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Summary.—The paper describes and applies exact methods of calculating the incompressible flow about thick
aerofoils of general shape in a free stream, and apout symmetrical aerofoils between channel walls. One of these
methods is extended to an approximate treatment of subsonic compre351ble flow by making use of von Karman S
transformation.

General Introduction.—The paper introduces new and exact methods of calculating the
inviscid flow about two-dimensional aerofoils. Parts 1, 2 and 3 are concerned with incompressible .
flow, but with only slight modifications the work is applied -to compressible flow in Part 4.
Part 1 deals with a symmetric aerofoil at zero incidence in a channel or free stream, while the
asymmetric case and the effect of circulation are dealt with in Part 2. The method gives
velocities throughout the field of flow, and, at least for incompressible flow, is much quicker than
the relaxation methods that have been applied to this problem. The principle is to replace
the aerofoil by a series of small arcs on which it is assumed that the product of the radius of
curvature and the velocity is constant. It is almost equivalent to replacing the aerofoil by a
many-sided polygon, for, at some distance from the aerofoil, the field due to a polygon and that
due to a profile composed of arcs as defined above, is sensibly the same. The method is termed
the Polygon Method. The number of arcs selected to replace the aerofoil is governed by the
accuracy required in the final results. In Part 2 the problem is solved first for zero circulation,
and then solutions for any desired circulation can be obtained almost immediately.* This feature
gives the method a marked superiority over ‘ relaxation ’ for which each angle of incidence is a
separate problem.

In Part 3 we describe and extend a method of calculatmg incompressible - two- dlmensmnal
flow similar in character to the Polygon Method developed in Parts 1 and 2. It was originated
by Thom and termed by him the °Influence Factor Method’. His work on symmetrical
- aerofoils is extended to asymmetric aerofoils, and his approximate equations for the bounded
stream are replaced by the exact forms.

Part 4 contains two new approximate treatments of compressible flow. The first is similar
to the linear pertubation theory but gives results a little more accurate than this theory. The
second is similar to von Karman’s well-known approximation, and appears to be more accurate.
In both methods the equations are reduced by approximations and transformations to Laplace’s
equation which is then solved by the methods of Parts 1 and 2.* Finally an exact relaxation
treatment is outlined which has some advantages over relaxation methods already developed.

Examples illustrating the methods are given throughout the paper.

* A summary of the Polygon Method equations and details of their application to the calculation of the compressible
subsonic flow about aerofoils is given in Ref. 21. This reference, written some time after the present paper, also
contains tables which considerably reduce the labour involved in applymg the method to given aerofoil shapes.
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. PART 1 ; ‘
Incompressible F, low about a SymMetrical Aerofoil in a-Channel or Free Stream

1. Introduction.—" Relaxation ), and ‘ Squaring " have been employed in various ways to
find the incompressible flow about a two-dimensional aerofoil. The relaxation method outlined
in section 2 is new in some features although the general principles have been employed by
Thom" for many years. He initiated the method of using the network composed of velocity
equipotentials and streamlines (the (¢,p)-plane) as the square grid on which to solve the usual
difference equations for a Laplacian field. Working in this (¢,y)-plane has two outstanding
advantages:—

(a) From the point of view of relaxation, it avoids the irregular ‘stars’ in the (x, ) or physical
plane, with their consequent interpolation formulae.

(b) It makes possible the method of calculating incompressible flow descrlbed in sections 3
and 4 below.

The basic principle of the method described in this paper is the replacement of the aerofoil
by a polygon with an infinite number of sides, 7.e., a polygon for which the change in direction
of adjacent sides is an infinitesimal angle 66,. (The suffix 0 will be used to denote surface
values.) The exception to thisis at the tralhng and leading edges at which, in general, re-entrant
finite angles of v, and 7, occur.  There may be other sharp corners on the profile, and these can
all be included in the term 7;, 2 = a,b,c, ... . The fields in the (¢,p)-plane due to these angles
80, are combined by an integration along the aerofoil boundary and the result added to the sum
of the fields due to 7;. It proves convenient in practice to assume that the product Rg,, where
R is the radius of curvature of the boundary, and g, is the velocity magnitude on the boundary,
is constant over small ranges. The integration is then performed for each range and the results
added to give the total effect due to the whole aerofoil. The number of such ranges is governed
by the accuracy required in the final results. In the typical example given in section 9 the
author found that twelve were sufficient to give accuracies better than one per cent in the
velocity increment due to the aerofoil.

Working in the (¢,y)-plane involves the dlfﬁculty that initially the exact boundary conditions
are not known, ¢.e., the exact relation 6, = 6,(¢) is unknown, and remains so until the exact
solution has been found. However starting frorh some assumption, for q.($), e.g., that ¢, is the
same as the free-stream value at infinity, U, we can calculate approximate boundary conditions.
These can be used in the polygon method to find a more accurate relation g, = ¢,(¢), and hence
to find more accurate boundary conditions and so on. This iterative process converges rapidly
as demonstrated by the examples in sections 8 and 9. Only two or three rounds of the process
prove necessary. Once go(¢) is determined accurate values of g = ¢(8,») can be found immediately
without further iteration. The relations x = x(¢,p), ¥ = y(¢,») can then be found and the
solution is complete. - ' ,

The relaxation method described in section 2 below has two disadvantages:—

(i) There is no convenient method of dealing with the outer boundary condition, log(U/g) = 0

: at infinity. Inversion is the only exact method, and this is clumsy numerically. The

difficulty is much greater for the unbounded ﬁeld than for the field confined between
channel walls.

(ii) Relaxation is very slow for this type of problem, in which normal boundary gradlents are
specified rather than boundary values. Furthermore the only fixed value is at infinity
and so the errors are likely to be the greatest on the aerofoil surface.

2. The Dz']j’eye%tiaz Equation and Boundary Conditions—Let (g,8) be the velocity
vector in polar co-ordinates, z = x + ¢y, and w= ¢ + iy, then ge ™ = dij . Therefore
log <U> + 16 = log ( U;Z> — f, say. Thus, apart from possible singularities, f is an analytic
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function and it therefore satisfies P?f =0 in both the z and w-planes. = We shall write

L =log <%]), and so f= L +46. The Cauchy-Riemann equations hold, e.g., in the w-plane

oL _ 2% oL _ _ % "
% o By %

" On the aerofoil boundary 8, is specified or can be calculated from the aerofoil co-ordinates. The
distance measured from an origin along a streamline or boundary will be denoted by s, then

(a¢> = ¢, and < > = — R. Thus from (1) the normal boundary gradient can be written

as
<aaf;)__<86><§;) Rl% O o)

The other aerofoil boundary conditions are the locations of the stagnation pomts and sharp
corners, if any. The rear stagnation point will be fixed at the trailing edge (Joukowski
condltlon) while, for the general asymmetric aerofoil, the location of the front stagnation point
will depend upon the incidence (or circulation) 1mposed For a symmetrical aerofoil the non-
linear boundary conditions (2) can be dealt with as follows. : :

Initially an approximate relation g, = go(¢) is assumed. The origin for ¢ and s is taken to be
the trailing edge. Let the value of ¢ at the front stagnation point be 4. The distance s(¢$)
from the trailing edge to ¢ is found from . g

qs N .
:quS/gO, P ¢
o | | | |

since ¢, = <%—5 >0~ Let the known relationship between the semi-perimeter $ and the chord ¢ be
P = me, say, then ¢ = 1 f @é, and using this in (3) we have g = —2 (¢). Using this relationship in

- C<§>, which can be calculated from the aerofoil co-ordinates, enables us to calculate

R R\¢

f% = }% (¢). From the assumed values of g,(¢) and the derived values of ¢ and % (¢) we then find

the approximate boundary conditions (%%)0 = (%) C% The values of the boundary gradient
. 0 -

found in this way are reasonably close to the true values; ¢.g., an overestimate in the value of
g, reduces the value of ¢ subsequently determined, and so the product (cg,) remains reasonably
close to the true value. Furthermore along the greater part of the aerofoil chord R varies slowly.
With these approximate boundary conditions, either the usual relaxation treatment or the
method developed in this paper can be used to calculate new and more accurate values of g,(¢),
which are then used to determine more accurate boundary conditions by the method described
above. Relaxation or the polygon method is again applied to find a new relationship g,(¢),
and so on. The process converges rapidly and even if the initial assumption ¢, = U, is made,
only two or three integrations along the surface are necessary. In section 7 this is made the
initial assumption for a circular-arc aerofoil. The first approx1mat10n is compared with the
exact analytical solution and the agréement is very good.

Before dealing with the new method of this paper two further difficulties peculiar to the
relaxation treatment will be mentioned.

(a) The Outer Boundary Conditions.—Some remarks have already been made about this in the
introduction. For the bounded field the difficulty is not so great. On the channel walls R is
specified, so dL/3¢ can be found, Now L = 0 at infinity upstream and downstream, but it is
sufficient to assume that L = 0 at distances of two or three chords upstream and downstream
from the aerofoil centre, for it is known that the channel walls rapldly damp out the influence
of the aerofoil™.
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For the unbounded field the boundary condition is L = 0 at infinity in every direction.
Short of inverting the plane to limit its extent, we can only use approximate methods, such as
replacing the aerofoil by a substitution vortex and calculating theoretically the values of L on
an outer boundary, say two to three chords radius from the centroid of circulation. Inversion
produces a curved boundary and is thus clumsy numerically. A substitution vortex has been
used by the author for an asymmetric aerofoil and it proved to be sufficiently accurate provided
the outer boundary was taken to be at a radius of at least two chords™. This resulted in a large
field in which to ‘relax’ and therefore the calculations were very slow.

(b) The Singulavities n log (Ulq) at the Stagnation Poinis.—Methods of dealing with these
infinities have been dealt with at length elsewhere', but the principle will be briefly indicated
in the appendix. '

3. The Velocity Field Due to a Symmetrical Aevofoil.—The aerofoil is at zero incidence midway
between symmetrical channel walls. Fig. 2 shows the w-plane field repeated at intervals of
# in the ¢ direction. In this extended field the aerofoil is a slit on w = 0, + 14, + 2k, . . .,
and so_f(w) = flw + wh), v =+ 1,42, . . ., where f=log (U/g) + 6. From symmetry
f(w) = firh + w), the bar denoting conjugates; in particular

flbo + 90) = flgo + ik — i0); flgo + 4ih — i0) = flgo -+ dh(r — §) +-140) .. (4)

+ 20 and — 40 denoting the upper and lower edges respectively of ¢ = 0. We shall assume
that f(w) has singularities at w =4, s=1,2, . . ., due to discontinuities in 0, 7.e., sharp
corners on the aerofoil surface. Elsewhere f is analytic, and so if the singularities are excluded
by small semi-circular indentations, Cauchy’s integral taken around the contour 0 in Fig. 2,

gives ,
1P 1}-1" 10 4
sl B[ e [ S e,

+2L+L,+I,,], R -
where w is a point within the contour, 7, is the contribution to the integral from the indentation
about the singularity at w = ¢,, and /,, I, are the contributions from the ends of the rectangle.

Referring to Fig. 1, in which there is a corner of angle — = at the origin, we see that the
Schwarz-Christoffel transformation from the z to the w-plane is

dz — l it~

dw K ’
where K and 2 are real constants. Thus
f=log <U j—;> = — ;vlog w -+ constant.

This result shows that in the neighbourhood of a discontinuity in 6 on an aerofoil we can
expand f(w) thus:—

) = — S1og (0 — ) + @+ B — 4) +olw— 4 -

where a, b, ¢ . . are independent of |w — ¢,]. Thus for small values of p,
| f(ps + pe*) | = — |1og P+ O( ) [ Since w is within the contour | ¢, + pe* — w | has a lower
bound, £ say, and so |/ < |log p + O(1)] a

l‘i’ R —y ‘ S\EPiIOgP+ |—>OaSp——>0.
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In the limit then as p — 0, (5) becomes

® flgo + 90) % flde + Yk — 40) (" AR + iw)
Sw) 2m{ =) ] A Tih—w T Rrm—w

) .
(= R+ ipy)
0—R+zw0—wd¢°}' N )

The conjugate point w lies outside contour ‘0 ’, and so

hj2

_ * fl$o + 10) ¢0) * flgo + b — SR + tw)
0= 271:'1, R o — W Ao — _r $o ih quo T f R + 1Py — W W
B2
f= R + ipy)
e ) ST PRRPN )

0

Adding the conjugate of this equation to (6) and using 26 = f — f, we find

_ L% (0(bo+i0)  0(pe + Fih —0) | fldy + 4ih —i0) _ flo + 35k — i0)
f(w)—y;f {qso—w - ¢0—{—%2z'h—w + qﬁo—;z'k—w T T de + —2zh—w }dqSO

1 fh“{f(RM%) AR +dp) | fl= R+ ivy) +f‘<—R+wo)} Iy
2n), \R —iy,—w R4, —w R—ip,+w R + 1y, + w o

Applying the same method to the #* contour, and making use of (4), we have

+

R

O:}f { 6(do + 120) _ 0(po 1 31k — 20) + f(‘ﬁo‘i‘%dl_io) /f(d’o 3th — 10) ]dqﬂ
aldo+wh—w G+ i(r+ Hh—w bo Fi(r —Hh —w o+ o(r + DA —w)°

+ L f”“{ AR + iv) = R + iy
2n R 4+ wh — 1, — w 4+ irh — 1y, + w

J(R + ipy)
+ wrh 4+ 1, — w

TR TR

f( R + )
+ R 4 wh - 1y, + w} s

Adding these equations for» = 4 1, 4+ 2, . . - = to the equation for f(w) we get
_L[T g (Ot d0) 606 + ik —i0) o + ¥ih — i0)
f(w)—‘fﬁmz_n{gbowm—w T e fR¢o—z%+ ph—w

— 10

1 F(R + iy, (R + 1) N
fR¢o+zn—{— d¢°+2 f r=_n{R—|—Wk—up0—w+R—l—m’h—i—wo—w}d%

1 (=R + 1py) S{— R + iy,
+27zf r_z‘in{R—i—wh—zwo—{—w_l—R—{—wk—l—wo—l—w}d%

In the limit as #» — oo this becomes

hf { (6o + 20) cothh (o — @) — 6(do + 41k — 40) tanh% (o — w)} Ao
+ %f [f(R + o) Coth% (R — ipp — @) + F(R + dp,) coth 7 5 (R + iy — w)} A,

W2
+21hf {f(—R—Fiwo)coth%(R—iwo—{—w)—{—f( R + 4y,) coth 5 (R—]-WO-[—w)}d%,
5



Ifat¢ =00, L = log Ula, and at ¢ = — o0, L = log U/b; then in the limit as R — o0 we have
finally '

hf {o coth — W) — 6% tanh% ($o — w)} A, + %bg(c%:),

where 0 refers to the aerofoil and 6* to the channel wall. Selecting U = 4/(ab), we have for the
flow in an asymmetric channel, width 4/2 in the w-plane,*

hf {ecoth —w)—e*tanh;—z(qso—w)]d% 8
The functlons 6 and 6* must satisfy
U 1707 a
~10g<z>zﬁf_w(0—6*)d¢0=%10g<5), e

obtained from (8) by putting |w| = co.

Putting 6% = 0, and then letting # — co, we find for a symmetrical aerofoil at zero incidence in
an unbounded Stream

f(w)z}z.f @:f/)ow)’ O ¢ (1)

We can reduce the range of integration to (A H) for if the aerofoil lies in this interval, then
out51de (A,H),8 =0.

A

| B =0
4 =H

another useful result, 'is‘simply one of the conditions that the prbﬁle is closed.

If instead of adding the conjugate of (7) to (6) we subtract it, we find corresponding to (8) the
conjugate equation* o : .
fwy =~ 7| {Lcoth%(géo —w) — L¥tanh} (o — @) | d, .. .. .. (12

where the axes in the z-plane are adjusted to make 6(c0) = 6( — 00), i.e., the flow directions at
infinity make equal angles with the x-axis. The functions L and L* must satisfy

- = oe) o~y =0
In an unbounded stream ,
* ir® Ld ® ' . | |
f(w)zﬂﬂ_mj;w, f_de,ﬁﬂ:o. e ()

These conjugate equations play the same role in aerofoil design as do (8) and (10) in the
calculation of the flow about a specified aerofoil.

The appropriate value to use for 4 in the above formulae is clearly
h = H,a, . .. . . .. .o (14)

where H, is the channel width in the z-plane at a point where the velocity is known to be uniform
and equal to @. The prescribed conditions at infinity fix these quantities.

* Equations (8) and (12) are applied to a number of fluid motion problems in Ref. 22.
6



4. Numerical Solution of the Equations.—(a) Unbounded Field.—Integrating- (10) by parts
1 A
flw) = -~ = log (¢, — w) d0(d.), o e . . .. (15)
7 $o=H

since # = 0 at ¢, = 4- 0. Now 6(4,) is continuous except at a number of points ¢, = ¢,
where there is jump in 6 of 7, say. From (1) and (2) :

oL 1
_‘7d0(¢0)‘=-~ <_)d¢0=_R._%d¢o.l R TUE PR €
Subd1v1d1ng the range (4,H) into (1, ¢, - - ., br - - ¢,) and using (16), we can transform
the Steiltjes integral in (15) into
1471 | 1l ,
F(w) ZEL(Rq) log (o — w)d%—y—ZSerlog(@—w) )
1 ngt (o401 L. ‘
=-3 L,- <Fé> log (b —w) gy — - Brlog (g —w) .. . .. (1)

If the subdivision is carefully made with # large enough, we can write approximately

1 7=t 1 ' ' ‘ ' '
fl) =15 <R ) [10g (¢ — @)l — - Sw.log (¢ — w), )
where (%) is the mean value of Ri; in the ™ range, [log ($o — w)],m 1s the mean value of the

logarithm in the ® range, and 0¢; = ¢; ., — ¢,~.( On » = O (18) becomes A
U\ 1 B T |
log (§> =y (% ) g (b — Hlu— Tulog (b= #h . (19

an equation which must be solved by an iterative process as ¢ appears on both sides of the
equation. This iteration has been described in section 1 and is Summarized in section 7. 'When
(19) has been solved (18) can be used without further iteration to determine L(¢,y) and 0(¢,p)
throughoéut the field. For example the real part of (18) is

Ligw) =1 5 (Rq) g (g — 41+ 2 — 1 dog (b — 4 v

The mld—range values of the logarithm may be taken 1nstead of the mean value except near the
singularity (¢,,0).

(b) Bounded Field.—Assuming for simplicity‘ that 6% = 0 in (8) we find

A

)=~ %f_ logsinh ¥ (4 — @) db(ge, . o e e (20
then as before : ‘ ' : :
flw) =1 H( ) [log sinh 7 (. — @)]w — L5z log sinh 7 (4, — ) (21)
- T =1 h mi ﬂ:sg 7, \Ps s . ..

7



and in particular

U 173t . LT LW
log <——>: -2 <%>, [log sinh 7 (po — )l — 7—1 sZrS log smh% (s — ). o (22)

q T =1

An altetnative approach to the bounded field is given in section 6, which avoids the need to
T

compute [log sinh 7 (4o — #)h

5. Doublets.—Near a nose with a small radius of curvature it is useful to have formulae for
the effect of a corner ¢ at a distance 8¢, from an equal and opposite corner — z. The influence
of a'doublet between parallel channel walls is from equation (20) :

flw) = — 7—2 [log sinh% (o + 0o — w) — log sinh % (ps — w)]
3by) 8 :
o~ %i) 39, {log smh%(% — w)},
ie,  flw) = — (“;f“) coth? (o — ). .. . . (29
For the unbounded field this becomes
_ (zody) o
f(w)_n—(w__%) .. .. .. .. .. .. .. .. o (29)
The effect of the channel walls on the doublet is
Af = (TZ"S") {coth 7 (@ — $o) — . }
) 7 _
A (w — ¢o)
. (794 L fm\* ,
““W‘(w_(’s“){l_ﬁ@) (w ¢0)}. : - . . oo (25)

8. Increment due to Straight Payallel Walls—From (8) and (15) this increment is

1 7 1
Afw) = — - [ logsinh (po— w)dilpe) + - |  log (4 — ) (o
$o=H $o=H
1 (¢ ™

_ _J log coshk (po — w) dB* (¢,),
¢o=D

T

assuming the walls are straight and parallel outside the range (C,D). Now the functions 46(4,)
and db(¢4,) occurring in this equation are not quite the same, but since the blockage effect is
fairly uniformly distributed over the aerofoil, only a very small error is committed in assuming
d0(bo) = d6(¢o). Doing this and making use of (11) we find
e sinh (n/h) (4 — w) 1 ¢ n .
Af — — Efm:Hlog iy @00 — ;LFDlog cosh 7 (o — 1) d8¥(4y)

8




-z LH o — )t [1— oo (5 (4o — ) o

— o f;:D (do — w)? {1 — é(%)a (¢ — w)ﬁ} *(d) .. .. .. (20)

Now h = HU (see (14)), and so if 6* = 0, then with the aid of (186), (26) becomes

A? log@) log(;j) G(Tﬂ_U)zUA() [1 HU:|d¢°

_ 21 (¢, — ¢)? [1 — %2 (s — ¢)2:|,

where ¢, and ¢, are the velocities in the bounded and unbounded streams respectively.

Now AL = — log (;/gs) = — 10g (u + 95 — gu)/gu = — log (1 + ;'—9> ~_ %’, and so with the

u

approximation ¢, == Us, == Ux,, t.e., g, = 1, we have

A (S M S

><(x'~x)2dx.,]} L (27)

from which the effect of blockage on the aerofoil surface can be found immediately. If
doublets are employed in the calculation an additional term, readily calculable from (25), will
appear in (27).

7. Summary of Iterative Method of Solution.—Take the origin of s and ¢ to be at the trailing
edge say, and let ¢ = ¢ at the leading edge.

. . L C __C (s
(a) From the aerofoil co-ordinates find (i) el (E) ,

(ii) semi-perimeter p = mc.

(b) Assume a relation qo = qo(¢) (qo = 1 for example), and calculate

() = qﬂ f yand S =23 (g).

From this the relationship % = -]% (¢) can then be deduced.

c) Using the assumed g,(¢) and the deduced values of ¢ and < $) calculate approximately
1 o R
(%) asa function of ¢,. Substituting this value in the right-hand side .of equation (19)
0
ields L, (¢) say, from which ¢,'(¢) can be found.
¥ y q
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(d) Repeat steps (b) and (c), using ¢,'(¢) to find qoz(qS), which will be more accurate.
(e) Repeat step (d) until go(¢) remains unchanged in successive steps.

| (f) Values of L and 6 in the outer field can now be found directly from (18) using the

accurate values of ( %) cl? from the last calculation of step (e).'
. 0 . .

(g) The (¢,y) and (x,y)—planes are now related by
o J cos 6 qu_J'smG

cos 9

Y= yrﬁw Losmed¢+f

and hence from step (f) we finally have the solution L = L{¢,p), 6 = 6(¢,»).
Section 15 g1ves an alternative method of calculatmg 6 in step (f).

A similar process applies to the bounded field. One important pomt arises in step 3. The
trailing and leading-edge angles, 27,, and 27, say, should not be given their actual values in
(19), otherwise the equat1on corresponding to. (11) : S

_E(%)i-zr,zo, B T I TINNRTIUR TN

=1 ) 5

will not be satisfied. It is clearly satisfied by the true values of =, and =, only if # =co. The
best method of determmmg appropriate values of 7, and 7, is to find the position of that tangent
to the aerofoil which is parallel to the x-axis, and then 7, is taken to be equal to the sum of the
(64/Rg); between this point and the leading edge, while v, is the sum of the remainder of the
(6¢/Rqg):.

-8, Exam{)le A Circular-Arc Aerofoil. ——( ) Exdct Theory —The approx1mat10n derived from
the initial assumption that g, = 1, will be compared with the exact theory for the von' Karman-
Trefftz profile shown in Fig. 3. The following notation will be used:—

¢t the maximum thickness
27 the trailing and leading-edge angle

a the radius of the circle in the ¢-plane into which the profile is transformed

k :%(ﬂ—rj.

T
The following expansions correct to (¢/c)* will be used:—

=2 R= 4t,k—2{1—‘—3<£>}-' L@

The transformation from the é—plane to'the ¢-plane is

z _(L+at) + (1 —aft)
ka = (T4 afe)t — (1 — aft)*’

dz 22— (ka)®
therefore i ————- -

10



Also w = ¢ + a?[¢, (stream function for cylinder radius a),

dw a’
therefore e 1 — E

If £ = ae®, then

aw 218 3
d_C’: |1 — e | = 2sine,

dC‘ _ | = (ka)?]
and‘d_z- T 2%%sine

4 sin’e .
~ B[ (efka) — 1]

Thus the surface velocity g, = ‘ =

1 —i\k 1 — e
Now = = El i Z_,-%k + El — 2_,5§k = 4 cot { E + ¥ log (tan* § )} :

: - :
therefore l/l <——> — 1’:

ka

tan*le — 1 nk
- |:<2 tan®/? (‘g&‘)) + s’ (4 )]

With ¢ = ae®, w = ¢ = 2a cos ¢, which is used to ehmmate ¢ from the above equations giving
finally - -

1 — (24)e) [(1 — 295/0)’”2 ' '(1 — 295/c>""/2 B ., <71/_73)] : '

At the point of maximum thickness on the profile ¢ = 4=,

sin® {Z b+ i log [tan*" (a/é)]} ‘

. i e
therefore ¢ = 4_51_1_%@ ,

and using (29) we have approximately
A | 24 —m ) | o

(b) Polygon Method—The first approximation is ¢, = 1. Therefore from (29) Rl = -
Thus from (17), with origin at the midpoint of the chord, : o

Lo<¢>=-1-{f/:(4’f) g (6 — 0 b — Z1og (e + #) — Z1og e — ),

x c?
= el ()1 (0) - %

therefore qozexp(:t) exp {4t¢1g( _gzﬁ)] .. .. . . . (32)

a4 Ouee (2,
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correct to the first power of ¢/c. At ¢ = 0, (82) becomes

g0:1—|—§<g>—|——-8—2(§>2+...cf.(31). L

7T

Equations (30) and (32) are compared in Fig. 3. The greatest error in the second approximation
(32) is only 7 per cent of the velocity increment. The third approximation cannot be found
algebraically, but using arithmetical methods we find that it is indistinguishable on Fig. 3 from
the exact theoretical result. This illustrates the rapidity of convergence of the method.

9. Example: An Aerofoil Inverted from a Hyperbola.—This aerofoil is one of the series
developed by Piercy, Piper and Preston', and having a theoretical solution is thus a suitable
example to illustrate the polygon method. The results obtained here are

(a) wvelocity distribution on the aerofoil surface, and

(b) a few values of the velocity at representative points in the field, for both the open and
bounded fields.

The velocity distribution for the open field is compared with the exact theoretical curve, while

the other results are compared with the values given by Thom and Klanfer'* obtained by more
laborious  squaring ’ methods.

The aerofoil co-ordinates and the derived values of 1/(R log 10) and s are given in Table 1.
(log 10 was introduced as it was convenient to use logarithms to base 10.) The curve

53R ‘03, 7 vy—é is shown in Fig. 4. The initial assumptions are:—

(i) ¢ = 0 at the leading edge, and ¢ = 10 at the trailing edge.
(i) go =1, i.e, c = 10. ‘
The aerofoil is represented by arcs of constant Rg, centred at ¢ = $,1,14,21,3,4,5,6,7,8,9,92.

The range ¢ = 0 — } is not included as it was more convenient to introduce a doublet at

¢ = 0 to represent this small range.

Open Field—Fig. 5 shows the first approximation to g, = go(¥/c) based on the assumption
go = 1. The second and third approximations together with the correct theoretical curve are
also shown. Table 2 sets out the integration of d¢/g, based on the second approximation,
to determine new values of 1/(Rg,) to be used in the third, and in this case, final approximation.
The columns of this table that are not obvious will now be described.

Column 3: obtained from the second approximation.

Column 4: s = 4¢/g,, calculated from columns 2 and 3. One difficulty here is the integration
from ¢ = 0 to 4, (and ¢ = 10 to 9) since at the lower limit the integrand becomes
infinite. This difficulty is dealt with in the Appendix. The trailing-edge angle
for this aerofoil is 21 deg, and so from (165)

s — (/)  1-002 x 1
1 —0-058  0-942

= 1-066, (c¢f. col. 4)

Column 7: x/c determined from column 6 and Table 1.

Column 8: From column 7 and Fig. 4 ¢/2-3R can be found for each point, then from columns 2
and 3, with ¢ = 8-861, d¢/(2-3Rg,) can be deduced.

12




Table 3 sets out in matrix form (to save space) the solution of

L) =% (& )[1og(¢—¢>]mz— 5 wlog (5 — 4) — 220}

which follows from (18) and (24), a doublet being introduced at the nose. This equation can
be written in the matrix form

1
(Lo} = 5 (144 B3 + (C3),
where B; = (}Z‘Z) 1 = 1,2, . w1,
= — 1, 1 = a,h, (Note: From (28) X B; must be zero)

Cr=—(v¢)[dr, k=1, ... n—1,
Ap=log(¢r— ), B=1, ... 0n—1,71=ah,
= [log (¢r — ¢o)]m, k2 = 1, Cn— 1.

In Table 3 logarithms to base 10 are used, and the matrices in the table are related to those
defined above by

10°4 0B o, _10°C ;. 10,
- — 23 T 23

andso {L,/(¢)} = o3 [4{B'} + {C}

, 10* {10 a¢> . {104' aqs] .,
Now from (16) 5 3( T 0d) = <2—3 7 d¢, and extrapolation of the values of 33 Ry, ,in B
to ¢ = { yields a value of 1020, also é¢ = —% and therefore €' = — %2

: - R

Bounded Field—H in (26) was taken equal to 20 units. The first approximation based on
the unbounded field results and calculated from equation (26), is compared in Fig. 5 with the
- results obtained by ‘ relaxation’. Table § sets out the results for the bounded and unbounded
fields on the aerofoil surface, while Table 4 gives outer field results at four representative
points.

13



TABLE 1
The Prercy, Preston and Piper Ae}/ofoil

s . c x 3
K - X ‘10 537 o X 10
50438 0 0 0
49866 982 225 10-12 11
49291 1375 365 2-75 23
48142 1901 613 2-05 45%
46990 2275 853 1:-19 68
45834 2565 1089 0-863 90*
44674 2799 1323 - 0-738 115
43511 2990 1557 0-493 138*
42344 3147 1790 0-457 . 161
41174 3275 2023 0-382 184:*
40000 3379 2257 0-348 207
38822 3461 2491 0-305 231
37639 3524 2725 0-265 253
36453 3570 2960 0-265 278%
35263 3599 3196 0-241 300
34068 3613 3433 0-213 325
31663 3600 3910 0-191 372%
29239 3536 4391 0-165 420
26793 3426 4877 0-155 469%
24323 3272 5368 0-142 518
21828 3077 5867 0:132 567%
19303 2841 6370 -0-116 618
18028 2709 6624 0-119 643
16745 2567 6880 0-112 GB8*
15452 2415 7138 0-101 694
14149 2254 7400 0-103 720
12835 2082 7665 0-100 746
11509 1901 7930 0-110 T72*
10169 1709 8198 0-089 799
8813 1507 8469 0-097 825
7439 1294 8745 0-107 853
6043 1068 - 9025 0-077 880*
4621 830 9311 0-085 908
3164 578 9604 0-092 937
1654 307 9907 0-082 967
0 0 10240 — 1000

Trailing-edge angle = 21 deg

14



. TABLE 2

I megm;ﬁz'on to Determine Boundary Gradients

¢ ¢ 1/g0 8s s sfc xfe RS <f_¢>
’ 2:3 Rq 0
(1) 2) 3) (4) (5) ) (7) (8)
0 ~ 0 0 0 —
3 0-554
% 0-894 0-554 0-062 0-046 0-0932
% 0432
1 0-839 0-986 0-111 0-092 0-0405
3 0-420
11 0-840 1-406 0-158 0-140 0-0245
3 0-419
2 0-837 1-825 0-205 0-186 0-0267
‘ i - 0-838 - A
3 0-840 .. 2-663 0-299 0-279 0-0240
1 ’ A 0-846 B : .
4 0-852 - 3-509 0-393 . 0-374 0-0176
1 0-858 S
5 0-868 4-367 0-491 7 0-471 0-0150
1 : 0-878 ,
6 0-888 -5-245 0-589 0-570 0-0130
1 0-898 ,
7 . 0-907 6-143 0-689 0-669 0-0113
1 0-935 '
8 0-962 7-078 0-794 0-773 0-0106
1 0-982
9 : 1-002. 8-060 0-904 0-881 0-0099
1 . 1-066
10 o - 9-126=p | - 1-024=m- 1-000 - -—

¢ = pm = 9-126/1-024 = 8-861

Note: The results in column 7 should be compared with the results in Table 1 marked with a star, which are for the
same values of ¢, and it will be seen that the maximum error in the location of the equipotentials is 0+3 per
cent of the chord.
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TABLE 3
Thivd Approximation, Unbounded Field

A’ é:
[—301 —1036 —321 . —5 207 +395 -+544 4653 740 +813 875 4929 1966 —{—978_7 %
0 —321 —1036 —321 —43 296 475 602 699 778 845 903 942 954 1%
4176 —5 —321 —1036 —234 -+168 395 544 653 740 813 875 917 929 1
301 4174  —5 321 —894 —20 --296 475 602 699 778 845 839 903 | 2
477 398 300 174 —59 —735 —20 296 475 602 699 778 829 845| 3
602 544 477 398 273 —20 —735 —20 296 475 602 699 756 778 | 4
699 653 602 544 459 1296 —20 —735 20 4296 475 602 677 699 | 5
778 740 699 653 588 475 4296 —20 —735 -—20 +298 475 574 602 | 6
845 813 778 740 688 602 475 296 —20 —735 —20 208 439 477 | 7
903 875  845. 813 796 699 602 475 4296 —20 735 —20 +243 4301 | 8
|_+954 4929 +908 4875 +837 778 4699 4602 475 --296 20 —735 —175 0] 9
4 =0 1 1 12 2% 3 4 5 6 7 8 9 92 10
! . CI LI
[M—21127] —1647] —5117]
932 —82 —760
405 —55 —778
245 —41 —788
267 —27 —747
240 .3 —20 —B680
X 176 | —— + —16 = —600
150 | 10%# —14 —502
130 —12 —374
118 —10 " —212
106 L —9 +39
99 -
-+-46
| —797 |
TABLE 4
Velocities in the Outer Field
Open Field Bounded Field
Position
Origin L.E. ‘ Squaring ’ Polygon ‘ Squaring” Polygon
{(¢,4) Results Method Results Method
(—5, 0) 0-9804 0-9813 0-9883 0-9899
(1, 4) 1-0253 1-025 1-0373 1:038
( 6, 10) 1-0119 1-012 1-0305 1-030
(11, 2 0-9757 0-9759 0-9906 0-9910
TABLE 5
Velocity Increments on the Aerofoil Surface
¢ 3 1| 12 2 3 4 5 6 7 '8 9
Open\ Polygon 0-125 | 0-191 | 0-196°| 0-199 | 0-188 | 0-169 | 0-148 | 0-123 | 0-090 | 0-051 |—0-009
Field /' Exact — | 0-191 | — |0-200 | 0-188 | 0-171 | 0-148 | 0-122 | 0-090 | 0-050 |—0-009
Bounded Polygon 0-187 | 0-204 | 0-210 | 0-213 | 0-201 | 0-184 | 0-162 | 0-137 | 0-103 | 0-061 | 0-002
Fielded J ‘Squaring’ — 0204 | — |0-213|0-202|0-184 | 0-162 | 0-135 | 0-102 | 0-061 | 0-001
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PART 2

Incompressible Flow about an Asymmetric Aerofoil in a Free Stream

10. Iniroduction.—In section 12 equation (10) is generalised to apply to an asymmetric
aerofoil at zero circulation. It is necessary to work in the plane of zero circulation because
only in this flow plane are distances defined uniquely, i.e., are independent of the path taken.
In section 11 it is shown that once the problem has been solved at zero absolute incidence (zero
circulation) then it is simple to deduce results for any angle of incidence. To complete the
solution it is necessary to compute the zero-lift angle.  The method is quite simple and is set
out in section 14, while section 15 summarizes the application of the polygon method to an
asymmetric aerofoil.

The example selected to illustrate the method is a high-speed 10 per cent propeller aerofoil
(NACA 16), which has a very small nose radius. In Fig. 8 surface results obtained from the
polygon method are compared with results (a) from a previously computed relaxation solution®
and (b) obtained experimentally at the National Physical Laboratory. There is good agreement
with the experimental results except near the trailing edge, where of course the effects of
viscosity are not negligible.

11. Asymmetric Aerofoil with Circulation.—This section reduces the general problem of an
asymmetric aerofoil with circulation to the problem of an asymmetric aerofoil without
circulation. Fig. 6 shows the various transformations used in this section. In this figure

« 1s the absolute incidence

{ is the complex variable in the plane in which the aerofoil is transformed into a
circle of radius a,

2

ie., w:g‘—i—%, O 7 )
and »’ is the flow plane with circulation,
2, —fa
ie, w =e¢ 2 + 2ia sin « log . . .. ce .. .. (36)

¢

In the w-plane the aerofoil is represented by a slit extending from 22 to — 2.  In (36) the
circulation has been selected so that the Joukowski condition holds, 7.e., the rear stagnation
point H coincides with the trailing edge.

It is required to express the velocity in the w-plane in terms of the velocity in the w-plane.
From (35) and (36)

(e e 2B )

—10

where ge ¥ = 6—;%. From (35) 2 = w 4 (w* — 4a%"* the positive sign being selected so

that the ¢ and w-planes are identical at infinity. Thus *
w + 2@)1/2} ge,

w — 2a

g'e™™ = {cos « -~ 7 sin « ( (37)

*An alternate proof of this result appears in Ref. 21
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in which the first factor is the well-known solution for a flat plate at an angle of incidence «.
Thus if the solution at zero incidence can be determined, that at incidence is found by
multiplying by the corresponding flat plate solution. This simple rule can be expressed concisely
in terms of elliptic co-ordinates (1,y) defined by

w= —2acosht t=n+1y, .. . . .. . . .. . (38)
when (387) reduces to '

g'e™® = {cos « X 7sin« tanh (¢/2)} ge=*. .. - . . .. .. (39)
y = 0, defines the stagnation streamline, while 7 = 0,orw = ¢ = — 2a cosy, .. (40)

defines the slit representing the aerofoil. Thus on the-aerofoil (39) becomes

gy’ = (cos« + sin« tan 4y) ¢, . . . ce . . . .o (41)

The angle y is shown in Fig. 6. At the trailing edge y = 0, and at the front stagnation point
corresponding to zero circulation, y = #. From (41), when y =0, g, = g, cos «, but when
y ==, ¢ =00 X ¢, However g,/ remains finite since at y =z, ¢, =0

12. Asymmetric Aevofoil at Zevo Incidence.—The method already developed for a symmetrical
aerofoil at zero incidence, together with the equations given above, solves the problem with
flow with circulation about a symmetrical aerofoil. It remains now to determine dw/dz = ge="
for an asymmetric aerofoil at zero incidence.

Consider the transformation
w= — 2a cosh i t =n 4 1y,

already used in the previous section. Fig. 7 shows the relation between the w and ¢-planes.
The whole of the w—plane maps into each of the semi-infinite strips

0<n<oo, 2 <y<2ulr+1),
0=n>—oc0, 2w <y <2u(r + 1),

where » =0, -1, + 2, . ... Eliminating » from
¢ - 1w = — 2a cosh y cosy — 2az sinh 5 sin y,
2 2
we have ¢ L

4a* cosh? 5 - ia¥sintPy L
and so y = 4 constant, is an ellipse in the w-plane.

The only singularities in f occur on the aerofoil surface at simple discontinuities in 8. The
transformation (38) is conformal except at points B and D (Fig. 7), and so f, being analytic in
the w-plane in which points B and D and the surface singularities are excluded by indentations,
will be analytic in the corresponding region of the f-plane. - As in section 3 the contributions
to Cauchy’s integral, taken around the contour indicated in Fig. 7, from the indentations
excluding the singularities will tend to zero as the radius of the indentation tends to zero. We
can therefore omit further consideration of these singularities.

It is clear that f and its derivatives are continuous across the family of lines AB, but while
[ is continuous across n = 0, its derivatives are not. However this does not affect the
application of Cauchy’s integral to the rectangles 0 <<y <<k, 2a7v <y < 2a(r 4 1), since
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lies only on the contours. Suppose P() is a pomt inside the rectangle 0 <<y < 2=,

n=20
0<% <k then P(—1? (the bar denoting conjugate’) is a point inside the rectangle
0<y <27, 02=%n= — B, i.ec., outside the first rectangle. Thus for P(f) we have

_ L (["f0h), £(n,2n) s o [T00)
f(t) an{ G B —1 dﬁ+f —|—2m— +f k—l— tidﬁ_i—fkn—tdn}’
which, since f(n,y) = f(n,y + 2=), we can write

o zflﬁ{f(ﬁof)t_k—{(%)— )i +f<n +2m.——t a0l (42)

Also for P( — 7) we have

S SN (I B CY) 1 .

=oat) (Bt w i) +f<77 T )0l
Adding the conjugate of equation (43) to (42) we have

_ L2008 fkp) fRB)
10 =5l G2~ it i)

f(n.,0) J(n.,0) fn,0)
+f<n+2m—t e R e E e | S

Similarly, takmg Cauchy integrals around the rectangles 2nr <y << 20 - 1), 0 <y <4,
v= 41, £+2, ... 4», and adding the results (all zero on the left-hand side) to (44) we
find
o L[ 2 26008) fl%.8) SRB) N\
) =54 U ,5_,,(27”'7 T =t R F Zmir i =t  E o Omir — 5 L ¢>" ap

7,0) f,0) fln,0) f,0) )
+fr__n(n—}—2wz+2m7’—t n + 2mr — ¢ n+2ni7—2ni+t_17—[—an'?’—]—zf)dn}»

In the limit as # — co this becomes

f) = 5= [ 0(0,6) coth 3(i — 9 dp — j {f{.6) coth §(k + if — 4
+ fk.B) coth 4(k — i + )} dp.
Suppose f(c0,8) = 0, .., ¢ = U, then when % — o0, we have'ﬁnally

7T

f(zr):?%f 0(8) coth 3(zp — ) dp, .. . e e .. (45)
where Gwz—%flﬁ(ﬁ)dﬁ... . .. . . .. (46)

The range alteration is permissible since 6(8) = 6(8 -+ 2x). -
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If instead of adding the conjugate of (43) to (42), we subtract it, we can derive the conjugate
equation to (45): S : '

f(t):zlﬂﬂL(ﬁ)coth%(iﬁ—t)dﬁ——iOm, OO ')
where L(g) satisfies f L(g) dp = O. N )

Equation (47) is a more general form of an equation due to Lighthill**. His equation, the basis
of his method of aerofoil design, is obtained by putting ¢ = 1y in (47):—

: L

ouly) = 5 [ L(B) ot 16 — v) d.

-

18. Numerical Solution of the Equations.—Integrating (45) by parts }

) = _H log sinh }(i8 — £ 6 (B). .. .. .. . . .. (49)
p=—n , ‘ '
Now 6(8) is continuous except at a number of points g = 8, where there is a jump in 6 of 7,
say. From (38) and (16) ¢, = — 2a cosf, t.e., di(f) = — (Rl-q>02a sin g df, and so the Stieltjes
integral in (49) can be written
% (" (1Y .. L 1 . | N
) =2 <——) sin § log sinh 3(68 — ) df — = T 7, log sinh 3(8, — 7). .. (50)
= J _ \Rq/o : v s ,
On the aerofoil surface, = 0, this becomes
% (" (1N . i . U S
Lo(y) = ;f_n<Fq>o sin g log sin (8 — ») 48 — - ?rs logsin $(8, — ), .. .. (81)

an integral equation which can be solved by the iterative method set out in section 15
below. When this has been done (T%!-)owill be known as a function of # and so (50) can be solved
directly.

Of course if 6 = 6(g) is specified algebraically, (45) could be used directly to calculate fE).
However since an aerofoil of arbitrary shape can be much more closely approximated to by
assuming- that Rg, remains constant over small intervals of g than by assuming the same for
6, equation (50) has an obvious advantage over (45). '

As in Part 1 we divide the range of .integration into # — 1 small intervals, ;.1 — ¢,
j=1,2,...n—1,in each of which Rg, can be taken, with negligible error, to be constant.
The size of the intervals at any point on the aerofoil chord is determined by the rate of change
of (1/Rgq),, and needs to be quite small in the neighbourhood of a nose of small radius. This
point is 1llustrated in the example of section 17 below.

Suppose that in the j* interval (1/Rg), = (1/Rg);, and that ¢,., — ¢, = d¢;, then ‘(51)v can be
written ~ ,
1zt o 1 i1 L .
Liy) =={Z R | Hog sin 3(f — )] — X7 log sin 3(8, — ¥) . .. (52)

T \j=1

* See Ref. 23 for an extension of Lighthill’s method to compressible flow.
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in which ‘ mj * indicates the mean value of the logarithm in the j* range. The mid-range value

can be used except near the singularity § = 7, When, in the absence of special tables, we must
use

‘ AT+l
Hogsin $(f — »)}w = 1 [cos p — Bsiny — 2(cos B — cos y) log sin % P (53)
2 5(#, 2 &

Equations (52) and (58) prove a little laborious to use. The folléwing procedure reduces the
work and avoids the need to use (53).

We can write (49) as f(t) = — %f log sinh §(¢ — 48) d6(8), in virtue of

p=—z

j do(g) = 0, L s

=_—x

which is one of the conditions that the profile is closed (cf. equation (11)). Thus using (54)

fity = — }J log sinh }(¢ — 16) do(g) — lf log sinh 1t + 8) do( — p)

f=0 T J g

7T

7T

S 7_1 f log {sinh §(¢ — 1B) sinh (¢ 4 18)} d{3(6(8) + 6( — B))}

8=0

1" sinh 3(¢ — 8) ., -
~x ), e (R e — o -

1 sinh (¢ — i8)

1
= y—zf 0=H10g ((]50 — w) ar + ;fﬂxologde,
where F = — 3{0(8) + 6( — )}, = —300(8) —0(— B)},
and we have assumed that in the w-plane the aerofoil lies between the stagnation points A
and H, which are at ¢, = 24, and ¢, = — 2 respectively (sce equation (38)). If the only

discontinuities in 6 are 7, and vy at the stagnation points (the usual case), then subdividing
the range, and writing : : ,

' 1 1 1 1
A = Tdb =) + gl — D)) as; a6 =Cap =3[ F0) - il — 0} s,

where 7" and C are taken to be constant in each interval, we find

1 not inh 1(¢f — 1
7= 2 BT o8 (50 — w10, + €, [rog S, )
;%ulog(za—w) —}ErHlog(Za—'{—'w). N 50

On the aerofoil surface

sin 4(y + B) |
— Ze,log (2 — 4) ~lelog@at4), .. .. ... 9
24
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in which the range of y is reduced to (0,z) and the positive sign gives values on the upper surface
and the negative sign values on the lower surface.

For a symmetrical aerofoil C; = 0, and so the 7; give the effect of thickness, and the C; the
effect of camber. In the absence of special tables

. 1 . .
[10g S8 1] — Dog(8 — 41 — log 44 — 2log sin 7 + )L

in which it is sufficiently accurate to use mid-range values for the last term.
Equation (54) can be written
2 ago@) +o(— ) =2[ aFE) =0
=0 g=0
corresponding to which we have
n—1
]E:l];'(squ—f—TA—I—TH:O . .. . . . .. .. . (57)

assuming that the only finite angles are v, and 74.

14. The Zero-Lift Angle.—Integrating (46) by parts we have 0, = —2171 f g do(p),
B=

. __a(" psing 1
1.6, 0, = nf_,,—RQO ag + 5 ?rsﬁs,
the last term of which vanishes if %‘u at f ==z, vy at f = — =, and 7z at § = 0 are the only
. ) ) a (" sin g
finite angles on the profile. Thus in this case 6, = — R B dp.
TJ _, 0

The angle between the chord and the streamlines at infinity, ¢.e., the zero-lift angle «,, is
given by

oc[):600

n—1

= gﬁ,-cjagﬁj, N (512)

where g; is the value of g at the mid-point of the j* range, ¢;.; — ¢;.
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From (58) we can deduce an approximate equation for «,, by assuming that 4a = cg,, where
¢ is the aerofoil chord, when

oc0=—4——7-tJ- %sinﬂdﬁ. P )

15. Summary of the Method.—Following is a summary of the steps to be taken to find the
incompressible flow about an asymmetric aerofoil with circulation. In’ practice, of course,
all the differentiations and integrations of this section are performed numerically. It will be
convenient to take the origin for s and ¢ at the trailing edge, H.

(a) Determine from the profile co-ordinates

-;Z_f{1+<dy)2}”zd<’—g),..'.. L ey

,e . . dy 2 1/2 X
(ii) semi-perimeter p = mc, say, from p = %ff;{l -+ ( ) ) d(5>,l

ooy € a*y ay\*| 22 '
and (111)]-? d2[1+(y>} D .. .. .. .. .. . .. (62)
(b) Assume an approximate relation g, = go(¢), .. .. .. . .. .. (83)
from which ¢, = ¢,(8) follows immediately.
. *de 1 rdé .
Slnces(gs):foa, and c=%3€a, .. .. .. .. .. .. (64)

then S (¢) = 2m f jqu/go/ <5Ed¢/qo>,

c ¢ ’
andhence —R=F(¢), .. .. .. S .. .. . .. (65)
follows from (61) and (62). The infinities occurring in dé/q, at the stagnation points are dealt
with in the appendix. An approximate value of the boundary gradient <}—62> E.lq_ .. (66)
0

follows from (63), (64) and (65).

(c) Intervals ¢;,, — ¢; are selected so that the aerofoil will be adequately represented, and
approximate T}, C;, =1, 2, . . . » — 1, are calculated using the values (66). 7, and 75
must now be selected so that (57) is satisfied. Only when the number of intervals, » — 1,
tends to infinity will v, and v5 become equal to the actual leading and trailing edge angles
Otherwise 7 will usually be very nearly the exact trailing-edge angle, but even with a relatively
fine mesh, 7, will have a value quite different from =, except perhaps for very large nose-radius
aerofoils. In practice 74 is made equal to the sum of the (0¢/Rq); between the points of contact
of parallel tangents on the aerofoil and the trailing edge. v, is then selected to satisfy (57),
when clearly it will be equal to the sum of the (6¢/Rq) between the pomts of contact of the
parallel tangents and the leading edge.

(d) LO is found from (56), and a new and more accurate relation ¢, = ¢,(¢) is deduced to use
in step (e).

(e) Steps (b), (c) and (d) are repeated until there is no further change in g,.
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(f) The values of 7; and C; found in the last round of this iterative process are now used in
(55) to find values of L in the outer field, i.e., L = L(n,7), and hence from (38)

L = L(¢,p) .. .. .. .. .. .. .. .. ce e (67)
can be deduced.
(g) 6(¢,y) follows from
1] . ¢ .
0(¢,p) = 6(40,0) +f -g—f;dzp—f %‘dqs, . . S .. (88)
0 $0 .

which holds in virtue of the Cauchy-Riemann equations relating L and 6. 6(¢,,0) is the value
of 6 on the aerofoil and is thus known.

(h) The (¢,y) and (,y)-planes are now related by

¢ ¥ o
x:x(qs,w):f @ﬁdqg_f%l?_@d%
40 q o ¢
? sin g Ycos |
y=yn) = [ Blagy [Llay .. .. . ®
¢o q o 9 : .
and hence from (67) and (68) we have the solution
g =q(xy), 0=0(xy). o)

(i) The zero-lift angle «,, is now calculated from (59).

10. Tf «, is the angle of incidence measured from the chord, then putting « = «, + «, in (41)
and using (38), (69) and (70) we can find ¢’ = ¢'(x,), 0 = 0'(x,y), for any given «. :

In the iterative process described above, the position of A, the front stagnation point, is
determined by an integration commencing at the trailing edge. Initially it can be assumed
with little error that A is at the semi-perimeter point, P say. Suppose a subsequent integration
indicates that A should be moved a small distance és* from P, then, since both R and ¢ change
rapidly in the neighbourhood of an aerofoil nose, this small movement will result in a relatively
large change in 7; and C; near the nose. When g, = g,(¢) 1s calculated and the integration
performed, it may be found that according to this integration A should be placed at a distance
greater than és* on the other side of P. This diverging oscillation of A about P certainly occurs
for an aerofoil of small nose radius such as that of section 17 below, and so another method must
be used to help locate the position of A. This is given in the next section, but during the early
stages of the calculation it is better to maintain A fixed at P until the velocity distribution has
‘ settled ’, and only then to allow A to move. ‘ ‘

16. Location of Front Stagnation Point A—From equation (56) it follows that the difference
in velocity between the upper and lower surface of the aerofoil is due entirely to the coefficients
C;, We shall calculate an approximate value of the displacement of A (és) due to a small change
6C; in the values of C;, 7 =1,2, . . . n— L

Consider the effect of one 6C; at ¢ = — 2a cos f;, on the velocity at ¢ = — 2a cosy. Suppose
this velocity ¢ is increased to g + dg, then, with é¢ constant, if és was the original length of an
element, (3s)g/(g - dg) will be the new length of the element, 4.e., the element changes in length
5sdqg  6q 6 , .
o 7

approximately since 8¢ = ¢ 6s).
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Now 6L = — log (7 + ég) -+ log ¢ = — 4q/g,

: ‘ 0 _ 0Cs,, SNy — B))
1.e., from (56) .C]_ = ?10 m
Therefore change in length of element at ¢ = — 2a cos y

— 1 &f lo sin %(7 ‘— ﬁ;)
S gm Csinly +8)

Thus the total displacement of A due to 6C; is approximately

5.

sind(y — B;) siny 2a .
0 d s - 6C iy
sty +8) ¢ T g SR

2a "
— 6C,-f0 log

where g is an average velocity over the aerofoil.

Hence, since 4a/g = ¢, the displacement 6s due to all the oC; is

By SoCsing. .. .. (71)
(4 j=1

We use this equation in the following way. Suppose that initially A is taken to be at P, the
semi-perimeter point, and that a subsequent integration indicates that A should be moved
a distance ¢s*, which movement will change the C; to C; 4 6C;.  Equation (71) gives
immediately the approximate displacement 6s that will result. This displacement will probably
be larger than és* and of opposite sign. If however a smaller displacement of A is made in
the direction of és*, then ds calculated from (71) will be reduced and even changed in sign. It
is clear that the actual displacement os’ should be selected so that it and the ds subsequently
calculated from (71) are equal. This method involves a small amount of trial and error, but
the process does converge, and it only takes a small time to calculate beforehand, with reasonable

accuracy, the effect of any given displacement of A. The method was applied to the aerofoil
discussed in the next section.

17. An Example: NACA 16.—This aerofoil received some attention in a previous paper?®,
Table 6 gives the profile co-ordinates, and Table 7 sets out the values of go at « = 0 deg,
2-15 deg and 4-3 deg. Equation (41) was used to calculate the values of go = 2-15 deg and
4-3 deg from the value of ¢, at « = 0 deg. This equation can be written ¢, = g,(«) X ¢,
where ¢, = cos « 4- sin « tan y. Values of ¢, are shown_in the table.

Fig. 8 shows the velocity distribution curves. From these it is clear that the aerofoil was
designed for an absolute angle of incidence of about 2-15 deg. There is reasonably close
agreement between the results found using relaxation at « = 4-3 deg, and the polygon method.
The experimental curve shown was deduced from a curve for which the stream Mach number
was 0-4 by using the Glauert factor (in the absence of low-speed results). Agreement is good
over the front part of the chord, but as can be expected, there is increasing disagreement
towards the trailing edge, where viscosity effects cannot be ignored.

There is another important difference between the experimental and theoretical results.
The experimental value of «, is 2-3 deg, whereas equation (59) yields «, = 2:72 deg. Thus
theoretically at « = 2-72 deg — 2-3 deg = 0-42 deg, the aerofoil should give about 10 per
cent of the lift it has at « = 4-3 deg, whereas in fact it gives zero lift. The experimental lift
at « = 4-3 deg is about 16 per cent less than the theoretical value, and it would seem that

in this case the boundary layer is still causing an appreciable loss in lift near the zero-lift
angle.
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TABLE 6
Ordinates for 10 per cent Aerofoil NACA 186, 5 in. Chord

(Figures supplied by the National Physical Laboratory)

1 2 3 1 2 3
Distance Upper Lower
from L.E. Surface Surface (All measurements in inches)
0-000 0-0000 0-0000 1-6 0-3052 0-1555
0-005 0-0165 0-0146 1-7 0-3100 0-1579
0-010 : 0-0236 0-0202 1-8 0-3151 0-1601
0-015 0-0292 0-0243 1-9 03206 0-1620
0-02 . 0-0339 0-0277 2-0 0-3244 0-1636
0-025 0-0382 ‘ 0-0306 2-1 0-3274 0-1649
0-03 0-0420 0-0332 2-2 0-3299 0-1659
0-035 0-0455 0-0356 2-3 0-3316 0-1666
0-04 0-0489 0-0377 24 0-3325 0-1671
0-05 0-0550 0-0416 2-5 0-3327 0-1673
0-06 0-0605 0-0450 26 0-3324 0-1671
0-07 0-0657 0-0481 2-7 0-3313 0-1666
0-08 0-0705 0-0509 2-8 0-3205 0-1658
0-09 0-0750 0-0535 2-9 0-3269 0-1645
0-10 0-0793 0-0599 3-0 0-3235 0-1628
0-125 0-0893 0-0613 31 0-3192 0-1607
0-15 0-0982 0-0660 3:2 0-3140 0-1580
0-175 0-1065 0-0702 3-3 0-3079 0-1548
0-2 0-1142 0-0741 34 0-3007 0-1511
0-25 0-1283 0-0809 35 0-2925 0-1467
0-3 0-1410 0-0868 36 0-2832 0-1417
0-35 0-1526 0-0921 37 0-2729 0-1361
0-4 0-1634 0-0968 3-8 0-2614 0-1299
0-45 0-1734 0-1012 3-9 0-2487 0-1231
0-5 0-1828 0-1052 4-0 0-2345 0-1156
0-6 0-2001 0-1125 4-1 0-2188 0-1076
0-7 0-2156 0-1189 4-2 0-2016 0-0989
0-8 0-2296 0-1245 4-3 0-1829 0-0897
0-9 0-2424 0-1297 4-4 0-1627 0-0797
1-0 0-2540 0-1345 4-5 0-1410 0-0890
1-1 0-2647 0-1389 4-6 0-1177 0-0576
1-2 0-2744 0-1429 4-7 0-0927 0-0455
1-3 0-2833 0-1465 4-8 0-0658 0-0327
1-4 0-2014 0-1498 4-9 0-0366 0-0192
1-5 0-2987 0-1528 5:0 0-0050 0-0050

~ Trailing-edge radius = 0-005 in.
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(a) Upper Surface.

TABLE 7

Velocity Distributions

x d¢ p a=2-15deg a =4-3deg
96 ¢ Rqo 8 - P ’ .
9 Ge 9» 9o
0 0-0016 — 0 0 — el —_
0-020 0-0056 0-2100 0-543 0-843 1-001 2-685 1-458
0-040 0-0098 0-0680 0-660 1-591 1-050 2-182 1-440
0-075 0-0144 0-0900 0-747 1-4486 1-080 1-890 1-412
0-125 0-0206 0-0402 0-810 1-332 1-089 1-663 1-347
0-225 0-0327 0-0658 0879 1-247 1-096 1-492 1-311
0-40 0-053 0-0525 0-946 1-183 1-119 1-365 1-291
0-75 0-093 0-0585 1-003 1-1309 1-134 1-2605 1-264
1-25 0-145 0-0356 1-042 1-0985 1-145 1-1957 1-2486
2 0-222 0-0428 1-076 1-0744 1-156 1-1474 1-235
3 0-320 0-0358 1-106 1-0566 1-169 1-1118 1-230
4 0-417 0-0327 1-125 1-0451 1-176 1-0889 1-225
5 0-512 0-0237 1-138 1-0368 . 1-180 1-0722 1-220
8 0-607 © 00413 1-149 1:0297 o 1-183 1-0581 1-216
7 0-700 0-0498 1-149 1-0239 1-176 1-0463 1-202
8 0-795 0-0680 1133 1-0180 1-153 1-0347 1-172
9 0-890 0-0735 1-067 1-0119 1-080 1-0223 1-091
9-75 0-970 0-0508 0-930 1-0035 0-933 1-0056 0-935
10 1-000 — 0 0-9993 0 0-9972 0
(b) Lower Surface.
0 —0-0018 — 0 00 — o) —
0-020 —0-0001 0-4700 ‘0-802 0-155 - 0-138 0-691 0-617
0-040 +0-0002 0-3080 1-230 0-407 0-476 0-188 0-220
0-075 0-0020 0-3930 1-508 0-552 0-803 0-104 0-151
0-125 0-0050 0-1680 1-480 0-666 0-939 0-331 0-470
0-225 0-0123 0-1770 1-379 0-751 1-006 0-502 0-672
0-40 0-0263 0-0770 1-271 0-815 1-017 0-629 0-785
0-75 0-080 0-0522 1-183 0-8677 1-015 - 0-7339 0-859
1-25 0-106 0-0228 1-141 0-9001 1-020 0-7987 0-905
2 0-178 0-0214 1-110 0-9242 1-020 0-8470 0-935
3 0-276 0-0152 1-096 0-9420 1-028 0-8826 0-963
4 0-375 0-0144 1-088 0-9535 1-035 0-9055 0-982
5 0-475 0-0149 1-083 0-9617 1-040 0-9222 0-997
6, 0-575 0-0208 "1-077 0-9689 1-043 0-9363. 1-007
7 0-675 0-0296 1-070 0-9747 1-042 0-9481 1-014
8 0-776 0-0317 1-045 0-9806 1-023 0-9597 1:001 -
9 0-882 0-0370 - 0-994 0-9867 0-980 0-9721 0-965
9-75 0-970 0-0205 0-902 0-9951 0-898 0-9888 0-892
10 -+1-000 — -0 0-9993 0 0-9972 0
S8na . 20m .
n —9. —oré — T
they Resulis. ¢ =9-268, Cjp = S—sina = 57588 sin a

ie., Cr = 0-253 for o« = 2-15 deg; Cr = 0-507 for o = 4-3 deg

wp == 2-72 deg.
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PART 3
The Influence Factor Method of Calculating Incompressible Flow

18. Introduction.—Thom™ developed a method for calculating the incompressible flow about
a symmetrical body at zero incidence in an open or bounded stream. The author’s polygon
method has points of similarity with Thom’s influence factor method. The calculations to
both methods are performed in the (¢,y) or flow plane, instead of the more usual (x,y) or
physical plane. Thom uses the conjugate harmonic functions x and y as dependent variables
in the (¢,p)-plane and obtains a solution x = x(¢,y), vy = v(¢,p); whereas in the author’s
method the conjugate harmonic functions log (U/g) and 6 are the dependent variables in the
(#,9)-plane. Since the boundary conditions are usually specified in the (¥,y)-plane an iterative
method of solution is required for both the polygon and influence factor methods. However
convergence to the exact solution is rapid. Details of the iteration for the polygon method, -
and a demonstration of the rapidity of convergence was given in Part 1.

Some time after this paper was written it was discovered that Goldstein and Lighthill® had
established equations equivalent to (74), (75) and (76) for what they termed the ‘ complementary
function’ in the Janzen-Rayleigh method of computing compressible flow. They did not
however link these equations with the incompressible flow or make any use of them to find
the flow about aerofoils of arbitrary shape. '

Thom, whose original work appeared in an unpublished R.A.E. report in 1942, used a semi-
empirical method to develop his equations, and while the majority of these are correct, a few,
as he states himself, are approximations only. In the following sections the equations are
derived mathematically, and several extensions are made. An iterative method of solving
the integral equations for an arbitrary aerofoil is given in section 23, and applied in section 26
to the aerofoil already considered by the polygon method in.section 9. '

19. The Influence Factor Equations.—We define a  displacement ’ function
T—% + 7 = {Ux(¢,p) — ¢} + i{Uy(dp) — v} = Uz — w, . . - (72)
for which V.2 =V, (Uz — w) = UV,,%2 = 0,
since 7 is an analytic function in the (¢,y)-plane. From (72) we have on the boundaries
¥($,0) = Uy, and y(¢,3h) = Uy* — $h, .. . . .. . . (73)

where 2 = UH (H is the channel width), v, refers to the aerofoil, and y* refers to the channel
wall.

Now in the proof of equation (8) it was assumed only that L and 6 were conjugate harmonic
functions in the (¢,y)-plane, such that f(w) was finite at infinity. Suppose that near infinity
w = Ve’2 4 constant, i.e., 7 = z(Ve® — U) — constant, then if 7 is to remain finite at infinity,
0 = 0, U =7V, ie., the flow at infinity must be parallel to the x-axis, and U must be the velocity
in the channel at both 4- o0 and —co. With this limitation, Z, being harmonic and having

boundary conditions similar to f{w), must satisfy an equation of the same form as (8), 4.¢., using
(72) and (73) ' ,

1 r° 7 7
i=F+ (7?[]_00{3)" coth 77 (4 — @) — (y* — 3H) tanh o (b — w)}ddy. .. (74)

The origin is selected so that %(c0) + %( — o0) = 0, and y, and y* must satisfy

©

%(00) — %( —o0) = (y* — 3H — y) ddo.
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Equation (74) can be regarded as an equation for the flow in an asymmetric channel of width
1H. Putting y* = 1H and taking the limit as H — o0, we find for a symmetrical aerofoﬂ
in an open stream

0 Ao
U+f¢0 L ()

—w

For an asymmetric aerofoil in an open stream we have in a similar way corresponding to (45)
the result

w A : .
zzﬁ—z—tf_wyocoth%(t—zﬂ)dﬂ, e
of which (75) is only a special case.

Since there is no circulation w = Uz - O(%)

1.e., 2 — v _ 0(-1—>—>O as w — 0.
U w

Using this in (76) we find y, muét be measured from a chord selected to make f yo(B)dg = 0.

Equations (75) and (76) are only true for zero circulation. The effect of circulation is given in
section 23.

20. The Iterative Method of Solution.—The equations developed above require that y, = y,(0)
be known, whereas in fact the given aerofoil profile yields the relation

Yo = Vo(%0) .. .. - .. .. .. .. .. .. (77)

only. This difficulty is readily overcome as follows.
Consider for example equation (75) on y = 0:—

2old) — U+f qi“f"s;) O ¢ )

Yo = Yo(¢o) can be determined from (77) and (78), but since this solution occurs under the integral
sign 1n (78), the equations taken together define an integral equation, which can be solved by
the following iterative process:— .

(a) Assume a relation v, = v,(¢,), ¢.g., assume qSo == x,, then vy, = vy(¢,) is simply the profile
equation.

(b) Solve (77) and (78) to find a first approximation y,'(4,).
(c) Use v,(¢,) in (77) and (78) to determine a second approximation y,*(¢).
(d) Repeat these steps until vy’ (¢,) — vo'(do) is negligible.

Only two or three iterations are required for normally shaped aerofoils. When y,(4,) is finally
determmed in this way, equation (75) can be used directly to find 2(¢,y) away from the aerofoil.
A similar treatment is applicable to (74) and (76), but with this latter equation, as in section 15,
some difficulty may be experienced in locating the front stagnation point. A procedure along
the lines of section 16 could probably be developed to obviate this.
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Supp'ose that we have to solve (75) for an: aerofoil for which the‘proﬁle (77) is defined
numerically. If the aerofoil lies in the range a >: ¢, > b, which is subdivided into » — 1

2 .
intervals, as in section 4, such that @7?;) can be taken to have the constant wvalue
0

dmif(diyy — #;) in the ¢ interval with negligible error, then integrating (75) twice by parts, we
find '

2(w) :’% o }c {[:(;%:)0(950 — ) {log (¢ — w) — 1}]:

— élém [($o — ) {log (¢ — w) — 1}],,”-], . N )

where [ 1,; denotes the mean value of the function in the ™ range. The other equations can be
treated similarly.

21. Calculation of Velocities—Since dz/dw = e”|q we could use the solution z = z(w) found
above to deduce the values of ¢ and 6, but it is more convenient to calculate these by directly
differentiating the equations for z. Equations (75), (74) and (76) become respectively

eie—l _1_ ? Yo Ao '
_U_I— me(?So—w)z' " .. - TR . .. .. (80)

il

%
7T

1 :
g U7 (UH)gf m{% cosech” g (fo — )

_(y*_%H)seChz%.{(d)o—w)}dqﬁo .. .. .. .. .. .. (81)

0 . i
_;_zl Yo 4 L’

; §
U~ Ban sinhzf _ SRt 3 — 4B)

Alternative forms of (76) and (82) are of some interest. Equation (76) may be written

P = gz ] Oul) coth 1 —iB) + yul — 6) coth 3¢ + i8)} dp
w17 dd, . sinh £ _
_—U~[—-7—ZJ‘D%—_M)<T—'LCW>, . .. . . . . (83)
where 7T is a ¢ thickness parameter ’, i.e., T = 3{v,(8) — vo( — B)},
and C is a ‘ camber parameter ’, Le., C = %{yo(ﬂ) + vo( — B)}.

Differentiating (83) we have

e’ 1 1 dg, .~ (1 — cos B cosh #)
a__v+;fo————(¢o_w)2[f+zc b ] s

which enables the efiects of thickness and camber to be investigated separately.
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Approximate Theory.—Useful approximate equations can be derived from those given above
by assuming that on the aerofoil cos 6 =1, and that d¢, == 7 ds == § dx,, where 7 is the mean
velocity over the chord. For example on the aerofoil equation (80) becomes

/2

1 1 ( U Yo Ay )
e (14 2 2o,
g U + gulJ . (% — %)

in which the origin is taken at the midpoint of the chord, ¢, and y, = 0 when %] > 4c. We
shall write

11 ( U> 1 f"z Yo A%,
—_ o= == 1 —_— 6— h 5 = . - 7 TN oy .. .. .. .. 85
; 7 where 6(x) = %)l — A , , (85)

e, g=0f140Z 4 (D))

Now 7 == U(1 + é), and so ignoring terms 0(6%) we find |
g=U{l 46 +6(06 —8)) .. .. . . . . .. .. (86)

c/2
From (85) we have § = — 1 { f
cf2

cm)

ef2 dx

_0/2—(x0 - x)z}yo dxo

-4 " Yo A%,
=) T= @

1.6 (87)

b

¢l
A similar treatment for equation (81), in the special case y* = 1H, yields

’ - c/2
6(x) : — (Uq_I%E f _c/zcosechz {q—” (%y — %) ]yo dx,, and

gn f” sinh(ca|UH)y, dx,
(UH)*J _,, sinh (§=[/UH)(x, — 4c) sinh (Gn/UH) (%, + %c)

§ =

The assumption By == g%, === — 2a cos f can similarly be used in (84).

Example—If t is the thickness of a symmetrical circular-arc aerofoil, then,

=i ()

Using this in (85) and (87) we find 5(0) = ‘f@ 5=2 @ which substituted in (86) yield

x \¢/’

g(O)aU<1{L§-<f>+§2<-t>2>.‘ S

c e \C

Comparing this with equation (31), which was based on exact theory, we find there is an error of -
only 11 per cent in the coefficient of the last term, which demonstrates that even the first
approximation of the iterative process described in section 20 will be reasonably accurate.
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The corresponding calculation for the same aerofoil in a straight-walled channel yields

4/t a\[\[ ¢\’
0= 01+ 2() + G)ENE) |
Comparing this result with (88) we see that the blockage factor (see equation (27)) is given by
49 <’£><i>(£> -~ 24 ~ 201) |
.= \o)\m) = e where A( == %ct) is the area of the profile.
This is the accepted value.

For the asymmetric circular-arc aerofoil y,(f) = ¥t sin® g, ie., C(f) = sin*f, T =0, we
find from the approximate equation corresponding to (84) '

g(%) = U <1 4 %) = U(1 4 2I'), where I' is the camber.

Similarl _=UQa — 2n). These results agree to the first power of I' with the exact
YN — 3 g p

theoretical results:—

qg) = U(1 + sine), q(—— g) = U(l — sin ¢), where tan e = 27".

99. Numerical Solution of the Velocity Equations.—Consider for example equation (80).
Proceeding as in section 20 we obtain

i0 a z |
2 — (l] L % {[m(qSo) log (1w — o], — % om;[log (w — ¢0)]m,-}, (89
where m = (dy|d$),. We notice further that closure of the profile requires that

m¢=a~|—m¢=b—£5mi:0, .. .. . . .- .. .. .. (90)

n=i

which is the corresponding equation to (28) for the polygon method. Starting from an assumed '
Vo = Yo(d,), we find dm = dm(4,), and from (89), ¢ = g{(¢). TFrom equation (3), z.e,

‘ s
s(#) = [ dbolg

and y, = y,(s), which follows from the profile equation, we then obtain a new relationship
v, = ya(#o). The process is repeated a number of times until no further change occurs.

The other velocity equations can be treated similarly.

93. The Effect of Civculation.—Equation (39) gives the relation between the velocity vector
(¢’,0") for an angle of incidence «, and the velocity vector (g,6) for zero incidence. It can be
written

e’ cosh 3¢

eie
g~ cosh (3 +4x) g’
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and hence from (82) we have for an asymmetric aerofoil in an open stream at an angle of
incidence « :— :

¢  cosh it {1 yolB) 46
—

7 T : f (91)
g cosh (i 4 4x)\U  8amsinh# ) __sinh® {3(¢

/3)}}'

Thus once the problem has been solved for zero incidence it is a simple matter to find the
solution at a given angle of incidence. The incidence referred to here is of course the ‘ absolute
incidence ° measured from the zero-lift angle. On the aerofoil surface (91) assumes the

form ‘
cosh_ _covir (L L yed )
¢ sy +\U 7 8z sinyf_nsinz{%(y = (92)

24. A Comparison with Equations given by Thom.—The miscellaneous comments in this
section refer to equations given by Thom®. Throughout this section U is taken to be unity.

(a) A Solution to Laplace’s Difference Equation.—

g pIlp + 20 — 1)y
Hw) = 2 0 F 20 — DTl + 9T (0 1 306 T o) I + 50 — 9

is an equation which applies to a point loading of y, = 1, at the origin in the (¢,p)-plane on a
square mesh of size 2, i.e., H satisfies ,

Hp+ Ly + 1) + Hg + Ly — 1) + Hg — Ly + D)+ Hip — Ly — 1) = 4H(p)..

Thom’s * H * function corresponds to the y of this paper, and so from equation (75) we can
deduce the corresponding solution for Laplace’s differential equation (in which the loading
has been distributed from ¢ = — 1 to ¢ = 1), ‘

o0 = 1] gt = il () - e ()
s = — - — t -1 ‘t -1 )
) ”f_1(95—¢0)2‘|"/’2 =l p o) TR v/
a result which Thom obtained by letting the mesh size tend to zero.

(b) An Approximate Equation for Channel Flow—TFor flow about a symmetrical aerofoil at
zero incidence between straight and parallel channel walls Thom gives the approximation
(written here in our notation)

di(qs,iu):y“(qsziwz——¢2f’(lH)2>, O (25

x
whereas the correct form, from the real part of equation (74) in which y* = §H, is

i W sin (Zn /H) d¢o
ay(p.v) = E(Cosh 2ng/H) - cos (Zmy /H))'

‘Comparing these forms we find that Thom’s equation, besides satisfying the boundary
conditions, is reasonably accurate in the field close to the aerofoil. The greatest error is likely
to occur midway between the boundaries. '

Take for example H = 2z, then y = }x is midway between the boundaries. If we define -

3, 1
b= T R T ) ¢

from Thom’s equation on y = ix) and f; = (sech¢)/2n (exact
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form of y = ), then the following table gives some idea of the error in Thom’s form:—
¢ 0 1 2 4 6
fi  0-152 0-098 0-0413 0-0078 0-00021
f= 0-159 0-103 0-0422  0-0058 0-00079

Miss ‘K. Britten', who established the influence factor equations for a symmetrical aerofoil in
straight-walled channel by use of a Green’s function, has made a - detailed comparison of
Thom’s approximation with the exact form.
A
2H
(where 4 is the profile area) which is a very close approximation for the displacement of the
equipotentials at infinity. From (74)

(c) Dausplacement of Equipotentials in a Channel at Infinity.—Thom gives ¥(co,p) =

T

(o) = g7 b im coth 7 (b — 6 — iv) dby

i.e.,%(oo):éfwyo(zﬁo)dzﬁﬂ. Y (70

If the mean velocity over the aerofoil can be written § = (1 + 9), then a close approximation
to (94) is ‘

- = A

7(o0) = — (1 +3) o
which verifies Thom’s result.

(d) Solution to Poisson’s Difference Equation at Infinity in a Bounded Field.—In our notation
Thom’s solution can be written

1
L(co,p) = — I }‘, b%,

where L(co,y) is the contribution at infinity obtained by ‘ relaxing ' the residuals x; at (¢;,v;).
The field is bounded by straight and parallel lines of symmetry distance # apart. The equation
can be established as follows:— :

Suppose that in the derivation of equation (20) we had had logarithmic singularities not only
on the boundary but also in the field, such that for j = 1,2, . . . #, (n < )
flw) — — %log sinh% (w; — w), (z; independent of arg (w;, — w)),
w—)wj

then the contour must be modified to exclude these singularities. Doing this we find that the

term — % 2. 7;log sinh % (w; — w) must be added to the right-hand side of (22). Thus for small
=1
7T

values of 77

|w; — w,], 1.e., in the neighbourhood of w,

1
L(ZW) == — ;ET]' ].Og 7

sinh = (w; — w).

%le—w):f%mog(gy), )

o= — l‘r-'log
T J
where 7¢” = w — w;.

38



Now for Poisson’s equation V2L = k(¢,y), we define the relaxation residual on a square mesh
at w; by

R, — S I, — 4L — a%h,

where L,, s = 1,2,3,4,7 are the values of L at the points of the mesh labelled in Fig. 9, and k.
is the mean value of k(¢,) over the square of side @ centred at w;. If initially L = 0 throughout
the field, R, = — a*k; = X, say, and ‘relaxation’ is the systematic process of modifying the
L field to reduce the residuals R; to zero (or near zero). We can relate the « to the initial
residuals X; thus:—

X, =ty = [ [ras = [ [viLas = oL 4,
on

where the integrals apply to the square about w; and ds is an element of distance along the
square contour. Distorting this contour into a circle (the only singularities are at the mesh
points), we have, using (95)

2n 27
X, — fa—]‘yde —Ef i = — 2,
4 0

Thus the additional term due to the singularities can be written

flw) = Qn Z X; log sinh — w).

7 (@

For large values of ¢, f(w) = 4= X X;{log ($2) + g (¢ — &)}

If f(w) is to remain finite at infinity 2.X; must be zéro, when
. : ,
L(OO)Z—QT{JZXJ(#] .. ..' .. .. .. . .. . (96)

Thom’s equation was deduced for the special case of antisymmetry in X; about ¢ =0. In
this special case (96) assumes the form

Liw) = — 5 X,

. since only half of the residuals occur in the summation. Thus Thom’s equation is verified
mathematically. ~ :

25. Example: A Symmetrical Aerofoil—The example is the one already used to illustrate
the polygon method in section 9. Only surface values for the velocity for the unbounded
stream have been calculated by the influence factor method and since the iteration described
in section 22 is similar to that of section 9, for present purposes the exact relationship
Yo = Vo(bo) was adopted immediately from the theoretical solution. Thus the correct value of
g should have been obtained in the first and only application of equation (89).

We shall describe the tables setting out the calculations to the problem.
R



Table 8: Calculation of dm, A
Columns 2 and 3 set out the true values of %, and y, as functions of ¢.
Column 4 is #; = (Viy1 — i)/ (bizs — 62).

- Column 5is 8m; = m;,, — my;, except for the values opposite ¢ = 0, and ¢ = 10. These
-~ values are simply m,_, and m,_,, (¢f. equation (89)).

Column 6 is the value of cost determined from columns. 2 and 3.

Table 9: Calculation of (cosB)/q

To save space this table is set out in the form of a matrix equation:—[4,][B;] = [Ci].
With the exception mentioned below, the elements of the first matrix are defined by
Ay = 10° (log ¢; — $o)u. For convenience the logarithms in the table are to base 10. The values
of ¢; and ¢; are shown bordering the matrix. The exceptional elements of [4] are those in the
first and last columns. Mean values of the logarithms are not taken for these elements (cf.
equation(89)). The elements of B; are dm;, except By( = #my,-,) and By (= my_y). Values
of the function

[A,,][B,] log 10 103<c0; 6 1)

i

are shown in the column matrix [C;]. Using the values of cos 6 given in Table 8, ¢ can be
deduced immediately.
Table 10: Comparison of Velocities

This table sets out the surface velocities obtained from (a) exact theory, (b) the polygon
method, and (c) the influence factor method. The results indicate that the polygon method

is more accurate in the neighbourhood of the nose for a given size of interval than the influence
factor method.

PART 4
Compressible Flow

26. Introduction.—The following additional notation will be used in this part:—

(¢,») the compressible-flow plane for.zero circulation (such that the aerofoil is a slit along
y = 0)

1 as a suffix to denote incompressible quantities
M, undisturbed stream Mach number; M, the Mach number
po stagnation point density; p the density
a, stagnation point sound velocity

The theory will be based on the equations’

36 w137 30 193
T UM =0 Hgm =0
ie., 36 o 0L _ 6 oL
= (1——M)as 0, w T =0 O (- 7).



in which s and # are distances measured along and normal to a streamline. The boundary
conditions are

(a) L =log (q/U) =0, at infinity, and

(b) g—z = — Z% (zero vorticity condition),
. oL 1 .00
1.e., %:R“——a—g,.. .. . . . N o . . (98)
on the aerofoil boundary.
Now since  d¢ = g ds, dw=§gdn, P ).
- 0
3L  p 9L . oL p 1 - :
we have = q E ie., from (98) T B .. . .. (100)
From (99) it follows that
cos 6 posing , sin 6 po COS 6
dx —_— d e B d = — d — — s
7 ¢ o g W Y 7 ¢+ P
. . : . e” . Po
ie, if 2 =% 4 7y, dz:—q (dé —}—z; dy),
and so the (x,y) and (¢,p)-planes are related by
i : ' ,
z:f%(dqurz‘%’dw). L ao

27. An Approximate Solution in the Inmcompressible-Flow Plane.—For incompressible flow
dé; = qi ds;, dy; = q;dn;. We shall assume that ds; = ds, dn; = dn, i.e., the angle between
the incompressible-flow vector and the compressible-flow vector is negligible. ~(For a cylinder
at M = 0-4 this angle is less than 3 deg throughout the field.) With the additional
approximation that (I — M*'* = (1 — M,})"* = §,, say, equations (97) become

6. - oL
'a_wi_ﬁo 87’61—0)

a0 oL
3. By

Cross-differentiating and writing f = L + 46 we find

9* 9° ' .

aw—];—l—ﬁfwzo. . e . .. . A .. (102)
Applying the transformation ¢, = id;, v. = ABoy;, Jf. =/, .. . .. .. (108)
to (102) we obtain Laplace’s equation : ‘

*f, 3 '

8%2—#8%2—0. . . e . o . TR (104)

J and » are constants in this affine transformation.
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Thus if f, = F(¢.,p.) is a solution of (104), then

f=iFGgutsw) .. . .. . . .. (i09)

is a solution of (102). In the next section we shall solve equation (104) by the polygon method,
and then with the aid of (105) we shall have the solution to equation (102).

28. Integral Equation Solutions.—(a) Symmetrical Aevofoil at Zero Incidence in an Open
Stream.—Equation (10) gives the solution of (104) in this case,

. 1r° 0, de,’
1'e') [3 ey e - - _/__—' :
f(¢ 1/}) ﬂf_wGAe—“f}Se“—“Pe
8,” is the boundary value of 6,, and is a function of ¢,. Hence from (105) we find
l =) Bel d(}.gﬁl’) '
TJ e Api — Ay — Mﬁow,

It still remains to transform 6,". There are two ways of doing this: either 6, transforms in
the same way as the solution 0,, i.e., from (103)

Hdis i) = .., (106)

6, = 90/, L ao

or 6, transforms as a consequence of the application of (103) to.its conjugate function L., i.c.,

e, 3L/, [abL) ... (oL,
0= g e = Ty, W= / 3(Agepy 21 = 5o

Now from (98) it follows that on the aerofoil surface

oLl 1
a’('l)i - _8%. a’l/)l——Rq’
a result which is clearly true for both compressible and incompressible flow,

oL aL/ - 98y 28"
dw; oy, o

since on the aerofoil boundary 8, = 6’.  Using this in the expression for 6,” we find

ie.,

» '
0, = — 8", .. .. .. .. .. .. .. .. .. .. (108
7, (108)

If we are using equation (106) to calculate 6 in the field then to be consistent with (103) we must
use (107) to transform 6,’, whereas if we are calculating L we must use (108) to transform 0,’.
Combining these calculations we find that

6" dg,/ .
— ¢ — 7:130’#1'

Full details of the solution of (109) in the case of g, = 1 for an arbitrary aerofoil have been
given in section 4, and will not be repeated here for this slightly different form of the equation.
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For incompressible flow

. 1r° 0" do;
Li(¢i, Bows) + 98:(ds, Bows) = ;f py— qS,-d—)—- Bovs’
and so from (109)  L(¢;, v;) = .3 Li(:, Bowi),
. (B, Bawa)\H1Po o
i (4 v) = (9("5_(]‘“")) O ¢ D 10)
and 6(951', ’lpl) = 6,((]51, ﬂoi/)i). ‘ N .. . .. . . e (111)
On the aerofoil surface (q—] = (%i)l/ﬂo- .. .. . .. . .. .o (112)

It is interesting to compare (112) with the Glauert-Prandtl law for the pressure coefficients,

i.e., Co = (Co)ifBo. .. . . - . . . ce .. (113)
Now to the same order of accuracy C, = — 2(¢ — U)/U, and (C,)i = — 2(‘ql~ — U)/U, and
so (113) can be written ¢ = U + (%;— Equation (112) can be expanded:—
0
_ ¢ —U , (a—UP{1—8)
Ut BT @ R

to which (113) can be regarded as a first approximation. The Glauert-Prandtl law underestimates
the effect of compressibility. This is also true of equation (112) but there is some improvement
as can be seen from Fig. 10, in which the equations are compared for M, = 0-7.

(b) Symumetrical Aerofoil at Zero Incidence in a Channel.—If k. is the channel width in the
(¢o,v.)—plane, then, from equation (8), a solution for (104) in the case of a straight-walled
channel is

_fe(qsex "/’e) = hlef 0. coth g <¢e, — ¢, — i‘/)e) d¢e,:

e

i.e., from (103), (107) and (108)
Ligw) + 5 0080 v) = 57 f coth 7% (4 — 4: — iBan) 44,

Now %, .1s a fixed dlstance measured in units of y;, and so from (103) transforms into A8.4.
Further if H is the channel width in the (x, y)-plane, by considering the conditions at 1nﬁn1ty
we find that # = UH. Using these results we have finally

L, vs) + é 0(do,p0) = FD—ZI]{_U_[ 0 coth E‘%‘ﬁ—o (6 — ¢ — iops) Ao/, .. .o (114)

R 1 @ , A ; . ’
Now Silds, ﬂo%)Hﬁo = mjf—w 0’ coth mo (6 - b: — 1Bop;) A, |
where fi(¢:, Bovi)ms, denotes the incompressible value of f at (¢;, foy;) in a channel of width Hp,

in the (x,y)-plane.
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ThuS L(¢i, 'QP())H = %(]Li(‘ﬁo: ﬁﬂwi)Hﬁo:

1/Bo
ie., % (P = {g—]o ((ﬁiﬁowi)ng} , .. RS .. .. E .. (115)

- and 6((,1‘),', 1/)1>H == 6,-(95,-, ﬂowi)Hﬁu' . .. .. . .. .. .. . (116)

Channel Blockage:—
On »; = 0, (109) and (114) become

22}

1 0 de;’ 1 e - ) ,
L = Eo—ﬂf_w‘f’i’ — ¢i) and LC == mf_wec COthWC (9{’1 — d,l) dqgl ,

4

respectively, where ‘¢’ denotes channel values. Little error is introduced by assuming that
0(¢;) = 0.(¢,). Now the channel blockage ¢ is defined by the simultaneous equations

UL+ ) = U, q(¢) = q(4),
Le., log (1 +¢) = L, — L, and so

1 -
log(l—[—a)—_——UbﬂOZHf—wB [ ~ ,
‘ UclgoH (C}Sz - ¢z)

1

— coth 7 (4 — qs,-)] as!

©
— T

2%3_]{2_5?1@ (6 — 40" dd/. L

On the aerofoil surface we can write approximately ¢, = 7, where g; is the mean incompressible
velocity over the surface in the open stream. If in addition we write

gi=U1+06)=U(l +&)(1 +0)==U,(1 +¢+6), and 0" ==dy'}dx,
then equation (117) assumes the form

- feel

log (1 +¢) = — gz (1 + 2 + za)f_-w(x' —x)dy,
. A -
1.e., 'Eﬁm—z (1 —I— 26), .. .. . .. . . .. . .o (118)

where A is the cross-sectional area of the aerofoil. This equation, without the 6 term, is the
result obtained by the linear pertubation theory®. Incompressible and compressible blockage
has been dealt with at length in another paper®. '

(c) Asymmetric Aevofoil at Zevo Incidence in a Free Stream.—In this case a solution of (104)
is (see equation (45)),
'L. 7T

fe(te):-—%f 8/ coth 3(t, — ib) db., .. .. .. .. .. .. (119)

where ¢, + iy, = — 2a,cosh i,, {, = 5, + iy, ¢, = — 2a,cos b,, and 4a, is the length of the
slit representing the aerofoil in the (¢,,%.)-plane. We shall write

¢; + 1Bw; = — 2a cosh ¢, ¢ = -+ 4y, and ¢/ = — 2a cos b. .. .. .. (120)
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) disappears since a, is measured in units of ¢,, and so transforms to Aa. Using (103), (107)
and (108) in equation (119) we have

Lop = — zn_%f o' cothd(t — ib) db, .. .. .. .. .. (121)
9 _n

an equation of which (109) is a special case. Equations (110) and (111) are also true in this

general case.

(d) The Effect of Incidence in a Free Stream.—If «, is the angle of incidence in the
(¢, we)-plane, then from equation (39),

g." e " = (cos a, + ¢ sin «, tanh $£.) g. e ™,

where (qg’i ,0.") is the veloci’ty vector at incidence «,, and (g., 8,) is the velocity vector at zero
incidence. Dividing by the velocity at infinity and taking logarithms we have

£ (t) = f.(¢.) — log (cos«, + ¢ sina, tanh 42). .. .. .. .. .. .o (122)

At 5 = o0, i.e., at infinity in the (¢., v.)-plane, f,"(©0) = f,(c0) — iw,, which shows that the flow
at infinity is at an angle «, to its original direction. Now «, is a boundary condition and so
must transform either by equation (107) (when it is required to calculate §) or by equation (108)
(when it is required to calculate log (U/q)), ¢.¢.,

mmrvqmpwmm—wmmﬁmmzﬁmn—m%
Q
Comparing these equations with (122) we deduce that -
L"(t) = L(f) — log | cos = + i sin = tanh §¢| ,
Bo Bo
and 0”(#) = 6(f) — arg {log (cos « + 7 sin « tanh §)}. .. . o .. (123)

Now L;" (b, Bo¥i)aipo = Li(¢s, Bows) — log|cos « /By + 4 sin a/f, tanh §z|, where L;"(¢;, Bowi)as, denotes
the incompressible L” at the point (¢;, foy;) at an angle of incidence «/g,.

Therefore L"(¢), wi)e = L{ds, v:) + L (s, Bowi)apy — Li(¢s, Bowi),

i.e.,%(gbi,ip,-)a=g-q%(q$i,/>’01pi)u,50. P ¢ b
Similarly (07 — 6)(é, vi)e = (07 — 65) (b, Bos)e- e (129)

From equation (124) we deduce that, since circulation and lift are proportional to incidence,
compressibility increases both in the ratio 1/8,.

29. A More Accurate Treatment in the Compressible- Flow Plane.—Returning to equations (97),
we see that with the aid of (99) they assume the form

a8  py oL at p oL
— =1 —-M= =0, —=4+—=—=
oy p( )396 9 ' po Iy
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We shall write dr=(1—MY"dL, .. .o .. .. . . ..oa)

and m:%“(l—Mz)”z, oo o128
d 87/ 1 ar

when (126) becomes by T aqs =0, a¢> —{— " 3y =0, .. . .. . .. (129)

Now from (128), m={1 4+ Ly — 1)M*/¢=1 (1 — M*'? where y is the ratio of the

specific heats. '

Therefore m =1 —-q?%lﬂl4—|—(y+ 12)2}_3)]%0“—#. L

and so it is sufficiently accurate to write for subsonic flow

m2=my={1 4+ 4y — M1 — M2, .. . . . .. (130)
except near the sonic speed. With this approximation in (129) we can deduce that

3" , 82 | | |

é-w—ngrmﬂa—d)%—_—o, a8y
where we have written g =7 + 0. This equation has the solution

] .
g:;G(qu,lmow), e .. . ce .. .. .. (182)
. . ge 9%,

where G(¢., p.) is a solution of Fry = 0, in which

b = A, y. = Amgy, g = vg. .. .- .. . .. .. .. (133)

The transformation for 6, is easily found. As before it either transforms directly, 7.e

6, =10, .. . .. - . . . - . . .. (134)

or it transforms through its conjugate function #,’,

. ao,’ . a7, v [or . . .
le., f dp, = — fa—y;edq’;e = a—wdqs, from (133). With the aid of equation (127)

equation (100) can be written

&g P 2 n1/2 _ ~ Pl
dip dy oL p Rg(l M) Rq Rg

Using this result in the equation for 6, we find
~ | a9 _ | A
Rg R

which is conveniently the same as the direct transformation (134). Integrating (127) we have

(135)

7_f —MYVAL. .. . (se)
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. ‘ ' 2 ' ‘ .
Now since M? = (4/a0) Al = — 4 = 1-4,

T — 30 — D){g/ar)” e
and ﬁ?:l-M‘?:l,—'l'_—%/_“%,
(136) can be written 7 — f = g:)fg o |
et 7 = Y iog [LZBISL L EIVE g L=2d AL s

in which the constant of integration has been selected so that » = 0, when L = 0, z.e., when
g = B,. Thus, since g is a known function of L we have from (137) a relationship

r = r(L). .. .. .. . . ce .. .. (138)

Finally we note from (136) that at an infinite distance from the aerofoil,
7(oo)=fﬁodL=f}0L(oo)=O. R . <)

30. The Corvesponding Integral Equation Solutions.—These can be deduced immediately from
the incompressible equations (10), (8), (45) and (122) with the aid of (133) and (134).

(a) A Symmetrical Aerofoil at Zero Incidence.—In this case we find from equation (10)

10" 0’ d¢’ .
glg,v) = ~ ¢’—¢f¢mow' . e .. (140)

(b) Symmetrical Aevofoil at Zero Incidence in a Straight-Walled Channel.—Equation (8)
becomes , :

]L ® ’ ' 75 ’ N ’ . .
g(¢:¢)=m—{f_w9 COthm(¢ — ¢ — tmgy) d¢ . . co L (141
in which we have used % = (8,UH)/m, which comes from (99) applied to the channel at
infinity. : :

(c) Asymmetric Aevofoil at. Zero Incidence in a Free Stream. Equation (45) becomes
glt) = _.2%[ 0" coth 1t — db)db, .. .. .. ... (142

where * ¢ + imgp = — 2a cosht, ¢ = — 2acosb. .. .. . .. .. (148)
(d) The Effect of Circulation in a Free Stream.—Equation (122) assumes the form
g"(#) = g(t) — log (cos « + 7 sin « tanh 4f), .. .. . . . .. (144)

where ¢ is defined as in (143).
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When these integral equations have been solved, equation (101), with the aid of (138), enables

the relationship between the (¢,p) and (x,y)- planes to be established, and then the solution is
complete.

If we assume that the relation between the (¢;, %) and (¢,p)-planes is approximately the
same as that between them at infinity, then using (99) we can write

¢ = i v = Bopifntg. .. .. .. . .. .. .. .. .. (145)
With this approximation we find that equation (140) becomes

0/ d¢1/
(/)” ’/’ f ¢z — ¢ — /I’.ﬁ[ﬂ/)i,

Ben  guv) = flBe W)y oo e e 48)

the real and imaginary parts of which yield -
9((;51-) wt) = 0; ((/)z: .801/)1) ( (111>)
and : 7({155, '1}),) — Li(‘ﬁi, ﬁ(ﬂ/)i). . - - e < . .. . . (147)

These equations also apply to an asymmetric aerofoil in a free stream.
Similarly for channel flow we find

g(b v = [, Bows) o, R ¢ V1)
while the effect of incidence is given by

(8" — &) (s vide = (/" — f)($ss Bova - .. .. . . .. .. (149)
On the aerofoil surface (147) yields » = L, i.e., g, = Ue™". -.. . . .. .. (150)

This approximate solution for compressible flow was first obtained by von Karmén®, whose
method is discussed in the next section. Equations (146) to (148) should be compared with the
corresponding equations of section 28. It will be found that the equations for 6 are the same in
each method, but that L calculated by the first method is related to the » of the second method by

L = r/g,. O 4 173

Of course the correct relation between » and L for the second method is given by equation (138),
an equation which leads to an appreciably larger value of L than does (151). This is illustrated
in Fig. 10, in which equations (112) and (150) are compared at M, = 0-7. '

Integral equations of the same form as those given above have received detailed treatment in
Parts 1 and 2; for example on the aerofoil surface (140) becomes

o]

1 0" d
W=z 5.

which, by a similar argument to that of section 4, can be written

y(¢)=}tf ng,log(qS'—:ﬁ)dqﬁ’—y—iZj]rjlog(qéj—cﬁ), L a2
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and the calculation proceeds just as in section 4. However one new point does- arise ‘in- the-
calculation of the distance along the aerofoil surface,

‘ -
dé

s = -, .. .. .. .. .. .. .. .. .. .. (158

foq , (153)

measured from a stagnation point at which the discontinuity in 6 is — 7, say (e.g., at a trailing-
edge angle of 2v). The integrand becomes infinite at the stagnation point. The problem
has been solved for incompressible flow', the solution being s = ¢.*/g*(1 — 7/x) where ¢;* is

the velocity at ¢, see equation (165). From (152) we see that sufficiently near a discontinuity
in 6’ of amount — =, -

r($) == — “log ¢,

where we have taken the origin at the discontinuity. The complexity of equation (138) renders
further algebraic progress impossible, but if we accept the approximation (151), we can write

9 _ _vﬂ_)’* T
g*_(¢* , Whe're k_ﬂﬁu

L($) = — ;—ﬁﬂloglqb , ie.,

Using this in (153) we find

*
S == ¢

(1 —[nhy) T o o " o - x ... (154)

Of course this approximation is only used over the first mesh'intérval, which should be reasonably
small, adjacent to a stagnation point (or sharp corner, if any)

31. Comparison with von Kdrmdw's Approximation.—Briefly von Karman’s method is as
follows. Equations (126) are transformed so that ¢ and 6 are the independent variables. This
transformation to the hodograph-plane linearizes the equations. Then with the use of (127),
(128) and the approximation (130) the equations

¢ % % | %
ST = 52T 3 =0

follow, but since these equations also hold for incompressible flow if # is replaced by L, it is

concluded that7 = L;, and so ¢; = Ue™" (cf. (150)). Then with the same degree of approximation
as in. (130) von Karman deduces that

o qz . U2>
Lz - mo (L —I_ 4@02 )

. /o (-T2 /10,2 ' . ,
ie., (%) :(%)e T e (159)

- Von Karmdan’s theory was developed initially for the case of zero circulation, but Lin® later
extended the theory to flows with circulation. The author’s theory is quite general. Experi-
mental evidence shows that (155) is reasonably accurate for slender bodies up to about
M, = 0-6, but that it underestimates ¢ at the higher Mach numbers. Further since it is .only
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a velocity correction factor, it reproduces the compressible velocity peak directly above the
incompressible velocity peak, whereas experimental evidence shows that the velocity peak
travels towards the trailing edge, with increasing Mach number, slowly at first, but quite rapidly
by the time sonic speed is achieved locally. '

The author’s method is similar to von Karmdn’s, except that the hodograph transformation
is not used. In fact the calculation leading to (150) in.the previous section may be considered
an alternative approach to von Kérmén’s approximation. Equations (140) to (144) however
should be more accurate, and do not depend upon previous knowledge of the incompressible
flow. '

Three approximations are made in the von Karman method:—

(a) m = m,, in the differential equation

(b) mm = m,, when calculating the relation between » and L,

(c) changes in the boundary profile due to the approximations are ignored.

Approximation (c) is not made in the author’s method. This is a big advantage over von
Karman’s method as the flow round a given profile can be found directly. If increased accuracy
is required in von K4arman’s method it is necessary to calculate the distortion to the profile,
and then to recalculate the problem starting with a profile so modified that the hodograph
transformation distorts it into the desired shape. Of course it is clear that the application of
an equation such as (140) to the problem will be a much lengthier process than the simple
application of von Karmdan’s approximation, but it would certainly be simpler than the
iterations required to apply his method accurately to the problem of the flow around a given
profile. '

Approximations (a) and (b), while apparently equivalent, do not necessarily result in the
same magnitude of error in the final answer. Approximation (b) is unnecessary, and has not
been made in this paper. This inconsistency can at least be justified empirically. Fig. 10
shows the (e, ¢/U) and (¢,/U, ¢/U) curves at M, = 0-7 given by (188) and (155). A close
examination of (152) reveals that Ue " calculated from it, will be a little smaller than ¢;, but
from the figure it can be seen that a given value of Ue~" corresponds to a much larger value of
g than does the same value of ¢; by von Karman’s method. The overall effect is that the
author’s method results in larger values of ¢ than does von Karmén's method, and this is
certainly supported by the experimental evidence.

32. Modification to the Method.—The method of sections 29 and 30 requires that M must be
less than unity (e.g., (127)), and this has the disadvantage of not permitting even an approximate
solution to be found if a small supersonic patch makes an appearance in the field. Further,
from equations (129) we can deduce the exact equation

a%<m§£)+5%<wl¢§_;>=o, L s

which suggests the possibility of an exact relaxation solution for . This approach would have
the advantage that L, is a close approximation to #, and hence could be used as a starting point
for the relaxation. It is clearly desirable to use the best available approximate theoretical
solution as a starting point when solving non-linear equations by relaxation. The method
suggested amounts to doing this. However, working in the (¢,y)-plane has the disadvantage
that the relation between the (x,y) and (¢,p)-planes is a function of M, If boundary values
on the aerofoil are the only objects of the calculation, this disadvantage is negligible. The
application of relaxation to the method of this paper, such that there are no difficulties in super-
sonic patches, requires the modifications given below. -
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If in (126) we write dv = pﬁ 4L, the equations become
0 .

36 , dv __ 30 2av:0,’

3w a3
and so %+%<ng—;j>=0. L . . . .. .. . .. (157)
Now aM? :——2M2< )dL_—ZMz( + 0-2M3 dL (y = 1-4), . .. .. (1588)
a result obtained with the aid of the equations following (136); and therefore

“‘LﬁL f +02M“f:—%zwai%;Mw“

in which v = 0, when L = 0, 7.e., when M = M,. The solution to this equation is

v = %log@s—_—}_—l) — 5%5 — 3—;—3 — j%’ where p = (1 + 0-2M*'%, and so
v=uv(L) .. . . .. . . . . .. . .. (159)
follows.

Similarly we can make the substitution du = % (1 — M?*) dL in (126) and find

a;+ UJ@ 0, S ¢ [<0)

in which » = f&’ (1 — M*dL. Making the same substitutions as for v we find that
P L

w=tlog(LE5) 4+ p— 19 —»

from which u = u(L), .. . . o . . .. . .. (161)

follows.
Now from the definitions of %, v and m we have
fmao+ %) = (1 — ppraL = o,
and so using the approximation (130) we have
: %
7* = %(mﬂv —I_ %)}

where the star is introduced to distinguish this modified function from the previous one. Then
from (159) and (161) we can deduce a relation

pe = 5(L), .. e e el o186
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which is not of course the same as (188), having real values of 7* for M,>1. (e, ¢/U) is plotted
in Fig. 10, and can be compared there with (e, ¢/U). There is little difference except close

to the sonic speed. e~ and e~*" are also plotted against ¢/U for comparison. The former

curve, (e7™, ¢/U), is indistinguishable from von Kéarman’s law for (¢;/U, ¢/U). Some use of
this curve is made in the next section.

The modification then, is merely that we use 7* as defined above in place of # to ensure that
we obtain real values in supersonic patches. ‘

33. An Exact Relaxation Solution.—Equation (157), which is exact, may be solved by
relaxation, and without difficulty in the supersonic patches (provided of course a continuous
solution does exist'). It is clear from the previous section that a first approximation to v is
Lijm,. L; can be found by the methods of Parts 1 and 2, in the (4;, v;)-plane, then using the
approximation (145) we will have a reasonably accurate approximation to v in the (¢.p)-plane.

From (158) and the definition of v we find that dm* = 2-4M*(1 + 0-2M*"* dv, and so (157)
can be expanded

9% , 0% i 4 . 2 7~5<av>2_

@2—}—1%87)2—%24114(1—1—021\4) En = 0. . .. .. .. (1683)
Equation (160) is not suitable for a similar treatment since it follows from the definition of »
that a given value of % corresponds to two values of L, one supersonic and the other subsonic.
Details of the relaxation treatment of (157) will not be given since it is of the same form as an
equation already treated by relaxation', and a similar treatment will hold.

From equation (100) we note that the boundary condition for » is
dv 9L dw p, 1 p 1
a_’(/)—a—’(/)é—i_?.]?ép—o_z@ .. | .. . .« .. « > (164)

When v has been found 6 can be deduced by integrating the equations preceding (157), while
g follows from (162) and ¢/U = e~*. The relation between the (x,y) and (¢,»)-planes follows
from (101), and the solution is complete.

The method outlined in this section would be much quicker than the relaxation method
developed elsewhere'” ',

34. An Example—The aerofoil selected as an example is one used by Emmons (1946) in a
relaxation treatment of compressible flow. Fig. 11 shows the velocity distributions given by

- Emmons for this aerofoil at M, =0, and M, =0-7. Emmons’ solution for M, = 0 was

checked by the polygon method. The results of this calculation are shown in the figure, and
are almost identical with Emmons’ results. Results from von K&rmén’s approximation and
the approximation of section 32 are also shown in the figure. The latter approximation is
certainly superior to von Karmdan’s, but it did not displace the velocity peak down the aerofoil
as far as was expected. However further work is necessary on this example before definite
conclusions can be drawn, since (a) Emmons’ compressible solution needs checking by the exact
relaxation treatment of section 83, and (b) a much smaller mesh interval than that used in the
region of the nose is desirable. This point arises since (154) is not a good approximation, and
so if the first interval (over which (154) is used) is too large, the whole velocity distribution
will be displaced along the chord. It may well be that such an error has accentuated the
discrepancy shown in Fig. 11.

General Conclustons.—The method developed in Parts 1 and 2 obtains with a minimum of
computation accurate results for the flow of an incompressible fluid about a two-dimensional

body of arbitrary shape. The body, if symmetrical, may be placed in a symmetrical channel
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of arbitrary shape. While the examples have been given for a channel with straight walls, the
- extension to the more general case is quite simple. Integration will have to be performed along
both boundaries, and along some suitable equipotential connecting them.

Relaxation becomes very tedious for the type of problem treated in this paper, ¢.e., a problem
~that involves a field with a fixed value at infinity only, and with specified boundary gradients.
(Fixed boundary values would reduce the work many times.) If results throughout the field
are required, the method of this paper should be used to compute values of log (U/g) on the
boundaries of the field, and on'a coarse mesh throughout the field. The method is quick and
accurate for the calculation of surface velocities, but. the elliptic co-ordinates may render the
calculation of field values a little tedious, and so from this stage it would be quicker to complete
the solution on a fine mesh by relaxation, maintaining the values initially calculated constant.

The influence factor method given in Part 3 is also quick and relatively simple to apply, but
the polygon method is more accurate for the direct calculation of velocities, and for the inverse
problem of designing an aerofoil (not given in this paper). The influence factor method may
be more convenient for the calculation of the actual flow pattern, although if both flow pattern
and velocity field are required the polygon method followed by integration (equations (69))
would probably be the quickest. The author has not succeeded in extending the influence
factor method to compressible flow, whereas, as shown in Part 4, the polygon method can be
adapted to the calculation of compressible subsonic flow—a calculation which is a little more
accurate than the well-known approximation of von Karmén. It also has the advantages
that the calculations can be performed directly for an aerofoil of given shape, and that relaxation
can be applied subsequently to solve the exact non-linear equation of compressible flow. This
would be possible in the hodograph-plane but with the disadvantages of curved boundaries
and singularities in the mapping. ‘

Both the polygon and influence factor methods appear simpler to apply and more direct
than the method due to Theodorsen and Garrick®. Their method is based on the conjugate
harmonic functions « and g defined by z = 2a cosh (« 4 ¢8). These functions are not as
fundamental in aerofoil theory as either of the conjugate pairs (log (U/g), 0) or (x — ¢, y — »).
Exact and direct aerofoil design can be achieved by either the polygon or influence factor
methods. All that is required is to interchange the roles of the conjugate functions.
Theodorsen’s method apparently lacks this flexibility, for instead of aerofoil design he discusses
the creation of families of wing sections, the properties of each member being unknown until
the calculation is complete. :

TABLE 8
Calculation of dwm;

1 2 3 4 5 6
$ x Y m; Sm; cos
0 88620 0-0000 (0-6680) -
1 ; ] +0-6680 ‘ ) )

i 5050 03507 0-2334 oioadg 0.9755
11 7-6442 © 0-5254 0-1494 0-0551 0-9890
91 7-1311 0-5840 0-0943 0-0451 0-9952
3" 64048 0-6272 0-0492° .| g.0430 - 0-9995
4 5-5632 0-6325 +0-0053 - 0-0359 0-9999
5 4-7075 0-6019 —0-0306 0-0307 0-9985
8 3-8352  0-5406 oo 0-0983 0-9963
7 2.9496 0-4510 o988 . 0-0274 0-9936
8 2-0221 0-3340 o 0-0294 0-9904
9 1-0617 0-1876 o1 4+0-0412 0-9866
10 0-0000 0-0000 (—0-1876) -z
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(2]

TABLE 9

Calculation of {&;6 — 1}

6
<cos _q

)10°

(4]
$ 0 3 1 1% 23 3 4 5 6 7 8 9 10 { B} {C:}
4 [ —801 —1086 —323 —5 +206 48397 4544 4653 740 +813 875 4925 +978 ~10-6680] —_2100"
1 0 —323 -—1036 —323 440 296 474 600 698 778 845 903 954 _0-4346 _T 2038
13 | +176 5 —823 —1036 —235 +166 397 544 653 740 813 875 929 “o.0sa0 | Tiss0
2 301 4172 —5 —323 —835 —23 --296 474 600 698 778 845 903 0-0551 ~1718
3 477 897 4299 4173 —73 =735 —23 296 474 600 698 778 845 :0.0451 ~1573
4 602 544 476 397 270 -—-23 —735 —23 4296 474 600 698 778 —0-0439 = *1 446
5 699 653 602 544 458 +296 —28 —735 —23 4296 474 600 699 —0-0359 - 1300
6 778 740 699 753 587 474 +296 —23 —736 —23 4296 474 602 —0-0307 B 1116
7 845 813 778 740 688 600 474 4296 —23 —735 —23 -}-296 477 0-0283 B 383
8 903 875 845 813 769 698 600 474 4206 —23 —735 —23 301 B 0- 0‘2‘7 4 B 563
9 | +954 4929 4903 875 837 +778 +698 +600 +474 296 —23 —735 0 | :0'029 4 —_27
—0-0412 - -
| —0-1876 |
TABLE 10
Comparison of Velocities
1 2 3 4

Polygon Influence

¢ Exact Method Factor

0 0-000 0-000 0-000

1 — 1-125 1-178

1 1-191 1-191 1-224

13 — 1-196 1-211

2 1--200 1-199 1-201

3 1-188 1-188 1-188

4 1-171 1-169 1-170

5 1-148 1-148 1-148

6 1-123 1-123 1-121

7 1-090 1-090 1-090

8 1-050 1-051 1-049

9 0-991 0-991 0-989

10 0-000 0-000 0-000
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APPENDIX

Singularities in the Relaxation Process

In the w-plane close to a corner of angle r on an aerofoil, e.g., at the nose or trailing edge,
log (U/q) can be expanded in the form (as in section 3)

L:—}';-log[w[+a+b(w[+g|w2f—i—. Ce

in which the origin is at the corner and &, b, . . . are independent of |w|. The dominant term,
— 7/w log |w]|, is the contribution to L from the corner itself. In the $-direction

L=——£log¢+a'—{—b’¢+...

o’L T 3L — 25 L " '
Therefore ¢* <8sz> = -, $2 <T¢F‘> = <;S”<a¢n> =(— )"n — /=,
since close enough to the corner the coefficients a’, &', . . . are negligible. Using these relations

and similar ones for the y-direction, difference equations for L on the mesh points neighbouring
the infinity can be found enabling the relaxation to be performed in this region®.

A further difficulty occurs when the integrand of fdg-i) becomes infinite at a stagnation point
(or sharp corner). Let ¢ =0 at ¢ =0, and ¢ = ¢* at ¢ = ¢*, then since

zm
Li—g-:-loggé, qﬁg*((ﬁ) .

#*
*d 1 —t/n iy
Therefore s(¢*) = J- ?95 =7 j <f§) ¢ = g—*ﬁjs_——r/n) . . . .. (165)
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