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Summary..--It is shown that ,  in a plane sheet under any particular loading system, certain reinforced holes may  
be made which do not alter the stress distribution in the main body of the sheet. These reinforced holes (hereafter 
called neutral  holes) necessarily have exactly the same stiffness and at least the same strength as the portion of the 
sheet that  has been cut out. The weight of the reinforcement is usually greater than  the weight of the sheet tha t  
has been cut out, though there are cases where it is less. 

The Airy stress function is used throughout because it admits of great generality and because the properties of a 
neutral hole can be expressed simply in terms of the function and its derivatives. Indeed, the stress function 
assumes a new and special significance in determining the shape of a neutral  hole. 

1. Introduction.--The use of stress-bearing sheet in structures, and especially aircraft structures, 
has given rise to a number of problems. The problem considered here is the general one of 
making and reinforcing a hole in a stress-bearing sheet so that  the strength and stiffness are not 
altered. Such a reinforced hole which does not affect the stress distribution in the remainder 
of the sheet, and therefore gives the same strength and stiffness as the replaced sheet, is here 
described as a neutral hole. 

Reissner and Morduchow 1 considered a neutral circular hole. They allowed themselves the 
choice of the tensile stiffness and bending stiffness of the reinforcement. Apart  from a few 
particular loading systems their solutions were impracticable, mainly because the required 
bending stiffness was so large as to be practically incompatible with the required tensile stiffness. 
They concluded that  for the types of reinforcement deemed technically important the bending 
stiffness may be ignored ; in other words, the reinforcement around a neutral hole experiences 
primarily tensile or compressive loads rather than bending moments. 

In this report it is shown that  neutral holes are always possible if there is the choice of the 
shape of the hole as well as the tensile stiffness of the reinforcement. A number of cases 
representative of window holes and undercarriage cut-outs in aircraft has been considered and 
the hole shapes and tensile stiffnesses of the reinforcement are reasonable from an engineering 
point of view. 

I t  is not possible to design a hole which is neutral for more than one type of loading system. 

* R,A,E, Report  Structures 90, received 25th January,  1951, 
!' 



2. A ssumptions.--The following assumptions are,made regarding the structure: 

(a) Stress-strain relations are linear. 

(b) Buckling does not take place. 

(c) Rivet flexibility is negligible. 

(d) The bending stiffness of the reinforcing member is negligible compared with its tensi le  
stiffness. 

(e) If stringers (or ribs) are present their stiffening effect may be adequately represented by 
assuming them to be spread out into an elastic sheet with equivalent directional properties 
(R. & M. 2758"2). 

Assumptions (a) to (c) are standard practice ; they are not essential in determining the shape 
of a neutral hole. 

Ample justification for (d) is given in Appendix I where it is shown that  the bending energy 
in the reinforcement is usually less than 1 per cent of the corresponding tensile energy. In 
addition it has been shown that  a negligible bending stiffness is, in fact, a necessary quality of 
the reinforcement if the reinforcement is to have least weight. 

Assumption (e) is not essential in tha t  exact solutions taking account of discrete stringers 
may be obtained as in Appendix II.  

3. General Pr@erties of a Neutral Hole.--Consider first the sheet in the uncut state. The 
stresses are such that  all elements of tile sheet are in equilibrium which, for a typical element 
of the sheet, means that  

and 
ax ay 

aSy + a ¥ ~ y _ 0 .  
ay ax 

Both these relations are automatically satisfied by introducing a stress function ¢ ¢ such tha t  
the stresses are to be derived from it by the equation 

a.  - -  a2¢ 

ay 

~x ~ 

ax ay 

(1) 

The complete state of stress in a sheet can therefore be described by the stress function ¢ 
alone. This stress function is usually introduced as an aid to the determination of the stresses 
in a plate subjected to given boundary conditions. For example, for plain sheet it can be 
shown that  ¢ satisfies a particular equation ( V45 = 0) and together with the boundary conditions, 
this is sufficient to determine ¢ and hence the stresses. Here, however, it is assumed that  the 
complete stress distribution is already known, but  ¢ will still be used because it admits of great 
generality and because the properties of a neutral hole can be expressed simply in terms of ¢ 
and its derivatives. The function ¢ itself assumes a new and special significance in determining 
the shape of a neutral hole. 
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3.1. The Shape of a Neutral Hole.--To fix ideas whilst considering the equilibrium of the 
reinforcing member and the adjacent sheet Figs. 1 and 2 are given below. 

FIG. 1. Sheet with neutral hole. 
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FIG. 2. Forces acting on the element ABC. 

The bending stiffness of the reinforcing member is negligible compared with the tensile stiffness 
so that  the reinforcing member has the properties of a chain in that the line of action of the load 
P in the member is directed along the length of the member. For the element shown in Fig. 2 
the conditions of equilibrium are therefore 

d(/~ sin ~) = t(~, d x  - -  "L,, @) 1 
and I . . . . . . .  (2) 

d ( P  cos ~) = t ( ~ ,  dx  - -  ~ dy) 

Equations-(1) and (2) can be combined to give 

and 
(l/t) d(P sin ~o) = ~ ~ dy 

(l/t)  d ( P  cos ~) - -  - - a ~  dx - -  ~2~ 

(3) 

These equations are in the form of total differentials and may therefore be integrated to give 

P s i n ~ o _  b~ + a  ] 

t b x  

t P cos ~ _ ~ b 
t Oy 

(4) 

where a and b are arbitrary constants. 

P may be eliminated from equation (4) to give 

tan ~. ------ L O ~ / ~ y  + ' 
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Substituting @fix for tan ,~o, equation (5) may be integrated to give 

$ +ax  +by  + c = 0  . . . . . . . . . .  (6) 

as the equation for determining the shape of a neutral hole. 

Terms of the type (ax + by + c) can be added to $ without altering the stresses and so there 
will be no loss of generality by  writing equation (6) as 

,b = 0 . . . . . . . . . . . . .  (7) 

Hereafter equation (7) will be used instead of equation (6) as this appreciably simplifies the 
presentation of results. The significance of the term (ax + by + c) that  may be included in 

is considered in the next section. It  is worth noting that equation (7) is derived purely from 
considerations of statics and is therefore ind@endent of the elastic pr@erties of the sheet. 

3.1.1. Hole bounded by arcs.--Since there are no restrictions on the constants a, b, c that  may 
be included in $ it will be seen that  there is a large variety of curves from which the hole shape 
may be chosen. Furthermore, the hole shape may be bounded by arcs of curves, each arc of 
which is determined by a different set of values of a, b, c ; in this case it will be necessary to 
apply a balancing load at the junction point of adjacent arcs to ensure equilibrium of the loads 
in the reinforcing members. I t  will be shown later that  such balancing loads can normally be 
produced by inserting a simple tension or compression member from one junction po in t  to 
another, as in Fig. 3, or by utilising structural discontinuities already present in the main structure 
as in Fig. 4. 

The calculation of such balancing loads is straightforward. Suppose arc1 is given by 

and arc2 by 
•1 = ~' + a i x  + b l y  + Cl = 0 

d~ = 4/ + a2x + b~y + c~ = O ; 

then from equation (4) the vertical (or y) component.of the load in arcL is t (  "~'*' + a,~ and in 
k ax / 

arc., is t( °{'" + a2) and there are similar expressions for the x-components. I t  follows that  
\ ~X 

the vertical and horizontal components of the balancing load are respectively 

t(al - a2) ) 
and t ( b 2  - -  b l )  . . . . . . . . . . .  (8) 

3.2. Section Area of the Reinforcing Member.--The section area of the reinforcing member can 
be determined from a knowledge of the load P and the strain e,,, in the reinforcing member by 
the relation 

A,, = P/Ee,, .  

P is determined from equation (4) by eliminating ~: 

4 
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Tile strain s,, is related to tile sheet stresses as foiiows4: 

Ee,, = cos 2 ~(¢, --  V%) + sin °" ~(% --  v¢,) + 2 sin ~o cos ~o(1 + v)r,y . . . . .  (10) 

For the simple case in which the sheet is not reinforced by stringers (i.e., ~, ---- G, etc., equations 
(9) and (10) can be combined with (1) and (7) to give 

L\Oxl \ -~ /  J LSx 2' ,8xl ~ ' , S y l  ~ 8x 8y 8x ~y 

2 + - "  yJa ( 1 1 )  

3.3. Rib and Stringer-reinforced Sheet.--A stress function has been developed in R. & M. 27582 
from which the sheet stresses in a sheet reinforced by stringers and skew ribs can be derived. 
The stress function satisfies equation (1) and so the analysis up to and including equation (7) is 
still valid. 

Equation (11) is of a different form and may be obtained from Appendix I I I .  

4. Particular Stress Distributiom.--In this section four examples are given to demonstrate 
the application of the results of section 3 and to s h o w  that  these neutral holes have not 
unreasonable shapes and reinforcing members from an engineering point of view. The examples 
are considered in order of simplicity rather than practical importance. They are: 

(a) A circular hole for equal stress in x- and y-directions. 

(b) A ~/2 : 1 elliptical hole for stress in y-direction twice that  in x-direction. 

(c) A parabolic cut-out for stress in y-direction alone. 

(d) A ~/3 : 1 elliptical hole for equal bending stresses in two directions. 

In these examples, the sheet is not reinforced by stringers or ribs. Further  examples, dealt 
with in less detail, are given in Appendix IV. An example with discrete stringers is given in 
Appendix II .  

4.1. Equal Stress in x- a~d y-directions.--Such a stress distribution occurs, for example, in a 
thin-walled sphere subjected to hydrostatic pressure. 

The most general form for ¢ is 

f 2 + y2) + ax + by + c , 

so tha t  the shape of the neutral hole (¢ = 0) is circular. The fact that  the constants a, b, c 
are at present arbitrary means that  the circle can be chosen to have any radius and to be situated 
anywhere. If we take the centre of the circle at the origin and let it have a radius r we can 
substitute 

¢ -  

¢ = ~(x 2 + y ~ - -  r 2) 

in equations (11) and (9) to find 
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and 

A ,,~ - -  r t  
1 - - ~  

P = f r t  

(12) 

These properties of a neutra l  circular hole could, of course, have been deduced simply from 
first principles, though it is interesting to note  tha t  the  circular hole is the  only possible hole ," 
fur thermore the  circular hole, with this value for A= ,  will not  be neutral  for any other stress 
distribution. 

There is no need to limit the  number  of such holes to one, in fact there can be two or more 
overlapping, as ment ioned  in section 3.1.1, provided there is inserted a tension or compression 
member  to ensure cont inui ty  of load P and compat ibi l i ty  of displacements.  Two examples 
will demonst ra te  this. 

In  the  first example shown in Fig. 3 two unequal  circular holes of radii rl and r2 whose centres 
lie on the  x-axis overlap, meet ing  at an angle 01 + 02. I t  follows from equat ion (8) tha t  the  
horizontal  components  of P1 and P2 at the  junct ion points A and B will cancel out, but  the  
resul tant  vert ical  component  P1 cos 01 + P2 cos 02 will necessitate a tension member  between 
AB with a section area of 

t 
1 - -  v (r, cos 01 + r2 cos 02) . 

T 1 t 
A mt=-TW-~ 

,c 

f 
< 

<_____- 

4<----  

T T T I l 

FIG. 3. Two circular holes overlapping. 
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A different a r rangement  is shown in Fig. 4a, for in this case the sign of the  balancing loads 
at A, 13 is reversed and so (because members  with negat ive section areas are not  practicable) 
the members  AC and BD mus t  be present. These will again have a section area of 

t (rl cos 01 + r2 cos 02) and loads of magni tude  f t ( r l  cos 01 + r2 cos 02) must  now be applied 
1 - - v  

external ly to them.  



t t s t  

(o? (b) 
FIG. 4. Holes  bounded by  circular arcs. 

Fig. 4b is a combination of the types represented in Figs. 3 and 4a. 

4.2. Stress in y-direction Twice that in x-direction.--Such a stress distribution occurs in a 
thin-walled cylinder subjected to hydrostat ic  pressure. 

Suppose ay = 2a, = f ,  

so that the shape for the neutral hole is an ellipse with major and minor axes in the ratio ~/2 : 1. 
II a, b, c are chosen so that the centre of the ellipse is at the origin and the minor axis is 2f  
then the equation for the neutral hole will be 

Y~ - -  r ~ = 0 ( 1 3 )  ¢ o c x ~ + ~  . . . . . . . . .  

,L  < 
2 

< 

FIG. 5. Elliptical  hole wi th  axes  ~¢/2 : 1. 
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Substituting equation (13) in (11) gives 

A . . . .  ~ / 2 ( 1  + x2/r2)~ 2 . . . . . .  (14) 
rt 1 - -  2~, + 3x2/r 2 . . . . .  

This variation has been plotted in Fig. 16. I t  will be noticed that  the maximum and minimum 
values of A,~ differ appreciably. 

4.3. U n i f o r m  Stress  in  y -d i rec t ion  A l o n e . - - S u c h  a stress distribution is probably the one most 
commonly approximated to in aircraft structures. 

If 8y = f the most general form for ~ is 

~ =/x--~ + ~ + b y + c  
2 

and so the neutral hole (or cut-out, since the hole is not 'closed') is any parabola of the type 

o c x  2 - r y = O  . . . . . . . . . .  , (15) 

where r is arbitrary and determines thesize. 

This parabolic shape is well known in connection with the design of certain suspension bridges 
in which the weight/unit length of span, i.e., t~y, is constant. 

p / P  \ 

FIG. 6. Ideal parabolic cut-out. 

> 

/ 

The section area A,,, is obtained by substituting equation (15) in equation (11): 

A, , ,_  (1 + 4y,lr) ~ 
rt 2 ( 4 y / r  - -  ~) 

(16) 

This expression becomes negative over the range 0 < y < vr/4, from Q to Q in Fig. 6 (say), and 
so any prffctical design must utilise those parts of the parabola from Q to R. In fact as Am is 
very large in the immediate vicinity of Q it will also be inadvisable, from a weight point of view, 
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to use these parts of the parabola near Q. The inset in Fig. 6 shows the position of Q to scale 
taking v = ~. I t  will be seen that  the 'useless' region is comparatively small ; it is due entirely 
to the Poisson contraction. 

The simplest symmetrical arrangement with positive A,,, everywhere would be that  shown in 
Fig. 7. 

ORIGIN OF - - - - - - - -  

ONE OF THE 
PARABOLAS 

P 

\K / 
L 

2 f w t  

FIG. 7. Cut-out bounded by parabolic arcs. 

-Am GIVEN BY 
EOUATION (,6) 

~ A j  = 2wt  

At the junction point J the horizontal components of the P's will cancel out, but to offset 
the resultant vertical component 2fwt, given by equation (8) it will be necessary to introduce the 
tension member as shown. 

Suppose now the panel of Fig. 7 represents the lower surface of an aircraft wing in the 
neighbourhood of a cut-out. The externally applied loads at K, L would have no horizontal 
components so that  we should have to induce such components by  modifying the structure. 
This could be accomplished by inserting a compression member between K and L, but it must be 
pointed out that  the member KL would be fairly inefficient since its stress would be only vf. 
Such an arrangement is shown in Fig. 8. 

I t  will be noticed that  this type of cut-out reinforcement could only be applied efficiently 
to a wing of 3-spar construction. 

The booms of constant section area A I shown in Fig. 8 can clearly be added to the rest of the 
structure without altering its constant stress character. The booms can also be regarded as 
special cases of the general problem considered in this report. For example, if we take the 
origin on the line LL'  and take 
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a suitable boundary of a neutral 'hole' is the line L L '  (since ¢ = 0) and the appropriate section 
area of the reinforcing member, as determined from equation (11), is A I. 

K ~ 

" A t  = r t / 2  v 

FROM F..QN (16') 
\ / 

A t = ANY CONSTANT 

.Aj 2 w t  

L I 

FIG. 8. Cut-out bounded by  parabolic arcs and compression member.  

4.3.1. S u b s i d i a r y  f o r m s  based on the f l a r a b o l a . - - T h e r e  are other types of neutral hole or cut-out 
that  can be made on these principles. They will not be discussed here, but their basic forms 
are shown in Fig. 17. The last two types shown there utilise the 'useless' part of the parabola 
and the sheet and cut-out have therefore to be interchanged. These last types are very inefficient 
from the weight point of view. 

4.4. Equa l  Bendirag Stresses  in  T w o  D i r e c t i o n s . - - S u c h  a stress distribution, though not of 
great practical importance, is considered as it brings out a number of fresh points concerning 
neutral holes in general. The stress distribution differs from those so far considered in that  the 
stresses in the sheet are not constant. 

The most general form for ¢ is 

¢ oc x a + y3 + ax  + by + c , 

so that  the shape of a neutral hole is, in general, a cubic. 

Owing to the more complex form for ¢ the coefficients a, b, c no longer refer directly to the 
position and size of the hole. Here, however, the coefficients will be chosen specially so that  
the stress function may be factorised. The advantage of this is that  it will be possible to find 
a 'closed form' for the shape of the neutral hole. We take 

¢ oc x a + y 3  _ r2(x + y )  

:_ (x + y ) ( x  2 - -  x y  + y2 _ r2) , . . . . . .  (17) 

and choose the shape of the neutral hole from the second factor only, i .e.,  

x ~ - -  x y  + y "  - -  r 2 = 0 . . . . . . . . . . .  ( 1 8 )  
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Equation (18) represents an ellipse with major and minor axes in the ratio ~/3 • 1 and inclined 
at 45 deg to the x-axis (see Fig. 18). 

The cross-section area of the reinforcement, obtained from equations (11) and (17), is given 
by  

A , ~  ---= t(5r2 - -  3xy)~12 
6{(4 - -  ~,)r 2 - -  3xy}  ' 

(19) 

which remains practically constant at its mean value of 0.50rt. 

5. Weight  E f f i c i enc ies . - -Holes  and cut-outs which represent exactly the sheet which has 
been removed are necessarily 100 per cent efficient as regards strength and stiffness. We 
need therefore discuss the efficiency from the weight point of view alone. 

A suitable criterion for the weight efficiency is 

w e i g h t  o f  m a t e r i a l  r e m o v e d  _ _  
w e i g h t  of r e i n f o r c e m e n t  i n se r t ed  - -  ~ w  ~ Say. 

This expression does not afford a direct comparison with a hole which is not neutral. A 
hole which is not neutral will cause stress concentrations which would lower the strength of 
the complete structure unless the thickness of the sheet surrounding the hole were increased. 
Such an increase in sheet thickness should be taken into account when comparing efficiencies 
in any particular case, though this cannot be done in a generalised form. 

Before discussing the comparative efficiencies of different neutral holes a few facts will be 
listed below. The material is taken to have unit density and for numerical results v will be 
taken as ~. The notation for reinforced sheet is given in Appendix III .  

5.1. Circular hole (section 4.1).-- 

Material removed = =r2t. 

Reinforcement inserted = 2 = r ( l @ v ) ,  

therefore ~,, -- -- 37.5 per cent. 

5.1.1. Circular holes overlapping at any re-entrant angle (as in Fig. 3) .--  

2 
-- 37.5 per cent. 

5.1.2. Hole bounded by circular arcs (as in Fig. 4a).--Assuming that  a continuation of the 
members CA, BD formed part  of the 'uncut '  structure it will be found tha t  

1 m ~) 

~/'0-- 2 
1 + v) sin 01 sin 02 sin (01 + 02) 

+ ~ 01 Sill 2 0~ + 02 sin ~ 01 

= 77 . 3 per cent if 01= 02=~. 
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5.1.3. Circular hole ; sheet reinforced by  two orthogonal  sets of closeiy spaced stringers such 
t h a t  X = Y. 

Material  r emoved  = ~r2t(1 + 2X) .  

Reinforcement  inserted (see Appendix  I) 

(1 - -  v)(1 + 2X) . . . . .  (20) therefore  ~" = 2{1 + X(1 - -  v)} . . . .  

Typical  values are: 

therefore 

X = ½ ,  ~ = 5 4 - 5 p e r c e n t  

X =  1 ,  ~ , = 6 4 - 2 p e r c e n t  

X = ~ (i.e., no sheet), ~,  = 100 per cent. 

5.2. Elliptical  Hole with Axes  %/2 • 1 (section 4.2). 

Material  r emoved  = W/2. ~r2t. 

@ 
Reinforcement  inser ted = f A,, a round  the  ellipse x 2 + 

+ 25 
9 \  2W/7/ ' 

V,. = 38-4 per cent.  

therefore w = (1 + X + Y ) ( z  - -  2v) /KZ(e)  . . . . . . .  (22) 

12 

and e = _ _ _ _ e  - -  2v 

where 

~ / 2 .  ~Kr2tZ(e) 
--27) 

e "~ 1/2 
z ( 6  = e(s - 2e) + 2(1 - -  e) ~ \ T ~ - ~ /  

so tha t  the re inforcement  inser ted is 

5.2.1. Elliptical  hole with axes W/2 : 1 ; sheet reinforced by  sets of stiffeners in x- andy-direct ions .  

Mater ial  r emoved  = @ 2 .  ar2t(1 + X + Y) 

and from equat ion  (33) of Appendix  I I I  

A,,, = W/2.  K t ( x  ~ + r2) ~ /~ -  { ( 4 ~ -  s)x 2 + (s - - 2 v ) r  2} . . . . . .  (21) 



Typica l  values are: 

X =  Y = I ,  ~ J w = 5 7 " l p e r c e n t  

X = ½ Y = ½ ,  ~ = 6 1 - 1 p e r  cent. 

V~then X and  Y are both large compared  wi th  un i ty  (i.e., the  sheet thickness m a y  be neglected) 
equa t ion  (22) becomes 

• ~(4 ÷ 9;t + 4;t") . . . . .  (23) 
%---- (1 + Z2)(2 + ;t)" ' "" " 

where  ~ = ~/(Y/X).  

Express ion (23) has a m a x i m u m  value of un i ty  when Y = 2X ; all members  would be equal ly  
stressed in this case. 

5.3. Parabolic Cut-out. (Section 4.3). 

~ARABOLA x 2=ry  

FIG. 9. N o t a t i o n  for  p a r a b o l i c  cu t -ou t .  

If  we assume tha t  a con t inua t ion  of the central  boom formed par t  of the uncu t  s t ruc ture  the 
mater ia l  r emoved  is 

4WSt 
3r (1 +3/~ +3/~ 2) 

where  

# - -  w r H  1 
W 2W 2 2 ' 
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and the material  inserted (including the compression member) = 

Material removed + W~t(1 + Q"F 
4~ 

(24) 

where 

2" = 4 + Vv TV log (H/W -- W/r -- V , ) ( H / W  + W/r + V~) ' 

a non-dimensional quant i ty  proportional to the increase in structure weight. 

I t  follows tha t  

1 
= a i ] -+  'Y' rr  

1 + 16~W(1 + 3 ~  + 3 ~  2) 

(25) 

This can be made nearly uni ty  by making H/r sufficiently large. But for this type of cut-out 
the problem is usually not one in which an efficient 'hole' is required. Instead, the parabolic 
cut-out may be merely a means for diffusing two concentrated loads uniformly into the sheet 
and 3-boom structure. A least value is therefore required not for % but for r (see equation (24)) 
which is proportional to the increase in structure weight. 

For any particular value of H/W, which defines approximately the size of the parabola, there 
is a value of r/W which makes F a minimum. These values and the corresponding values of 
w/W and ~ are given in Table 1 below. The ordinary figures are for v = ¼, those in brackets 
for v = ½. 

TABLE I 

Parameters Corre@onding with Minimum F 

H/W 

-/liifin 

1"0 

14"6 

1.4 

6"5 
(lO.6) 

1.73 

4.3 
(6.1) 

2.0 

3.4 
(4.5) 

2.5 

2-4 

2"22 1"20 0"87 0r71 0"53 
r/W (1.60) (1.08) (0-84) 

0.61 0.38 0.27 0.21 0.17 
w/W (0.61) (0.44) (0.34) 

20- 6 
per cent 

(22.3 
per cent) 

~ percent  

38.3 
per cent 

(42.7 
per cent) 

9.4  
per cent 

30.6 
per cent 
(33.5 

per cent) 

51 "0 
per cent 

5.3.1. Parabolic Cut-out; sheet reinforced by closely spaced stringers (Y). 

The case when the sheet is reinforced by two sets of closely spaced stringers does not admit 
of ready analysis. In most practical cases, however, the reinforcement parallel to the direction 
of the applied loads (stringers) is much greater than that  at right-angles to the applied loads 
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(ribs). If this small lateral stiffness is neglected it will be found that  the material removed 
and the material  inserted are each (1 + Y) times their previous (unreinforced) values. Table 1 
is therefore applicable to this case. 

5:4. Elliptical hole with axes ~/3 : 1 .  (Section 4.4). 

, 2~r2t Material removed = 
V3 

=r='t { (1 + v)" } 
Reinforcement inserted - - 3 V  ~ 5 + v  + ~/{(1 --  v)(5 --  v)}.j ' 

therefore % = 9 9  per cent. 

For a material  with v less than 0.22, ~1~ actually exceeds 100 per cent, in other words the 
weight of reinforcement inserted would be slightly less than the weight of material removed. 

Further examples in which the weight of the reinforcement is less than the weight of material  
removed (sometimes by a very large amount) are given in Appendix IV. The stress distributions 
corresponding to all highly efficient neutral holes are characterised by the comparatively low 
stresses developed in that  part  of the sheet which is to be removed. 

5.5. Discussion of Ef f ic iemies.--The following general conclusions concerning neutral holes 
can be drawn from the preceding sections. 

(a) When the stresses in the sheet are constant the weight efficiency of neutral holes (as 
defined on page 11) is never greater than unity so that  neutral holes could not be used for 
lightening purposes. 

(b) When the stresses in the sheet are not constant the weight efficiency could be greater 
than  unity, so that  in this case neutral holes could be used for lightening purpose. The stress 
distributions corresponding to such highly efficient neutral holes are characterised by the 
comparatively low stresses developed in that  part  of the sheet which is to be removed. 

Referring to the three types of neutral hole considered here in which the sheet stresses were 
constant, it is found that:  

(c) The weight efficiency of the parabolic cut-out becomes comparable with those for the 
circular and ~/2 : 1 elliptical holes for values of H / W  about 2. For values of H / W  less than 
about 2 the parabolic cut-out soon becomes inefficient. I t  must be remembered though that  
the figures quoted in Table 1 include the compression member; it is possible that  for other 
reasons a heavy rib boom may be needed where the compression member would be. If this 
were so the efficiency figures would be increased considerably, roughly speaking 70 per cent 
of the increased weight being due to the compression member. 

(d) The weight efficiency of circular and ~/2 : 1 elliptical holes in reinforced sheet is higher 
than in unreinforced sheet, though this statement by itself may be misleading ; for example, in 
the circular hole the higher efficiency is due, apart from the factor (1 --  v), to the lower efficiency 
of the basic structure. Efficiency of 100 per cent is obtained when the sheet is vanishingly 
light and the stringers are such that  each is strained the same amount. 

(e) The cross-sectional areas of the reinforcing members, and hence the weight efficiency, 
depend appreciably on Poisson's ratio. This is especially so in the V/2 : 1 elliptical and parabolic 
cases,  
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6. Conclusions.--A theory has been developed which shows that  if a plane sheet is loaded 
in any one particular way there is, in general, a large variety of reinforced holes tha t  may be 
made in the sheet which do not affect the stress distribution in the remainder of the sheet. 
Such reinforced holes necessarily have exactly the same stiffness and at least the same strength 
as the replaced sheet and are here defined as neutral holes. If the stress distribution in the 
sheet is prescribed by an Airy stress function ~ the shape for such neutral holes is given by a 
curve of the form 6 (to which may be added any linear function of x and y) = 0 ; or, with certain 
modifications, the hole may be bounded by arcs of such curves. The cross-section area of the 
reinforcement is a function of ~ and Poisson's ratio. The theory is equally applicable to stringer 
reinforced sheet ; the only difference lies in the expression for the reinforcement cross-section 
area. Apart from some trivial exceptions a hole which is neutral for one type of loading will 
not  be so for another. 

In addition to the usual assumptions made in the theory of elasticity i t  is assumed that  
the bending stiffness of the reinforcement is negligible compared with its tensile stiffness. This 
assumption is fully justified in Appendix I, where in addition it is shown that  a negligible bending 
stiffness is in fact necessary if the reinforcement is to have least weight. 

Four cases only have been considered in detail. These are: 

(a) A circular hole--for equal direct stress in all directions (as occurs in a thin-walled 
sphere under pressure). 

(b) An elliptical hole with axes in the ratio ~/2 : 1--for direct stresses in the direction of the 
axes in the ratio 2 : 1  (as occurs in a thin-walled cylinder under pressure). 

(c) A parabolic cut-out--for  direct stress in one direction only. 

(d) All elliptical hole inclined at 45 deg with axes in the ratio ~/3 : 1--for equal bending 
stresses in two directions. 

In all these cases the hole shapes and the cross-section areas of the reinforcing members 
are reasonable from an engineering point of view, though the parabolic cut-out necessitates a 
3-boom type of construction. Other shapes and stress distributions are given in Appendix IV. 

When the stresses in the sheet are constant the weight efficiencies of neutral l~oles are 
normally about 40 per cent, though higher efficiencies are obtained if the sheet is reinforced 
by  stringers. 100 per cent efficiency is obtained when the sheet is vanishingly light and the 
stringers are such that  each is strained the same amount. 

When the stresses in the sheet are not constant the weight of the reinforcement for a neutral 
hole may be less than the weight of material removed. Such neutral holes, in which the weight 
efficiency exceeds 100 per cent, are characterised by the comparatively low stresses developed 
in tha t  part of the sheet which is to be removed. 

A model of a parabolic cut-out has been tested and good agreement obtained with the 
theory. 
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LIST OF SYMBOLS 

Cartesian co-ordinate axes 

Thickness of sheet 

"Mean applied stresses" such that  

Forces in the stiffened sheet per unit length 

Stresses in the sheet, so that  if the sheet is not stiffened 

~x = a~, etc. 

A stress function (see equation (1)) 

Angle which tangent to boundary of hole makes with Ox 

Load in reinforcing member bounding hole 

Section area of reinforcing member bounding hole 

Strain in reinforcing member bounding hole 

Elastic moduli 

Poisson's ratio 

Arbitrary constants 

Particular value of stress 

Length which determines size of hole 

An angle 

Section areas of straight reinforcing members 

Weight efficiency, defined in section 5 

Relative thicknesses of equivalent sheets of X- and Y-members 

Are defined in section 5.2.1 

Are defined in Fig. 9 

= w i n  

Is defined in section 5.3 

Additional symbols used in Appendix I :=- 

s A strain 

n Side ratio of rectangular sectioned reinforcing member 
A b -~- Increment of stress due to bending 

Stress due to uniform tension 

z~ e - -  Bending energy 
Tensile energy 

~ Reinforcement width 
Radius of hole 
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A P P E N I ) I X  I 

The Effect of Bending Stiffness of the Reinforcing member 

I t  is shown here that  the assumption of negligible bending stiffness of the reinforcing member 
is quite justifiable. The circular and %/2 : 1 elliptical holes are considered and it is shown by  an 
approximate method that  the energy stored in the reinforcing member due to bending is negligible 
compared with tha t  due to direct loads. An exact solution for the circular hole is also quoted. 

will be taken as ~ throughout. 

(a) Circular hole.--I)ue to a uniform strain e in all directions the change in curvature of the 
reinforcing member is --e/r. The cross-sectional area, from equation (12), is 4rt/3 and therefore 
the width (in the plane of the sheet) of the reinforcing member, assuming it  to be of rectangular 
section with a width to depth ratio of n, is ~(4rtn)/3. I t  follows from engineer's bending theory 
t ha t  the ratio of the increment of stress (or strain) due to bending to the stress (or strain) due 
to uniform tension is 

= 

Thus if the reinforcing member has a square cross-section and t = 0.05 in., r = 5 in., 
Ab = 0.06, but  if t = 0.1 in., r = 5 in. and n = 4, Ab = 0"16. 

The ratio A e of bending energy to tensile energy is obtained by integrating (stress)" over the 
cross-sectional area and is given by 

1 2 A~ = xAb 

= nt/9r . . . . . . . . . . . . .  (26) 

For the two cases considered above Ae = 0. 001 and 0.009, so tha t  even in the second example 
the bending energy is less than 1 per cent of the tensile energy. 

An exact solution for the circular hole when the reinforcement has a rectangular cross-section 
has been given by  Gurney (R. & M. 1834~). For a neutral hole the true section area is 

8 2 

times the section area given by this report. Here O is the ratio of the reinforcement width to 
the hole radius. 

I t  is clear tha t  the factor inside the brackets will not differ appreciably from unity. Further, 
since v is never greater than ½ the factor slightly exceeds uni ty  so that  for least weight 8 should 
be made as small as possible. For a given reinforcement dep th  (out of the plane of the sheet) 
i t  follows tha t  a reinforcement material with a high E will be slightly more efficient than one 
with a lower E, assuming that  the failing direct strains are the same and the densities are propor- 
tional to the E's. For example, high tensile steel will be slightly more efficient than duralumin, 
though other considerations, such as temperature effects, may alter this conclusion. 

The broad conclusions of this last paragraph appear to be true for all neutral holes. The 
assumption of negligible bending stiffness has been justified and a negligible bending stiffness 
has in fact been shown to be a necessary quali ty of the reinforcement if the reinforcement is to 
have least weight. 
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(b) E l l i / s t i ca l  h o l e . - - I f  the strain in the direction of the major axis is 7e, say, that  in the 
direction of the minor axis is 2e. From geometry tile maximum curvature, at the ends of the 
major axis, is ~v/2/r and the minimum curvature is 1 /2r  and the changes in these two curvatures 
are 3 ~ / ( 2 e ) / r  and - - 6 e l f  respectively. From equation (14) the section areas of the reinforcing 
member at these points of maximum and minimum curvature are 2~/2.  r t  and 8r t /7 .  The 
corresponding values of A, are therefore 

3 n t  2 4 n t  
and - -  • . . . . .  (27) 

2~/2.  r 343r " "" 

The first value for A0 is nearly 10 times the corresponding value for the circular case and the 
second is about 0.6 times. If we take t = 0.1 in., r = 5 in. and n = 4 (a severe example) the 
greatest value for As will be 0.085;  the average As for the complete structure is about 0.02. 

A P P E N D I X  II 

F i n i t e  S t r i n g e r  S p a c i n g  

When the size of the hole is not large compared with the stringer pitch the analysis of Appendix 
I I I  will not be valid, but an extended use of the arguments of section 3.1.1 may be made. A 
simple example will demonstrate this. A sheet is reinforced by stringers in the y-direction of 
relative section area Y and at pitch 15. A uniform loading is applied in the y-direction. What 
is the shape of the neutral cut-out ? 

A general form for the stress function in the region between the (n - -  1)th and nth  stringers 
is, apart from a constant of proportionality, 

x 2 + a,,x + b,,y + c,,, 

and between the nth and (n + 1)th 

(28) 

x 2 + a , + l X  + b , , + l y  + c,~+1. . .  

From equation (8) the vertical component of the balancing load is 

(29) 

/ 

t(a,~ a,~ + 1) = - -  2Y/st (i.e., --  Y / s t  v ~  
~xp/ , \ 

(30) 

since it must balance the load in the nth stringer. The horizontal component of the balancing 
load is 

t(b,  + 1  - -  b;3 = 0 . . . . . . . . . . .  ( 3 1 )  

since there is no horizontal component in the nth stringer. 

If b,~ = b,~ + 1 = etc. = - - r  and the origin is chosen so that  a,, and c,, are zero the curve of 
equation (28) may be written 

X 2 :  r y  
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and with the restrictions of equations (30) and (31) and the condition of continuity at the nth  
stringer the curve of equation (29) becomes 

x 2 + 215Yx = ry + 2 p 2 Y ,  

and the curve between the (n + 1)th and (n + 2)th stringers is given by 

x 2 + 42bYx = ry + 6 p 2 Y ,  

and between the (n + k --  1)th and (n + k)th stringers by 

x 2 + 2 k p Y x  = r y  + k(k + 1)p2Y . . . . . . .  (32) 

The envelope of curves of the type (32) meets successive stringers at points which lie on the 
parabola 

x2(1 + Y ) - - p Y x  = r y .  

APPENDIX III 

Rib and Stringer-reinfomed Sheet 

(a) Skew r ibs . - -The  results of R. & M. 1834 ~ which affect this report are given below. 

y 

// f f   P,Tc. 
Y - M E M B E R S  

0 

FIG. 10. Figure showing axes for rib and stringer-reinforced case. 

The 'mean applied stresses' ~,, %, ~y are defined so that  tS,, t~y, t-7:,y are the forces in the • 
stiffened sheet per unit length. They are derived from a stress function ¢ as follows: 

8x ~ 

~ ---- - -  K ~¢ 
~x ~y 
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where 

.K = 1 + X + Y + cos2v X Y ( 1  + ~)(2 sin~v + (1 - -  v) cos ~ / ) ,  

X = section area of a stringer (or X-member) 
t X pitch of stringers 

- y  = effective section area of a rib (or Y-member) 
t x pitch of ribs 

V = sweepback angle. 

Equat ion  (9) would therefore become 

P = K t  1(0¢'~ ~' + ( ~ ¢ ~ 2 1 1 1 2  . 

( \ ~ x /  \ ~ y /  ) 

The stresses in the  sheet can be expressed in the form 

~7 .~; 

- -  T x y  

A B C  

= D E F  

GH] 

where 

- ~ 2 ¢  - 

~ x 2  [ 

A = ~ X - - Y s i n  2v + (1 + v) sin 2vY(sin 2~ + 2vXcos  2v) 

B = sin 2v Y(1 + ~)(sin 2 v + vX cos`' v) 

C =  1 + Y c o s 2 v { 1  + (1 + v) sin`'~} 

D =  1 + X  + Y s i n  2~{s in  ~ v - ~ , c o s  ~ + 2 ( 1  + ~,)(1 + X )  eos`'~/} 

E = 2 sin ~ cos 3 vY(1  + ,)(1 + X) 

F = cos`' ~TY(~' cos ~ V - -  sin" ~) 

G =  - - s i n v c o s ~ Y { c o s  ' 2 ~ - v s i n  ~ + X c o s  2v ( l - - v 2 ) }  

H =  - - 1 - - X - - Y  + 2 Y s i n  2~cos  2~(1 + v) - -  cos* v X Y ( 1 - -  ,,~) 

J = sin ~ cos ~Y(~, cos "2 v - sin 2 ~)- 

These results have  to be subst i tuted in equat ion (10) before A , , (=  P/Es, , )  can be determined.  

The compat ibi l i ty  equation is 

-~:~ ~x ~ ~y ~x 2 ~y~ ~x ~y~ ~y~ 
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where 

= 1 + (1 + v){X(1 - -  v) + Y sin 2v(sin 2 V(1 - -  v) - -  2~ 2 cos 2vX + 2(i + X) cos 2v)} 

= sin v cos vY(1 + v){cos ~ v(1 + X) - -  v(sin 2 v + vX cos 2 ~/)} 

~ , =  1 + (1 + v){X + Y + X Y c o s  4 v ( 1 - v ~ ) - 3 s i n  2 v c o s  2vY(1 + v)} 

= sin v cos vY(1 + v)(sin ~ v - -  v cos ~ v) 

----- 1 + cos 2 vY(1 + v)(1 - -  v + sin ~v(1 + v)).  

(b) Ribs normal to stringers.--Although this case m a y  be obta ined f rom the results given above 
by  pu t t ing  v = 0,  the expression for A,, simplifies considerably and  is given below 

K =  1 + X + Y + X Y ( 1 - - v  2) 

= 1 + x ( 1  - 

2 ~x ~.y ~x ~ . . . . . . . .  (33) 

= 1 + (1 + v ) { X +  Y + X Y ( 1 - - v ~ ) }  

= 1 + Y(1 - - v  2) 

and  the compat ib i l i ty  equat ion  becomes 

a~X ~ + 2r axO ~y2- + e~4¢ = O .  

A P P E N D I X  IV 

Other Stress Distributions 

The cases considered here include: 

(a) General  case of uniform stress distr ibution,  wi th  par t icular  reference to pure  shear. 

(b) Pure  bending.  

(c) Polar  co-ordinates.  

and  

(d) Stress dis tr ibut ions wi th  circular  neu t ra l  holes and  constant  A, , .  

These will not  be considered in great  detail.  
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(a) General case of  uniform stress distribution, wi th  particular reference to pure shear.--If  the 
axes Ox, Oy are chosen parallel to the directions of the principal stresses f t ,  fs the stress function 
is given by  

¢ = 1 ( f , 9  + A x  + ax + by + c . . . . . . . .  (34) 

and so the neutral hole is in the form of a conic. Furthermore, if f l  and f~ are of the same sign 
the conic is an ellipse with lengths of axes in the ratio ~/(fl/f2) ; if f l  and f2 are of opposite sign, 
as in pure shear, the hole is an hyperbola or is bounded by arcs of hyperbolas. For example 
Figure 11 below shows a neutral hole in a sheet subjected to pure shear. (The figure has been 
rotated through 45 deg so that  the axes are parallel to the directions of the principal stresses.) 
The hole is symmetrically bounded by four arcs of rectangular hyperbolas and suitable loads 
Q must be applied at the four junction points. 

FIC. 11. Hole bounded by hyperbolic arcs. 

To determine the out-of-balance loads Q we note tha t  if the hyperbola containing the arc aa 
of Figure 11 has its centre of symmetry at the point (--l ,  0) its equation may be written 

¢ : q (x ~ --.y'~ + 2lx - - p l )  : 0 . . . . . . . . .  (35) 

Thus for the arc aa at the corner point (½9, ~P)-I . 

vertical component of load -- t 36 ~x - -q t (p  + 2/)/2 

horizontal component of load -- t 35 _ qtp/2.  

The loads at the corner points in the other arcs may now be written down from symmetry.  
The out-of-balance loads Q are of magnitude ~/2 .  qtl acting ill the directions shown in Fig. 11. 
These loads Q could be applied by modifications to the main structure as described below. 
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Suppose that  two equal and orthogonai sets of stringers of cross-section area S and pitch p 
are attached to the sheet so that  intersections of the stringers occur at the four corner points 
(+½p, +½p). If the lengths of stringers between these four corner points are removed the 
resultant out-of-balance loads will exactly represent the Q loads provided 

z -  (1 + ~)s  . . . . . . . . . .  (36) 
t 

The hole, such as that  represented in Fig. 12, will be neutral. 

FIG. 12. 

f I' 
\ /  

,? 

Neutral  hole in stringer-reinforced sheet. 

The cross-section area of the reinforcing member aa is given by 

A~ (2y ~ + l 2 + pZ)~/2 
t 2V'2.  (1 + v)(P + pl) 

(37) 

(b) Pure bending.--For this case 

¢ ocya + alx + bly +c~----O, 

which represents a cubic, is the equation for the neutral hole. 

A suitable hole with positive A,, everywhere would be that  shown in Fig. 13. The hole is 
doubly symmetrical being bounded by four equal reinforcing arcs. 

C C 

C C 

FIG. 13. Neutral  hole in beam under pure bending. 
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The hole will not be neutral unless suitable loads are appiied at the junction points A, B in 
the directions as indicated above. These loads can be exerted by the structure itself if suitable 
straight members AC and BC are inserted and the beam flanges reduced between CC. 

(c) Polar co-ordinates . - -The stress function employed when polar co-ordinates are in use 
is identical with that  employed here. Thus, if ¢ is a stress function in polar co-ordinates the 
equation determining the shape of a neutral hole will be 

¢ + arcosO + brs inO + c = 0  . . . . . . . . .  (38) 

Most of the practical cases of neutral holes have been considered already, but on the structural 
research side it may sometimes be advantageous to use a bounding arc of a neutral hole to 
represent exactly a large (or infinite) amount of sheet. For example, a stress function represent- 
ing a particular state of stress in an infinite wedge is 

= r20 . 

If this were to be checked experimentally a finite, and therefore manageable, apex could be 
cut off from the wedge provided the boundary line suitably reinforced, satisfied equation (38). 
Such a line would be, say, 

b sin 0 
r = (see Fig. 14) . . . .  (39) . . . . . .  

=.. 

TION 

BY 

FIG. 14. Example using polar co-ordinates. 

The general expression for A,,, in polar co-ordinat~s is 

A,~ - -  tPa/" 
(2 - -  ~ R '  

where 

\ ~ r /  ~ \aO/ ' 
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R - -  r~ .Dr e \aO/  

r al 0¢ (D¢'~ ~ + 1 D24, (D4,~ 2 [ 
r 2 ar D0 ar \D0/ ~ \ ~ 2  ' 

r 2 Dr ~0 r \ ~ r l  # ~ \~01 ~ ~ \ ~ r /  J 

(40)  

(d) Stress distributions with circular neutral holes and constant A ~ . - - I t  was pointed out in 
section 4.1 tha t  t he  circular hole wi th  the  value for A~ given by equat ion (12) would be neutra l  
for one part icular  stress dis t r ibut ion and none other. But  the  circular shape itself is not  confined 
to tha t  one part icular  stress distribution. For example, confining a t tent ion  to plain sheet, a n y  
function which satisfies 

v44,  = o ,  . . . . . . . . . . . .  (41)  

gives rise to a possible stress distr ibution.  If, therefore, we take 

¢ = (x 2 + y 2 - - # )  F(x ,y )  . . . . . . . .  (42) 

and choose F(x ,y )  so ~hat equat ion (41) is satisfied then  a stress system will be formed for which 
the  circle is a possible shape for a neutra l  hole. The section area of the  reinforcing member  
will usually not  be constant ,  bu t  there is a set of possible functions of F ( x , y ) i n  which A,, is 
constant• This set is characterised by F ( x , y )  being homogeneous in x and y. I t  is more  
convenient  to use polar co-ordinates in discussing this set. Thus, if c is the  radius of the 
circle and n is the  order of homogenei ty  of F(x , y ) ,  equat ion (42) becomes 

4, = (r ~ - -  c2)r" f(O) . . . . . . . . . .  (43) 

and it is known 4 tha t  to satisfy equat ion (41) 

f ( 0 ) = a s i n n 0  + b c o s n 0 .  . .  (44) 

Subst i tut ing in equat ion (11) it will be found tha t  

= c t  . . . . . . . . . .  (4 s )  
(2n + 1 - -  ~) ' 

which is a constant  ; 

and  the  corresponding values for the weight  efficiency are given by  

so that ,  except  for the  special case with n = .0 considered in section 4.1, the weight  of reinforce- 
men t  inserted is always appreciably less than  the  weight  of mater ial  removed. The reason for 
this lies in tile fact t ha t  the  sheet which is to be removed is comparat ively  l ightly stressed. 

To get a clearer idea of the  type  of loading necessary, take  the  case of n = 2. The functions 
(x 2 _ y 2 )  and xy  are the  possible forms for F(x ,y )  ; considering the first alone gives  

¢ = (x 2 + y2 _ r 2) (x~ _ y2), . . . . . . . .  (47) 
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whence  

~ =  - - 1 2 y  e + 2r 2 

a , , :  12x ~ - 2 r  2 

TX,), z 0 .  

Such  a s ta te  of app]ied loading consis tent  wi th  this  is shown in Fig.  15. 

I 
I 

FiG. 15. Loading and neutra] hole consistent with equation (47). 
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A P P E N D I X  V 

Test on Model of Parabolic Cut-out 

The parabolic cut-out was chosen for the following reasons: 

(a) The corresponding loading system, pure tension, is particularly common and 
important. 

(b) The loading is easy to apply. 

(c) Additional checks on the stress distribution are possible by  strain-gauging the associated 
straight members, namely the compression member, the central boom and two side booms. 
This strain-gauging of as many as possible of the booms and reinforcing members is important  
in that  strain-gauge readings from them are more reliable than from the sheet itself. 

The model was of cellulose nitrate and all joints and connections were rigidly glued. Poisson's 
ratio for this material is about { so tha t  the reinforcing member and central boom were larger, 
and the compression member smaller, than in a corresponding cut-out in a material in which 
v = ~,1 say. 

The parabolic cut-out and associated 3-boom panel formed one-half of the top surface of a 
thin-walled box of rectangular cross-section. The box measured 100 × 16 × 4 in., so that  the 
panel width 2W was 16 in. The sheet and rib thickness was 0.04 in. and the edge booms A I 
were { × { in. and the rib pitch was 4 in. There were no stringers and the small lateral stiffening 
of the ribs was ignored. 

The relevant dimensions for the parabolic cut-out were 

H =  15.4in.  so that  

H / W  = 1.92, 

w =  10.9in .  so that  

A~ = 0.87 sq in. 

and w/W = 1.36, 

r =  15.4in.  so that  

A y ---- 0.62 sq in. 

and r/W = 1.92.  

These dimensions differ appreciably from the optimum ones of Table 1, in' f a c t / '  is double 
its minimum value. However, these dimensions were chosen because the curved reinforcing 
member has a cross-section area which remains sensibly constant. Its average section area, 
1.02 sq in., was taken for convenience in construction. (This section area is .actuMly 3 per cent 
too high at its highest and 4 per cent too low at the ends.) 

The panel was loaded by applying equal bending moments at the two ends of the box. The 
loading arrangement at one end and the strain-gauge recording apparatus are shown in Fig. 19. 
The strain-gauge positions are shown in Fig. 20, with the exception of 3 gauges added later to 
each of the edge booms. 
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For measuring direct strains each dummy gauge was stuck on at right-angles to the 'active' 
gauge to form a T. Roughly 50 per cent increased sensitivity was obtained this way, and the 
shear gauges were now precisely 2 times (instead of E/G times) as sensitive in measuring shear 
stress as the direct gauges were in measuring direct stress. 

The strain-gauge results are plotted in Fig. 21 in such a way that a comparison with the 
theory may be readily made. The 10 gauges on the various booms and reinforcing members 
give good agreement, the gauges having an average deviation from theory of only 4 per cent. 
Twelve gauges on the sheet show appreciably more scatter, as would be expected, and there is a 
tendency for the readings to decrease with increase in distance from the compression member. 
This tendency is undoubtedly due to the sheet becoming more slack as the distance increased 
between its supporting members--edge boom and reinforcing member. It  was not possible 
to increase the total load to such an extent that  all slackness was taken up. Of the gauges 
adjacent to the reinforcing member one was broken and two gave erratic and inconsistent 
readings ; these were ignored. The sheet readings show an average deviation from theory of 
10 per cent. 
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E~UNDAP, Y OF TIE HELE EETEi~MtNED $ECTIQN AREA OF REINFORCING MENtER 
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FIG. 18. Neutral hole for equal bending stresses in two directions. 
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Fin. 19. The parabolic cut-out showing method of loading and recording apparatus. 

1;I(;. 20. The parabolic cut-out showing strain-gauge positions. 
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