12 Y$ in Tables 2A and 2B respectively. It is convenient to write each equation (10) in the form

$$
\begin{equation*}
\frac{\Phi_{a}-\Phi_{b}}{h V}=\Phi_{0}\left[B_{1} P_{1}+B_{2} P_{2}+B_{3} P_{3}+B_{4} P_{4}\right] \quad . \quad . \quad \cdots \quad \therefore \quad . \tag{16}
\end{equation*}
$$

where

$$
\begin{aligned}
& B_{1}=A_{1}+A_{5} Y^{2}+A_{8} Y^{4}+A_{10} Y^{8}, \\
& B_{2}=A_{2}+A_{6} Y^{2}+A_{9} Y^{4}, \\
& B_{3}=A_{3}+A_{7} Y^{2}, \\
& B_{4}=A_{4} .
\end{aligned}
$$

For the solution (a) corresponding to equation (10a),

$$
\begin{aligned}
& P_{1}=1 \\
& P_{2}=X-\frac{1}{2} X^{2}, \\
& P_{3}=X-X^{2}+\frac{1}{3} X^{3}, \\
& P_{4}=X-\frac{3}{2} X^{2}+X^{3}-\frac{1}{4} X^{4} ;
\end{aligned}
$$

and, for example, the position of the chordwise centre of pressure from equation (13) is at a distance p from the trailing edge given by

$$
\begin{equation*}
\frac{p}{h}=\frac{\int_{y / h}^{1} \Phi_{0}\left(B_{1} P_{1}+B_{2} P_{2}+B_{3} P_{3}+B_{4} P_{4}\right) d X}{\left(\Phi_{0}\right)_{x=h}\left(B_{1}+\frac{1}{2} B_{2}+\frac{1}{3} B_{3}+\frac{1}{4} B_{4}\right)} . \quad . . \tag{17}
\end{equation*}
$$

For the particular doublet distributions defined in equations (10), C_{L} and C_{m} are evaluated from equations (11) and (12) to give the following formulae:-
(a)

$$
\begin{align*}
C_{L}= & 1 \cdot 64333\left(A_{1}+\frac{1}{2} A_{2}+\frac{1}{3} A_{3}+\frac{1}{4} A_{4}\right)+0 \cdot 36034\left(A_{5}+\frac{1}{2} A_{6}+\frac{1}{3} A_{7}\right) \\
& +0 \cdot 16664\left(A_{8}+\frac{1}{2} A_{9}\right)+0.09881\left(A_{10}\right) ; \\
C_{m}= & 1 \cdot 57519 A_{1}+0 \cdot 66795 A_{2}+0 \cdot 47968 A_{3}+0 \cdot 37198 A_{4} \tag{18a}\\
& +0 \cdot 23060 A_{5}+0 \cdot 10634 A_{6}+0.07403 A_{7} \\
& +0.08494 A_{8}+0 \cdot 04028 A_{9}+0.04336 A_{10} .
\end{align*}
$$

$+0.21828 A_{5}+0.10634 A_{6}+0.07403 A_{7}$

$$
+0 \cdot 08174 A_{8}+0 \cdot 04028 A_{9}+0 \cdot 04208 A_{10}
$$

(c) $\quad C_{L}=1 \cdot 64333\left(A_{1}+\frac{1}{2} A_{3}+\frac{1}{3} A_{4}\right)+0 \cdot 36034\left(A_{5}+\frac{1}{2} A_{7}\right)$ $+0 \cdot 16664\left(A_{8}\right)+0.09881\left(A_{10}\right)$;

$$
\begin{equation*}
C_{m}=1 \cdot 57519 A_{1}-0 \cdot 14326 A_{2}+0 \cdot 66795 A_{3}+0 \cdot 47968 A_{4} \tag{18c}
\end{equation*}
$$

$$
+0 \cdot 23060 A_{5}-0 \cdot 01233 A_{6}+0 \cdot 10634 A_{7}
$$

$$
+0 \cdot 08494 A_{8}-0 \cdot 00320 A_{9}+0 \cdot 04336 A_{10}
$$

The position of the aerodynamic centre is at a distance \bar{p} from the trailing edge, where

$$
\begin{equation*}
\frac{\bar{p}}{\bar{h}}=\frac{\bar{c} C_{m}}{\bar{h} C_{L}}=\frac{4}{\overline{7}} \frac{C_{m}}{C_{L}} . \quad . \quad . \quad . \quad . \quad . \quad . . \quad . . \tag{19}
\end{equation*}
$$

3. Method of Evaluation of Downwash.-From equation (4), the downwash at a point $\left(x_{1}, y_{1}\right)$ due to a doublet distribution $\left(\Phi_{a}-\Phi_{b}\right)$ is

$$
\begin{equation*}
w=\lim _{z_{1} \rightarrow 0} \frac{1}{4 \pi} \iint_{C}\left(\Phi_{a}-\Phi_{b}\right) \frac{\partial^{2}}{\partial z_{1}^{2}}\left(\frac{1}{r}\right) d x d y, \quad . \quad . . \quad . \quad . \quad . \tag{20}
\end{equation*}
$$

where C is an area defined by

$$
\left.\begin{array}{l}
|y| \leqslant x<\infty \\
-s \leqslant y \leqslant s
\end{array}\right\}
$$

and

$$
r^{2}=\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}+z_{1}{ }^{2} .
$$

In a region excluding the singularity $\left(x_{1}, y_{1}\right)$, equation (20) becomes

$$
w_{0}=-\frac{1}{4 \pi} \iint \frac{\Phi_{a}-\Phi_{b}}{r^{3}} d x d y
$$

Putting

$$
\begin{aligned}
& \bar{x}=\frac{x^{\prime}}{28}, \quad \frac{y}{h}=\frac{y^{\prime}}{14}, \quad \frac{x_{1}}{h}=\frac{x_{1}{ }^{\prime}}{28}, \quad \frac{y_{1}}{h}=\frac{y_{1}^{\prime}}{14}, \\
& r^{h^{3}}=\left\{\frac{\left(x^{\prime}-x_{1}{ }^{\prime}\right)^{2}+4\left(y^{\prime}-y_{1}{ }^{\prime}\right)^{2}}{784}\right\}^{3 / 2} .
\end{aligned}
$$

Therefore outside the singularity the double integral becomes

$$
\begin{equation*}
\frac{w_{0}}{\bar{V}}=-\frac{14}{\pi} \iint_{C-R}\left(\frac{\Phi_{a}-\Phi_{b}}{h V}\right) \frac{d x^{\prime} d y^{\prime}}{\left\{\left(x^{\prime}-x_{1}^{\prime}\right)^{2}+4\left(y^{\prime}-y_{1}^{\prime}\right)^{2}\right\}^{3 / 2}} . . \quad . . \tag{21}
\end{equation*}
$$

The downwash is determined by splitting the area C into a small rectangle R surrounding $\left(x_{1}, y_{1}\right)$ symmetrically and the remainder $(C-R)$, over which equation (21) can be evaluated by direct numerical integration. The contribution, w_{1}, to the complete downwash, w, in equation (20) from the area R is obtained as a linear function of the values of $\left(\frac{\Phi_{a}-\Phi_{b}}{h V}\right)$ at 25 points on and inside R, shown in Fig. 1. By expressing $\left(\frac{\Phi_{a}-\Phi_{b}}{h V}\right)$ in terms of these 25 values as a polynomial in powers of $\left(x^{\prime}-x_{1}{ }^{\prime}\right)$ and $\left(y^{\prime}-y_{1}{ }^{\prime}\right)$, the 25 corresponding factors are found to be independent of the position $\left(x_{1}, y_{1}\right)$. It is apparent that from the point of view of accuracy in w_{1}, it is desirable to keep R as small as possible. But if R becomes too small, the evaluation of equation (21) over the area $(C-R)$ becomes difficult and w / V becomes the difference between two large quantities, both tending to infinity as the dimensions of R tend to zero. Consequently it has been necessary to establish the accuracy of the foregoing method of evaluation by varying the size and shape of R. The writer is satisfied that at each of the ten solving points, shown in Fig. 1, the values of w / V due to the basic doublet distribution Φ_{0} in equation (8) are within ± 0.05 per cent. Moreover the method is of universal application, provided that $\left(x_{1}, y_{1}\right)$ does not lie too close to the leading edge or tips of a wing and the required distribution of w/V is continuous. Although the process of calculation is laborious and requires very accurate computation, it is quite straightforward.

The rectangle R is chosen to be

$$
\left.\begin{array}{l}
|\xi|=\left|x^{\prime}-x_{1}{ }^{\prime}\right| \leqslant 1 \tag{22}\\
|\eta|=\left|y^{\prime}-y_{1}^{\prime}\right| \leqslant 1
\end{array}\right\} .
$$

Let $G(\xi, \eta)$ denote the value of $\left(\frac{\Phi_{a}-\Phi_{b}}{h V}\right)$ at $\left(x^{\prime}, y^{\prime}\right) \equiv\left(x_{1}{ }^{\prime}+\xi, y_{1}{ }^{\prime}+\eta\right)$.
The contribution w / V from the area $(C-R)$ in equation (21) is

$$
\begin{equation*}
\frac{w_{0}}{V}=-\frac{14}{\pi}\left[\int_{-12}^{y_{1}^{\prime}-1}+\int_{y_{1}^{\prime}+1}^{12}\left\{\int_{2 y^{\prime}}^{\infty} F\left(x^{\prime}, y^{\prime}\right) d x^{\prime}\right\} d y^{\prime}+\int_{y_{i}^{\prime}-1}^{y_{1}^{\prime}+1}\left\{\int_{2 y^{\prime}}^{x_{i}^{\prime}+1}+\int_{x_{i}^{\prime}+1}^{\infty} F\left(x^{\prime}, y^{\prime}\right) d x^{\prime}\right\} d y^{\prime}\right], \tag{23}
\end{equation*}
$$

where $F\left(x^{\prime}, y^{\prime}\right)=\left(\frac{\Phi_{a}-\Phi_{b}}{\bar{h} V}\right) /\left\{\left(x^{\prime}-x_{1}\right)^{2}+4\left(y^{\prime}-y_{1}\right)^{2}\right\}^{3 / 2}$

$$
=\frac{G(\xi, \eta)}{\left(\xi^{2}+4 \eta^{2}\right)^{3 / 2}} .
$$

Consider first the integration with respect to x^{\prime}. It is necessary to give separate treatment to each doublet distribution

$$
\left(\frac{\Phi_{a}-\Phi_{b}}{h V}\right)=\Phi_{0} P,
$$

defined in equation (15). The factors $\left(\xi^{2}+4 \eta^{2}\right)^{-3 / 2}$ are tabulated in Table 3, as these are of general use in computing the integrand $F\left(x^{\prime}, y^{\prime}\right)$ for integral values of x^{\prime}. Over most of the plan form evaluation of the integrals may be carried out by means of Simpson's rule, e.g.,

$$
\begin{equation*}
\int_{14}^{16} F\left(x^{\prime}\right) d x^{\prime}=\frac{F(14)+4 F(15)+F(16)}{3} . \quad . . \quad . \quad . . \quad . \quad . \tag{24}
\end{equation*}
$$

It is necessary to make occasional use of the formula

$$
\begin{equation*}
\int_{25}^{28} F\left(x^{\prime}\right) d x^{\prime}=\frac{1 \cdot 125 F(25)+3 \cdot 375 F(26)+3 \cdot 375 F(27)+1 \cdot 125 F(28)}{3} \quad . \quad . \tag{25}
\end{equation*}
$$

in order to complete an integration. Near the leading edge, $x^{\prime}=2 y^{\prime}, F\left(x^{\prime}, y^{\prime}\right)$ behaves as $O \sqrt{ }\left(x^{\prime}-2 y^{\prime}\right)$ and this is taken into account by the formulae

$$
\left.\begin{array}{l}
\int_{2 y^{\prime}}^{2 y^{\prime}+2} F\left(x^{\prime}\right) d x^{\prime}=\frac{4 \cdot 52548 F\left(2 y^{\prime}+1\right)+0 \cdot 8 F\left(2 y^{\prime}+2\right)}{3} \tag{26}\\
\int_{2 y^{\prime}}^{2 y^{\prime}+3} F\left(x^{\prime}\right) d x^{\prime}=\frac{4 \cdot 45384 F\left(2 y^{\prime}+1\right)+2 \cdot 51948 F\left(2 y^{\prime}+2\right)+1 \cdot 37143 F\left(2 y^{\prime}+3\right)}{3}
\end{array}\right\} \ldots
$$

Downstream of the trailing edge $\left(\frac{\Phi_{a}-\Phi_{b}}{h V}\right)=\frac{K}{h V}$ is independent of x^{\prime}, and the integral

$$
\begin{align*}
\int_{28}^{\infty}\left(\frac{\Phi_{a}-\Phi_{b}}{h V}\right) & \left\{\left(x^{\prime}-x_{1}{ }^{\prime}\right)^{2}+4\left(y^{\prime}-y_{1}{ }^{\prime}\right)^{2}\right\}^{-3 / 2} d x^{\prime} \\
& =\frac{K}{h V} \cdot \overline{4}\left(\frac{1}{\left.y^{\prime}-y_{1}^{\prime}\right)^{2}}\left[\frac{\left(x^{\prime}-x_{1}{ }^{\prime}\right)}{\sqrt{ }\left\{\left(x^{\prime}-x_{1}\right)^{2}+4\left(y^{\prime}-y_{1}^{\prime}\right)^{2}\right\}}\right]_{28}^{\infty} \quad \ldots\right. \tag{27}
\end{align*} \quad \ldots \quad . .
$$

where the factors

$$
\frac{1}{4\left(y^{\prime}-y_{1}\right)^{2}}\left\{1-\frac{28-x_{1}{ }^{\prime}}{\sqrt{ }\left\{\left(28-x_{1}\right)^{2}+4\left(y^{\prime}-y_{1}{ }^{\prime}\right)^{2}\right\}}\right\}
$$

are given in Table 4.
Near the singularity the integrand $F\left(x^{\prime}, y^{\prime}\right)$ becomes large as $O\left(y^{-3}\right)$, while $\left(\frac{\Phi_{a}-\Phi_{b}}{h V}\right)$ remains a well-behaved function of x^{\prime} and y^{\prime}. It is necessary to express the doublet distribution as $G(\xi)$, a polynomial in $\xi=x^{\prime}-x_{1}{ }^{\prime}$ and to use a special method of evaluation. Consider

$$
\int_{\xi_{1}}^{\xi_{3}} \frac{G(\xi) d \xi}{\left(\xi^{2}+4 \eta^{2}\right)^{3 / 2}}
$$

where $\xi_{3}-\xi_{2}=\xi_{2}-\xi_{1}=\delta$ and $G(\xi)$ is taken in the form

$$
G\left(\xi_{1}\right) \frac{\left(\xi-\xi_{2}\right)\left(\xi-\xi_{3}\right)}{\left(\xi_{1}-\xi_{2}\right)\left(\xi_{1}-\xi_{3}\right)}+G\left(\xi_{2}\right) \frac{\left(\xi-\xi_{3}\right)\left(\xi-\xi_{1}\right)}{\left(\xi_{2}-\xi_{3}\right)\left(\xi_{2}-\xi_{1}\right)}+G\left(\xi_{3}\right) \frac{\left(\xi-\xi_{1}\right)\left(\xi-\xi_{2}\right)}{\left(\xi_{3}-\xi_{1}\right)\left(\xi_{3}-\xi_{2}\right)} .
$$

The problem of numerical evaluation reduces to the three integrals

$$
\begin{align*}
& I_{2}=\int_{\xi_{1}}^{\xi_{0}} \frac{\xi^{2} d \xi}{\left(\xi^{2}+4 \eta^{2}\right)^{3 / 2}}=\left[\log _{c}\left\{\xi+\sqrt{ }\left(\xi^{2}+4 \eta^{2}\right)\right\}-\frac{\xi}{\sqrt{ }\left(\xi^{2}+4 \eta^{2}\right)}\right]_{\xi_{1}}^{\xi_{1}} \\
& I_{1}=\int_{\xi_{1}}^{\xi_{0}} \frac{\xi d \xi}{\left(\xi^{2}+4 \eta^{2}\right)^{3 / 2}}=\left[-\frac{1}{\sqrt{ }\left(\xi^{2}+4 \eta^{2}\right)}\right]_{\xi_{1}}^{\xi_{0}} \tag{28}\\
& I_{0}=\int_{\xi_{1}}^{\xi_{5}} \frac{d \xi}{\left(\xi^{2}+4 \eta^{2}\right)^{3 / 2}}=\left[\frac{\xi}{4 \eta^{2} \sqrt{ }\left(\xi^{2}+4 \eta^{2}\right)}\right]_{\xi_{1}}^{\xi_{1}}
\end{align*}
$$

Hence

$$
\begin{align*}
\int_{\xi_{1}}^{\xi_{3}} \frac{G(\xi) d \xi}{\left.\xi^{2}+4 \eta^{2}\right)^{3 / 2}}= & \frac{1}{2 \delta^{2}}\left[G\left(\xi_{1}\right)\left\{I_{2}-\left(\xi_{2}+\xi_{3}\right) I_{1}+\xi_{2} \xi_{3} I_{0}\right\}\right. \\
& +G\left(\xi_{2}\right)\left\{-2 I_{2}+2\left(\xi_{3}+\xi_{1}\right) I_{1}-2 \xi_{3} \xi_{1} I_{0}\right\} \\
& \left.+G\left(\xi_{3}\right)\left\{I_{2}-\left(\xi_{1}+\xi_{2}\right) I_{1}+\xi_{1} \xi_{2} I_{0}\right\}^{2}\right] \\
= & \sum_{1}^{3} C_{n} G\left(\xi_{n}\right), \quad \cdots \quad \cdots \quad \cdots \quad \cdots \tag{29}
\end{align*} \cdot \cdots \quad \cdots \quad \cdots \quad \cdots ?
$$

where the factors C_{n} depend on $\xi_{1}, \xi_{2}, \xi_{3}$ and η. When $|\eta| \leqslant 1$, the formula (29) is used for the range $1 \leqslant|\xi| \leqslant 5$. When $1 \leqslant|\eta| \leqslant 3$, it is used for $|\xi| \leqslant 3$. The factors, shown in Table 5 , are independent of $\left(x_{1}{ }^{\prime}, y_{1}{ }^{\prime}\right)$.

The formulae (24), (25), (26), (27) and (29) are sufficient to determine the integrals with respect to x^{\prime}. Let

$$
\left.\begin{array}{c}
Y_{1}\left(y^{\prime}\right)=\int_{2 y^{\prime}}^{\infty} F\left(x^{\prime}, y^{\prime}\right) d x^{\prime} \\
Y_{2}(\eta)=Y_{2}\left(y^{\prime}-y_{1}^{\prime}\right)=\int_{2 y^{\prime}}^{x_{1}-1} F\left(x^{\prime}, y^{\prime}-y_{1}^{\prime}\right) d x^{\prime} \tag{30}\\
Y_{3}(\eta)=Y_{3}\left(y^{\prime}-y_{1}^{\prime}\right)=\int_{x_{1}^{\prime}+1}^{\infty} F\left(x^{\prime}, y^{\prime}-y_{1}{ }^{\prime}\right) d x^{\prime}
\end{array}\right\}
$$

Then the contribution to w / V from $(C-R)$ in equation (23) becomes

$$
\begin{align*}
\frac{w_{0}}{V}= & -\frac{14}{\pi}\left[\int_{-12}^{y_{1}^{\prime}-1} Y_{1}\left(y^{\prime}\right) d y^{\prime}+\int_{y^{\prime}+1}^{12} Y_{1}\left(y^{\prime}\right) d y^{\prime}\right. \\
& \left.+\int_{-1}^{+1}\left\{Y_{2}(\eta)+Y_{3}(\eta)\right\} d \eta\right] . \quad . \quad \tag{31}
\end{align*}
$$

The spanwise integrations must be carried out for series of doublet distributions differing in respect of factors dependent on y^{\prime} only. From equations (9) and (10) it is seen that the general form to be considered is

$$
\left(\frac{\Phi_{a}-\Phi_{b}}{h V}\right)=\Phi_{0} P\left(\frac{y^{\prime}}{12}\right)^{q}
$$

where $q=0,2,4,6$. Thus the integrands (30) require various factors $\left(y^{\prime} / 12\right)^{q}$ and the integrals (31) have to be evaluated in each case.
$Y_{1}\left(y^{\prime}\right)$ is evaluated for integral values of y^{\prime} and is integrated by Simpson's rule, e.g., equation (24), except near the tips $y^{\prime}= \pm 12$, where the formulae (26) apply, and near the singularity, where $Y_{1}\left(y^{\prime}\right)$ behaves as $O\left(\frac{1}{\left(y^{\prime}-y_{1}^{\prime}\right)^{2}}\right)$. In the regions $3 \leqslant\left|y^{\prime}-y_{1}{ }^{\prime}\right| \leqslant 5,1 \leqslant\left|y^{\prime}-y_{1}{ }^{\prime}\right| \leqslant 3$, $Y_{1}\left(y^{\prime}\right)$ is expressed in the form

$$
\frac{a+b\left(y^{\prime}-y_{1}^{\prime}\right)^{2}+c\left(y^{\prime}-y_{1}^{\prime}\right)^{4}}{\left(y^{\prime}-y_{1}^{\prime}\right)^{2}}
$$

and the resulting formulae

$$
\left.\begin{array}{l}
\int_{y_{1}^{\prime}-5}^{y_{1}^{\prime}-3} Y\left(y^{\prime}\right) d y^{\prime}=\frac{245 Y_{1}\left(y_{1}^{\prime}-5\right)+1024 Y_{1}\left(y_{1}^{\prime}-4\right)+243 Y_{1}\left(y_{1}^{\prime}-3\right)}{756} \tag{32}\\
\int_{y_{1}^{\prime}-3}^{y_{1}^{\prime}-1} Y\left(y^{\prime}\right) d y^{\prime}=\frac{27 Y_{1}\left(y_{1}^{\prime}-3\right)+128 Y_{1}\left(y_{1}^{\prime}-2\right)+25 Y_{1}\left(y_{1}^{\prime}-1\right)}{90}
\end{array}\right\}
$$

are used to complete the integrations of Y_{1}. An exception arises in the particular instance $y_{1}{ }^{\prime}=10$, when by writing

$$
Y_{1}\left(y^{\prime}\right)=\frac{\sqrt{ }\left(12-y^{\prime}\right)}{\left(y^{\prime}-10\right)^{2}}\left\{Y_{1}(11)\left(23-2 y^{\prime}\right)-Y_{1}\left(11 \frac{1}{2}\right) \cdot \frac{9 \sqrt{ } 2}{2}\left(y^{\prime}-11\right)\right\}
$$

the following formula is deduced :

$$
\begin{equation*}
\int_{11}^{12} Y_{1}\left(y^{\prime}\right) d y^{\prime}=0 \cdot 144522 Y_{1}(11)+0 \cdot 739023 Y_{1}\left(11 \frac{1}{2}\right) . \quad . \quad . \quad . \quad . \tag{33}
\end{equation*}
$$

To calculate the remaining integral of equation (31),

$$
\int_{-1}^{1}\left\{Y_{2}(\eta)+Y_{3}(\eta)\right\} d \eta
$$

Y_{2} and Y_{3} are evaluated for $y^{\prime}-y_{1}{ }^{\prime}=\eta=-1,-\frac{1}{2}, 0, \frac{1}{2}, 1$. Consider first the integrand, when the doublet strength is independent of x^{\prime}. On writing $F=\left(\xi^{2}+4 \eta^{2}\right)^{-3 / 2}$ in equation (30) it follows from equation (28) that

$$
\begin{aligned}
\int_{\xi}^{\infty} \frac{d \xi}{\left(\xi^{2}+4 \eta^{2}\right)^{3 / 2}} & =\left[\frac{\xi}{4 \eta^{2} \sqrt{ }\left(\xi^{2}+4 \eta^{2}\right)}\right]_{\xi}^{\infty} \\
& =\frac{1}{\sqrt{ }\left(\xi^{2}+4 \eta^{2}\right)\left\{\xi+\sqrt{ }\left(\xi^{2}+4 \eta^{2}\right)\right\}}
\end{aligned}
$$

where, for the special rectangle R in equation (22), $\xi=1$.
Y_{2} and Y_{3} are therefore considered in the general form

$$
Y_{2}(\eta)=\frac{a_{0}+a_{1} \eta+a_{2} \eta^{2}}{\sqrt{ }\left(\xi^{2}+4 \eta^{2}\right)\left\{\xi+\sqrt{ }\left(\xi^{2}+4 \eta^{2}\right)\right\}}
$$

By equating values at the positions $\eta=0, \frac{1}{2}, 1$, it follows that

$$
\begin{aligned}
a_{0}= & 2 \xi^{2} Y_{2}(0) \\
a_{1}= & -6 \xi^{2} Y_{2}(0)+4 \sqrt{ }\left(\xi^{2}+1\right)\left\{\xi+\sqrt{ }\left(\xi^{2}+1\right)\right\} Y_{2}\left(\frac{1}{2}\right) \\
& -\sqrt{ }\left(\xi^{2}+4\right)\left\{\xi+\sqrt{ }\left(\xi^{2}+4\right)\right\} Y_{2}(1) \\
a_{2}= & 4 \xi^{2} Y_{2}(0)-4 \sqrt{ }\left(\xi^{2}+1\right)\left\{\xi+\sqrt{ }\left(\xi^{2}+1\right)\right\} Y_{2}\left(\frac{1}{2}\right) \\
& +2 \sqrt{ }\left(\xi^{2}+4\right)\left\{\xi+\sqrt{ }\left(\xi^{2}+4\right)\right\} Y_{2}(1) \\
& 11
\end{aligned}
$$

Then

$$
\begin{align*}
\int_{0}^{1} Y_{2}(\eta) d \eta= & \int_{0}^{1} \frac{a_{0}+a_{1} \eta+a_{2} \eta^{2}}{\sqrt{ }\left(\xi^{2}+4 \eta^{2}\right)\left\{\xi+\sqrt{ }\left(\xi^{2}+4 \eta^{2}\right)\right\}} d \eta \\
= & a_{0}\left(\frac{\sqrt{ }\left(\xi^{2}+4\right)}{4 \xi}-\frac{1}{4}\right)+\frac{a_{1}}{4} \log _{\mathrm{e}} \frac{\sqrt{ }\left(\xi^{2}+4\right)+\xi}{2 \xi} \\
& +a_{2}\left(\frac{1}{4}-\frac{\xi}{8} \log _{\mathrm{e}} \frac{\sqrt{ }\left(\xi^{2}+4\right)+2}{\xi}\right) . \quad \ldots \quad \ldots \quad \ldots \tag{35}
\end{align*} \ldots \quad \ldots .
$$

By substituting $\xi=1$ in equations (34) and (35),

$$
\int_{0}^{1} Y_{2}(\eta) d \eta=0 \cdot 309017 a_{0}+0 \cdot 120303 a_{1}+0 \cdot 069546 a_{2}
$$

where

$$
\begin{aligned}
& a_{0}=2 Y_{2}(0) \\
& a_{1}=-6 Y_{2}(0)+13 \cdot 65685 Y_{2}\left(\frac{1}{2}\right)-7 \cdot 23607 Y_{2}(1) \\
& a_{2}=4 Y_{2}(0)-13 \cdot 65685 Y_{2}\left(\frac{1}{2}\right)+14 \cdot 47214 Y_{2}(1)
\end{aligned}
$$

Thus

$$
\begin{align*}
\int_{-1}^{1} Y_{2}(\eta) d \eta= & 0.348797 Y_{2}(0)+0.693186\left\{Y_{2}\left(-\frac{1}{2}\right)+Y_{2}\left(\frac{1}{2}\right)\right\} \\
& +0.135953\left\{Y_{2}(-1)+Y_{2}(1)\right\}, \ldots \tag{36}
\end{align*}
$$

and an identical formula is used for

$$
\int_{-1}^{1} Y_{3}(\eta) d \eta
$$

By means of the formulae (32), (33) and (36), equation (31) may be evaluated to determine the contribution w_{0} / V from the area $(C-R)$ for each equation (10) for $\left(\frac{\Phi_{a}-\Phi_{b}}{h V}\right)$ in terms of the coefficients $A_{1}, A_{2}, \ldots A_{10}$.

Now consider the treatment of equation (20) in a region containing the singularity. The contribution to w / V from the area R, defined in equation (22), is

$$
\begin{align*}
\frac{w_{1}}{V} & =\lim _{z_{1} \rightarrow 0}\left[\frac{h}{4 \pi} \int_{R} \int\left(\frac{\Phi_{a}-\Phi_{b}}{h V}\right) \frac{\partial^{2}}{\partial z_{1}^{2}}\left(\frac{1}{r}\right) d x d y\right. \\
& =\lim _{z_{1} \rightarrow 0}\left[\frac{h}{4 \pi} \int_{R} \int\left(\frac{\Phi_{a}-\Phi_{b}}{h V}\right)\left\{-\frac{\partial^{2}}{\partial x^{2}}\left(\frac{1}{r}\right)-\frac{\partial^{2}}{\partial y^{2}}\left(\frac{1}{r}\right)\right\} d x d y\right], \ldots \quad \ldots \quad \ldots \tag{37}
\end{align*}
$$

which, by the use of Stoke's theorem*, becomes

$$
\text { * In vector notation, } \begin{aligned}
\int_{R} \int\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right) d x d y & =\int_{R} \int_{J} \operatorname{curl} \underset{\sim}{A} \cdot d S \\
& =\oint_{\sim}^{A} \cdot d \underset{\sim}{A} \\
& =\oint^{A}\left(A_{x} d x+A_{y} d y\right),
\end{aligned}
$$

taken round R in a clockwise direction. The equivalence of equations (37) and (38) is apparent by substituting

$$
\left.\begin{array}{rl}
A_{x} & =\left(\frac{\Phi_{a}-\Phi_{b}}{h V}\right) \frac{\partial}{\partial y}\left(\frac{1}{r}\right) \\
A_{v} & =-\left(\frac{\Phi_{a}-\Phi_{b}}{h V}\right) \frac{\partial}{\partial x}\left(\frac{1}{r}\right)
\end{array}\right\} .
$$

$$
\begin{align*}
& \begin{array}{l}
+\frac{h}{4 \pi} \int_{R}\left\{\left\{\frac{\partial}{\partial x}\left(\frac{\Phi_{a}-\Phi_{b}}{h V}\right) \frac{\partial}{\partial x}\left(\frac{1}{r}\right)+\frac{\partial}{\partial y}\left(\frac{\Phi_{a}-\Phi_{b}}{h V}\right)\right\} \frac{\partial}{\partial y}\left(\frac{1}{r}\right) d x d y\right. \\
=\frac{h}{4 \pi} \cdot \frac{h}{14} \int_{x_{i}^{\prime}-1}^{x_{1}^{\prime}+1}\left\{\left(\frac{\Phi_{a}-\Phi_{b}}{h V}\right)_{y^{\prime}=y_{i}^{\prime}-1}+\left(\frac{\Phi_{a}-\Phi_{b}}{h V}\right)_{y^{\prime}=y_{i}^{\prime}+1}\right\} \frac{h}{28} \frac{d x^{\prime}}{r^{3}}
\end{array} \tag{38}\\
& +\frac{h}{4 \pi} \cdot \frac{h}{28} \int_{y_{1}^{\prime}-1}^{y_{1}^{\prime}+1}\left\{\left(\frac{\Phi_{a}-\Phi_{b}}{h V}\right)_{x^{\prime}=x_{1}^{\prime}-1}+\left(\frac{\Phi_{a}-\Phi_{b}}{h V}\right)_{x^{\prime}=x_{1}^{\prime}+1}\right\} \frac{h}{14} \cdot \frac{d y^{\prime}}{r^{3}} \\
& -\frac{h}{4 \pi} \int_{y_{1}^{\prime}-1}^{y_{i}^{\prime}+1} \int_{x_{1}^{\prime}-1}^{x_{1}^{\prime}+1}\left\{\left(x^{\prime}-x_{1}{ }^{\prime}\right) \frac{\partial}{\partial x^{\prime}}\left(\frac{\Phi_{a}-\Phi_{b}}{h V}\right)+\left(y^{\prime}-y_{1}{ }^{\prime}\right) \frac{\partial}{\partial y^{\prime}}\left(\frac{\Phi_{a}-\Phi_{b}}{h V}\right)\right\} \frac{h^{2} d x^{\prime} d y^{\prime}}{392 r^{3}},
\end{align*}
$$

where

$$
\begin{equation*}
\frac{r^{3}}{h^{3}}=\frac{1}{21952}\left\{\left(x^{\prime}-x_{1}^{\prime}\right)^{2}+4\left(y^{\prime}-y_{1}^{\prime}\right)^{\prime}\right\}^{3 / 2} \tag{39}
\end{equation*}
$$

Therefore, $\frac{w_{1}}{V}=\frac{14}{\pi}\left(J_{1}+J_{2}-J_{3}\right), \quad . \quad$.. where

$$
\begin{aligned}
& J_{1}=\int_{-1}^{1}\{G(\xi,-1)+G(\xi, 1)\} \frac{d \xi}{\left(\xi^{2}+4\right)^{3 / 2}} \\
& J_{2}=\int_{-1}^{1}\{G(-1, \eta)+G(1, \eta)\} \frac{d \eta}{\left(1+4 \eta^{2}\right)^{3 / 2}} \\
& J_{3}=\int_{-1}^{1} \int_{-1}^{1}\left(\xi \frac{\partial G}{\partial \xi}+\eta \frac{\partial G}{\partial \eta}\right) \frac{d \xi d \eta}{\left(\xi^{2}+4 \eta^{2}\right)^{3 / 2}}
\end{aligned}
$$

From equation (29) with $\xi_{1}=0, \xi_{2}=\frac{1}{2}, \xi_{3}=1$,

$$
\int_{0}^{1} \frac{G(\xi) d \xi}{\left(\xi^{2}+4\right)^{3 / 2}}=2\left[G(0)\left\{I_{2}-\frac{3}{2} I_{1}+\frac{1}{2} I_{0}\right\}+G\left(\frac{1}{2}\right)\left\{-2 I_{2}+2 I_{1}\right\}+G(1)\left\{I_{2}-\frac{1}{2} I_{1}\right\}\right]
$$

where $I_{2}=0.0339982, I_{1}=0.0527864, I_{0}=0.1118034$ are determined by substituting $\xi_{1}=0$, $\xi_{3}=1, \eta=1$ in equation (28).
Similarly
$\int_{0}^{1} \frac{G(\eta) d \eta}{\left(1+4 \eta^{2}\right)^{3 / 2}}=\frac{1}{8} \int_{0}^{1} \frac{G(\eta) d \eta}{\left(\eta^{2}+\frac{1}{4}\right)^{3 / 2}}=\frac{1}{4}\left[G(0)\left\{I_{2}-\frac{3}{2} I_{1}+\frac{1}{2} I_{0}\right\}+G\left(\frac{1}{2}\right)\left\{-2 I_{2}+2 I_{1}\right\}+G(1)\left\{I_{2}-\frac{1}{2} I_{1}\right\}\right]$, where $I_{2}=0.5492083, \quad I_{1}=1 \cdot 1055728, \quad I_{0}=3.5777088$ are determined by substituting $\xi_{1}=0, \xi_{3}=1, \eta=\frac{1}{4}$ in equation (28). The integrals \int_{-1}^{0} are treated in the same way, and it follows that

$$
\begin{align*}
J_{1}= & 0 \cdot 0428812\{G(0,-1)+G(0,1)\} \\
& +0 \cdot 0751528\left\{G\left(-\frac{1}{2},-1\right)+G\left(-\frac{1}{2}, 1\right)+G\left(\frac{1}{2},-1\right)+G\left(\frac{1}{2}, 1\right)\right\} \\
& +0 \cdot 0152100\{G(-1,-1)+G(-1,1)+G(1,-1)+G(1,1)\} \\
J_{2}= & 0 \cdot 3398517\{G(-1,0)+G(1,0)\} \tag{40}\\
& +0 \cdot 2781823\left\{G\left(-1,-\frac{1}{2}\right)+G\left(-1, \frac{1}{2}\right)+G\left(1,-\frac{1}{2}\right)+G\left(1, \frac{1}{2}\right)\right\} \\
& -0 \cdot 0008945\{G(-1,-1)+G(-1,1)+G(1,-1)+G(1,1)\}
\end{align*}
$$

The general formula from which J_{3} is evaluated is obtained by expressing $G(\xi, \eta)$ as a polynomial in powers of ξ and η in terms of the 16 values of G occurring in equation (40) on the perimeter of R and 9 other values inside R, as shown in Fig. 1. The method of derivation is explained in the Appendix to this report and leads to the formula

$$
\begin{align*}
J_{3}= & -10 \cdot 7845628\{G(0,0)\}+2 \cdot 8338092\left\{G\left(-\frac{1}{2}, 0\right)+G\left(\frac{1}{2}, 0\right)\right\} \\
& +0 \cdot 4636337\{G(-1,0)\}+G(1,0)\}+0 \cdot 7293835\left\{G\left(0,-\frac{1}{2}\right)+G\left(0, \frac{1}{2}\right)\right\} \\
& +0 \cdot 3084028\left\{G\left(-\frac{1}{2},-\frac{1}{2}\right)+G\left(-\frac{1}{2}, \frac{1}{2}\right)+G\left(\frac{1}{2},-\frac{1}{2}\right)+G\left(\frac{1}{2}, \frac{1}{2}\right)\right\} \\
& +0 \cdot 2422526\left\{G\left(-1,-\frac{1}{2}\right)+G\left(-1, \frac{1}{2}\right)+G\left(1,-\frac{1}{2}\right)+G\left(1, \frac{1}{2}\right)\right\} \tag{41}\\
& +0 \cdot 0181922\{G(0,-1)+G(0,1)\} \\
& +0 \cdot 0879315\left\{G\left(-\frac{1}{2},-1\right)+G\left(-\frac{1}{2}, 1\right)+G\left(\frac{1}{2},-1\right)+G\left(\frac{1}{2}, 1\right)\right\} \\
& +0 \cdot 0350445\{G(-1,-1)+G(-1,1)+G(1,-1)+G(1,1)\} .
\end{align*}
$$

From equations (39), (40) and (41), the contribution to w / V from the rectangle R is

$$
\begin{align*}
w_{1} / V= & 48 \cdot 059661\{G(0,0)\}-12 \cdot 628413\left\{G\left(-\frac{1}{2}, 0\right)+G\left(\frac{1}{2}, 0\right)\right\} \\
& -0 \cdot 551614\{G(-1,0)+G(1,0)\}-3 \cdot 250380\left\{G\left(0,-\frac{1}{2}\right)+G\left(0, \frac{1}{2}\right)\right\} \\
& -1 \cdot 374347\left\{G\left(-\frac{1}{2},-\frac{1}{2}\right)+G\left(-\frac{1}{2}, \frac{1}{2}\right)+G\left(\frac{1}{2},-\frac{1}{2}\right)+G\left(\frac{1}{2}, \frac{1}{2}\right)\right\} \\
& +0 \cdot 160115\left\{G\left(-1,-\frac{1}{2}\right)+G\left(-1, \frac{1}{2}\right)+G\left(1,-\frac{1}{2}\right)+G\left(1, \frac{1}{2}\right)\right\} \tag{42}\\
& +0 \cdot 110023\{G(0,-1)+G(0,1)\} \\
& -0 \cdot 056946\left\{G\left(-\frac{1}{2},-1\right)+G\left(-\frac{1}{2}, 1\right)+G\left(\frac{1}{2},-1\right)+G\left(\frac{1}{2}, 1\right)\right\} \\
& -0 \cdot 092375\{G(-1,-1)+G(-1,1)+G(1,-1)+G(1,1)\} .
\end{align*}
$$

Therefore the value of

$$
\begin{equation*}
\overline{w^{w}}=\frac{w_{0}}{V}+\frac{w_{1}}{V} . \quad . \quad . . \quad . \quad . \quad . \tag{43}
\end{equation*}
$$

is obtained by summing the contributions (31) and (42).
4. Potential Solutions at a Uniform Incidence.-The values of the downwash angle w/V have been determined for the doublet distributions in equations (10a), (10b), (10c) and are expressed as linear functions of $A_{1}, A_{2}, \ldots A_{10}$ at each of the 10 positions, shown in Fig. 1, viz.,

$$
\left(x_{1}{ }^{\prime}, y_{1}{ }^{\prime}\right)=(7,0),(14,0),(21,0),(27,0),(14,3),(21,3),(27,3),(21,7),(27,7),(27,10) .
$$

It remains to equate the 10 linear functions with the values of w / V required at the respective positions ($x_{1}{ }^{\prime}, y_{1}{ }^{\prime}$). The investigation has been restricted to the uncambered wing in an inclined uniform stream, for which the simple boundary condition is expressed in equation (5),

$$
\begin{equation*}
w / V=\alpha . \quad . \quad . . \quad . \quad . . \quad . . \quad . . \quad . \tag{44}
\end{equation*}
$$

The simultaneous equations and solutions for $A_{1}, A_{2}, \ldots A_{10}$, when $\alpha=1$, are set out in Tables $6 \mathrm{~A}, 6 \mathrm{~B}, 6 \mathrm{C}$. The respective expressions for the velocity potential difference from equation (16) are
(a) $\frac{\Phi_{a}-\Phi_{b}}{h V \alpha}=\Phi_{0}\left[B_{1}+B_{2}\left(X-\frac{1}{2} X^{2}\right)+B_{3}\left(X-X^{2}+\frac{1}{3} X^{3}\right)+B_{4}\left(X-\frac{3}{2} X^{2}+X^{3}-\frac{1}{4} X^{4}\right)\right]$,
where
$B_{1}=0 \cdot 4872+4 \cdot 4548 Y^{2}-11 \cdot 2068 Y^{4}+10 \cdot 8383 Y^{6}$,
$B_{2}=-1 \cdot 2550+6 \cdot 4203 Y^{2}-4 \cdot 5878 Y^{4}$,
$B_{3}=-3 \cdot 9237+8 \cdot 5248 Y^{2}$,
$B_{4}=0.3372$.

$$
\begin{align*}
\frac{\Phi_{a}-\Phi_{b}}{h V \alpha}= & \Phi_{0}\left[B_{1}\left\{1-\frac{4}{3 \pi}(1-X)^{3 / 2}\right\}+B_{2}\left(X-\frac{1}{2} X^{2}\right)\right. \tag{b}\\
& \left.+B_{3}\left(X-X^{2}+\frac{1}{3} X^{3}\right)+B_{4}\left(X-\frac{3}{2} X^{2}+X^{3}-\frac{1}{4} X^{4}\right)\right]
\end{align*}
$$

where

$$
B_{1}=0 \cdot 9809+2 \cdot 2604 Y^{2}-6 \cdot 7968 Y^{4}+7 \cdot 3591 Y^{6}
$$

$$
B_{2}=-1 \cdot 6520+10 \cdot 9844 Y^{2}-10 \cdot 2620 Y^{4}
$$

$$
B_{3}=-21 \cdot 2653+43 \cdot 1813 Y^{2}
$$

$$
\begin{equation*}
B_{4}=0 \cdot 3227 . \quad . . \quad . \quad . \quad . \quad(45 \mathrm{~b}) \tag{45b}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\Phi_{a}-\Phi_{b}}{h V \alpha}=\Phi_{0}\left[B_{1}-B_{2} \cdot \frac{4}{3 \pi}(1-X)^{3 / 2}+B_{3}\left(X-\frac{1}{2} X^{2}\right)+B_{4}\left(X-X^{2}+\frac{1}{3} X^{3}\right)\right] \tag{c}
\end{equation*}
$$

where

$$
\begin{align*}
& B_{1}=2 \cdot 0003+3 \cdot 0860 Y^{2}-2 \cdot 5843 Y^{4}+2 \cdot 9692 Y^{6}, \\
& B_{2}=-3 \cdot 0590-0.5432 Y^{2}+6 \cdot 9848 Y^{4}, \\
& B_{3}=0.3540+3 \cdot 0693 Y^{2}, \\
& B_{4}=0.3295 . \quad \ldots \quad \ldots \quad \ldots \quad \ldots \quad . \tag{45c}
\end{align*}
$$

The three sets of values of $B_{1}, B_{2}, B_{3}, B_{4}$ are tabulated as functions of $y^{\prime}=12 Y$ in Table 7.
The three distributions of non-dimensional circulation $K / h V \alpha$, obtained by substituting $X=x / h=1$ in equations (45), are evaluated in Table 8, and the three solutions show agreement within about ± 1 per cent.

The positions of the chordwise centres of pressure are defined in equation (13) and given for solution (a) in equation (17). These local aerodynamic centres are hardly distinguishable when plotted in Fig. 2.

On the other hand the distributions of hinge moment, calculated for the elevon of flap chord ratio 0.15 from the formula (14), are plotted in Fig. 3 and show appreciable variation in the three cases. With reference to the remarks that follow equations (10) these differences are not surprising, as the condition at the trailing edge will inevitably be a most important factor in determining the hinge moment. The flexible solution (c) should naturally be regarded as the most reliable one.

The distributions of pressure difference have been calculated from equations (1) and (45) along four selected wing sections $y^{\prime}=0,3,7,10$. Curves of $\frac{p_{b}-p_{a}}{\frac{1}{2} p V^{2} \alpha}$ against x^{\prime} are shown in Fig. 4. Over most of the plan form the agreement between the three solutions is excellent. Theonly discrepancies worthy of comment appear near the apex of the delta wing $(0,0)$ and near the outboard trailing edge $\left(x^{\prime}, y^{\prime}\right)=\left(28, y^{\prime}\right)$ where $y^{\prime} \geqslant 7$. The former discrepancy can only be attributed to the fact that the apex is rather isolated from the solving points, as shown in Fig. 1. The latter discrepancy suggests that the somewhat rigid enforcement of the condition (7) by solution (b) becomes increasingly unsatisfactory towards the tips. It is interesting to note how the total lifts at a given section become consistent in spite of small local variations in ($p_{b}-p_{a}$). Throughout solution (c) is the most convincing one; and the intrinsic accuracy of this particular solution is considered to be better than that indicated by the comparison of pressure distributions in Fig. 4.
5. Comparison with Vortex-Lattice Theory.-The method of this report has yielded three solutions, (a), (b), (c) for the aerodynamic loading on the delta wing in Fig. 1. These have been compared with solutions of the identical problem by vortex-lattice theory (R. \& M. 2596 ${ }^{2}$, June, 1948), viz., Solutions 33, 34, given respectively in Ref. 2, Tables 37, 38, of which the latter involves
an auxiliary function P to allow for discontinuities at the median section. The values for the lift slope and the position of the aerodynamic centre measured from the trailing edge are as follows :-

Solution	(a)	(b)	(c)	33	34	Experiment
$\partial C_{L} / \partial \alpha$ a.c.	3.018 $0.469 h$	3.007 $0.466_{5} h$	3.038 0.467	3.142 $0.477 h$	3.123 $0.469 h$	3.07 $0.467 h$

The table shows a mean difference of $3 \frac{1}{2}$ per cent between $\partial C_{L} / \partial \alpha$ as determined by the present method in equation (18) and by the use of the vortex lattice. It is stated in R. \& M. 2596^{2}, section 6.5 , that a factor

$$
1+0 \cdot 029 \text { (tangent of sweepback of quarter-chord) }
$$

should be applied as a correction to the values of $\partial C_{L} / \partial \alpha$ obtained by a 126 vortex-lattice, e.g., solutions 33, 34. This factor increases the discrepancy between the two methods from 3 per cent to 5 per cent.

The spanwise distributions of circulation according to lifting-line theory and lifting-surface solutions (c) and 34 are compared in Fig. 5. On the basis that solution (c) is correct, the use of a 126 vortex-lattice would apparently allow for about 85 per cent of the difference between the lifting-line and lifting-surface theories over most of the span, but for only 70 per cent of this difference at 0.8 span and less towards the tip. This is consistent with the conclusions of Jones (R. \& M. 22253, 1946), who has shown that, for a rectangular wing $(A=6$), Falkner's approximate downwash distributions agree well with the results of the exact lifting-surface theory for points along the mid-chord axis of the wing over the inner part of the span, but that Falkner's values are about 5 per cent low at 0.8 span and are likely to be in greater error towards the tip. Thus the circulation from vortex-lattice theory would be expected to be proportionately higher towards the tip. The discrepancy of nearly 3 per cent over the inner part of the span is presumably due to an error associated with sweepback. However, for a given C_{L}, the spanwise distributions of lift in Table 9 according to solutions (c) and 34 differ by less than $\frac{1}{2}$ per cent inboard of 0.8 span.

Fig. 2 gives the loci of the chordwise centres of pressure along sections of the delta wing for each solution. Apart from the neighbourhood of the median section and the extreme tips the two methods are in excellent agreement. However vortex-lattice theory introduces fictitious kinks at the median section, which arise as a direct consequence of the use of the parameter θ given by

$$
\cos \theta=\frac{14+\left|y^{\prime}\right|-x^{\prime}}{14-\left|y^{\prime}\right|}
$$

in the general form for the pressure distribution (R. \& M. 2596^{2}, section 4)

$$
\begin{equation*}
\frac{p_{b}-p_{a}}{\frac{1}{2} \rho V^{2}}=\frac{2 k}{\bar{V}}=\frac{16 s}{c}\left(F_{0} \cot \frac{1}{2} \theta+F_{1} \sin \theta\right), \quad . \quad \ldots \quad . . \tag{46}
\end{equation*}
$$

where F_{0}, F_{1} are functions of y only. The results suggest that, when F_{0}, F_{1} contain the auxiliary function (Ref. 2, sections 4, 6.4) $P=0 \cdot 65 P_{a}+0.35 P_{b}$, as is the case in solution 34, the centres of pressure near the median section are greatly improved. The above table shows that theoretical positions of the aerodynamic centre are determined in close agreement by the present method and solution 34. But it is clear that the use of P will not fully overcome the difficulty at the median section (R. \& M. 2721 ${ }^{1}$, section 4.2).

A more detailed comparison of these solutions is given by the distributions of pressure difference at the four sections $y^{\prime}=0,3,7,10$. Solutions (a), (b), and (c) are shown in Fig. 4 and solutions (c), 33 and 34 in Fig. 6. The only region in which the disparities in Fig. 6 adversely contrast those in Fig. 4 is along the median section $y^{\prime}=0$. Elsewhere the agreement is fairly good. It is shown in R. \& M. 2721^{1}, section 4.2 , that a solution of the form (46) can never satisfy the boundary conditions along $y^{\prime}=0$, as it necessarily produces infinite downwash there. It is therefore to be expected that the local pressures so determined will be in serious error and this is borne out by the results in Fig. 6. Solutions 33 and 34 also tend to give excessive pressure differences near the leading and trailing edges and to underestimate the values at the central part of the chord. It is noteworthy that it would appear from Fig. 6 as if the lift from these solutions were less than that from the present method. In fact the excessive lift near the leading edge is enough to provide the higher lift per unit span or circulation, as shown in Fig. 5. The disparities might well be reduced by considering further Fourier terms $F_{2} \sin 2 \theta$ and $F_{3} \sin 3 \theta$ in equation (46). By thus increasing the number of terms in the chordwise loading of the vortexlattice theory from two to four a fairer comparison with the present method would be achieved. But a remedy for the singularity at the median section must apparently be based on the considerations in R. \& M. 2721^{1}.
6. Comparison with Experiment.-A complete model of the delta wing of RAE 102 section 10 per cent thick ${ }^{4}$ was tested at low speed in the National Physical Laboratory Duplex Wind Tunnel. Measurements included the total lift and pitching moment at a Reynolds number of 10^{6} and pressure plotting at six sections of the wing. When corrected for tunnel interference, the tests covered an approximate range of incidence $-4 \frac{1}{2} \mathrm{deg}<\alpha<+4$ deg.

The estimated free-stream lift slope and aerodynamic centre were

$$
\begin{aligned}
\partial C_{L} / \partial \alpha & =3 \cdot 07 \\
\text { a.c. } & =0 \cdot 467 h \text { (from trailing edge). }
\end{aligned}
$$

Both values compare well with the present solution (c), as the table in section 5 shows.
The corresponding distributions of pressure difference per radian incidence $\left(p_{b}-p_{a}\right) / \frac{1}{2} \rho V^{2} \alpha$ were obtained at sections

$$
y^{\prime}=12 \eta=0,0 \cdot 44,2 \cdot 77,5 \cdot 54,8 \cdot 02,11 \cdot 08
$$

The experimental points for the section $y^{\prime}=0$ are plotted in Fig. 6. The estimated distributions at sections $y^{\prime}=3,7,10$, interpolated from the experimental data are also compared with the theoretical curves in Fig. 6.

Although these pressure distributions are influenced by wing section, it is important to note that the disparities between the theoretical curves of solution (c) and the experimental ones are similar at all sections. The limitations of the vortex-sheet theory are shown by the divergence at the leading edge, a marked discontinuity in the experimental pressure gradients at mid-chord associated with RAE 102 section, and, as would be expected, a discrepancy close to the trailing edge due to viscous flow. The curves so far given by vortex-lattice theory appear to be incorrect in shape at the median section, although the two theories are in fair agreement elsewhere.

These comparisons distinctly encourage the extension of the present calculations to allow for wing thickness and boundary layers and the application of similar methods to other plan forms.
7. Concluding Remarks.--Three approximate potential solutions for the pressure difference across a delta wing (Fig. 1) in an inclined uniform stream have been obtained. The solutions differ essentially in the manner in which the pressure difference is allowed to approach zero at the trailing edge. The lift slope and the position of the aerodynamic centre relative to the trailing edge are determined within 1 per cent and $\frac{1}{2}$ per cent respectively. The spanwise distributions of lift (Table 8) and centre of pressure (Fig. 2) are in excellent agreement. The pressure differences compare well over most of the plan form (Fig. 4) but there are understandable
discrepancies, which become appreciable near the apex of the delta wing and the outboard trailing edge. The distributions of hinge moment, calculated for the elevon of flap chord ratio $0 \cdot 15$, vary a good deal (Fig. 3). This is not surprising, as the essential distinctions between the solutions concern the trailing edge (equation (10) et seq.), but serves to emphasize the inherent difficulties in estimating hinge moments theoretically. It is quite clear that solution (c) is more flexible than the other two and in every respect more convincing; it is claimed that the intrinsic accuracy of this particular solution is at least as good as that indicated by its comparison with solutions (a) and (b) in Fig. 4.

On the basis of this claim certain conclusions with regard to the accuracy of the vortex-lattice theory (R. \& M. 2596 ${ }^{2}$) have been reached.
(a) The calculated values of $\partial C_{L} / \partial \alpha$ are about 3 per cent too great (or 5 per cent if the suggested correction factor in R. \& M. 2596^{2}, section 6.5 is used). This disparity is probably associated with an error due to sweepback (Fig. 5).
(b) For a given C_{L}, the spanwise distribution of lift from vortex-lattice theory compares very well over most of the span but becomes too great towards the tips, as the conclusions of R. \& M. 2225^{3} would suggest (Table 9).
(c) The use of the auxiliary function P is necessary in the determination of the acrodynamic centre and leads to a very satisfactory estimate of its theoretical position.
(d) Fig. 6 shows notable discrepancies in the distribution of pressure difference, as calculated in R. \& M. 2596^{2} at the median section. This suggests that the mathematical form of the doublet distribution near the median section of a delta wing is of some importance (R. \& M. 2721).

It is intended that the calculations of downwash in this report will serve in an extension of the theory to allow for wing thickness to the first order and further to provide an estimate of the pressure distribution on the delta wing in viscous incompressible flow. In the opinion of the author the only practicable approach to this problem is to assume a cambered lifting surface with the required two-dimensional characteristics at each section and to adjust the boundary condition expressed in equation (44). It would then be possible to make a direct comparison between a calculated distribution of pressure difference and the results from pressure-plotting experiments on the delta wing in the N.P.L. Duplex Wind Tunnel. Comparisons of lift, aerodynamic centre and pressure distributions suggest a favourable measure of agreement between these tests and the calculations for the thin delta wing in inviscid flow.

It is generally agreed that the aerodynamic characteristics associated with a swept trailing edge present a more crucial problem than that of the delta wing. It is recommended that a theoretical approach on the lines suggested in Ref. 1 should form the basis of a similar comparison with pressure-plotting experiments on a Vee wing.
8. Acknowledgement.--The author is greatly indebted to Miss J. Elliott and Miss E. Tingle for their help in carrying out most of the laborious numerical work of this report.

REFERENCES

Title, etc.

No.	Author		Titte, etc.
1	H. C. Garner		Methods of Approaching an Accurate Three-dimensional Potential Solution for a Wing. R. \& M. 2721. October, 1948.
2	V. M. Falkner		Calculated Loadings due to Incidence of a Number of Straight and Swept-back Wings. R. \& M. 2596. June, 1948.
3	W. P. Jones		Note on Lifting Plane Theory with Special Reference to Falkner's Approximate Method and a Proposed Electrical Device for Measuring Downwash Distributions. R. \& M. 2225. May, 1946.
4	R. C. Pankhurst Squire	d H. B.	Calculated Pressure Distributions for the RAE 100-104 Aerofoil Sections. C.P. 80. March, 1950.

V alues of Φ_{0} [from equation (8)]

TABLE 1-continued
Values of $\Phi_{\mathbf{0}}$ [from equation (8)]

TABLE 2A

V alues of $\int_{Y}^{1} \Phi_{0} P d X$ [from equation (15)]

$y^{\prime}=$	1	$X-\frac{1}{2} X^{2}$	$X-X^{2}+\frac{1}{3} X^{3}$	$X-\frac{3}{2} X^{2}+X^{3}-\frac{1}{4} X^{4}$	$\frac{4}{3 \pi}(1-X)^{3 / 2}$
0	$0 \cdot 533333$	$0 \cdot 198942$	$0 \cdot 146994$	$0 \cdot 116284$	0.072915
1	- 506430	- 195549	- 144119	- 113757	-063887
2	-463347	-186350	- 136502	- 107205	-052196
3	-412961	-172524	-125359	. 097857	-040867
4	- 358690	-155009	- 111546	-086464	. 030723
5	-302868	- 134848	-096046	. 073952	-022090
6	- 247346	-113015	-079647	-060941	-015070
7	- 193895	-090581	-063170	-048066	-009632
8	-143933	-068510	-047298	. 035821	-005651
9	-098910	-047814	-032701	-024674	-002942
10	. 060136	-. 029433	-019962	. 015021	. 001274
11	$0 \cdot 028684$	$0 \cdot 013914$	$0 \cdot 009029$	$0 \cdot 006395$	$0 \cdot 000393$
12	0	0	0	0	0

TABLE 2b
Values of $\int_{X h}^{1} \Phi_{0} P d X[$ from equation (15)]

	1	$X-\frac{1}{2} X^{2}$	$X-X^{2}+\frac{1}{3} X^{3}$	$X-\frac{3}{2} X^{2}+X^{3}-\frac{1}{4} X^{4}$	$\frac{4}{3 \pi}(1-X)^{3 / 2}$
0	0.099707	0.049481	0.033208	0.024924	0.000982
2	. 083454	-041497	-027803	-020862	-000652
4	-064370	-032078	. 021461	-016100	. 000383
6	-044621	-022256	-014871	-011155	-000190
8	-026159	-013062	. 008719	- 006540	-000072
9	-018055	-009019	-006018	-004514	-000038
10	-011028	. 005510	-003676	-002757	-000017
11	0.005285	0.002641	0.001762	0.001321	$0 \cdot 000005$
12	0	0	0	0	0

TABLE 3
Talues of $\frac{1}{\left(\xi^{2}+4 r^{2}\right)^{3 / 2}}[$ from equation (23)]

ξ	0	$\frac{1}{2}$	1	2	3	4	5	6	7	8	9	10
0	-	1.00000000	0•12500000	$0 \cdot 01562500$	$0 \cdot 00462963$	$0 \cdot 00195313$	0-00100000	$0 \cdot 00057870$	$0 \cdot 00036443$	$0 \cdot 00024414$	$0 \cdot 00017147$	$0 \cdot 00012500$
1	$1 \cdot 00000000$	$0 \cdot 35355340$. 08944272	. 01426680	. 00444322	-00190822	-00098519	-00057273	. 00036166	- 00024272	-00017068	-00012453
2	$0 \cdot 12500000$. 08944272	-04419418	. 01118034	-00395285	-00178335	-00094287	-00055540	. 00035355	. 00023853	- 00016834	-00012315
3	-03703704	. 03162278	. 02133462	-00800000	-00331269	-00160330	-00087874	-00052840	. 000344070	- 00023181	-00016456	-00012089
4	-01562500	- 01426680	. 01118034	-00552427	- 00266683	-00139754	-00080041	-00049411	-00032396	-00022292	. 000015951	. 000011786
5	-00800000	. 00754293	-00640329	- 00380911	-00209897	-00119101	-00071554	-00045517	. 000330438	. 000021230	. 000153388	. 000011413
6	-00462963	. 00444322	-00395285	- 00266683	-00163682	-00100000	-00063051	. 000041409	. 000028299	.00020041 .00018774.	.00014640 .00013882	.00010984
7	-00291543	. 00282843	-00259171	. 00190823	- 00127606	-00083250	. 000054982	. 000037296	.00026077	.00018774 .00017469	.00013882 .00013084	. 00010511
8	-00195313	-00190823	-00178335	-00139754	. 001000000	-00069053	. 000047614	-00033335	-00023873	. 00016164		$\begin{array}{r} \cdot 00010005 \\ \cdot 00009479 \end{array}$
9	. 00137174	. 00134673	$\begin{array}{r}.00127606 \\ .00094287 \\ \hline\end{array}$. 00104675	-00079017	$\cdot 00057273$ -00047614 -0009	.00041066 .0003535	.00029630	.00021691	$\begin{array}{r}.00016164 \\ .00014888 \\ \hline\end{array}$	$\begin{array}{r}.00012269 \\ .00011454 \\ \hline\end{array}$	-000098944
11	-00100000	. 00074210	. 000071554	. 00062362	-00050834	-00039741	-00030438	-00023181	-00017718	-00013661	-00010653	-00008409
12	-00057870	. 00057273	-00055540	-00049411	-00041409	-00033335	-00026237	-00020460	-00015951	- 00012500	-00009877	00007881
13	-00045̄517	. 00045116	-00043947	-00039741	-00034070	-00028117	-00022666	-00018059	-00014340	- 00011413	-00009135	00007368
14	-00036443	. 00036166	-00035355	-00032396	- 00028299	-00023853	-00019636	-00015951	-00012885	-00010406	-00008433	-00006873
15	-00029630	.00029433	-00028857	-00026729	-00023716	-00020354	-00017068	-00014108	-00011576	-00009479	-00007774	-00006400
16	-00024414	. 00024272	-00023853	-00022292	-00020041	-00017469	-00014888	-00012500	-00010406	-00008632	.00007159 .00006589	. 000005952
17	-00020354	. 00020249	. 00019939	-00018774	-00017068	-00015078	-00013034	-00011099	. 000009362	0007860	. 000006589	$\begin{array}{r} \cdot 00005529 \\ \cdot 00005133 \end{array}$
18	-00017147	- 00017068	-00016834	-00015951	-00014640	-00013084	-00011454	. 0000098877	0008433	.00007159 .00006525	.00006061 .00005578	. 00005133
19	-00014579	-00014519	-00014340	-00013661	-00012642	-00011413	. 000010103	. 000008812	.00007607 .00006873	. 000065525	-00005578	-00004419
20	-00012500	. 00012453	-00012315	-00011786	-00010984	-00010005	-00008944	-00007881	.00006873	. 000005953	-00004726	. 00004100
21	-00010798	. 00010761	. 0000106538	.00010236 .00008944	.00009599	-00008812	.00007947 0.00007086	-00007068	. 00005639	-00004968	-00004354	. 00003805
22	. 0000093311	.00009362 .00008196	-00009276	.00008944	-00007446	-00006925	$0 \cdot 00007086$	-00005728	-00005123	-00004547	-00004014	-00003532
24	-00007234	. 00007215	-00007159	$0 \cdot 00006942$	-00006605	$0 \cdot 00006176$		$0 \cdot 00005176$	-00004662	$0 \cdot 00004167$	$0 \cdot 00003704$	-00003280
25	-00006400	. 000066385	$0 \cdot 00006339$		-00005884				. 00004251			$\begin{array}{r} \cdot 00003047 \\ 0 \cdot 00002833 \end{array}$
26	$0 \cdot 00005690$	$0 \cdot 00005677$			$0 \cdot 00005264$				$0 \cdot 00003884$			
η	11	12	13	14	15	16	17	18	19	20	21	
0	0.00009391	$0 \cdot 00007235$	$0 \cdot 00005690$	$0 \cdot 00004555$	$0 \cdot 00003704$	$0 \cdot 00003052$	0.00002544	$0 \cdot 00002143$	$0 \cdot 00001822$	$0 \cdot 00001562$	$0 \cdot 00001350$	
1	- 00009362	. 00007215	- 00005677	. 00004547	-00003698	. 000003047	-00002541	. 00002141	. 00001821	-00001561	- 000001349	
2	-00009276	-00007159	-00005639	-00004521	-00003679	-00003034	-00002531	-00002133	. 00001815	-00001557	-00001345	
3	-00009135	. 00007069	-00005578	-00004478	-00003649	-00003012	-00002515	-00002121	-00001806	-00001549	- 00001339	
4	-00008944	-00006942	-00005493	-00004419	-00003607	-00002982	-00002492	-00002104	-00001793	-00001539	-00001332	
5	-00008708	-00006787	-00005388	-00004346	-00003555	-00002943	-00002464	-00002083	-00001776	-00001527	-00001322	
6	- 00008433	-00006605	-00005264	-00004259	-00003492	-00002898	-00002430	-00002057	-00001756	-00001511	$0 \cdot 00001309$	
7	-00008127	-00006400	-00005123	- 00004159	-00003421	-00002845	-00002391	-00002027	-00001733	. 000001493		
8	-00007795	. 00006176	-00004968	- 00004049	-00003341	-00002786	-00002347	-00001994	-00001708	$0 \cdot 00001473$		
9	- 00007446	- 00005940	-00004801	-00003931	-00003255	-00002722	-00002299	-00001957	.00001679 0.00001648			
10	-00007086	- 00005690	-00004626	- 00003805	-00003162	-00002654	-00002247	-00001917	$0 \cdot 00001648$			
11	. 00006720	-00005434	-00004444	-00003673	-00003065	-00002581	. 000002191	$\cdot 00001875$ $0 \cdot 00001830$				
12	. 00006354	-00005176	-00004259	. 000003537	-00002983 . 00002861	$\begin{array}{r} \cdot 00002505 \\ -0000947 \end{array}$	-00002133 $\cdot 00002073$	$0 \cdot 00001830$				
13	.00005993 .00005639	. 000004918	$\begin{array}{r}\cdot 00004071 \\ \cdot 00003884 \\ \hline\end{array}$.00003399 .00003260	.00002861	$\begin{array}{r} -00002427 \\ .00002347 \end{array}$	$\begin{array}{r} .00002073 \\ 0 \cdot 00002012 \end{array}$					
15	-00005297	. 00004412	- 00003698	- 00003120	-00002650	-00002265						
16	-00004968	- 00004167	-00003515	- 00002982	-00002544	$0 \cdot 00002184$						
17	-00004653	-00003931	-000033336	- 00002845	-00002439							
18	-00004354	-00003704	-00003162	-00002711	$0 \cdot 00002335$							
19	-00004071	-00003486	-00002995	-00002581								
20	-00003805	- 000003280	-00002833	$0 \cdot 00002454$								
21	- 00003555	-00003084	-00002679									
22	-00003320	-00002898	$0 \cdot 00002531$									
24	.00003102 0.00002898	.00002722 0.00002558										
25												
26												

TABLE 4
Values of $\frac{1}{4\left(y^{\prime}-y_{1}{ }^{\prime}\right)^{2}}\left\{1-\frac{28-x_{1}{ }^{\prime}}{\sqrt{ }\left\{\left(28-x_{1}\right)^{2}+4\left(y^{\prime}-y_{1}{ }^{\prime}\right)^{2}\right\}}\right\}$ [from equation (27)]

TABLE 5
Values of C_{n} [from equation (29)]

Integral	ξ	$\left\|\eta^{\prime}\right\|=0$	$\|\eta\|=\frac{1}{2}$	$\|\eta\|=1$	$\|\eta\|=1 \frac{1}{2}$	$\|\eta\|=2$	$\|\eta\|=3$
\int_{-5}^{-3}	-5 -4 -3	$\begin{aligned} & 0.0020795 \\ & 0.0225076 \\ & 0 \cdot 0109684 \end{aligned}$	$\begin{aligned} & 0 \cdot 0020409 \\ & 0 \cdot 0203377 \\ & 0 \cdot 0095188 \end{aligned}$	$\begin{aligned} & 0 \cdot 0018687 \\ & 0.0155976 \\ & 0.0066403 \end{aligned}$			
\int_{-3}^{-1}	-3 -2 -1	$\begin{array}{r} -0.0062495 \\ 0.2347213 \\ 0.2159726 \end{array}$	$\begin{aligned} & 0 \cdot 0030062 \\ & 0 \cdot 1432901 \\ & 0 \cdot 0952802 \end{aligned}$	$\begin{aligned} & 0 \cdot 0057713 \\ & 0 \cdot 0621117 \\ & 0 \cdot 0283262 \end{aligned}$	$\begin{aligned} & 0.0041649 \\ & 0.0287647 \\ & 0.0105014 \end{aligned}$	$\begin{aligned} & 0 \cdot 0026463 \\ & 0 \cdot 0149016 \\ & 0 \cdot 0047936 \end{aligned}$	$\begin{aligned} & 0 \cdot 0011106 \\ & 0 \cdot 0052505 \\ & 0 \cdot 0014949 \end{aligned}$
\int_{-1}^{+1}	$\begin{array}{r} -1 \\ -\frac{1}{2} \\ 0 \\ \frac{1}{2} \\ 1 \end{array}$			0.0152100 0.0751528 0.0428812 0.0751528 0.0152100	$\begin{aligned} & 0 \cdot 0053393 \\ & 0 \cdot 0235324 \\ & 0 \cdot 0125294 \\ & 0 \cdot 0235324 \\ & 0 \cdot 0053393 \end{aligned}$	$\begin{aligned} & 0 \cdot 0023973 \\ & 0 \cdot 0101342 \\ & 0 \cdot 0052540 \\ & 0 \cdot 0101342 \\ & 0 \cdot 0023973 \end{aligned}$	$\begin{aligned} & 0 \cdot 0007433 \\ & 0 \cdot 0030488 \\ & 0 \cdot 0015490 \\ & 0 \cdot 0030488 \\ & 0 \cdot 0007433 \end{aligned}$
\int_{+1}^{+3}	1 2 3	$\begin{array}{r} 0.2159726 \\ 0.2347213 \\ -0.0062495 \end{array}$	$\begin{aligned} & 0.0952802 \\ & 0.1432901 \\ & 0.0030062 \end{aligned}$	$\begin{aligned} & 0.0283262 \\ & 0.0621117 \\ & 0.0057713 \end{aligned}$	$\begin{aligned} & 0.0105014 \\ & 0.0287647 \\ & 0.0041649 \end{aligned}$	$\begin{aligned} & 0 \cdot 0047936 \\ & 0 \cdot 0149016 \\ & 0 \cdot 0026463 \end{aligned}$	$\begin{aligned} & 0 \cdot 0014949 \\ & 0 \cdot 0052505 \\ & 0 \cdot 0011106 \end{aligned}$
\int_{+3}^{+5}	3 4 5	$\begin{aligned} & 0 \cdot 0109684 \\ & 0 \cdot 0225076 \\ & 0 \cdot 0020795 \end{aligned}$	$\begin{aligned} & 0 \cdot 0095188 \\ & 0 \cdot 0203377 \\ & 0 \cdot 0020409 \end{aligned}$	$\begin{aligned} & 0.0066403 \\ & 0.0155976 \\ & 0.0018687 \end{aligned}$			

TABLE 6A
Simultaneous Equations and Solution (a)

$\left(x_{1}^{\prime}, y_{1}^{\prime}\right)$	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}	A_{6}	A_{7}	A_{8}	A_{9}	A_{10}	w / V
(7,0)	$0 \cdot 982422$	0.113302	$0 \cdot 133984$	$0 \cdot 138595$	-0.062115	-0.020952	-0.016014	-0.009059	-0.004116	-0.003844	1
(14,0)	- 726192	- 258320	- 222552	- 183883	- . 105478	- . 043649	-. 032051	-. 016099	-.007460	-. 006439	1
$(21,0)$	- 638820	- 329748	- 227718	- 167470	- . 136008	- . 063817	-. 044309	-. 023531	-. 011331	-. 009640	1
$(27,0)$	- 576631	- 323578	-199627	- 146518	- . 151608	-. 074386	-. 050205	-. 028566	- . 014045	-. 025488	1
$(14,3)$	-770684	- 256678	- 222345	-185047	+-008890	- . 002434	+.000914	-. 024275	-. 010983	-. 009960	1
$(21,3)$	-629305	- 320416	- 222290	-164067	-. 041636	-. 018880	- . 012868	- . 041589	-.019786	- . 016577	1
$(27,3)$. 557285	- 311290	- 192549	- 141462	-. 063756	-. 029362	- . 020777	-. 050519	- . 024821	-. 020837	1
$(21,7)$. 577980	- 276912	- 196639	- 148992	$+.332465$	+ $\cdot 155363$	+ $\cdot 110169$	+.083789	+.038496	-. 001456	1
$(27,7)$	-459141	. 251676	-157384	- 116008	+ 2688046	$+\cdot 139114$	+.090065	+.039643	+ . 021589	-. 031036	1
$(27,10)$	$0 \cdot 280827$	$0 \cdot 151987$	$0 \cdot 096017$	$0 \cdot 070989$	+0.495631	$+0 \cdot 252034$	$+0 \cdot 165786$	$+0.410565$	$+0.207667$	$+0 \cdot 290213$	1

Solution $\begin{aligned} A_{1}=0.4872 & A_{2}=4.4548\end{aligned} A_{3}=-11 \cdot 2068 \quad A_{4}=10.8383 \quad A_{5}=-1 \cdot 2550 \quad A_{6}=6.4203 \quad A_{7}=-4 \cdot 5878 \quad A_{8}=-3.9237$

TABLE 6B
Simultaneous Equations and Solution (b)

$\left(x_{1}^{\prime}, y_{1}{ }^{\prime}\right)$	A_{1}	A_{2}	A_{3}	A_{4}	${ }^{\prime}{ }_{5}$	A_{6}	A_{7}	A_{8}	A_{9}	A_{10}	w / V
$(7,0)$	$0 \cdot 624305$	0-113302	$0 \cdot 133984$	$0 \cdot 138595$	-0.051494	-0.020952	-0.016014	-0.008557	-0.004116	-0.003749	1
$(14,0)$	- 579668	- 258320	- 222552	- 183883	-. 094381	-. 043649	-. 032051	-. 015318	- . 007460	- .006276	1
$(21,0)$	- 619630	- 329748	- 227718	- 167470	- . 129741	-. 063817	-. 044309	-. 022878	-. 011331	- . 009473	1
$(27,0)$	- 629904	- 323578	-199627	- 146518	- $\cdot 149313$	-. 074386	-.050205	-. 028178	-. 014045	- . 025368	1
$(14,3)$	- 611438	- 256678	- 222345	- 185047	+ . 000782	-. 002434	+.000914	-. 022772	-. 010983	-. 009454	1
$(21,3)$	- 606627	- 320416	- 222290	- 164067	-. 040312	-. 018880	-.012868	-. 040090	-. 019786	-.016125	1
$(27,3)$	- 606757	- 311290	- 192549	- 141462	-.059697	-. 029362	-.020777	-. 049755	-. 024821	-.020615	1
$(21,7)$	- 541349	- 276912	- 196639	- 148992	+ 310878	+ - 155363	+ $\cdot 110169$	+ .077155	+ .038496	- .002670	1
$(27,7)$	- 492976	. 251676	-157384	-116008	+. 276249	$+.139114$	+.090065	+.042632	$+.021589$	-. 029737	1
$(27,10)$	$0 \cdot 298135$	$0 \cdot 151987$	$0 \cdot 096017$	$0 \cdot 070989$	$+0.502029$	$+0 \cdot 252034$	$+0 \cdot 165786$	$+0.414068$	+0.207607	+0.292418	1

Solution $A_{1}=0.9809 \quad A_{2}=2 \cdot 2604 \quad A_{3}=-6 \cdot 7968 \quad \begin{gathered}A_{4}=7 \cdot 3591 \quad A_{5}=-1 \cdot 6520 \\ A_{9}=43 \cdot 1813\end{gathered} \quad A_{10}=0.3227 \quad 10 \cdot 9844 \quad A_{7}=-10 \cdot 2620 \quad A_{8}=-21 \cdot 2653$

N

TABLE 6c
Simultaneous Equations and Solution (c)

$\left(x_{1}{ }^{\prime}, y_{1}{ }^{\prime}\right)$	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}	A_{6}	A_{7}	A_{8}	A_{9}	A_{10}	w / V
$(7,0)$	0.982422	$-0 \cdot 358117$	$0 \cdot 113302$	$0 \cdot 133984$	-0.062115	$+0 \cdot 010621$	-0.020952	-0.009059	+0.0005018	-0.003844	1
$(14,0)$	- 726192	- . 146524	- 258320	- 2222552	- $\cdot 105478$	$+.011097$	-. 043649	-.016099	+ $\cdot 0007807$	-. 006439	1
$(21,0)$	- 638820	-. 019190	- 329748	- 227718	- $\cdot 136008$	+ .006267	-. 063817	-.023531	+ $\cdot 0006529$	-. 009640	1
$(27,0)$	- 576631	+ .053273	- 323578	- 199627	- 151608	+ .002295	-. 074386	-. 028566	+ $\cdot 0003881$	- . 025488	1
$(14,3)$	-770684	- $\cdot 159246$	- 256678	- 222345	+.008890	- . 008108	-.002434	- .024275	+ $\cdot 0015033$	-. 009960	1
$(21,3)$	- 629305	- . 022678	- 320416	- 222290	-. 041636	$+.001324$	- . 018880	-. 041589	+ $\cdot 0014988$	- . 016577	1
$(27,3)$	- 557285	+.049472	-311290	- 192549	-. 063756	+ .004059	- . 029362	-. 050519	+ $\cdot 0007637$	-. 020837	1
$(21,7)$	- 577980	-. 036631	- 276912	- 196639	$+\cdot 332465$	-.021587	+ $\cdot 155363$	+ .083789	- . 00663336	-. 001456	1
$(27,7)$	- 459141	+.033835	. 251676	- 157384	+ 268046	$+.008203$	$+\cdot 139114$	+.039643	+.0029889	-. 031036	1
$(27,10)$	0.280827	+0.017308	$0 \cdot 151987$	$0 \cdot 096017$	$+0.495631$	$+0.006398$	$+0.252034$	+0.410565	+0.0035025	$+0.290213$	1

TABLE 7

V alues of $B_{1}, B_{2}, B_{3}, B_{4}$ for Solutions (a), (b), (c)
Solution (a) from equation (45a)

y^{\prime}	B_{1}	B_{2}	B_{3}	B_{4}
0	$+0.4872$	$4 \cdot 4548$	-11.2068	10.8383
1	$0 \cdot 4782$	$4 \cdot 4998$	-11.2387	10.8383
2	$0 \cdot 4493$	$4 \cdot 6397$	-11.3342	10.8383
3	$0 \cdot 3935$	$4 \cdot 8894$	-11.4935	10.8383
4	$0 \cdot 2997$	5-2734	-11.7166	$10 \cdot 8383$
5	+0.1528	5-8264	-12.0033	10.8383
6	-0.0666	$6 \cdot 5927$	$-12 \cdot 3538$	10.8383
7	-0.3809	$7 \cdot 6266$	-12.7679	10.8383
8	-0.8161	$8 \cdot 9922$	-13.2458	10.8383
9	-1.4003	$10 \cdot 7635$	$-13 \cdot 7874$	10.8383
10	-2.1637	13.0245	-14.3928	10.8383
11	$-3 \cdot 1377$	$15 \cdot 8687$	-15.0618	10.8383
12	$-4 \cdot 3544$	19.3999	-15.7946	10.8383

Solution (b) from equation (45b)

y^{\prime}	B_{1}	B_{2}	B_{3}	B_{4}
0	+ 0.9809	$2 \cdot 2604$	$-6 \cdot 7968$	$7 \cdot 3591$
1	0.9684	$2 \cdot 3387$	- 6.8680	$7 \cdot 3591$
2	0.9186	$2 \cdot 5988$	- $7 \cdot 0818$	$7 \cdot 3591$
3	$0 \cdot 7946$	$3 \cdot 1156$	-7.4381	$7 \cdot 3951$
4	$0 \cdot 5352$	$4 \cdot 0140$	- $7 \cdot 9370$	$7 \cdot 3591$
5	$+0.0548$	$5 \cdot 4689$	- $8 \cdot 5784$	$7 \cdot 3591$
6	-0.7562	$7 \cdot 7053$	-9.3623	$7 \cdot 3591$
7	- $2 \cdot 0309$	10.9980	-10.2887	$7 \cdot 3591$
8	- 3.9256	$15 \cdot 6720$	-11.3577	$7 \cdot 3591$
9	-6.6194	$22 \cdot 1019$	-12.5692	7-3591
10	-10.3135	$30 \cdot 7128$	--13.9232	$7 \cdot 3591$
11	$-15 \cdot 2305$	41.9792	-15.4197	$7 \cdot 3591$
12	-21.6137	56.4261	$-17 \cdot 0588$	7-3591

Solution (c) from equation (45c)

y^{\prime}	B_{1}	B_{2}	B_{3}	B_{1}
0	+ $2 \cdot 0003$	$3 \cdot 0860$	-2.5843	$2 \cdot 9692$
1	1.9791	$3 \cdot 0824$	-2.5358	$2 \cdot 9692$
2	$1 \cdot 9156$	$3 \cdot 0733$	$-2 \cdot 3903$	$2 \cdot 9692$
3	$1 \cdot 8106$	$3 \cdot 0640$	-2.1478	$2 \cdot 9692$
4	1-6653	$3 \cdot 0635$	-1.8082	$2 \cdot 9692$
5	$1 \cdot 4816$	$3 \cdot 0842$	-1.3717	$2 \cdot 9692$
6	$1 \cdot 2629$	3-1420	-0.8381	$2 \cdot 9692$
7	$1 \cdot 0134$	$3 \cdot 2565$	-0.2076	$2 \cdot 9692$
8	$0 \cdot 7396$	$3 \cdot 4509$	$+0.5200$	$2 \cdot 9692$
9	$0 \cdot 4503$	$3 \cdot 7516$	$1 \cdot 3446$	$2 \cdot 9692$
10	$+0 \cdot 1571$	$4 \cdot 1890$	$2 \cdot 2662$	$2 \cdot 9692$
11	-0.1246	4.7967	$3 \cdot 2848$	$2 \cdot 9692$
12	-0.3751	$5 \cdot 6121$	$+4 \cdot 4005$	2-9692

TABLE 8
Values of $\frac{K}{h V \alpha}$ for Solutions (a), (b), (c)

y^{\prime}	Solution (a)	Solution (b)	Solution (c)
0	1.1257	1.1235	1.1319
1	1.1209	1.1187	1.1271
2	1.1064	1.1042	$1 \cdot 1127$
3	1.0823	1.0799	1.0885
4	1.0484	1.0458	$1 \cdot 046$
5	1.0045	1.0017	1.0107
6	0.9501	0.9470	0.9564
7	0.8844	0.8808	0.8907
8	0.8051	0.8010	0.8112
9	0.7077	0.7031	0.735
10	0.5830	0.5781	0.5880
11	0.4097	0.4053	0.4133
12	0	0	0

TABLE 9

Values of $\frac{C_{L L} c}{C_{L} \bar{c}}=\frac{7}{2} \cdot \frac{1}{C_{L}}\left(\frac{K}{h V}\right)$		
$\eta=\frac{y^{\prime}}{12}$	Vortex-lattice theory Ref. 2, solution 34	Method of present report, solution (c)
0	1.300	1.304
0.25	1.250	1.254
0.5	1.099	1.102
0.75	0.822	0.822
0.85	0.651	0.643
0.95	0.385	0.365

APPENDIX

Numerical Formula for J_{3}.
In order to determine numerical values of w_{1} / V in equation (39), it is required to evaluate

$$
J_{3}=\int_{-1}^{1} \int_{-1}^{1}\left(\xi \frac{\partial G}{\partial \xi}+\eta \frac{\partial G}{\partial \eta}\right) \frac{d \xi d \eta}{\left(\xi^{2}+4 \eta^{2}\right)^{3 / 2}}
$$

in terms of the values of $G(\xi, \eta)$, when $|\xi|,|\eta|=0, \frac{1}{2}, 1$. Consider first the polynomial representation of $G(\xi, \eta)$ as a function of ξ only; then

$$
G(\xi, \eta)=\frac{1}{3} a_{i j} G_{j}\left(\frac{1}{2} \xi\right)^{i},
$$

where the convention of suffix summation is used for $i, j=0,1,2,3,4$,

$$
G_{j} \text { denotes } G\left(\frac{j-2}{2}, \eta\right)
$$

and $a_{i j}$ is given by the following table:

	$j=0$	$j=1$	$j=2$	$j=3$	$j=4$
$i=0$	0	0	+3	0	0
$i=1$	+1	-8	0	+8	-1
$i=2$	-2	+32	-60	+32	-2
$i=3$	-16	+32	0	-32	+16
$i=4$	+32	-128	+192	-128	+32

Similarly the polynomial representation in two variables is

$$
G(\xi, \eta)=\frac{1}{9} a_{i j} a_{k i} G_{j l}\left(\frac{1}{2} \xi\right)^{i}\left(\frac{1}{2} \eta\right)^{k},
$$

where

$$
G_{j l}=G\left(\frac{j-2}{2}, \frac{l-2}{2}\right) .
$$

Therefore, the coefficient of $\xi^{i} \eta^{k}$ is

$$
\frac{1}{9}\left(\frac{1}{2}\right)^{i+k} a_{i j} a_{k l} G_{j l}=\frac{1}{9}\left(\frac{1}{2}\right)^{i+k} A_{i b} \text {, say. }
$$

Since

$$
\int_{-1}^{1} \int_{-1}^{1}\left(\xi \frac{\partial G}{\partial \xi}+\eta \frac{\partial G}{\partial \eta}\right) \frac{d \xi d \eta}{\left(\xi^{2}+4 \eta^{2}\right)^{3 / 2}}
$$

vanishes if $G(\xi, \eta)$ is odd in either ξ or η, it is only necessary to consider the coefficients $A_{20}, A_{40}, A_{02}, A_{22}, A_{42}, A_{01}, A_{21}, A_{44}$. Thus
where

$$
J_{3}=\frac{1}{9} \Sigma\left(\frac{1}{2}\right)^{i+k}(i+k) A_{i k} I_{i k},
$$

$$
I_{i k}=\int_{-1}^{1} \int_{-1}^{1} \frac{\xi^{i} \eta^{h} d \xi d \eta}{\left(\xi^{2}+4 \eta^{2}\right)^{3 / 2}}
$$

and (i, k) takes the 8 pairs of values. Now

$$
\begin{aligned}
I_{20} & =\left[\left\{\eta \log _{e}\left\{\xi+\sqrt{ }\left(\xi^{2}+4 \eta^{2}\right)\right\}\right\}_{-1}^{1}\right]_{-1}^{1}=2 \log _{e} \frac{\sqrt{ } 5+1}{\sqrt{ } 5-1} \\
& =1 \cdot 92484730,
\end{aligned}
$$

$$
\begin{aligned}
I_{40} & =\left[\left\{-2 \eta^{3} \log _{e}\left\{\xi+\sqrt{ }\left(\xi^{2}+4 \eta^{2}\right)\right\}+\frac{1}{2} \xi \eta \sqrt{ }\left(\xi^{2}+4 \eta^{2}\right)\right\}_{-1}^{1}\right]_{-1}^{1} \\
& =-4 \log _{e} \frac{\sqrt{ } 5+1}{\sqrt{ } 5-1}+2 \sqrt{ } 5 \\
& =0 \cdot 62244136, \\
I_{02} & =\left[\left\{\frac{1}{8} \xi \log _{e}\left\{\sqrt{ }\left(\xi^{2}+4 \eta^{2}\right)+2 \eta\right\}\right\}_{-1}^{1}\right]_{-1}^{1}=\frac{1}{4} \log _{e} \frac{\sqrt{ } 5+2}{\sqrt{ } 5-2} \\
& =0 \cdot 72181774,
\end{aligned}
$$

$$
I_{22}=\left[\left\{\frac{1}{24} \xi^{3} \log _{e}\left\{\sqrt{ }\left(\xi^{2}+4 \eta^{2}\right)+2 \eta\right\}+\frac{1}{3} \eta^{3} \log _{e}\left\{\xi+\sqrt{ }\left(\xi^{2}+4 \eta^{2}\right)\right\}\right.\right.
$$

$$
\left.\left.-\frac{1}{12} \xi \eta \sqrt{ }\left(\xi^{2}+4 \eta^{2}\right)\right\}_{-1}^{1}\right]_{-1}^{1}=\frac{1}{12} \log _{e} \frac{\sqrt{ } 5+2}{\sqrt{ } 5-2}+\frac{2}{3} \log _{e} \frac{\sqrt{ } 5+1}{\sqrt{ } 5-1}-\frac{1}{3} \sqrt{ } 5
$$

$$
=0 \cdot 13686568
$$

$$
I_{42}=\left[\left\{\frac{1}{40} \xi^{5} \log _{e}\left\{\sqrt{ }\left(\xi^{2}+4 \eta^{2}\right)+2 \eta\right\}-\frac{6}{5} \eta^{5} \log _{e}\left\{\xi+\sqrt{ }\left(\xi^{2}+4 \eta^{2}\right)\right\}\right.\right.
$$

$$
\left.\left.+\frac{1}{20} \xi \eta\left(6 \eta^{2}-\xi^{2}\right) \sqrt{ }\left(\xi^{2}+4 \eta^{2}\right)\right\}_{-1}^{1}\right]_{-1}^{1}
$$

$$
=\frac{1}{20} \log _{e} \frac{\sqrt{ } 5+2}{\sqrt{ } 5-2}-\frac{12}{5} \log _{e} \frac{\sqrt{ } 5+1}{\sqrt{ } 5-1}+\sqrt{ } 5
$$

$$
=0 \cdot 070614767
$$

$$
I_{04}=\left[\left\{-\frac{1}{64} \xi^{3} \log _{e}\left\{\sqrt{ }\left(\xi^{2}+4 \eta^{2}\right)+2 \eta\right\}+\frac{1}{32}\left(\xi \eta \sqrt{ } \xi^{2}+4 \eta^{2}\right)\right\}_{-1}^{1}\right]_{-1}^{1}
$$

$$
=-\frac{1}{3_{2}} \log _{e} \frac{\sqrt{ } 5+2}{\sqrt{ } 5-2}+\frac{1}{8} \sqrt{ } 5
$$

$$
=0 \cdot 18928128
$$

$$
\begin{aligned}
I_{24}= & {\left[\left\{-\frac{3}{3} \frac{3}{2} \xi^{5} \log _{\mathrm{e}}\left\{\sqrt{ }\left(\xi^{2}+4 \eta^{2}\right)+2 \eta\right\}+\frac{1}{5} \eta^{5} \log _{e}\left\{\xi+\sqrt{ }\left(\xi^{2}+4 \eta^{2}\right)\right\}\right.\right.} \\
& \left.\left.+\frac{1}{1} \overline{1} \bar{\sigma}\left(3 \xi^{2}-8 \eta^{2}\right) \sqrt{ }\left(\xi^{2}+4 \eta^{2}\right)\right\}_{-1}^{1}\right]_{-1}^{1} \\
= & -\frac{3}{1} \frac{3}{60} \log _{e} \frac{\sqrt{ } 5+2}{\sqrt{ } 5-2}+\frac{2}{5} \log _{e} \frac{\sqrt{ } 5+1}{\sqrt{ } 5-1}-\frac{1}{8} \sqrt{ } 5 \\
= & 0.051324632,
\end{aligned}
$$

$$
I_{44}=\left[\left\{-\frac{3}{4} \xi^{\xi} \xi^{7} \log _{e}\left\{\sqrt{ }\left(\xi^{2}+4 \eta^{2}\right)+2 \eta\right\}-\frac{6}{7} \eta^{7} \log _{e}\left\{\xi+\sqrt{ }\left(\xi^{2}+4 \eta^{2}\right)\right\}\right.\right.
$$

$$
=-\frac{3}{2} \frac{3}{24} \log _{e} \frac{\sqrt{ } 5+2}{\sqrt{ } 5-2}-\frac{12}{T} \log _{e} \frac{\sqrt{ } 5+1}{\sqrt{ } 5-1}+\frac{43}{56} \sqrt{ } 5
$$

$$
=0.02844285
$$

Therefore, $\quad J_{3}=\frac{1}{9}\left[B_{20} I_{20}+B_{40} I_{40}+B_{02} I_{02}+B_{22} I_{22}+B_{42} I_{42}+B_{04} I_{04}+B_{24} I_{24}+B_{44} I_{44}\right]$,
where $\quad B_{i k}=\left(\frac{1}{2}\right)^{i+k}(i+k) A_{i k}=\left(\frac{1}{2}\right)^{i+k}(i+k) a_{i j} a_{k i} G_{j l}$.
It follows from the table of $a_{i j}$ that $B_{i k}$ is given by the respective columns below:-

Factor of	B_{20}	B_{40}	B_{02}	B_{22}	B_{42}	B_{04}	B_{24}	B_{44}
G_{22}	-90	+144	-90	+900	-1080	+144	-1080	$+1152$
$G_{12}+G_{32}$	+48	--96	0	-480	+ 720	0	+ 576	- 768
$G_{02}+G_{42}$	-3	+ 24	0	+ 30	- 180	0	- 36	+ 192
- $G_{21}+G_{23}$	0	0	+48	--480	+ 576	- 96	+720 $+\quad$	+768 $-\quad 78$
$G_{11}+G_{13}^{21}+G_{31}+G_{33}$	0	0	0	+256	+384 $-\quad 96$	0	- 384	+ 512
$G_{01}+G_{13}+G_{41}+G_{13}$	0	0	0	$\begin{array}{r}\text { + } \\ -16 \\ \hline\end{array}$	$\begin{array}{r}\text { a } \\ +\quad 96 \\ \hline\end{array}$	0	a $+\quad 24$	$\begin{array}{r}\text { + } \\ -128 \\ \hline\end{array}$
$G_{20}+G_{24}$	0	0	- 3	+ 30	- 36	+ 24	- 180	+ 192
$G_{10}+G_{14}+G_{33}^{23}+G_{34}$	0	0	0	- 16	+ 24 $+\quad 6$	0	+ 96 $+\quad 6$	+ 128
$G_{00}+G_{04}+G_{30}+G_{41}$	0	0	0	+ +1	- 6	0	-6 $-\quad 6$	$+\quad 32$

Hence,

$$
\begin{aligned}
J_{3}= & -10 \cdot 7845628\{G(0,0)\}+2 \cdot 8338092\left\{G\left(-\frac{1}{2}, 0\right)+G\left(\frac{1}{2}, 0\right)\right\} \\
& +0 \cdot 4636337\{G(-1,0)+G(1,0)\}+0 \cdot 7293835\left\{G\left(0,-\frac{1}{2}\right)+G\left(0, \frac{1}{2}\right)\right\} \\
& +0 \cdot 3084028\left\{G\left(-\frac{1}{2},-\frac{1}{2}\right)+G\left(-\frac{1}{2}, \frac{1}{2}\right)+G\left(\frac{1}{2},-\frac{1}{2}\right)+G\left(\frac{1}{2}, \frac{1}{2}\right)\right\} \\
& +0 \cdot 2422526\left\{G\left(-1,-\frac{1}{2}\right)+G\left(-1, \frac{1}{2}\right)+G\left(1,-\frac{1}{2}\right)+G\left(1, \frac{1}{2}\right)\right\} \\
& +0 \cdot 0181922\{G(0,-1)+G(0,1)\} \\
& +0 \cdot 0879315\left\{G\left(-\frac{1}{2},-1\right)+G\left(-\frac{1}{2}, 1\right)+G\left(\frac{1}{2},-1\right)+G\left(\frac{1}{2}, 1\right)\right\} \\
& +0 \cdot 0350445\{G(-1,-1)+G-(1,1)+G(1,-1)+G(1,1)\} .
\end{aligned}
$$

Fig. 1. Plan form of the delta wing.

Fig. 2. Loci of the chordwise centres of pressure along sections of the delta wing.

FIG: 3. Spanwise distribution of hinge moment on the undeflected elevon.

Fig. 4. Distributions of pressure difference along four sections of the delta wing.

Fig. 5. Comparison of spanwise distributions of circulation round the delta wing.

Fig. 6. Comparison of pressure distributions from solution (c), vortex-lattice theory and experiment.

Publications of the Aeronautical Research Council

ANNUAL TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCHI COUNCIL (BOUND VOLUMIES)
1936 Vol. I. Aerodynamics General, Performance, Airscrews, Flutter and Spinning. qos. (41s. yd.) Vol. II. Stability and Control, Structures, Seaplanes, Engines, etc. 50s. (5Is. Id.)
1937 Vol. I. Aerodynamics General, Perormance, Airscrews, Flutter and Spinning. 4os. (4.1s. 1d.) Vol. II. Stebility and Control, Structures, Seaplanes, Engines, etc. 6os. (6is. id.)
${ }^{1} 938$ Vol. I. Aerodynamics General, Performance, Airscrews. $505 .(5 \mathrm{rs} .1 \mathrm{dd}$)
Vol. II. Ste bility and Control, Flutter, Structures, Seaplanes, Wiad Tuanels, Materials. 30 s. (3rs. id.)
1939 Vol. I. Aerodynamics General, Performance, Airscrews, Engines. 50s. (5Is. Id.)
Vol. II. Stability and Control, Flutter and Vibration, Instruments, Structures, Seaplanes, etc. 63 s. (64 s .2 d .)
1940 Aero and Hydrodynamics, Aerofoils, Airserews, Engines, Flutter, Icing, Stability and Control, Structures, and a miscellaneous section. 5os. (5Is. Id.)
1941 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Stability and Control, Structures. 63s. (645.2 d .)
1942 Vol. I. Aero and Hydrodynamics, Aerofoils, Airscrews, Engines. 975s. (76s. 3d.)
Vol. II. Noise, Parachutes, Stability and Control, Structures, Vibration, Wind Tunnels. 47s. 6d. (48s. 7 d .)
1943 Vol. I. Aerodynamics, Aerofoils, Airscrews. 8os. (8rs. 4 d.)
Vol. II. Engines, Flutter, Materials, Parachutes, Performance, Stability and Control, Structures. gor. (9rs. 6d.)
1944 Vol. I. Aero and Hydrodynamics, Aerofoils, Aircraft, Airscrews, Controls. 84s. (855. 8d.)
Vol. II. Flutter and Vibration, Materials, Miscellaneous, Navigation, Parachutes, Performance, Plates and Panels, Stability, Structures, Test Equipment, Wind Tunnels. 84.f. (85s. 8d.)

Annuall Reports of the Aeronautical Research Coumcill-

1933-34	w. 6 d (rs. 8 d)	1937	
1934-35	1s.6d. (1s. 8d.)	1938	${ }_{15} \mathrm{~s}$. 6 d . (rs. 8 d .)
April I, 9935 to Dec. 3 r, 1936	4s. (4r. 4 d.)	1939-48	$3 s_{0}$ (3s. 2 d.$\left.\right)$

Index to all Reports and Memoraindla published in the Annual Techmical Reports, and separately-

April, 1950 - - R. \& M. No. 2600. 2s. 6 d. (2s. $\left.7 \frac{1}{2} \mathrm{~d}.\right)$
Author Index to all Reports and Memoranda of the Aeronautical Research Councill-

1909-1949. R. \& M. No. 2570 . 155 . (155. 3d.)
Inderes to the Technicall Reports of the Aeronantical Research Councill-
 July I, 1939 -une 30 , 194.5. uly I, 1945 -une 30, 1946. R. 8 M. No. 1950. R. \& M. No. 2050. R. \& M. No. 2150. Tuly 1, 1946 - December 3r, 1946. anuary 1, 194.7 - June 30, 194%. R. \& M. No. 2350. $1 s_{0} 9$ d. (Is. ro $\frac{1}{2} d$)

Iso (Is. I $\left.\frac{1}{2} d.\right)$

Prices in brackets include posioge.
Obtainable from
HER MAJESTY'S STATIONERY OFFICE
York House, Kingsway, London, W C.2; 423 Oxford Street, London, W. 1 (Post Orders : P.O. Box 569, London, S.E.1); 13a Castle Street, Edinburgh 2; 39, King Street, Manchester 2; 2 Edmund Street, Birmingham 3; 1 St. Andrew's Crescent, Cardiff; Tower Lane, Bristol 1; 80 Chichester Street, Belfast, or through any booksoller

[^0]: * Published with the permission of the Director, National Physical Laboratory.

