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Summary.--In simple harmonic oscillation of the helicopter with hinged blades, the tip-path plane is tilted with 
respect to the shaft in the plane of oscillation and in the plane perpendicular to it. The angles of tilt can be ex- 
pressed as functions of angular velocity and acceleration. The influence' of the acceleration term on the dynamic 
stability of the helicopter is small. 

The expressions for angles of tilt due to angular velocity can be simplified to the expressions obtained in previous 
work under assumptions of quasi-static conditions. 

1. I~troductio~.--It has been shown in Ref. 1 that  when the rotor shaft of a helicopter tilts 
with constant pitching velocity, the t ip-path plane lags behind the shaft and also tilts Sideways. 
These angles of lag and sidetilt were found to be proportional to the pitching velocity of the 
shaft and the following expressions were derived: 

Oal _ _  1 6  . 

Of yD . . . . . . . . . . . . .  (1) 

~b I 1 . ~q -- 9 ,  . . . . . . . . . . . . . .  (2) 

where al is the angle of lag between the rotor shaft and the t ip-path plane axis measured in the 
pitching plane and q is the pitching velocity ; bl is the angle of sidetilt, y is Lock's inertia number 
and ~ is the rotational velocity of the rotor. 

In I~. & M. 25091 the value of aa~/aq as given by equation (1) was used in the analysis of 
dynamic stability. Strictly speaking equation (1) applies only to a motion with constant rate 
of pitch. Where the motion of the helicopter approximates to a simple harmonic motion the 
use of the derivative given by equation (1) may not be justified in the study of the dynamic 
stability. 

The present note gives a more detailed analysis of rotor derivatives and shows tha t  the 
expressions (1) and (2) for rotary derivatives are accurate enough for any practical application. 
However, the analysis indicates the existence of acceleration derivatives, but  their influence 
on the dynamic stability of the helicopter is small. 

* R.A.E. Report Aero. 2319, received 14th July, 1949. 
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2. The Approach to the Pfoblem.--It  is assumed tha t  the helicopter is hovering with its shaft 
vertical and t ip-path plane horizontal. Suddenly the helicopter and its shaft begin to oscillate 
in a pi tching plane about the rotor centre according to the equation: 

0 = A s i n  ~ t ;  . . . . . . . . . . . .  (3)  

where A is some arbitrary amplitude and v the circular frequency of rotor shaf t  oscillation. 

The main difficulty in the present problem is estimating the magnitude and direction of the 
flow through the disc. Lacking any data it is assumed tha t  the flow through the disc is in the 
direction opposite to the instantaneous direction of lift. In other words no allowance for any 
downwash lag is made. 

I t  is further assumed tha t  the blade hing e has zero offset, and the hinge bearing has no friction. 

The diagram of axes and angles is shown in Fig. 1. The reference axes are chosen as horizontal 
and vertical, i.e., the axis of the rotor in its initial conditions. All the values are measured from 
these axes, positive in an anti-clockwise direction for Fig. 1. The following quantities are 
defined: 

0 the angle of the shaft tilt  measured from the vertical and given by equation (3) 

/3 the flapping angle measured between blade axis and horizon 

/la the angle of lag, between the shaft and the t ip-path plane axis, positive in positive direction 
of 0. 

The equation of motion is written, assuming tha t  all the quantities are measured from 
OX-plane. 

Due to the blade hinge being fixed relative to the shaft, the tilt  of the shaft in the pitching 
plane by an angle 0 produces, in the horizontal plane, feathering in the form: 

-- 0 sin W . . . . . . . . . . . .  (4) 

where w = fat is the blade azimuth angle measured in the 0X-plane from the downwind blade 
position. Tile angle of shaft tilt 0 is a function of time given by equation (3) and hence the 
feathering is given by: 

- -  A sin vt sin fat . . . . . . . . . .  (5) 

and the blade pitch angle by: 

@' = @0 --  A sin vt sin fat . . . . . . . . . .  (6) 

where ~'0 is the collective pitch angle. 

The moments acting on the blade about the flapping hinge are as follows: 

Moment due to centrifugM force: 

- -  1 # 2 / ~  . . . . . . . . . . . . .  (7)  

Moment due to angular acceleration of blade in flapping motion: 

- z,p . . . . . . . . . . . . . . .  ( s )  
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The aerodynamic  moment :  

I~½pa@o-- A s i n v t s i n ~ t  
.Qr 

where U is veloci ty of flow th rough  and perpendicular  to the  disc. I t  is assumed tha t  the  
coning angle a0 is small and  tha t  cos a0 can be taken  as unity.  The flow velocity U is t aken  
to be constant .  In tegra t ing  the  aerodynamic  m o m e n t  along the  blade and in t roducing Lock's  
iner t ia  number ,  the  aerodynamic  m o m e n t  can be expressed as: 

where 

D A sin ~,t cos t?t) . . . . . . . . . .  (10) 

PagR4 . . . . . .  (11) 
Y --  I i  . . . . . .  

is Lock's  inert ia number• g is a mean  chord the  exact  value of which can be defined by compari- 
son of equat ions (9) and (10), but  with sufficient accuracy the  mean  chord can be defined as ' 

f~r:~dr 
(12) 

is the coefficient of the flow through ~the disc defined as: 

= u / ~ R  . . . . . . . . . . .  (13) 

In  the  evaluat ion of integral  (9) no allowance has been made  for t ip and root losses. 

N e g l e c t i n g  the gravi ty  term, the equat ion of mot ion  of the  blade is obta ined from the  ex- 
pressions (7), (8) and (10) 

1 2 fi + ~),t?~ + ~92~ ~),9 (~6 --  ~Z) - -  ~,~9eA sin vt sin t?t . . . . . . .  (14) 

Remember ing  tha t  the  coning angle a0 is given by  R. & M. 1127 ~ as 

ao = ~7(Oo  - ~ z ) ;  . . . . . . . . . .  (15) 

and int roducing t r igonometr ical  subst i tut ions equat ion  (14) can be put  into the  following 
al ternat ive form for ease of in tegrat ion 

= ~ A-f2 2 (~? v)t ¢~A7£2 ~ (f2 - -  v)t. (16) fi + }~X?t) + Y2~ a0 ~2 + ~ r cos + - -  cos . .  

The complete  solution of equat ion (16) takes the  form: 

/3 = ao + e~{C~ cos vFt + C2 sin ~ t }  

+ C8 cos (t9 + ~)t + C4 sin (sO + ~,)t 

+ "C5 cos  ( n  - -  ~)t + C6 s i n  (n  - ~)t ; . . . . . . . .  

where C1, C.,, etc., are constants  of integrat ion and are functions of A, ~?, ~ and ~, only. 
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The first part  of equation (17) shows that  due to an initial disturbance the blade will osciliate 
with frequency given by 

. .  - ( i s )  

This oscillation is very heavily damped and the damping factor is given by: 

2~ - -  yY2 
16 . . . . . . . . . . . .  (19) 

After the blade motion due to the initial disturbance is damped out, which in practice takes 
about ~ sec, the mean value of blade flapping angle approaches ao, the coning angle. The 
second part  of equation (17) shows tha t  the blade will oscillate steadily about its flapping hinge 
with two frequencies, ~? + v and ~ -- v. 

After some re-arrangement of equation (17) and omitting the rapidly damped part of the 
motion, the expression for steady blade flapping measured from horizontal will be in the form: 

fi' = a0 + (C~ cos vt + Ca sin vt) cos ~ + (C9 cos ,t  + C10 sin vt) sin ~ ; . . . .  (20) 

where ~0 = ~?t and C~, Ca, etc., are constants and functions of A, ~9, , and 7. 

The coefficient of cos ? gives the longitudinal ti l t  of the t ip-path plane and the coefficient of 
sin ~0 the lateral t i l t  of the t ip-path plane, both measured from horizontal. 

The angle between the shaft and 0Z-axis as given by equation (3) is 

0 =  A s i n v t  . . . . . . . . . . . .  (3) 

and the angle of the longitudinal la G i .e . ,  the angle between the t ip-path plane axis and shaft 
axis (positive in positive direction of 0) i s : - -  

Remembering that :  

A a = (C7 cos vt + Ca sin vt) - -  A sin yr. 

0 = A sin vt ] 

O = A v cos vt 

0 =  - - A v  2sinvt  

(21) 

(22) 

and putt ing 

v / t )  = ~ . . . . . . . . . . . .  (23) 

the angle between the shaft and t ip-path plane axis, measured in the plane of the shaft oscillation 
is given by the expression: 

A a - -  

1 1 
(24)  
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The corresponding lateral  t i l t  of t ip-pa th  plane is given by: 

1 ( y y { ( , )  ~ _,)1 

1 (~,'~((r'@_~.,.) + ~(4 _~,)11 o. 
o ~ \ g / i  \ g /  ; ~  ' " . . . . .  

and the tilt  of the  rotor t ip-path  plane is positive towards the advancing blade. 
(24) and (25), D is an abbreviat ion for the  following expression: 

- D = (1 V')" + 2V' (4 - -  a r  e + 5~) + ~(4 - -  . . .  

. .  (2s)  

In  equat ions 

..  (26) 

3. Discussion.--3.1. Longitudinal Disc Tilt. The equat ion (24) can be rewri t ten:  

16AO + 1 f(16"~ 2 
~ a -  g o  ~ i \ 7 /  - 1 } t o ;  . . . . . . . .  (27) 

where A a n d / "  are functions of ~, and  ~ only, and for small values of 5 = v/fa can be taken  as 
unity.  The full expressions for A a n d / 1  are a s  fol lows:--  

, j - ~ ,  • . . . . . . .  

@ ' ( !  (~)~(1  - -  V') - -  (~ )"(4  - -  3V' + 25 ~) - -  52(4 - -  5~) 2} 
8 /  ( 

; . . . .  (29) 
f / r V  - -  4~ X D J 

where D is given by  the  equat ion  (26). 

The numerical  values of these functions are given in Fig. 2, and were calculated for a range 
of values of ~ and  y. The values of ~ as found in practice are usually very  small ; for example  
in the  case of the  Sikorsky R4-B helicopter, which has ~ = 13, the  values of ~ are about  0 .02  
for longitudinal  and  about  0 .05 for lateral  oscillations. The value of ~ is seldom expected to 
exceed 0.05 for full-scale rotors. Also, for most  of the  small helicopter  models the  value of 

= ~/fa remains  of the  same order due to the  large values of ga necessary if the  corresponding 
t ip speed is, to be main ta ined  on the  model:  I t  can be seen from Fig. 2 tha t  wi th in  the  practical  
range of values the  ratio of oscillations, ~ has only  a small  effect upon  the  values of rotor  deriva- 
tives. Only for .very heavy  blades, y < 6, can the  Values of A a n d / ~  differ appreciably f rom 
unity,  and in those cases for the  purpose of s tabi l i ty  calculations the  corrections of Fig. 2 can be  
used. 

For  normal  values of blade inert ia  number  the  following approximat ion  is justified: 

A = r = 1 . . . . . . . . . . . . .  (3o)  

and thus simplify the  equat ion (27) to the  form: 

Aa-, , -_160 I 
+ - 1 } o  . . . . . . .  . ( a )  y~ £22 ( \  y .] • 
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The derivative of the tilt of the t ip-path plane relative to the shaft with respect to angular 
velocity of pitch is: 

aal _ 16 
. . . . . . . . . .  (32) ~q yf2 ' 

the t ip-path plane lagging behind the shaft. The equation (32) is in agreement with equation (1), 
which was obtained from the simplified analysis of Ref. 1. 

I 

The derivative of the til t  of the t ip-path plane relative to the shaft with respect to angular 
acceleration of pitch is: 

a< l I(lS ' ! 1 
- > L \ 7 / - t ) =  v T/ (33) 

The approximate expression for the acceleration derivative (33) and the expression for the 
correction factor F (29) are valid only for 7 =# 16 ; for the values of ~ equal or near 16 the full 
expression (24) for the acceleration derivative has to be used. 

I t  is interesting to note tha t  the angular velocity derivative, equation (32), is always negative 
and always produces a damping of the angular motion of the helicopter. The sign of the angular 
acceleration derivative however depends on the value of blade inertia number. For practical 
values of blade inertia number (~ < 16) the acceleration derivative is positive, as shown by 
equation (33), i . e . ,  the apparent displacement derivative is negative, and it can be shown tha t  
the positive acceleration term has a stabilising effect on the helicopter stability. However the 
numerical calculations based on the Sikorsky R4-B helicopter show a very small effect due to 
this acceleration derivative. I t  has to be borne in mind tha t  the present analysis does not take 
into account any effect of the time lag of the aerodynamic forces acting on the blade. This 
effect could be of considerable importance in determining the blade motion. 

For very light blades, y > 16, the acceleration derivative changes sign and becomes negative*. 
I t  is worth noting tha t  according to equation (18) for values of inertia number y > 16 the disturbed 
flapping motion of blade ceases to be oscillatory and becomes a pure subsidence. 

To give a better illustration of the disc and shaft behaviour in simple harmonic motion, the 
diagrams of Fig. 3 were prepared. The thick line represents motion of the rotor shaft according 
to the equation" 

0 = A s i n ~ , t ;  . :  • . . . . . . . . . . .  (3) 

The dotted line shows motion of the t ip-path plane with respect to the horizon. The angle c~ 
is the angle between t ip-path plane axis and the vertical. The motion of the t ip-path plane can 
be described by all equation" " 

= CA sin (vt + 6) ; '  • . . . . . . . . .  

The constants # and ¢ can be found from equation (20) and are functions of ; and y only. 

(34) 

For the practical range of values of y and 7, the motion of the rotor disc is shown in Fig. 3, 
top diagram. The ratio of amplitudes, # is slightly less t h a n  unity, but for practical purposes 
can be taken as unity.  The phase angle ¢ is small and negative. For infinitely heavy blades, 

* The  exac t  va lue  of y a t  which the  acce le ra t ion  de r iva t ive  becomes nega t ive  is s l igh t ly  less t h a n  16 and  depends  
on the  va lue  of ~. 
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--> 0, Fig. 3, bottom diagram, the amplitude ratio # approaches zero value, and at the same time 
the phase angle ¢ ---> 90 deg. For the limiting case when ~ = 0 and # = 0, the t ip-path plane 
remains horizontal, irrespective of the shaft motion, which is quite obvious for physical reasons. 
For very light blades, when the inertia number ~ is large, the amplitude ratio ~ is increasing and 
becomes larger than uni ty  (Fig. 3, bottom diagram). Increasing the value of ~ to infinity brings 
the value of # back to unity. The phase angle ¢ is decreasing steadily with increasing ~,, and 
for ), --> ~ the phase angle approaches zero. For infinitely light blades, # = 1 and ¢ = 0, the 
rotor disc follows exactly the motion of the shaft. 

I t  might be of interest to point out that  the vertical shift between the thick and dotted lines 
of Fig. 3 is proportional to the tilt of the disc with respect to the shaft, and at the point vt = 0 
this sh i f t i s  proportional to the velocity derivative and at the point vt = ~/2 to the acceleration 
derivative. Bearing this in mind, it can be deduced immediately from Fig. 3, that  the angular 
velocity derivative always remains negative, but the acceleration derivative may change s ign  
depending on the value of the inertia number. 

To give some illustrations of the values involved, Fig. 4 was prepared, where the value of the 
amplitudes ratio, ~, is plotted against inertia number, ~, for different values of frequency ratio, 5. 
The scale to the right is too small ±o show the shape of the ~-curve for verY large values of 9,, and 
the dotted line shows only the tendency of the ~-curve. 

Remembering that  the values of ~ and r likely to meet in practice are 5 < 0.05 and ~ > 5, 
it can be seen tha t  tile value of ¢ differs from uni ty  by  less than 1 per cent. 

3.2. Lateral T i l t . - -For  the practical range of values of ~ = ~/£2 the equation (25) for the lateral 
tilt  of the t ip-path plane can be simplified to: 

= Lo 1 240 = 1_6 + _3_1 0 . . . . . . . . .  (35) 
g? X? :~ y D 2Q ~q 

During the longitudinal oscillations of the helicopter with frequency v, the t ip-path plane 
tilts not only in the plane of oscillations, but  in the plane perpendicular to it as well. This angle 
of tilt, A b, can be split up into two parts as in equation (35), first that  due to angular velocity 
and second that  due to the angular acceleration of the helicopter. 

The corresponding derivatives of lateral tilt  can be written: 

Ob~ 1 
~q ~9 

(36) 

The value of 3bl/aq for constant rate of helicopter pitch was deduced in Ref. 1, Appendix II, 
from kinematic considerations, and is in agreement with present result. 

Similarly the acceleration derivative of the sidetilt is: 

~ b ~ = _  1 2 4 _ 3  l Oal . . . .  (37) 
~q ~2 9, 2 t? Oq . . . .  

4. Co~clusio~s.--The mathematical  analysis of the dynamics of the flapping blade during 
-simple harmonic motion of the helicopter shows the existence of angular velocity and angular 
acceleration derivatives. The effect of the accleration derivative on the dynamic stabili ty 
of the helicopter is quite small, and for the usual values of blade inertia number it can be neglected. 
The effect of the frequency ratio 7 = v/X? on the values of the rotor derivatives is also small, 
mainly due to the fact tha t  for all helicopters and for helicopter models b~tilt to dynamic a~d 
aerody~¢amic scale, t he  value of ~ is likely to be much less than 0.1. 



It  seems that  only for the case of helicopters with very heavy blades, say ~ < 8, need the 
effects of the acceleration term and of !requency ratio be taken into account. 

I t  has to be borne in mind that  the analysis given here does not take into account any changes 
in slipstream structure due to the oscillation of the helicopter ; and further, the analysis covers 
only simple harmonic motion in hovering. 

I t  is proposed to analyse other modes of helicopter motion in hovering, say an exponential 
mode of motion, corresponding to motion due to stick displacement. 

A further step will be the extension of the present analysis to forward flight. 

No. Author 

1 J . K .  Zbrozek .. 

2 C . N . H .  Lock .. 

3 J. K. Zbrozek 

4 Miehl .. 
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List of Symbols 

Lift slope of blade section 

Coning angle 

Coefficient of Fourier's series for flapping angle, and corresponding to backward 
tilt of the rotor disc 

Coefficient of Fourier's series for flapping angle, and corresponding to lateral 
tilt of the rotor disc, positive towards tile advancing blade. 

Tip-loss coefficient ; usually defined: B = 1 -- c/2R 

Blade chord 

Mean blade chord 

Blade moment of inertia about flapping hinge 

Pitching velocity of helicopter 

Time 

Rotor radius 

Velocity of flow through the disc 

Angle between rotor disc and horizon 

Flapping angle, measured between longitudinal axis of the blade and horizon 

Blade inertia number 

Angle of shaft tilt in pitching plane and measured from vertical 

Pitch angle of rotor blade ; measured from blade airfoil chord 

Collective pitch 

Coefficient of flow through the disc 

Damping coefficient of disturbed flapping motion 

Frequency of disturbed flapping motion 

Circular frequency of shaft oscillation 

Frequency ratio 

Air density 

Blade azimuth angle, measured from rearmost position 

Rotational velocity of rotor 

Correction to angular velocity derivative 

Correction to angular acceleration derivative 

Ratio of disc to shaft amplitudes 

Phase angle between shaft and disc motions 
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A P P E N D I X  

The Compariso~ with Calculations for Co~stant A~gular 

Velocity a~d Co~sta~t A~gular A cceleratio~, 

Since the completion of the present report, the attention of the author was drawn to the work 
of Miehl, Ref. 4. Miehl extended Lock's analysis (R. & M. 11272) to steady curvilinear flight, 
and his investigations lead to the following expressions for the rotor tilt derivatives: 

~al _ 16 1 ? 
B (B 2 - -  1/S 

~ b l  1 1 / 
~q fa 1 - -  ff~/2B ~ J 

(43) 

where B is the usual tip-loss coefficient. The formulae (43) are in agreement with the present 
report if we assume no tip loss, B = 1, and very slow oscillation, ~ =- 0. " It can be seen from 
equation (43) that  the forward speed has a very small effect on the values of the angular velocity 
derivatives. 

Miehl (Ref. 4) in his work is considering one particular case of blade motion during uniformly 
accelerated rotation of helicopter in hovering. The formulae for the rotor tilt derivatives due 
to constant acceleration are in agreement with the present report, assuming frequency ratio, 
~=-0 .  

The comparison of the theoretical calculations with experimental values obtained from model 
tests, Ref. 4, have shown that  in order to obtain satisfactory agreement it was necessary to modify 
the distribution of the induced velocities. It was assumed in Ref. 4 that  the increments of 
induced velocity are proportional to the new mass forces present in curvilinear accelerated flight. 

The calculations have shown that  the re-distribution of induced velocities has a small effect 
on the values of angular derivatives, and is increasing slightly the value of ~al/~q, the value of 
ObjOq not being affected. However, re-distribution of induced velocities has a considerable 
effect on the acceleration derivative, and increases the value of ~al/O(t; the value of Obj~O is 
not affected. The assumed distribution of induced velocities gave good agreement between 
theory and experiment. 
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Diagram of rotor in simple harmonic motion. 
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FIG. 2. Corrections to velocity and acceleration derivatives. 
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