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1. Swmmary—The aerodynamic forces on rectangular wings of various aspect ratios describing simple harmonic
oscillations of small amplitude in a supersonic air stream are determined. Linearized theory is used and numerical
solutions are derived by the method of ‘Relaxation’.

The problem is formulated in section 4 and in section 6 it is reduced to one of finding a series of conical flow
solutions. Only a few terms of this series need be determined since the process converges quickly for the range of
values of the frequency parameter considered. This range is believed to cover most of the practical supersonic
flutter values.

Moment coefficients for a range of Mach numbers and various frequency parameter values were calculated and
they are tabulated and plotted at the end of the report. The coefficients are referred to the leading-edge axis
position but can be referred to any other axis by the usual formulae.

For a range of Mach numbers in two-dimensional flow, the aerodynamic damping for pitching oscillation can be
negative for certain positions of the axis of pitch oscillation and this implies instability (R. & M. 2140t and 219414),
The results of this report show that aspect ratio has a stabilizing effect for axes less- than about 07 of the chord
downstream of the leading edge, but has the opposite effect for axes nearer than this to the trailing edge.

2. Introduction.—The linearized two-dimensional theory of a thin aerofoil oscillating in a
supersonic stream predicts that for certain combinations of Mach number, frequency parameter,
and positions of the axis of oscillation, the damping moment on a pitching aerofoil may be
negative, that is it will give rise to instability (R. & M. 2140 and 2194%).

In this report the case of an oscillating rectangular wing is considered but the method of
solution can be applied to more general plan forms.

The same problem has been considered in the U.S.A. by Garrick and Rubinow?® but their
treatment of the wing tips is unsatisfactory in that it ignores the interference of the upper and
lower surfaces. Evvard® has given a method of solution for wings of a wide class of plan forms
involving the evaluation of a number of integrals. Watkins* has obtained an approximate
solution for the rectangular wing retaining only terms of the first degree in the frequency para-
meter, and gives some numerical results. Refs. 2, 3 and 4 use the method of determining a
source distribution over the wing to satisfy the boundary conditions.

In this country Temple and Stewartson have used the Laplace and Fourier transform methods
to derive formulae for the forces on oscillating rectangular and delta wings®®. W. P. Jones

* Published with the permission of the Director, National Physical Laboratory.
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(R. & M. 2655") has suggested an iterative method of solution based on the use of known solutions
for the steady case. ‘

Of these Watkins (loc. cit.) is the only one to give numerical results and these are restricted
to small values of the frequency parameter. The method of this report gives results which
probably cover most of the practical flutter range.

Some allowance may be made for two-dimensional effects, which are important at the lower
values of M, by replacing the two-dimensional thin-wing theory derivative coefficients by more
accurate values if these are known (e.g., by Jones’ theory, R. & M. 2749%).

No experimental data are available for comparison but Bratt of the National Physical Labora-
tory is considering the possibility of measurements of pitching-moment damping on rectangular
and delta wings. :

It seems probable that the distorting wing may be treated by the present method and this
possibility is being considered.

3. List of Symbols Used.

$ Velocity potential of the disturbance due to the wing
X1, Y1, 2 Are space co—ordinates
£, Time measured from some instant
V Velocity of stream |
Vs Speéd of sound
¢ Chord of wing
Semi-span of wing
Aspect-ratio = 2s/c

Non-dimensional co-ordinates

>
e

= V/ct; Non-dimensional time
Mach number = V/V,
Mach angle, sin p = 1/M
= 2=z x frequency of oscillation
¢ exp (— ipt,)
pc/V  Frequency parameter

I

I

¢’ exp (i4 sec® u cot uX)

= lsecu

— = 8 = Saer NN

&

A differential operator defined in equation (5a)

&
|

= 2z, ¢ Is such that the leading edge of the wing is depressed by cz,

Q
I

o e Angle of incidence of wing
Y/X
= Z|X

I

I



R and 6 are defined' by y = Rcos 9, { = Rsin 6
o = log R
P (n =0,1,2..)) . : . :
. potentials of various conical flows (see equations 13 and 14)
D,,(a,b =012 ..))) :
Sas (see equations (13) and (14))
4, Pressure due to disturbance
L Lift due to disturbance

4  Pitching moment due to disturbance. («# > 0 when it tends to raise the leading
edge and depress the trailing edge)

Zz; lz: Za; Zd: %/I’z: mz’: ma; mﬁu alz; 6lz: 6la’ 6ld) 6mz: 67%,&, 6ma: 6mr'zj Zz; lz'.: la; ld: 747&2, 7471’2: mu: WL
are defined in equations (29) to (31).

4. Statement of the Problem.—The linearized theory of supersonic flow leads to the equation -

s L R i | O

o2 2%, ot 0%, 2 ey 8zl

for the velocity potential, ¢, of a small disturbance caused by a wing oscillating in an air stream
of velocity V, where V), is the speed of sound, and x,, ¥,, 2;, are co-ordinates relative to fixed
rectangular axes (x; increasing in the direction of flow), and # represents time.
Let ¢ be the chord of the rectangular wing and ‘
% =Xccotu, y,=cY, z2=cZ, t, =cT|V . .. .. .. . (2)
where sing = 1/M, M =V/V,. (0<p<=/2).

Then in these non-dimensional co-ordinates XY, Z , 1, equation (1) becomes

s 0% 2M* o 0% % 2%
Weorteaxer v Tz e o o o o O

The motion is now restricted to be simple harmonic, so that

¢ — qS' eiptl — (}3, ej/lt

where A = pc/V, and ¢’ is a function of x,, y,, 2, only and hence of X,Y,Z only.
Let ¢’ = D(X,Y,Z) exp (— id sec®p cot uX). .. .. .. .. .. (4)
Then 7
L(@)=F0 .. .. .. .. .. .. .. .. .. .. (8
where k= A secyu,and
2 2 2,
L@) =52 00 O )

T aY: 372 oXE

This report deals with a thin rectangular wing situated symmetrically in the stream (Fig. 1).
The origin of the co-ordinates was taken to be at the intersection of the leading edge and the wing
tip and their directions as shown in Fig. 1. '
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The Mach cone of any point (X,,Y,,Z,) is that part of the cone
(X =X = (Y — Yo + (Z — Z) |

which lies in the region X > X, 7.e., downstream of its vertex.

The wave front is the envelope of the Mach cones of points on the leading edge. Fig. 3 shows
the shape of the wave front, the closed curve ABHFEGA being its section by a plane X = con-
stant, downstream of the leading edge. The circles BHFK and AJEG are the section of the
Mach cones of the intersections of the leading edge and wing tips. On the wave front & = 0,
and moreover it is known that if (/;m,n) are the direction cosines of the normal to the wave
front at any point on it, then the derivative of @ in the direction whose direction cosines are
(— I,m,n), (the co-normal) is also zero at that point.

The boundary conditions on the wing are known since 2#/8Z is known on the wing by the
motion which it is prescribed to have. It is assumed that these conditions may be applied not
in the displaced position of the wing but on its projection on the plane Z = 0, since the displace-
ment of the wing is assumed to be small.

The motion of the wing is defined by z,, and «, where ¢z, is the depression of the leading edge
and «, the angle of incidence. The motion of the wing is assumed to be simple harmonic so that

Zo=2"e" and a = o e?1.

Then the boundary condition on the wing is given by

o _

= Vo — c2y — x,a (compare R. & M. 2140", equation A.18)
L .

= —a eV —z e?ip —xipa’ e .

In terms of the transformed variables this may be written

gizj = — Ve exp (¢4 sec* u cot uX) [Mzo’ + o'(1 + 44 cot MX)} .. (6)

and hence 8®/9Z may be expanded as a power series in X. This fact is used later.

It follows from the symmetry of the boundary conditions that @ is symmetrical about the

plane of symmetry of the wing, and hence we need consider only half of the region inside the
wave front.

In the region inside the wave front, but outside the Mach cones of the points of intersection
of the leading edge and the wing tips, the solution for @ is that associated with an infinite wing
of the same section performing the same motion. It will be assumed that these two Mach cones
do not intersect upstream of the trailing edge, and then in the regions whose sections are ABKJ
and EFK]J (Fig. 8), @ is given by the two-dimensional solution

@(X,Z):ij:"z %q%XO’Ojo[k{(X~XO)2—ZZ}1/2] aXe .. .. .. ..

where [, is the Bessel function of order zero, and (0@/0Z)x,,o denotes the Z-derivative of @

at the point X = X, on the wing. The negative sign refers to the region Z > 0 and the positive
to Z<0. (See R. & M. 26557, equation 38).

Since the boundary conditions are the same on the upper and lower surface of the wing it
follows that #(Z) = —&(—Z2) and hence ® = 0 for Z = 0 in the region Y > 0, since the contin-
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uity of pressure across the surface, (Z = 0, Y > 0), implies the continuity of @. Thus it is
necessary to consider the region Z = 0 only. ‘

5. The Eguations of Conical Flow.—The potentials considered in the report can be expressed
in the form
¢ =X"f(Y/X, Z/X) . .. .. .. .. .. . .. (8)
= X" f(y, {) where n = Y/X, ¢ = Z/X,

and # is a positive integer.

Then, by forming the required derivatives, it may be shown that

L@ =22+ 2 T8 —xe (TL o BT [alw— 17 — 20— 1)(772—],;+ i

Ty 2 X la? ' 37 a¢
+77W+2n58978—€+58625 .. . . )

In particular if # = 1

ot 1B L B [ AL )
r@) =x- |7+ 2L [n Lt e L e

QD

When the independent variables are transformed by putting # = R cos 6, ¢ = R sin g, it
follows that

&

L(@) :X71—2 4

o

(off Lof 1@ B o e )
o T RsR T ey M U + 20— DR L —R

<>

R 3
— x| % 1 Ry 4 (% L — 1)R>§JR; ]_12%;—%(%- 1)f}.. .. (10)

‘The unit circle B'H'F’K" in the (3, ¢)-plane corresponds to the circle BHFK in Fig. 3 and
the interior of the first transforms into the interior of the second.

 Let o = log R, then
V 1n—~2 —2 ' 2 a2f af aZf 2 ]
Qj - Q - 4 - - _ 4] .
L(®) = X"2e7%) {(1 — e¥) 557 + (2n— 1) e + = n(n — 1)e f[ (11)

The unit circle in the (y, ¢)-plane transforms into the semi-infinite strip, ¢ <0, — z < 6 < =
in the (g, 8)-plane.

Solutions of type (8) are such that along any straight line passing through the origin they
vary as the n#th power of the distance from the origin. In particular if # = 1, the derivatives
of & are constant along such lines ; this is the form associated with steady flow.

6. Reduction of ® to a Sum of Solutions of Conical Type.—® must satisfy L(®) = kP, and
® = 0 on the wave front. Also 8®/3Z is prescribed as a function of X on the wing and this
function can be expanded as a power series in X. Since all the conditions imposed on @ are
linear it is permissible to consider each power of X separately and then form a solution by adding
suitable multiples of the functions thus obtained.
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Thus let @, be a solution of (5) satisfying all the boundary conditions for & except {6) which
is replaced by 99,/0Z = — X"/n! on the wing. (» = 0,1,2,...). ‘

The solution in the region where the flow is two dimensional is given by

X—-Z n 1/2
&,(X, Z) = j X [k((X~X0)2—Z?> }dXo R 07
o nl ,
and hence @, must assume this value on the arc BK (Fig. 8).
Y 7 Y 7
— w41 s = 2 n+ 3 T =
Let B, =X (50 g) T EX f,,,1<X F
' ' Y Z ' '
4 w45 =, =
FEX f,,,z(X P ¢ £
=@,, + B, + kD, + ... say . o .. .. (14)

where the f’s and @’s are functions which will be determined later, and impose the conditions

Li@) =0
L@,) =G0t . o)
LD, = ®,,

Then equations (15) ensure that L(®,) = #*®, i.e., &, satisfies (5).
It is possible to satisfy conditions (15) by functions of the type given in (8) since both sides

of any equation of (15) contain the same power of X, which may be removed leaving a differential
equation with 5,  (or ¢ and 6) as independent variables, connecting two successive f’s.

By (19, 2(X.2) = r_zﬁ { - a [(X —Xp— 7| + L [(x — % — ZZT- - Jax,

0 7 2?2 72242
(X =2zt g s
— BT + BP, s + BP, s+ ...

where P, .5, P,,5, . .. are homogeneous polynomials in X and Z of degrees# + 3, % + 5, . . . .
Hence @,(X, Z) = X*+! ___(1(; f/)f))’;“ F X Qs + BX Q0 L
where Q,.s, Q..s,... are polynomials in { = Z/X.

In order to ensure @, assumes the value given by (12) on the arc BK it is necessary to impose
the conditions '

Fuoln,t) = %‘Tﬂ)—, S a1, 8) = Quraln,©),

f?z,2(77:é-) - Q;z+5(17,C) “ ..
on the arc B’K’ in the (5,{)-plane.



On D'H’ and the arc B'H’, f,0; fu1s fuz, - - - are all prescribed to be zero, so that &, =10
on DH and BH.

The boundary condition on the wing is satisfied by making 8;155,0 = ii"“ and aaéz”'l =0,
a®7z 2 | 4 ic 1 3 afn 0 1
2 —=0,...0on Z=20,Y <0. In terms of f’s and # and ¢ this implies L%° = — — ,
¥4 0¢ % !
afn,l — aﬁz,2 — — 0
e¢ o¢

Thus for any # the determination of @, is reduced to the solution of an infinite chain of differ-
ential equations in » and ¢.

However it is proved in Appendix I that in the case of the rectangular wing

2 @, dX where X = M(Y,Z) is the equation of the wave front. .. (16)

m+1 = j
M(Y, 2)

Thus it was necessary only to calculate @, and then determine @,, ®,, ... .. by repeated
integration.

In the particular case # = 0, the previous results become:—

@0 ‘: @0’0 "I“ k2¢0’1 + k4¢0,2 + R

=X foo(n,8) + X%fo1(n,0) + X% 0(n,0) + . .. . . .. (17)
00 . . oo 1 o _ o2
and = 1 on the wing, i.e., T2 1, 3¢ o, 50 0, . (18)

On the arc BK (and in the region where the flow is two-dimensional),
X—Z ) 1/2
2= s {k((X — X)) — 7% ]a‘iXo

= f1~ L [(x —x z| + oo [(x — Xy — 22]2_ . .}dXO

- e byl o3 + 4B

o Xls—10(2) + 15/ 2) —s(Z)] ...

960 X
Hence on BK', foo = 1— ¢,  for = %2_1{1._ 322 + 253},
1 ia o i 5}
from g3 100+ 50 —88) ... . . (19)

The conditions (15) become (by equation 9)



870,0 + a?fo,ﬂ — 1:772

on* 0¢*

%w 9 a%m 287]::0 ' . |
o + nC—————an aC-i—C 57

. (20)

az.f(),l aZ‘fo,l _[ 2 82f0,1 2 azf‘o,l 2 a2,f:l af(],l
anz + 5 77——6772+ 775-——8778:4"5—8—&—2—"‘4(7]‘%"‘@'

%%ﬁ~—6m1::ﬁ&J

and so on.

There are, of course, sets of equations corresponding to (20) with (R,6) or (¢,6) as independent

variables and the solution is required in the region 5 + 2 < 1 (or the corresponding regions in
the (R,0) and (p,0)-planes).

7. Deteymination of foo, fo1, fo,2, . . . . .—The equations (20) are all elliptic partial differential
equations the solutions of which are to be found in a semi-circular region B'H’D’K’ in the
(n,£)-plane (or on the ¢,0-plane in a semi-infinite strip) on every point of whose boundary for
its gradient are known. This is the kind of problem which can be tackled by the method of
Relaxation (see Appendix IT for a brief description) and this method was used in the present
case. (See Appendix I1.) :

The values of f,, fo,1, fo,2 are shown in Figs. 5 to 7 as functions of ¢ and . From the rate -
at which the f; ,’s decreased with » it was concluded that f, ; was negligible to three decimal
places. ‘

Since @, {and hence f;,,) corresponds to the case of a rectangular wing in steady supersonic
flow it was possible to check the solution obtained with the analytical solution (see for example
Ref. 8, appendix (B)). The difference was found to be not greater than 0-004 (i.c., less than
3 per cent) at the points for which the values were compared. ~ All these values were on the line
6 = =z, since the analytical solution applies only to the surface of the wing.

After fo,0, /o1, and f; , had been calculated, the values of @,,, @, ,, @, were computed in
the plane Z = 0 by (17) and then integrated to obtain &, ,, Di1, Dio, Doy, Do i, Py, and so on,
up to @y4, D41, Ps,, all the others being negligible so far as results given in this report are
concerned. Outside the Mach cones of the intersections of the leading edge and wing tips the
@’s were derived from (12). ‘ -

It is necessary to know the values of @ on the wing only since the pressure is determined by
this alone. ‘

In order to determine the forces acting on the wing as a whole it is necessary to integrate
spanwise, so the integrals

jo %00 5y j“~ & dY jo @, dY
_x BX ’ x 0,0 FEREE N _x 7,0 ]
0 8@0’1 j'o @ j'()
S_X 4y,  PaidY, @udY
0 0 Q
and j %o gy j ®,,dY, .. .. j @, , dY were calculated for Z — 0.
-x oX -x -x

Their values are given in Table 1. The range of integration is spahvvise from the point where
the flow ceases to be two-dimensional to the wing tip.-
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o , 0
It is not necessary to differentiate numerically in order to obtain 5 8@8‘}0 4Y since we have
—x
Y Z 2P Y 2N\ Y ¥, Zof
& — L L 0,0 A LN _ L Yoo £ Yoo
ol XY.2) =Ehilz . g)sothat Tt =hlz . 3)— % g X ¢’
0Dy, — 90,0 ‘
7Y oy
. 0 a@o 0 0
and it follows thatj 0 Y — X|2 j Foro(n,0) dn — 1
~x oX PR
s 0Dy, 0D,
and similarly for % o

jo D, (X, Y,0)dY = X* SO Jo.0(n,0) dy and similarly for the others.
—-X -1 :

8. The Calculation of the Forces Acting on the Wing.—The pressure due to the disturbance
is given by

o6 26
Adp = — his VvV
p o T
= _CQ V tan pexp(—idsec’y cotu X + 2AT) [%— 74 tan M(D:l .. {(21)
and since &(— Z) = — &(Z) it follows that the lift on an element of area dA is — 24p dA.

Then supposing.for the moment that 4p is known all over the wing the lift, L, is given by

r=[ 2“0_ —24p d%] dr, = — 4¢* cot UO_/ Ap dYJ ix.

tan pu

0

Similarly .4 the moment about the leading edge, is given by
tan s 0
A = 4k cot’ J / XU ap dY]dX :
0 — sfc

A is positive if it tends to raise the leading edge and depress. the trailing edge.
These are the forces acting on the complete wing of span 2s and chord c.

In order to determine 4p, we expand 8®/8Z as given by equation (6) in a power series in X.
Suppose 90/0Z = — Ve S AX"ml .. .. .. .. .. .. .. .29
0

where the A,’s are constant (in general complex). These 4,’s will be linear in z,” and «’.
Then since 89,/0Z = — X"/n! on the wing,

®=T1cZAD,
0



and 20 /0X — VC{AO 30,/0X + AB, + AgD, + J O 0.5

(since 2@, ,,/0X = ®,).

Hence, by (21) 4p = — o V? tan u exp (— i1 sec’® u cot uX + 44T [AO a}?" + Z B,,cl') } .. (24)
when the B,’s are new complex constants.
0
Hence S AdpdY = — oV*tanp exp (— ti sec u cot pX + 4T)
O g, g (0 o
x [Aoj %o gy + zB,,j @,,dy} I 5
—x 90X 0 -x

and jo agzo ay, 50 P, dY, ... can be expanded as power series in X by (14) and the values |
X ,

given in Table 1.

Hence, collecting up the terms in the square bracket,

0 -]
j ApdY = —gVPtanp exp (—idsectu cotpX +idT) SCX* .. .. .. ..(26)
-_X [0}
where the C,’s are constants.

In the region where the flow is two-dimensional it follows from (12) that

0., 0) = | Z5 1 h(x — X)) aX,

0P B2X? Rt
kX kB X5
D = —_ —_— L,
0o =X 2273 +22425
X X k3 X4
D, = =2 __ T = ..
= X = 23"

and so on for all the &,’s.
When these expressions are substituted in (24) it follows that
4p = — oV?exp (— A sec’ u cot uX + 447T) tan,u%oJC,,’X” .. .. .. (27)
. 0
where the C,’’s are complex constants.

Over the part of the wing where the flow is two-dimensional, 45 is known, and since it is
independent of y, it follows that

5::/‘15‘”:(%_?5)4?- O )
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Then the expressions for L and -# reduce to sums of integrals of the form

tan u tan .
j’ X" cos (4 sec® u cot uX) dX and J " X»sin (4 sec*p cot uX) dX.

0 0

These integrals were computed by expanding the integrand in a power series and integrating
term by term.

The lift and moment acting on the wing are thus found in the forms

L= V% e“T[zo’{A(lz v a2l + (8L, + i azg)}

+ oc’{A(la + L) + (8l + i 6l&)} L L@
and ' A = o V%3 e"”[zo"{A(m, + ddmy) + (m, + iA 6mz)}
+ oc’{A(ma - i) + (e + 04 am,.,)H. (30

In these equations I, I,, ., 4, m,, m,, m, and m, are the two-dimensional thin-wing derivative
coefficients, and é/,, 84,, dl,, 6l,, om,, dm,, dm,, dm, which are defined by these equations may
be regarded as corrections for the effect of the tips.

Write [, = I, + 64,/A, and corresponding expressions for the other coefficients.

Then (29) and (30) may be written
L = oV & A[zo'{z; + il + oc'{za + z'lZdH O :3).
and A = VS T A[zo'{m,, + z/lm} + o {m + zm}] P )

Evidently [,, etc., are functions of A4, the aspect ratio.

Since it has been assumed that the Mach cones of the tips do not intersect upstream of the
trailing edge, A is restricted to be greater than 2 tan p.

All these coefficients refer to the leading edge but if it is desired to take an axis k¢ downstream
of the trailing edge, the corresponding coefficients may be calculated by using the equations

2, = 2y + ha, A= A4 + hcl, L,=1L, .. .. .. .. (33)
where ¢z, is the depression of the new axis and .#, is taken in the same sense as-# about it.

In the actual computations only a finite number of terms of any of the infinite series were
retained, the rest being negligible.

If more accurate values of the two-dimensional coefficients are known, from theory (or even
from experiment) (e.g.,those taking thickness effects into account), more accurate estimates of
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L and_# might be obtained by using these in (29) and (30), or possibly by multiplying /,, etc.,
by the ratio of the more accurate two-dimensional values to the thin-wing two-dimensional values.

9. Numerical Resulis.—The coefficients é/,, ... ém, were computed for A = 0-2, M = 1-2
0-2)1:8; =04, M =1-2(0-2)1-8; and 4 =0-6, M = 1-4(0-2)2-0.

The coefficients l,,...m,, also appeared in the course of the calculations.
The results are given in Table 2, and are plotted on Figs. 8 to 15.

In the case of a wing oscillating about a fixed leading edge (i.e., z, = 0) the damping moment
is given by

— o V3P A(my, + om,) = — o V3P AAM, .. .. .. .. (34)
so that positive values of #7, imply negative damping.
The values of #i, have been plotted in Figs. 16 to 18 and from these it will be seen that with

the leading edge as axis the negative damping predicted by two-dimensional theory occurs in
the finite case but is reduced by aspect ratio.

If the matter is referred to an axis distance 4c downstream of the leading edge it follows that

A, — VP & A[z,,'-[(m,),, + in(m,),ﬂ;jL a'{(ma),, + m(md),,H.
This equation defines (#%,),, etc., where in particular
(a)n = 1, + h(l, — W) — A,
= Mg + h{ly — W) — Wl + [6my + (8L, — dm,)— h* 81,]/ A by equations (33).

In order to discover the effect of the position of the axis on the dampiﬁg effect of the tips

the quantity —[dm, + A(8l, — ém,)— h* dl,] was plotted for various values of M and 1 (Figs.
16 to 21).

The damping moment for a wing pitching about the new axis is
— e V23 ad A (),

so that if —[dm, + %#(dl, — dm,)— A* 81,] is positive the tip effect increases damping and vice
versa.

Figs. 19 to 21 show that the damping effect of the tips becomes negative for axes near the
trailing edge, the point of change from positive to negative being almost independent of M and
varying only slightly with 4.

Comparison with Other Results.—In order to obtain a check on the process the computations
were also carried out for the case M = 4/2, 2 = }, with the slight difference that the two-
dimensional mid-chord derivatives were computed instead of the leading-edge derivatives.
These were compared with the mid-chord derivatives given by Temple and Jahn (R. & M.
2140"), and found to agree to three decimal places.

A further comparison was made with the result given by Temple®. The case considered was
12




again M = /2, 4 = §, the wing having a simple vertical oscillation (¢’ = 0), and aspect ratio 2.
The results agreed numerically though the signs were ditferent, but it is beleived that Temple's
result as given has the wrong sign.

Comparison of a case with Watkin’s result* tends to the conclusion that this is satisfactory
for small values of A.

Let

It

then

APPENDIX I

~X
Proof that @, | = J @, dX

MY, 2)

X = M(Y,Z) be the equation of the wave front.

~X

®, — J @,(&,Y,Z) de |
M(Y,2Z)

0P, oM
37 MBZ 2 (8,Y,7) d¢ —@OEM(YZ)YZ]

00,
JM 22 (8,Y,2) dt

since @, = 0 on the wave front.

Similarly
also

Hence

0, (% 3%, oM azpo

= | (EYZ)dE = S MY.2).Y,Z]
20, X 20, oM 99,

=, ayo(syzm —Sy 5 M(Y,2),Y,2]
o0,

0*P, 09,
x — DXL o aX( Y.2)-

2Y? T+ 87  ax?

L(@) — ko= TO | FD_TD g

L& @°_k2@0> de _ oM

M BYZ £Y,2 Y
_ M 39, o,
57 sz MY2) — g (XY.2).

13



But L{®,) = k*®,, hence

X .
L) — ko= 2Peyvzyae . Py z) 20 Dy z)

M,z 0X° Y oY VA A
g? (X,Y,2)
_ 09D, oM 99, oM 99
- X (M.Y,2) — Y oY (M.Y.2) KV EZ(MYZ)

Hence L(®,)— k*®, is equal to the scalar product of the vectors (— 1, — M /oY, — oM /o Z) and
(0@,/0X, 09,[0Y, 8Dy/0Z) v,z v,2z, Dut the first of these is along the co-normal to the wave front,
X—M (Y A 0 and the second is the gradient of @, i.e., L(®,) — %@, is equal to the derivative
of @, along the co-normal.

But since @, is a solution this gradient is zero and hence L(®,) — £, = 0, and similarly
L(®,)— k*®; = 0 and so on.

b, (Y 0,
Moreover == jM(Y 237 ——(£,Y,Z) aé by (Al)
Now for ¥ <0, Z =0, (i.e.,, on the wing), 89,/oZ = — 1, and therefore
X
DX Y0) =  (—1)dE=—X + M(Y,0) = —X(Y <0)
YA BM(Y,0)
0D, o
so that > = X on the wing.
Repeating this process it follows that 84,/0Z = — X"/n! on the wing.

For Z=0,Y >0, ®,=0, and hence @ =0 in the same region, and so on for all the @,’s.
Obviously @,, @,, ... are all zero on the wave front.

Thus the @,’s obtained in the wing satisfy all the boundary conditions and L(®,) = &*®,.

APPENDIX II |
. A brief description of the Relaxation Method

As applied in the present case this method uses two facts

(i) The derivatives of any function may be expressed to any required degree of accuracy by a
linear combination of its values at a discrete set of points, provided that it satisfies certain not
very restrictive conditions.

(ii) When the expressions thus obtained are substituted into the linear differential equation,
and its boundary conditions, the resulting set of linear equations can be solved (again to any
required degree of accuracy) by a method of successive approximation.

14



If f(x) is any function of ¥, where values are known at the points (%, +#4), (# = 0, +1, -2,
and a table of its values is formed, and hence a table of differences, as below

f(xo b 2h) ' - 52__2 ) 64_2
‘5—312 53—3/2
Jloeo — h) 5 0"y 5 '
—1/2 —12
f(xo) (s 60 63 640
1/2 112
Floto+ 1) & 54
53/2 533/2
Flxo+ 20) 52, o,
then  Af/(%) = 3(_up + Sip)— 1/6X 1(6° 1 + 8%0) + 1/30 X 1(6% 1 + 6%p) — . .. .. (A.2)
Bf(n) = 0% —1/128% + 190 8% — ... .. .. .. .. .. (A3

and so on.

These formulae may be derived by differentiating Stirling’s formula (see Ref. 9, p. 64). For a
rigorous discussion of the subject and in particular of the conditions under which these expressions
converge see Steffensen (Ref. 10, pp. 60-71).

In these expressions the first terms may be regarded as being an approximate value of the
derivative, and the remaining terms being the corresponding correction.

Consider the Values of the dependent variable at a lattice of pomts covering the region in
which the solution is required, as in Fig. 5. Substituting from (A.2) and (A.3) into the differ-
ential equation, and its boundary condition when this contains a derlvatlve a set of linear
equations (one for each point) is obtained, connecting the values at points of the lattice. These
are now solved by adjusting the values until the conditions are satisfied to the required degree
of accuracy

For a full account of this method see Southwell and Fox'2,

As o tends to — o the differential equations tend to the Laplace equation 8%/3¢% + %/06% = 0,
it is possible to infer the manner in which f tends to 0 as ¢ tends to — oo by considering the
solutions of this in an infinite strip.- This avoids the necessity for considering very large values
of —e.
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TABLE 1

Values of Certain J, ntegrals

fo o0 x V.0)dY = 1 0.49904 x f’ aﬁm.(}( Y.0)4Y = — 0. 1657 o
-x X V4 ’ X oX YT ’
[ sy Y0)dY = 4 0.1799 x5
Y-x aX T
| [ ’ L X,Y,0)d¥ ~ 4 0:74997 x» /”Y Poi(X,Y,0) dy — _ 0-06225 x+
-X R
[ #yx Y.0)4Y = 10002397 xo
-x
[ ox V.00 @Y = + 0.4167 x5 [ eux V.0 4Y = — 0.01667 %o ,
~X v —X

fﬂ @1,2(X,Y,0) Ay = +O'000417X7
—x

[ e x V.00 dY = 4+ 0. 14589 3+ , /"0\ P XY.002Y = 000846 10 ,
Jox X

f D P02 (X,Y,0) Y — . 0-0000625 x=
-X

[ ’ Poo(X,Y,0) 0y — +0-08750 x5 [
Y—X

|, ®alX,v,0) v — 0000589 x3
S =X

[ e voyar_ , 0-007637x0 "
—-X

/ C(X,V,0) 4y — _ 0-000085 x
R

[ e Y0 @Y = 4 0.0012g 5+ ,
~x

[ ax, Y.0)dY = + 0.0001855 xs ,
—x

[ e.x Y00 4Y = 4 0.0000233 ys ,
-—X
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A=0-2
A=0-4
A=06
A=02
A=0-4
A=06

Leading-Edge Derivative Coefficients

TABLE 2

M oL, Ol Ol Ol b M O O

12| —0-156 —2-034 —2-074 +3-201 +0-116 +1-325 +1-357 —2-381
1-4 | —0-042 —1-006 —1-016 +0-705 +0-031 +0-666 ~+0:674 —0-528
1-6 | —0-019 —0-629 —0-634 +0-270 +0-014 +0-417 -+0-421 —0-202
1-8 | —0-011 —0-441 —0-443 +0-131 +0-008 —+0-293 +0-295 —0-098
1-2 | —0-504 —1-445 —1-584 +2-568 +0-365 +0-862 +-0-972 —1-858
1-4 | —0-156 —0-904 —0-944 +0-654 +0-115 +0-585 +0-617 —(-484
16| —0-074 —0-593 —0-612 +0-258 +0-055 +0-389 -+0-404 —0-192
1-81 —0-043 —0-423 —0-434 +0-127 +0-032 +0-279 +0-288 —0-095
14| —0-311 —0-756 —0-840 -+0-575 +0-227 +0-469 +0-535 —0-420
1-6 | —0-155 —0-538 —0-578 | +0-239 -+0-115 +0-345 —+0-377 —0-176
18| —0-093 —0-396 —0-420 +0-120 +0-069 +0-257 +0-276 —0-089
2-0 [ —0-062 —0-304 —(-320 +0-068 —+0-046 +4+0-199 +0-211 —0-051
M Zz Z: Za ld WMy W Wa V2

1-2 | 4+0-126 +2-803 -1-2-846 —1-696 —0-083 —1-349 —1-382 +1-102
1-4 | +0-041 -+1-999 --2-013 —0-020 —0-027 —0-989 —0-999 -+0-011
1-6 | +-0-020 +1-585 +1-591 —+0-293 —(-:013 —0-788 —0-793 —0-196
1-8 | +0-012 +1-328 +1-332 +0:372 —0-008 —0-662 —0-665 —(0-248
1-2 | 40-390 +2-292 12442 —1-127 —0-241 —0-979 —1-089 -+0-653
1-4 | 40-150 -+1-880 +1-933 -+-0-043 —0-097 —0-901 —0-940 —0-039
1.6 | +0-076 +1-537 +1-563 +0-310 ~—0-050 —0-753 —0-772 —0-210
1-8 | +0-045 -+1-303 +1-318 +0-379 —0-030 —(0-643 —0-655 —0-254
1-4 | 4-0-287 +1-712 -+1-820 +0-137 —0+179 —0-779 —0-858 —0-114
16§ +0-154 +1-465 +1-520 +0-337 —0-099 —0-699 —0:740 —0-231
18| 40-094 +1-264 +1-297 +0-390 —0-061 —0-615 —0-639 —0-262
2:0 | +0-082 +1-111 -+1-133 +0-395 —0-040 —0-545 —0-561 —0-264
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The axis of z,is perpendicularly out of the paper through 0
Fi1c. 1. Plan of wing.
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Fic. 2. Mode of vibration of wing.
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Fi1c. 5. Values of fo,0 x 105
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-3 -17 - 32 —30 —39|—45| -50|-54|~56] -53|~42
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Fic. 6. Values of fp,1 x 103
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F1c. 7. Values of f5,2 X 104

21



+0.50

L, A0

~

1, A=06

N

8, A02 /
ArOe

I/

;

N\

bL

rAl

~0+50)

8l Aos

1«0

12 1PN (59~ -8

2.0

M

Fi1G. 8. Variation of ; and 6/; with M and A.

+2+0

410

«1-0

~ 240

t

/

3L,

8Lz, A=0-4

&Ly, A-02

0 12,

le4 1“6 -8 2:0 M

F1c. 9. Variation of 8l; and I; with M and A.

22



30 \

o, A=0:2
Tt A= 0 oLy, A02
1 +3:. 0
1,,(,7\'0'6\
\\ 20
i
+ 10
+140
bly, m.e\
o Ly A-0.6 .7 — .
)
k
/ ;/
‘/ —1-0
~1-0t Lo, A=076 /i /
L4, A04
|
|
i
4
Bl A= /, . ' 2.0
w, Am04 _ L., A02
_2-0 -
8lu,Am0-2
= M -3+0 M
0 2 14 g i3 2 [ o2 s 4 6 ) 20
F1c. 10. Variation of 6/, and /, with M and A. Fic. 11. Variation of 8l and Iz with M and A.

23



Smz Ao

+ 1.0

oMy, A=0al

+0-40 |

: 8 m3 A=046
brmg, A= 04 2

L

Sy A= 0w

N
DN

Vi

+0 -2

1

sz, A=\0-2

+0 -}

.\\&‘

———

\\""
\
N,

~0-10{m,, A =0t

S ~ Vs
- e [
L

I\

-0 20— ] My, A= 00
Mz, A= Q4
~0'3 - M M
0 V2 14 b 18 20 1-Q e 53] 2:0 .
Fi1G. 12. Variation of m; and dm, with M and A. Fic. 13. Variation of m: and ém, with M and A.

24



J

' Smg Az0m2
8rngy, A=04
+ 1.0 X
8mig A=0-6
\\\
+0ed5 &
0
-~ Q5
vl
N /
Mg, A=06
10 /
Mgz, A=0-4
Mg, A =02
) 12 -4 ] 18 2.0

Fic. 14. Variation of éma and m, with M and A.

+2e0
mo-uh= 042
+1+0
mo-uhﬂt-i
0
~J P —
m&‘?\“»O'B
. bmd A0
-1-0
Brn . Mot
-2:0 M
sz-z,?\‘-O-Z
10 -2 14 S 18 zo "
Fic. 15. Variation of m, and dmg with M and A

25

(For A = 4-0,7ead A = 0-4.)



e = M+ 5LA“.k
|
05 ‘\
g >0 implies negative
damping
% o
A=3 \\
+1-0
A=os
Ty =mat 6_\'\'1_‘.4. \
A=b \lég
My >0 implies negative "
damping ‘ "85 2 1ea 16 18 0
+0'§
FiG. 17. Variation of #i, = mas -+ SmefA with M
and 4A(A = 0-4).
° \
I\k \
\ _
\ ——
e
~Q-5 "
ra 12 v re 8 20
g = M+ 8ma
. . ~ : B Mg+ Ol N
Fic. 16. Variation of #is = ma +- dma/A with M “ A \
— (- [ '
. and 4 ( 0-2). A,m\ | I
A6 Mg >0 implies negative
N damping
Asd
=i
~ 05 M
10 2 Ve e 18 20

Fic. 18. Variation of #is, = meg -+ dme/ A with M

26

and 4(4 =0-6).



+VYE.
Dawmping

~vE
Davaping

Fic. 19. Effect of axis position on damping effect of tip

~(Bmgrh(Bly- 8my)-h?6Ly)

Yz
+ 20

+ 10

Mvia

- 2:0

correction (A = 0-2).

27

f



= (bt h(61g - Smz)~h261y)

\M= ra
oo \ ' = (Bm g+ (Bly - 8my)-h* 81y)
\;\le'ﬁ. , \ +05
i\‘\ '
+VE damping etk ~.
T
o M=i-g i
- i =
YE damhmg \ \:\ HVE V’\mp'!nq
® \ O
\ ~VE Pamping
" \\
~-0.5
'0h -0 -0 A
Fic. 20. Effect of axis position on damping effect of Fic. 21. Effect of axis position on damping effect of
tip correction (4 = 0-4). tip correction (1 = 0-6).
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