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1. Summary.--The aerodynamic forces on rectangular wings of various aspect ratios describing simple harmonic 
oscillations of small amplitude in a supersonic air stream are determined. Linearized theory is used and numerical 
solutions are derived by the method of 'Relaxation'. 

The problem is formulated in section 4 and in section 6 it is reduced to one of finding a series of conical flow 
solutions. Only a few terms of this series need be determined since the process converges quickly for the range of 
values of the frequency parameter considered. This range is believed to cover most of the practical supersonic 
flutter values. 

Moment coefficients for a range of lVIach numbers and various frequency parameter values were calculated and 
they are tabulated and plotted at the end of the report. The coefficients are referred to tile leading-edge axis 
position but can be referred to any other axis by the usual formulae. 

For a range of Mach numbers in two-dimensional flow, the aerodynamic damping for pitching oscillation can be 
negative for certain positions of the axis of pitch oscillation and this implies instability (R. & M. 21401 and 219414). 
The results of this report show that aspect ratio has a stabilizing effect for axes less. than about 0.7 of the chord 
downstream of the leading edge, but has the opposite effect for axes nearer than this to the trailing edge. 

2. In t roduc t ion . - -The  l inearized tw.o-dimensional t heo ry  of a th in  aerofoil oscillating in a 
supersonic s t ream predicts  t ha t  for certain combinat ions  of Mach number ,  f requency  parameter ,  
and  positions of the  axis of oscillation, the damping  m o m e n t  on a pi tching aerofoil m a y  be 
negative,  t ha t  is it will give rise to instabi l i ty  (R. & M. 21401 and  21941'). 

In  this report  the  case of an oscillating rec tangular  wing is considered but  the m e t h o d  of 
solution can be applied to more general  plan forms. 

The same problem has been considered in the U,S.A. by  Garrick and  Rubinow ~ but  their  
t r e a t m e n t  of the  wing tips is unsa t i s fac tory  in t h a t  it ignores the  interference of the  upper  and  
lower surfaces. E v v a r d  a has given a me thod  of solution for wings of a wide class of plan forms 
involving the evaluat ion of a n u m b e r  of integrals. Watk ins  * has obta ined  an approx imate  
solution for the  rec tangula r  wing re ta in ing only terms of the  first degree in the f requency  para-  
meter ,  and  gives some numer ica l  results. Refs. 2, 3 and 4 use the  m e t h o d  of de termining  a 
source dis t r ibut ion over  the  wing to sat isfy the  b o u n d a r y  conditions. 

In  this coun t ry  Temple  and  Stewar tson have used the  Laplace and  Four ier  t r ans form methods  
to derive formulae  for the  forces on oscillating rec tangula r  and del ta  wings~,L \¥.  P. Jones  

* Published with the permission of the Director, National Pl~ysical Laboratory. 
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(R. & M. 2655 ~) has suggested an iterative method of solution based on the use of known solutions 
for the steady case. 

Of these Watkins (lot. cir.) is the only one to give numerical results and these are restricted 
to small values of the frequency parameter. The method of this report gives results which 
probably cover most of the practical flutter range. 

Some allowance may be made for two-dimensional effects, which are important  a t  the lower 
values of M, by replacing the two-dimensional thin-wing theory derivative coefficients by more 
accurate values if these are known (e.g., by Jones' theory, R. & M. 27491a). 

No experimental data are available for comparison but  Bratt  of the National Physical Labora- 
tory is considering the possibility of measurements of pitching-moment damping on rectangular 
and delta wings. 

I t  seems probable that  the distorting wing may be treated by the present method and this 
possibility is being considered. 

3. List of Symbols Used. 

¢ 

tl 

V 

Vo 
C 

S 

A 

X , Y , Z  

T =  

M 

# 
p =  

k =  
L( ) 

Z 0 

O~ 

17 

Velocity potential of the disturbance due to the wing 

Are space co-ordinates 

Time measured from some instant 

Velocity of stream 

Speed of sound 

Chord of wing 

Semi-span of wing 

Aspect-ratio -~ 2sic 
Non-dimensional co-ordinates 

V/ctl Non-dimensional time 

Mach number = V/Vo 

Mach angle, sin/~ = 1/M 

2= X frequency of oscillation 

pc/v  Frequency parameter 

¢'  exp (i~ sec2l, cot f,X) 

,~ sec 

A differential operator defined in equation (5a) 

Y/X 
z /x  

Is such that  the leading edge of the wing is depressed by CZo 

Angle of incidence of wing 
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R a n d 0  are d e f i n e d b y v  = ' R c o s 0 ,  ~ = R s i n 0  

e = log R 

¢O,,(n = O, 1, 2 , . . . ) }  
potentials of various conical flows (see equations 13 and 14) 

q~,b(a,b = 0, 1 , 2 , . . . ) i  

L, b 

A~ 

L 

(see equations (13) and (14)) 

Pressure due to disturbance 

Lift due to disturbance 

Pitching moment due to disturbance. ( ~  > 0 when it tends to raise the leading 
edge and depress the trailing edge) 

l~, It, l~, #,, m~, m~, m~, m~,, al,, ~1~, alo, ~l~, am~, am~, ~mo, ~m~, i~, i~, i~, i~, rG, rG, rG, rG 
are defined in equations (29) to (31). 

4. Statement of the Problem.- -The linearized theory of supersonic flow leads to the equation 

- ° F  
+ 2V axl at1 ~ Vo" + . . . . .  (1) LOxl 2 ayl 2 Ozl J 

for the velocity potential, ¢, of a small disturbance caused by a wing oscillating in an air stream 
of velocity V, where V0 is the speed of sound, and xl, Yl, zl, are co-ordinates relative to fixed 
rectangular axes (xl increasing in the direction of flow), and tl represents time. 

Let c be the chord of the rectangular wing and 

xl = Xc  cot [~, y~ = cY,  z = cZ, t, = c T / V  

where s ine  = 1/M, M = V/Vo.  (0 < ~  < z/2). 
(2) 

Then in these non-dimensional co-ordinates X,  Y ,Z ,  T, equation (1) becomes 

M 2 ae¢ 2M e ae¢ U¢ + ~2¢ 326 
b - U +  - - -  _ . cot # 3X a T ~ Y~ 0 Z "2 OX ~ 

( 3 )  

The motion is 

where 

Let 

Then 

where 

now restricted to be simple harmonic, so that  

¢ = 4'  e% = ¢' e? ~ 

= pc~V, and ¢'  is a function of x~, Yl, zl only and hence of X ,  Y , Z  only. 

¢ '  = #(X, Y,Z) exp (--  i~ sec2# cot/~X) . . . . . . . . . . .  (4) 

= . . . . . . . . . . . . . . . . . . . .  ( s )  

k = ~ see/,, and 

L(q~)- ~2q5 ~2# U~b 
- -  ~ y----~ + 0 Z----~- ~X. 2 • 

. .  ( S a )  

This report deals with a thin rectangular wing situated symmetrically in the stream (Fig. 1). 
The origin of the co-ordinates was taken to be at the intersection of the leading edge and the wing 
tip and their directions as shown in Fig. 1. 



The Mach cone of any point (Xo,Yo,Zo) is that  part  of the cone 

(X--Xo)2 = ( Y -  Yo) ~ + ( Z -  Zo) 2 

which lies in the region X > Xo, i.e., downstream of its vertex. 

The wave front is the envelope of the Mach cones of points on the leading edge. Fig. 3 shows 
the shape of the wave front, the closed curve ABHFEGA being its section by a plane X = con- 
stant, downstream of the leading edge. The circles B H F K  and AJEG are the section of the 
Mach cones of the intersections of the leading edge and wing tips. On the wave front # ---- 0, 
and moreover it is known that  if (1,re,n) are the direction cosines of the normal to the wave 
front at any point on it, then the derivative of ~ in the direction whose direction cosines are 
( - -  l,m,n), (the co-normal) is also zero at that  point. 

The boundary conditions on the wing are known since ~#/~Z is known on the wing by the 
motion which it is prescribed to have. I t  is assumed that  these conditions may be applied not 
in the displaced position of the wing but on its projection on the plane Z = 0, since the displace- 
ment of the wing is assumed to be small. 

The motion of the wing is defined by Zo, and c~, where CZo is the depression of the leading edge 
and c~, the angle of incidence. The motion of the wing is assumed to be simple harmonic so that  

Z 0 ~ Z '  e iP t l  and Ct ~ cX' eiP~l . 

Then the boundary condition on the wing is given by 

0 ¢ _  
~zl Vet - -  C~o - -  x #  (compare R. & M. 21401, equation A. 18) 

= - -  o~' e% V - -  Zo' e% ip - -  x~ipcd e % .  

In terms of the transformed variables this may be written 

~ - -  Vc exp (iZ s e c ~  cot l~X)[i,tZo' + c((1 + iX cot t~X)l 
~Z 

and hence O#/OZ may be expanded as a power series in X. 

• o 

This fact is used later. 

. .  ( 6 )  

I t  follows from the symmetry  of the boundary conditions tha t  # is symmetrical about the 
plane of symmetry  of the wing, and hence we need consider only half of the region inside the 
wave front. 

In  tile region inside the wave front, but outside the Mach cones of the points of intersection 
of the leading edge and the wing tips, the solution for # is that  associated with an infinite wing 
of the same section performing the same motion. I t  will be assumed that  these two Math cones 
do not intersect upstream of the trailing edge, and then in the regions whose sections are ABKJ 
and E F K J  (Fig. 3), # is given by the two-dimensional solution 

( s t  = , , , ~ . /Xo ,  o,., o [ k { ( X  - -  X o ) "  - -  Z2)I/~J d X o  . . . . . . . .  (7) 

where J0 is the Bessel function Of order zero, and (O#/OZ)xo. o denotes the Z-derivative of 
at the point X = X0 on the wing. The negative sign refers to the region Z > 0 and the positive 
to Z < 0. (See R. & M. 26557, equation 38). 

Since the boundary conditions are tile same on the upper and lower surface of the wing it 
follows that  #(Z) ---- - - # ( - - Z )  and hence # -= 0 for Z = 0 in the region Y > 0, since the contin- 
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ulty of pressure across the surface, (Z = 0, Y > 0), implies the  cont inui ty  of #.  Thus it is 
necessary to consider the region Z 7> 0 only. 

5. The Equations of Conical Flow.- -The  potentials  considered in the report  can be expressed 
in the  form 

# --- X " f ( Y / X ,  Z/X) . . . . . . . . . . . . . . . .  (8) 

= X ' f ( v ,  ~) where ~ = Y/X,  ¢ = Z / X ,  

and ~ is a posit ive integer. 

Then, by forming the required derivatives,  it may  be shown tha t  

- 0 Y  - - -~  + aZ ----~' - -  0X --="~ - -  t~-~ + o¢ 2 - - < 

+ ~ ~ + 2~¢0~ a¢ 0¢2J)" .. (~) 

In  part icular  if n = 1 

+ 2v~- Ov 0¢ O¢-Ji" 

When the independent  variables are t ransformed by put t ing  ~ = R cos 0, ~ = R sin O, it 
follows tha t  

L@) = X  "-2-' + - - - -  1 of + ~  oy 
R DR ~0 '2 

. ( n - - 1 ) f + 2 ( n - - 1 ) R  of R~ oy)  
• OR ~ f  

_ X , - 2 1 8 ~ f  1 ) : f  1 Uf  n ( ~ - - l ) f } . . .  (10) - 1 ~  (1 - R ~) + ( ~  + 2 ( . -  1)R + R 0¢~ 

The unit  circle B ' H ' F ' K '  in the (~, ¢)-plane corresponds to the  circle B H F K  in Fig. 3 and 
the interior of the first t ransforms into the interior of the second. 

Let  ~ = log R, then 

{ ( 1 -  e ~0) + + - I" L@) = X ''-2 e -20) 0y ( 2 , - -  1) Of Oy , ( n  --  1)e2°f .. (11) 

The uni t  circle in the  (~, ~)-plane transforms into the  semi-infinite strip, 0 < 0, - -  ~ ~< 0 ~< 
in the (0,0)-plane. 

Solutions of type  (8) are such tha t  along any straight  line passing through the  origin they  
vary as the  n th  power of the  distance from the  origin. In  part icular  if n = 1, the derivatives 
of # are constant  along such lines ; this is the form associated with s teady flow. 

6. Reduction of # to a Sum of Solutions of Conical Type . - -#  must  satisfy L@) = k2#, and 
# = 0 on the  wave front. Also O#/8Z is prescribed as a function of X on the  wing and this 
function can be expanded  as a power series in X. Since all the  conditions imposed on ¢ are 
linear it is permissible to consider each power of X separately and then  form a solution by  adding 
suitable multiples of the functions thus obtained. 



Thus let ¢ ,  be a solution of (5) satisfying all the  boundary  conditions for ¢ except (6) which 
is replaced by  a ~ , J a Z  = - -  X~/n!  on the  wing. (n = 0,1,2, . . .). 

The solution in t h e  region where the  flow is two dimensional  is given by 

 O :oo, < . . . . . . . . . .  

and hence # .  mus t  assume this value on the  arc BK (Fig. 3). 

a~ / Y , Z  
L e t  {~n = Xn+l f, t,o ( Y  ' Z )  .3 7 k2 Xn+ j: ' I~X X )  

5 Y Z 
+k iX '~+  f " ' 2 ( x - ' X T )  + " ' '  . .  ( l a )  

= ~ , , o  + k2¢,,~ + k4¢%,2 + . . .  say . . . . . . . . . .  (14) 

where the f ' s  and  # ' s  are functions which will be de termined later, and impose tile conditions 

L(#o,o) = 0 

L(¢,.,.) = ¢,~,~ 

• ° . .  ( i s )  

Then equat ions  (15) ensure tha t  L@,,) = k2¢. i.e., #~ satisfies (5). 

I t  is possible to satisfy condit ions (15) by functions of the type given in (8) since both  sides 
of any equat ion of (15) contain tile same power of X, which may  be removed  leaving a differential 
equat ion wi th  ~, ¢ (or 0 and 0) as independent  variables, connect ing two successive f ' s .  

BY (12)' # ' (X 'Z )  = j o ~.r - - ~ [ ( X - - X ° ) 2 - - Z 2 1  +2~742I  ( X - X ° ) 2  "" 

_ ( X -  Z )  "+1 

(~ + 1) l 
+ k~P,,+a + k~P,,+~ + . . . 

where P , + 8 ,  P~+5,  • • • are homogeneous polynomials  i n X  and Z of degrees n + 3 ,  n + 5, . . . . 

Hence #,,(X, Z) -----X "+1 (1 - -  Z / X ) n + I  k~X,+8 k,X,,+5 
(,~ + 1)! + O,,+~ + G+5 + 

where Qn+ a, Q~+ 5, • • • are polynomials  in ¢ -= Z / X .  

In  order to ensure ¢~ assumes the  value given by (12) on the  arc BK it is necessary to impose 
the  condit ions 

((~ + 1 ) !  ' 

on the  arc B ' K '  in the  (~, ¢)-plane. 

f ~ , @ , ¢ )  = 0 , , + d ~ , * ) ,  

f . @ , ¢ )  = G + 5 ( ~ , ~ )  • • • 
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On D ' H '  and  the  arc ]3 'H ' ,  f,,, o ,, f,,, 1, f~, 2,  • • • are all prescr ibed to be zero, so t ha t  # ,  = 0 
on D H  and  BH.  

The  b o u n d a r y  condit ion on the  wing is satisfied by  mak ing  3~, , ,0_  X ~ ,  and  ~ # . , 1 _  0, 
3Z n ! OZ 

~#'~'2-- 0, . . . on Z = O ,  Y < O .  
aZ 

af~,_~ = ~f,,,__~ . . . .  = 0 .  
a¢ a~ 

In  te rms of f ' s  and  ~ and  ¢ this implies Of,, 0 _ 1 
a~ n !  ' 

Thus  for any  ~ the  de te rmina t ion  of 4,, is r educed  to the  solution of an infinite chain of differ- 
ent ial  equat ions  in ~ and  ¢. 

Howeve r  it is p roved  in Appendix  I t h a t  in the  case of the  rec tangular  wing 

I 
X 

¢~,,, + 1 = ¢,, d X  where  X = M ( Y , Z )  is the  equa t ion  of the  wave f r o n t . . .  (16) 
M(Y, z) 

Thus  it  was necessary only to calculate  4o and  then  de te rmine  ~1, ~ ,  . . . . .  by  repeated  
integrat ion.  

In  the  par t icu lar  case ~ = 0, the  previous results b e c o m e : - -  

~o = ~o,o + k2~o, 1 + k4~o,2 + • • • 

= X f o ,  o(I,],~) -J r- X3]~ ,1 (~ ,~ )  --~ XSk4 fo ,2 (T] ,¢ )  + .  . . . . . . . .  (17) 

and  a Z  
1 on the  wing, i.e., .Ofo.0 _ 1, 0fo. l - -  o, afo, 2 - -  O, 

a¢ a¢ . .  ( i s )  

On the  arc 13K (and in the  region where  the  flow is two-dimensional) ,  

i ~ -  z ' ZZ) ,, ~] 

= f: I C -  • . . } d X o  

Z 3 
= (X - -  Z ) -  k2 X 311 - -  3 ( Z - f  + 2(-~-) } 

• / ~  ( 

X 5 Z 2 . _ / Z . ~  

Hence  on B ' K ' ,  f0,o = 1 - -  ¢ ,  _ - - 1 { 1 _ 3 ¢ 2  + 2 ¢ 8 } ,  
fo,1 12 

] ; , 2 = V 6 - 6 i 3 - 1 0  + i s  - s ~  5 , . . . .  . .  (19) 

The condit ions (15) become (by equat ion  9) 
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~2 " O~,,fo, n "fo, o + ~" 
3~ 2 3 

0:~f0' 1 [ 02-~ a7o,  +  o,1 

and so on. 

V~2 ~-f0,0 2 '  
L --6-@-V 2 + 2 ~ ¢  + = 0  

=fo,  o 

(20) 

There are, of course, sets of equations corresponding to (20) with (R,O)  or (e,O) as independent 
variables and the solution is required in the region V2 + ¢2 ~< 1 (or thecorresponding regions in 
the (R,O)  and (e,0)-planes). 

7. D e t e r m i n a t i o n  o f r o  o, f0 1 ,  f 0  2 ,  • . . . .  - -The  equations (20) are all elliptic partial differential 
equations the solutions' of whic}{ are to be found in a semi-circular region B ' H ' D ' K '  in the 
(V,¢)-plane (or on the e,0-plane in a semi-infinite strip) on every point of whose boundary f or 
its gradient are known. This is the kind of problem which can be tackled by the method of 
Relaxation (see Appendix I I  for a brief description) and this method was used in the present 
case. (See  Appendix II.) 

The values of fo,0, fo, 1, fo, 2 are shown in Figs. 5 to 7 as functions of e and 0. From the rate 
at which the fo,, , 's decreased with n it was concluded that  fo,3 was negligible to three decimal 
places. 

Since #o, 0 (and hence f0, o) corresponds to the case of a rectangular wing in steady supersonic 
flow it was possible to check the solution obtained with the analytical solution (see for example 
Ref. 8, appendix (B)). The difference was found to be not greater than 0.004 (i .e. ,  less than 
½ per cent) at the points for which the values were compared. All these values were on the line 
0 = ~, since the analytical solution applies only to the surface of the wing. 

After f0,0, f0,1, and f0,~ had been calculated, the values of 40,0, ¢0,1, q~0,~ were computed in 
the plane Z = 0 by (17) and then integrated to obtain #1,0, #1,1, #1,2, #2,o ,  ~°2,1, #2,2 ,  and so on, 
up to ~ , o ,  ¢4 ,1 ,  #.~, 2, all the others being negligible so far as results given in this report are 
concerned. Outside the Mach cones of the intersections of the leading edge and wing tips the 
# ' s  were derived from (12). 

I t  is necessary to know the values of # on the wing only since the pressure is determined by 
this alone. 

In order to determine the forces acting on the wing as a whole it is necessary to integrate 
spanwise, so the integrals 

f L°o0  , LOyola, 
5o jo ~q)o, 1 d Y ,  q~o 1 d Y ,  . . . . ¢)4 1 d Y  

x ~ X  - x  ' x ' 

and f~ a ¢ ° ' 2 d Y '  
x a X  Y~x ¢° '"dY'  . . . .  j-0 ¢2, 2 d Y  were calculated for Z = 0. --X 

Their values are given in Table 1. The range of integration is spanwise from the point where 
the flow ceases to be two-dimensional to the wing tip.. 
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i t  is not necessary to differentiate numerically in order to obtain ~o ~o,o d Y  since we have 
J -x  aX 

,) < o  ,)  ,:oo_.,Ioo 6'o,o(X,Y,Z) =Xfo ,  o ~ , ~  so that  aX - - f ° ' °  ~ , X  - - X  ar .Y 8¢ ' 

3 # 0 . 0 _  3fo, o 

~Y or 

,Ooo "[' I°, :o,o<",°>" 'I and it follows tha t  J - x  ~ ' -  d Y  = 

and similarly for 8#0,1 ~#0, 2 
3X ' 3X 

j.o  o,o(X,Y,o)dY x" f ° = f0,o(r,0) dr and similarly for the others. 
- - X  - - 1  

8. The Calculation of the Forces A ctir~g on the Wing . - -The  pressure due to the disturbance 
is given by 

(~¢ " )  ~p=-~ ~ + v ~  

- -  [~¢ a n . o ]  (21) --  c ° ~ V t a n ' e x p ( - - i 2 s e c e "  c o t , X  + i 2 T )  ~ - x - - i a t  . .  

and since ~ ( - -  Z) = - -  ¢(Z) it follows that  the lift on an element of area dA is - -  2Ap dA. 

Then supposing for the moment that  Ap is known all over the wing the lift, L, is given by 

L 7~ I: 21j°~s -- 2Ap dyll dx I = -- 4!~ 2 cot.I: nl~ [I°_s,: Ap dY] dX. 

Similarly Je' the moment about the leading edge, is given by 

- / '  4c' c o t ' .  [ j _ .  Ap 

J~' is positive if it tends to raise the leading edge and depress, the trailing edge. 

These are the forces acting on the complete wing of span 2s and chord c. 

In order to determine Ap, we expand 8#/aZ as given by equation (6) in a power series in X. 

Suppose 3¢ /8Z  = --  Vc ~ A.X'Tn[ . . . .  
0 

where the A,,'s are constant (in general complex). 

Then since 8qo,/OZ = - -X" /n !  on the wing, 

qa = Vc E A,#,~ 
0 

9 

. ° . ° o . ° . o o 

These A. 's  will be linear in Zo' and c~'. 

. .  (22) 



and . . . . . . . .  (23) a~/$X ~-- Vc[Ao a¢o/~X + A~¢o + A2#I + . . . } . .  

(since so ,+  ~/ax --- ~,,,). 

[ a¢o + ~ B.#~] (24) Hence,  b y  (21) A p =  - - e V 2 t a n ~ e x p ( - - i 2 s e c ~ c o t ~ X  + iAT) Ao-~- Z o "" 

when the  B,,'s are new complex constants .  

H e n c e f [ x  A p d Y =  - - e V 2 t a n l t e x p ( - - i ~ s e c e t ,  cot/~X + i2T) 

x [AoI°  o 1 -~-X d Y + Z B " t -  x ¢ O O .. (25) 

i o z ~ dY ,  x ~o d Y , . . ,  can be expanded  as power  series in X by  (14) and  the  values 

given, in Table  1. 

Hence,  collecting up the  te rms in the  square  bracket ,  

[ Alb d Y  = --5 V 2 t an  ~ exp ( - -  i2 sec 2 ~ cot t~X + iaT) Z C,X* 
X 0 

where the  C,/s are constants .  

. .  (26) 

In  the  region where  the  flow is two-dimensional  it follows from (12) t ha t  

k~X 2 k ~ X ~ - -  = so t h a t  t#0 = 1 - -  - -  + Jo(kX)  
a X  2 ~ ~ " " " 

k S X 8 k ~ X 5 
q~0-~X " +  

23 3 224 ~ 5 

¢ h = f : O o d x _ X 2  k 3 X  4 
2 23 3"4 

and  so on for all t he  #~'s. 

. . .  

W h e n  these expressions are subs t i tu ted  in (24) it  follows t ha t  

Ap = --  O V 2 exp ( - -  i~ sec 2 t* cot ~X + i~ T) t an  t* Z C~'X" 
0 

. .  (27) 

where the  C,/ 's  are complex constants .  

Over the  pa r t  of the  wing where  the  flow is two-dimensional ,  
independen t  of y ,  it  follows t ha t  

Ap is known,  and  since it is 

. .  (28) 

10 



Then the expressions for L and J/{ reduce to sums of integrals of the form 

fo~"X"eos (~ sec~/~ cot l ,  X) d X a n d I ~ " X ' s i n ( ~ s e c ~  eott~X) dX. 

These integrals were computed by expanding the integrand in a power series and integrating 
term by term. 

The lift and moment acting on the wing are thus found in the forms 

L = qV%2e~rlZo'{A(l~ + i~l~)+ (~l~ + i~ ~l~)t 

+ + + + . . . . . . . . . .  (29) 

and -//: = oV% ~ e'ar[zo'{A(m. + i2m,) + (Ore. + i~ Ore,) 

+ g ' {A(m,  + iam~) + (Ore. + ia 0ra~)}] . . . . . . . . .  (30) 

In these equations l,, l,, lo, l~, m., m~, m~ and m~ are the two-dimensional thin-wing derivative 

= , - : :  + + 

and -//¢ = eV~c 8 e i~r A ? o ' l ~ .  + i2r~} + ~z'{n~o + i2n~}l. 

Evidently i., etc., are functions of A, the aspect ratio. 

Write i~ = 1, + OlJA, and corresponding expressions for the other coefficients. 

Then (29) and (30) may be written 

Since it has been assumed that  the Mach cones of the tips do not intersect upstream of the 
trailing edge, A is restricted to be greater than 2 tan/z. 

All these coefficients refer to the leading edge but if it is desired to take an axis hc downstream 
of the trailing edge, the corresponding coefficients may  be calculated by using the equations 

zh = Zo + ho:, J/~, = ..//¢ + hcL, Lh = L, . . . . . . . .  (33) 

where cz~, is the depression of the  new axis and .~,, is taken in the same sense as J [  about it. 

In the actual computations only a finite number of terms of any of the infinite series were 
retained, the rest being negligible. 

If more accurate values of the two-dimensional coefficients are known, from theory (or even 
from experiment) (e.g., those taking thickness effects into account), more accurate estimates of 

11 
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coefficients, and $l,, ~l~, ~la, ~l~, ~m~, ~m~, ~m~, ~m~ which are defined by these equations may 
be regarded as corrections for the effect of the tips. 



L an d J / /  might be obtained by using these in (29) and (30), or possibly by multiplying l,, etc., 
by tile ratio of the more accurate two-dimensional values to the thin-wing two-dimensional values. 

9, N u m e r i c a l  R e s u l t s . - - T h e  coefficients dl,, . . . dma were computed for 2 = 0.2, M = 1.2 
(0.2)1.83 Z = 0.4, M = 1.2(0.2)1.8;  and ,t = 0.6, M = 1.4(0.2)2.0. 

The coefficients 1 , , . . .  m~, also appeared in the course of the calculations. 

The results are given in Table 2, and are plotted on Figs. 8 to 15. 

In the case of a wing oscillating about a fixed leading edge (i.e., z0 = 0) the damping moment 
is given by 

- -  e V%3~'Z(m~ + Om~) = - -  e V % ' ~ ' 2 A ~  . . . . . . . .  (34) 

so that  positive values of ~ imply negative damping. 

The Values of ~ have been plotted in Figs. 16 to 18 and from these it will be  seen that  with 
the leading edge as axis the negative damping predicted by two-dimensional theory occurs in 
the finite case but  is reduced by aspect ratio. 

If the matter  is referred to an axis distance hc downstream of the leading edge it follows that  

This equation defines (~,)h, etc., where in particular 

= ma + h(l~, - -  ~ ) -  h21~ + IOma + h(Ola - -  O m ~ ) -  h ~ dl~-J/A by equations (33). 

In order to discover the effect of the position of the axis on the damping effect of the tips 
the quant i ty  --[dm~, + h(dla - -  dm~)--  h 20l~] was plotted for various values of M and X (Figs. 
19 to 21). 

The damping moment for a wing pitching about the new axis is 

so that  if --[dma + ~/(dla -- din,)-- h ~ Ol,] is positive the tip effect increases damping and vice 
v e r s a .  

Figs. 19 to 21 show that  the damping effect of the tips becomes negative for axes near the 
trailing edge, the point of change from positive to negative being almost independent of M and 
varying only slightly with 2. 

Compar i so~  w i t h  Other R e s u l t s . - - I n  order to obtain a check on the process the computations 
were also carried out for the case M = ~/2, ~ = ½, with the slight difference that  the two- 
dimensional mid-chord derivatives were computed instead of the leading-edge derivatives. 
These were compared with the mid-chord derivatives given by Temple and Jahn (R. & M. 
2140a), and found to agree to three decimal places. 

A further comparison was made with the result given by Temple "~. The case considered was 
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again M = V'2, ~ = ½, the  wing having  a simple vert ical  oscillation (~' = 0), and  aspect ratio 2. 
The results agreed numer ica l ly  though  the  signs were different, bu t  it is beleived tha t  Temple 's  
result  as given has the wrong sign. 

Comparison of a case with  Watk in ' s  result  4 tends to the conclusion tha t  this is sat isfactory 
for  small values of ,~. 

A P P E N D I X  i 

,-X 
P r o o f  t h a t  Ore+ 1 = j O,n d X  

M(Y, z) 

Let X = M ( Y ,  Z) be the equat ion of the wave front. 

-X 
I f  O 1 ~-- j O o ( ~ , Y , Z  ) d~  , 

M( Y, Z) 

t hen  0 o 1 _  ( x  boo 
b z  OM-gZ ( G Y ,  Z) d~ e - -  - -  b M  O o [ M ( Y , Z ) , Y , Z ]  

OZ 

= ,x( (e, Y , z )  - ~ -  . .  
dM 

since O0 = 0 on the  wave front. 

b"01 
b Z 2 

f X  b20o (~,Y,Z) d ~ - - - -  g-U d llsI 
bM boo [M(Y,Z),Y,Z~ 
o Z  bZ  

Similarly b°'O1 (X b2~} 1 - -  ~ "M ( L Y ,  Z) d~ b y  2 
bM boo EM(Y,Z),Y, zl  
b Y  b Y  

also aO, _ O o ( X , Y , Z )  b201 - -  b o o  ( X , Y , Z )  
bX ' bX" ~X " 

Hence  L(O1) --k201 = b201 + b20~ - -  a20~ - -  k~O~ 
b y2 a Z ~ 0X 2 

_ fx (b~oo a®o 
- -  M \ b Y  2 + bZ  ---~2 - -  /GY,Z 

b M  boo ( M , Y , Z )  
b Y  b Y  

8M 8¢o ( M , Y , Z )  86)° ( X , Y , Z )  
b Z  b Z  bX " 

13 
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]But L(4o) = k2#o, hence 

f 
x ~24o 

L ( 4 d  - = - -  - -  
M(Y,Z) o X  2 

( M , V , Z )  - -  a m  (M,Y,Z) 
~ Y  ~ Y  ~Z ~Z 

~4o (X,Y ,Z)  
~X 

~4o ( M , Y , Z )  - -  ~M 
OX ~ Y  

~4o (M,Y ,Z)  - -  aM 
a Y  aZ 

ae (M,Y,Z) 
~Z 

Hence L(41)--  k241 is equal to the  scalar product  of the  vectors (--  1, - -  OM/OY, - -  aM/aZ) and 
(O4o/OX, a4o/OY, a40/aZ)M(y.z),y,z, but  the  first of these is along the  co-normal to the wave front, 
X - -  M ( Y , Z )  = O, and the  second is the  gradient  of 40, i.e., L(41) --/~241 is equal to the  derivat ive 
of 40 along the  co-normal. 

But  since 40 is a solution this gradient  is zero and hence L(4~) --  k°-4~ = 0, and similarly 
L(4~)--  k242 = 0 and so on. 

Moreover ~4~ _ r | x  a4° (~ ,Y ,Z )  d~ by (A.1) 
~Z JM(Y,Z) ~Z 

Now for Y ~< 0, Z = 0, (i.e., on the wing), O#o/aZ = --  1, and therefore 

8Z M(y,0) ( -  1) df  ---- - -  X + M ( Y , O )  = - -  X ( Y  <~ O) 

041 X on the  wing. so tha t  OZ - -  

Repeat ing this process it follows tha t  ~4,/OZ = - -X" /n[  on the  wing. 

For  Z = 0, Y ~> 0 , 4 0  -= 0, and hence 4 -= 0 in the  same region, and so on for all the  4~'s. 

Obviously 41, 42, . . . are all zero on the  wave front. 

Thus the 4 , ' s  obta ined in the  wing satisfy all the  boundary  condit ions and L(4~) = k24,. 

A P P E N D I X  II  

A brief description of  the Relaxation Method 

As applied in the present  case this me thod  uses two facts 

(i) The derivatives of any  function may  be expressed to any required degree of accuracy by  a 
linear combinat ion  of its values at a discrete set of points, provided tha t  it satisfies certain not  
very  restrictive conditions. 

(ii) When  the  expressions thus obta ined are  subs t i tu ted  into the  linear differential equation, 
and its boundary  conditions, the result ing set of l inear equations can be solved (again to any 
required degree of accuracy) by a me thod  of successive approximation.  
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Iff(x) is any function of X, where values are known at the points (x0 4-nh), (n = O, 4- 1, 4- 2, . . . 
and a table of its values is formed, and hence a table of differences, as below 

f ( X o -  2h) ~-2 ~4_~ 
-- 3/2 ~ 3  3/2 

f ( x o -  h) 0% 
-- 112 ~ 3112 

f(xo) do 
(~112 (~31]2 

f(xo + h) 
~3/2 ~3312 

f(Xo + 2h) d22 ~'2 

then hf'(x0) = 1((~_112 + $112)-- 1/6 X ~((~13_112 + $3112) + 1/30 )x( 2((~ - 1 1 2 1  5 + da/2)_. . . . .  (A.2)  

h~"(Xo) = d20- 1/12 d% + 1/90 b60 --  . . .  . . . . . . . . . .  (A.3) 

and so on. 

These formulae may be derived by differentiating Stirling's formula (see Ref. 9, p. 64). For a 
rigorous discussion of the subject and in particular of the conditions under which these expressions 
converge see Steffensen (Ref. 10, pp. 60:71). 

In these expressions the first terms may be regarded as being an approximate value of the 
derivative, and the remaining terms being the corresponding correction. 

Consider the values of the dependent variable at a lattice of points covering the region in 
which the solution is required, as in Fig. 5. Substituting from (A.2) and (A.3) into the differ- 
ential equation, and its boundary condition when this contains a derivative, a set of linear 
equations (one for each point) is obtained, connecting the values at points of the lattice. These 
are now solved by adjusting the values until  the conditions are satisfied to the required degree 
of accuracy. 

For a full account of this method see SouthwelP 1 and Fox TM. 

As Q tends to --  o~ the differential equations tend to the Laplace equation O2f/Oo~, + ~2f/002 = O, 
it is possibleto infer the manner in which f tends to 0 as 0 tends to --  ~ by considering the 
solutions of this in an infinite s t r ip .  This avoids the necessity for considering very large values 
of --  q. 
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T A B L E  1 

VaIges of  Ce,/ain fnlegrals 

- x  ~ (X,Y,O) d g  ~ + 0'49994X 

• :c - ~ . ( X ,  g,O) d g  ~_ _ O. 1657 X" 

"° ~ ( X ,  
J_ ~ Y,o) es~ ~_ + o. , lee x~ 

f° - x  #o,o(.,.Y, Y,O) d Y  ~ + O, 74997Xe a fO 

. - x  q~o,;(X, ]7,0) d Y  = _ 0 "06225 X 4 

£ e  ¢~,,o(X,g,O) d:F ~ + 0 . 4 1 6 6 7 X  a fO 

o-x  ¢~a(X,Y,O) d Y  ~ _ 0 . 0 1 6 6 1 X  5 
1, 

- x  ¢~,.,(X,Y,O) d Y  ~. + O.O00417Xr 
[o 
. -.r ~IS,°(X, Y,O) d Y  ~ + O. 14582X~ / o  = _ 

' q5~.1( X ,  I7,0) d Y  0 . 0 0 3 4 6 X  6 

f [ ,~ .~  ~x, <o> eY = + o.oooo628 x~ 

£. #~,o< >o~ e:~ _- + o.oaTsox~ 

f[.~ <.o(X, <o)  eY  ~ + o.oo76a7 xo 

S: 
~.o(X,  Y,O) d Y  _~ + 0.001288X7 

x ¢'~,o(X,Y,O) d Y  ~ + 0"0001885X,  

fo ®~,o(x,Y,o) e Y  ~ + o.oooozaaxo 

.1°_~. % ( <  <o) gy ~_ _ o.ooo589x, 
-0 

J - x  ' - -  0 . 0 0 0 0 8 5 X ~  
¢~ 1(< Y,o) dY 
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T A B L E  2 

Leading-Edge Derivative Coefficients 

2 = 0 . 2  

2 = 0 . 4  

2 = 0 . 6  

2 = 0 . 2  

, / ,=0 '4  

Jt = 0 " 6  

M 

1"2 
1"4 
1"6 
1"8 

1"2 
1"4 
1"6 
1"8 

1.4 
1.6 
1.8 
2.0 

M 

1.2 
1.4 
1.6 
1.8 

1"2 
1"4 
1"6 
1"8 

1.4 
1"6 
1"8 
2'0 

5L 

--0'156 
--0.042 
--0.019 
--0.011 

--0.504 
--0.156 
--0.074 
--0.043 

--0.311 
--0.155 
--0.093 
--0.062 

+0.126 
i +0"041 

+0.020 
+0.012 

+0.390 
+0"150 
+0"076 
+0.045 

+0"287 
+0.154 
+0.094 
+0.062 

--2.034 
--1.006 
--0.629 
--0.441 

--1"445 
--0.904 
--0.593 
--0.423 

--0"756 
--0'538 
--0.396 
--0'304 

+2.803 
+1.999 
+1.585 
+1.328 

+2"292 
+1.880 
+1.537 
+1.303 

+1".712 
+1.465 
+1.264 
+1.111 

dl. 

--2" 074 
--1.016 
--0" 634 
--0" 443 

--1"584 
--0.944 
--0"612 
--0"434 

--0.840 
--0.578 
--0.420 
--0.320 

+2.846 
+2.013 
-}-1.591 
+1.332 

+2.442 
+1.933 
+1.563 
+1.318 

+1-820 
+1-520 
+1.297 
+1.133 

5le, 

+3.201 
+0.705 
+0.270 
+0.131 

+2-568 
+0.654 
+0.258 
+0.127 

+0"575 
+0"239 
+0.120 
+0.068 

--1.696 
--0" 020 
+0.293 
+0 '  372 

--1" 127 
+0" 043 
+0.310 
+0"379 

+0.137 
+0" 337 
+0" 390 
+0"395 

dm~ 

+0.116 
+0.031 
+0.014 
+0.008 

+0"365 
+0"115 
+0"055 
+0"032 

+0.227 
+0"115 
+0"069 
+0.046 

--0.083 
--0-027 
--0.013 
--0'008 

--0"241 
--0.097 
--0-050 
--0.030 

--0.179 
--0.099 
--0"061 
--0"040 

+1.325 
+0.666 
+0.417 
+0.293 

+0.862 
+0.585 
+0.389 
+0.279 

+0.469 
+0.345 
+0.257 
+0-199 

--1.349 
--0.989 
--0.788 
--0.662 

--0.979 
--0.901 
--0.753 
--0.643 

--0"779 
--0"699 
--0.615 
--0.545 

~rn~ 

+1"357 
+0" 674 
+0"421 
+0.295 

+0.972 
+0"617 
+0.404 
+0.288 

+0.535 
+0"377 
+0.276 
+0.211 

~ba 

--1"382 
--0-999 
--0-793 
--0"665 

--1.089 
--0.940 

! --0.772 
i -0.655 

--0-858 
-0:740 
--0.639 
--0.561 

~m~ 

--2"381 
--0"528 
--0"202 
--0-098 

--1"858 
--0"484 
--0.192 
--0"095 

--0" 420 
--0" 176 
--0" 089 
--0" 051 

Tl¢i~ 

+1.  102 
+0"011 
--0. 196 
--0.248 

+0" 653 
--0' 039 
--0"210 
--0.254 

--0" 114 
--0" 231 
--0. 262 
--0" 264 
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