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Summary.--A rigorous theory has been developed for determining the stresses and displacements in a sheet reinforced 
by  stringers and ribs which are not at right-angles to the stringers. The solution of many  problems of practical import- 
ance has been facilitated by the introduction of a stress function. 

The theory has been applied to a cylinder oI rectangular section stiffened with such skew ribs (a simplified representation 
of a swept wing). I t  is shown that  there are axes about which applied moments t~roduce pure twist or pure curvature 
of the cylinde#. There are simple formulae for determining these axes and the relationships between twist and curvature 
and the applied moments. 

1. I~troductio~t.--The analysis of the elastic behaviour of an unswept wing is comparatively 
simple in so far as the ribs are at right-angles to the stringers. But  the use of swept wings in 
aircraft has introduced a variety of structural problems. If there are ribs parallel to the direction 
of flight they will not be at right-angles to the stringers and so there will be a measure of skewness 
in the structural geometry of the wing. For instance, in calculating the deformation of wings 
due to ' simple bending'  loads (i.e., loads which would cause ordinary bending deflections if the 
ribs were normal to the spars) the resistance of the ribs to flexure of the wing must be considered. 
Because of the skewness, or asymmetry, of the wing this resistance of the ribs to simple flexure 
of the wing will introduce shearing forces in the top and bottom surfaces of the wing, and these in 
turn will cause the wing to twist. Similarly when a torque is applied to the wing the presence of 
ribs not at right-angles to the stringers (hereafter called skew ribs) introduces a component of 
flexure in the resultant deformation. 

Wittrick 3 produced a theory for the behaviour of swept wings. A thin-walled cylinder of 
arbitrary section was considered and the assumption was made that  the ribs were closely spaced 
and completely rigid in their own plane. Wittr ick pointed out that  the validity of this assumption 
is open to doubt, as the high flexural rigidity required from aero-elastic considerations and the 
smooth surface required for aerodynamic reasons tends to influence the design in the direction of 
a very thick skin with consequently few ribs. 

The present report considers the stiffness as well as the skewness of the ribs but due to the added 
degree of complexity attention has been concentrated on elementary types of structure and 
loading. 

I t  is shown that  for a cylinder of rectangular section stiffened with skew ribs there are axes 
about which applied moments produce pure twist or pure curvature. There are simple formulae 
for determining these axes (which are not in general at right-angles) and the torsional and flexural 
stiffnesses. 

* R.A.]E. Report Structures 52, received 7th March, 1950. 
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2. Method of Solution.---In a panel stiffened with stringers and ribs at right-angles to the 
stringers it has been customary to simplify stress analysis by assuming 

(a) the stiffening effect of the discrete stringers will not be seriously altered by spreading 
them out, i.e., the stringers can be adequately represented b y  an elastic sheet with 
equivalent, average, uni-directional properties, and 

(b) all out-of-balance forces necessary to prevent any strains in a direction parallel to the ribs 
may be neglected. 

Of these two assumptions (b) would appear to be less justifiable than (a). But in fact it works 
quite well because the loads applied to the panel are either simple shearing loads, in which case 
there are no strains parallel to the ribs and, therefore, no out-of-balance forces, or the loads are 
applied parallel to the stringers, in which case the normal out-of-balance forces are of secondary 
importance* (R. & M. 26484). 

However, for a swept panel assumption (b) is untenable for both the main types of loading 
mentioned above would produce appreciable strains in the direction of the skew- ribs if these ribs 
were removed--another way of saying that  the presence of skew ribs will modify the stress 
distribution in the panel to a much greater extent than ribs at right angles to the stringers. 

Accordingly the only assumption made here regarding the ribs is tha t  they may be treated in 
the same way as stringers are treated and represented by an elastic sheet with equivalent 
unidirectional properties. 

I t  should be pointed out that  the type of distortion of the ribs considered here is that  of bending 
in their own plane, so that,  for example, if a rib in a cylinder of rectangular section consisted of 
a rectangular sheet of thickness t' and height 2h then the I of the rib would be 2/3(h3t ') and hence 
the effective section area of the rib will be ht'/3. And if the rib pitch were p, say, the thickness 
of the equivalent sheet would be ht'/3p. 

2.1. Assumptions.--Apart from the representation of stringers and ribs as equivalent elastic 
sheets the following assumptions are also made: 

(a) Stress-strain relations are linear. 

(b) Buckling does not take place. 

(c) The actual sheet (as opposed to the superposed equivalent sheets) is homogeneous and 
isotropic. 

(d) The ribs are unable to offer any resistance to warping out of their plane. 

(e) The equivalent elastic sheets have constant properties in so far as the stringer area and 
pitch and the effective rib area and pitch do not vary. 

2.2. Derivation of the Basic Equations.--The distribution of strain in the sheet and ill the 
X- and Y-members is completely determined by the displacements u and v. 

The strain in the stringers and the strain in the sheet in the x-direction is ~u/~x ; the strain 
in the y-direction is ~v/~y ; the shear strain is (~u/~y q- ~v/~x) and the strain in the Y-members 
is given by 

~V s ~ U  cOv ( ~  ~v) 
Y -  g?+c 5}+sc . . . . . . . . . . . . .  (1) 

* We should expect this since such forces can only be due to the small Poisson ratio effect, or to the rate of change 
of shear stress in the sheet. 



where  s and c have  been in t roduced  as abbreviat ions  for sin ~ and cos ~7. The stress-strain 
relat ions for the  sheet are 

and  

a u  

E ~-.~ = a x - -  7~(ry , 

~v 
(2) 

and for the X-  and  Y-members  

and  similarly 

E - f f ~  = a X 

aV 
a Y  - -  ar  

(it is unaffected by  strains in the 
y-direction) 

u and  v can be e l iminated from equat ion  (2) to give the  ' equat ion  of compat ib i l i ty  ' 
terms of stresses, 

. .  (3) 

expressed in 

8~ a2 a2%y 
ay2 ( ~ -  ~ , )  + ~ ( ~ , -  ~ x ) - -  2(1 + ~) ax ay . . . . . . .  (4) 

We now consider the equil ibrium of a small e lement  of the stiffened sheet. We in t roduce ~x, % 
and ~,y the  ' mean  applied stresses ' which are defined so tha t  t~,, t~y and  t~y are the  forces in the  

• stiffened sheet per  uni t  length.  

Resolving along the y-  and: x-axes we find tha t  for equil ibrium of an e lement  of stiffened sheet  

ax ~ ay - 0  

ay + ~ - ~ = o  

(s) 

These equat ions of equil ibrium will be satisfied if we in t roduce 2 a stress-function ¢ such t ha t  

ay ~ 

a x  e 

Ly = - -  K ax---@ 

(6) 

The constant  K has been chosen for convenience to be 

K =  l + X +  Y + c " X Y ( 1 - ¢ -  ~)(1 + s  " -  vc-~). 
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The sheet stresses are found in terms of the  stress funct ion by  expressing t hem first in terms 
of  as, sy a n d  ¥.y , 

~y = ay "-}- c " Y a y  

The stresses in the  sheet can now be expressed as follows 

where 

~7 x 

CTy 
a~4, as4 a~4 

--  D a x--~ + E bZ-Cy + F a y~ 

~'~ ---- f i g  + H b T g ~  + ]  ay  ~ 

. . . .  ( s )  

. . . .  ( 9 )  

A = ~ X  - -  s "Y + (1 + , ) s W ( s  2 + 2~c~X) 

B----  2 s c Y ( 1  + ,)(s2 + vc2X) 

C --= 1 + c"Y{1 + s~(1 + ~)} 

D = 1 + X + s'~Y{s ~ - -  ~c ~ + 2c-'(1 + ~)(1 + X)}  

E = 2scaY(1 + v)(1 + X) . . . . . .  (10) 

F = c~Y(~c ~ - s ~) 

G = - s c Y { c  ~ - ~s ~ + c~X(1 - ~)}  

H ---- - -  1 - -  X - -  Y + 2s"c~Y(1 + v) - -  c~XY(1  - -  v") 

J = s c y ( ~ c  ~ - s ~) 

and  the stresses in the  X-  and Y-members  are 

- ~ + ( B -  ~E) a-~y + ( C -  ~F) ~2~ 

a~¢ . . . .  (11) ay = {C --  vs 2 q- c~X(1 --  v~)} ~x 2 

a~¢ (~c~ _ s~ ) a '¢  - 2 s c ( 1  + ~)(1 + x )  ~x ay ay ~ 

The equat ion  of compat ib i l i ty  (equation 4) is expressed in terms of ¢ by  subst i tu t ing in it the  
values of as, %, ~y given by  equat ion  (9). This compat ib i l i ty  equat ion  reduces to 

o:-jT~ + 4fl ax3ay + 2r ~ + 4a --axaff + ~  ~-~ = 0 . .  . .  (12) 
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where 

= 1 -t- (1 + v )EX(1  - -  v) + s ' Y { s ' ( 1 -  v) - -  2 v ' c ' X  + 2c'(1 + X)}]  

,,~ = soY(1 + .) {c'(1 + X) -- .(s' + vc'X)} 

7 =  1 +  ( 1 +  v ) { X +  Y + c ~ X Y ( 1 - -  v ~ ) - - 3 s ~ d Y ( l +  Q} 

= scY(1 + v)(s 2 -- vC) 

= 1 + c~g (1  + ~)(1 + s ~ - ~c ~) 

(13) 

2.3. Method of Solutio~¢.--The solution of any problem reduces to finding a solution of equation 
(12) subject to the appropriate boundary conditions. If the boundary conditions are expressed 
in terms of applied loads (as opposed to displacements) and the boundaries are parallel to the Ox 
and Oy axes these conditions will be expressible simply in terms of $ by virtue of equation (6). 

The general solution of equation (12) is given in Appendix III.  

If the boundaries are parallel to the ribs and stringers it might be thought advisable to refer 
the stresses and the associated stress function to skew axes. This possibility is considered in 
Appendix IV. 

3. Particular Loadi~¢g Co~¢ditio~s.--If we search for solutions of equation (12) in the form of 
polynomials of various degrees a number of important practical problem s can be solved. Consider 
first the case of uniform applied tension. 

3.1. U~,iform Applied Te~sio~,c.--This case is of great practical importance and will be discussed 
in detail. To fix ideas we consider a rectangular strip, such as that  represented in Fig. 1, which 
is subjected to a tension of tf per unit width. 

. v / /  / /  / /  / /  / /  
/ /  / / / / /  / / / / 
V /  / / / / / /  / / /  

, , . ~  I / / / / / / / / / /  > , , . ~ .  

K / / / / / / / / / /  
I / / / / / / / _ / / /  .>- ~////////// 

FIG. 1. Rectangular strip under tension loads. 

The boundary conditions are completely satisfied if we take 

$ = f y y 2 K  . . . . . . . . . . . .  

which also satisfies equation (12) and is therefore the correct solution. 
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The stresses in the sheet may now be obtained from equation (9) and we find 

fClK 

~,, = I J / K  

(15) 

For positive f both % and ,,y are positive as ~ varies from 0 deg to tan -~ %/v and negative from 
---- tan-1%/~ to 90 deg. When ~7 = tan -~ ~/v, ~y and ~,y are zero and the stresses in the sheet are 

the same as if no Y-members were present. 

For most materials tan -~ ~/v will be about 30 deg; the actual variation with v is shown in 
Table 1. 

TABLE 1 

Variation ~ t a n - X ~ v w i t h v  

v 0 " 2 5 0  0 ' 3 0 0  0 " 3 3 3  0 " 4 0 0  0 " 5 0 0  

t a n - l ~ / v  2 6 . 6  ° 2 8 . 7  ° 30 ° 3 2 . 4  ° 3 5 . 3  ° 

The presence of the ' induced '  shear stress f J / K  means that  the rectangular strip will deform as 
in Fig. 11. There is no induced shear stress when ~ = 0 deg, tan -1 ~/~ and 90 deg. Between 
0 deg and tan -1 ~/v the panel shears slightly to the right reaching a maximum at about 15 deg. 
For angles of sweepback between tan -1 ~/v and 90 deg the panel shears to the left and reaches at 
about 60 deg a maximum, which is greater than that  at about 15 deg. The physical significance 
of this lies in the fact that  for small angles of sweepback the ribs are in compression because of the 
Poisson effect in the sheet. 

Taking X = 0 and v = } it can be shown that  the first peak occurs when v = 14½ deg and is 
given by 

+ 0. 042Y 
~Y/f  --  1 + Y 

The second peak occurs when v ---- 62½ deg and is given by 

- -  0.30Y 
*~Y/f --  I + Y  

In a practical structure, in which Y will probably be less than 1-0 and X greater than zero, the 
induced shear stress will therefore be less than 15 per cent of the direct stress. The variation of 
this induced shear stress with ~ for various values of X and Y is shown in Fig. 12. Theories based 
on infinite Y over-estimate this effect considerably. 

3.1.1. Stringer stresses.--These have been plotted in Fig. 13 for various values of Y and ~7 with 
X = 1. Up to a sweepback angle of 45 deg the contribution of the ribs in relieving the load in 
the stringers is negligible. 
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3.1.2. Tensile s t i f fness . - -The  ' relative tensile stiffness ' may be represented by the factor 

and this is simply 

strain in x-direction without Y-members 

strain in x-direction with Y-members 

K 
(1 + X )  

The relative tensile stiffness due to the Y-members is shown in Fig. 14 for the particular cases 
in which v = } and X = 0. Except for high degrees of sweepback the variation in stiffness is 
negligible. 

3.2. Uniform Appl i ed  S h e a r . - - A  system of applied loading such as that  represented in Fig. 2 
below is considered. Y)/ 

: I f . ,  

I / / I  / I / I / ' /  I ' / / / / / / / / / / /  
/ / / / / / / / /  / / / /  

/ ¢ / / / / / 
tq PER 

UNIT LENGTH 

Fro. 2. Rectangular strip under shear loads. 

In this case the stress function is 

4 = - -  q x y / K .  . . . . . . . .  ( 1 6 )  

The actual sheet stresses may be obtained from equation (9) which gives 

~ =  - - q B / K  1 

% = - -  q E / K  
I 

"~,y - -  q H / K  I 

(17) 

The induced stresses ~ and % are both compressive for positive q and ~. 

3.2.1. Stringer s tresses.--The induced stress in the stringers is given by 

ax = qO, E - -  B ) / K  

which varies with X ,  Y and ~ in exactly the same manner, apart from a factor of 2(1 + v), as did 
the induced shear stress in the case of uniform applied tension. Fig. 15 shows the variation of 
~x for various values of X and Y with v = } .  



It will be noticed that  the greatest possible value of ~x that  can occur is when ~ = 62½ deg 
and Y = oo and X is very small, in which case 

= - 

This is an extreme case, of course, which will not occur in practice. 

3.2:2. Stresses in the Y-members.--From equation i l l )  we find 

O'y 
q K 

2sc(1 + ~)(1 + X) 

An extreme case arises when ~ = 45 deg and Y is very small, in which case 

a t =  ( 1 +  ~)q. 

3.2.3. Shear stiffness.--The ' relative shear stiffness ' may be represented by the factor 

shear stress without Y-members 
shear stress with Y-members 

q K 
- -  o 

Txy ~-I 

A few cases have been plotted in Fig. 16. 

3.3. Other Loading Conditions.--The following loading conditions are now considered :--  

(a) uniform applied bending, 

(b) uniform applied bending with shear, 

(c) linear tension build-up due to shear. 

In each case only the appropriate stress function is given, from which the stresses can be predicted 
from equations (9) and (11). 

3.3.1. Uniform applied bending.--A system of applied loading such as t ha t  represented in Fig. 3 
below is considered. 

2Z_z2gJ 
FIG. 3. Rectangular strip under bending loads. 

The applied bending moment is such that. a, = 4- f at y = 4- b. 

The appropriate stress function is 

8' '  

D 0 • . 08) 



By comparing this with equation (14) it will be seen tha t  the stresses along a strip such as aa 
are identical with those which would exist if the stiffened sheet were subjected to a uniform 
loading of an amount appropriate to the  actual loading at aa.  

3.3.2. Uniform applied bending with shear.--The system of applied loading is represented in 
Fig. 4 below. 

t / /  / / / / /  5 J / / / / / / / / 2  °1 V / / / / / / / / / / / 2  
[ / / / / / / / / 7 2  
FIG. 4. Rectangular strip acting as a cantilever. 

The strip is acting as a cantilever and the precise distribution of forces acting at the end is not 
known. Their resultant is a purely vertical load Q. 

The appropriate stress function is 

{3b~xy - xS+  (~ /4(¢-  2b=S)} . . . . .  (19) 
-- 4bStK 

If the applied load distribution at the end is not the same as that  given by ¢ the stress distri- 
bution in the stiffened sheet a small distance from the end will rapidly approach that  given by ~. 

3.3.3. Linear tension build-up due to shear.--The system of applied loading is represented in 
Fig. 5 below. The condition at the end, x = 2a, is that  of uniform applied direct loading consistent 
with overall equilibrium. A uniform applied shear of tq per unit length is applied to the edges 
y = ± b .  

. q t  

I//0', ' /  / / / / /  - 

FIG. 5. Rectangular stlip under tension and shear loads. 

The compatibility condition and all the boundary conditions, except tha t  of a free edge along 
x = 0 are satisfied by 

, : ¢ = ~ x y = / 2 b K .  . .  . . . . . . . . . .  (20) 

The stresses in the sheet a short distance from x = 0 will rapidly approach those given by the 
stress function. 

9 



4. A~plication to a Recta~¢gular B o x . - - W e  shall now investigate the distortions of, and the 
stresses in, a 4-boom cylindrical box of singly symmetrical rectangular section subjected to 
bending and torsion moments. The results of this investigation will form the basis for the 
' stressing'  of a swept airplane wing in regions away from structural and loading discontinuities. 
(The word ' stressing' here includes the determination of stiffnesses.) 

4.1. Direction of Zero-curvature A x i s . - - T h e  type of structure considered and the directions of 
the applied moments are represented in Fig. 6 below. We search for an axis (called here the axis 
of zero curvature) about which applied moments will produce pure twisting about Ox. 

i I 

[ .I 
FIG. 6 a. Cross-section of the box. 

f 

FIG. 6 b. The rectangular box under general loading. 

For there to be no curvature the boom stress must be zero and therefore the applied loading on 
the top and bottom panels must be as in Appendix II, 
i.e., 

f = (2ale)q . . . . . . . . . . .  (21) 

If we regard the signs for f and q to be positive for the top and bottom panel when acting in the 
sense of Fig. 6, we can express M~ and My (the components of the moment M=c) in terms o f f  and q, 

and 

My = 4bhtf .] 

I Ms = -- 8bhtq 
(22) 

Combining equations (21) and (22) we find that  the condition for zero curvature is that  the 
moment  is applied about an axis which makes an angle 

Qc = -- tan -1 ( O / e )  . . . . . . . . . .  (23) 

with Ox. It will be noticed that the front and rear spars take no bending load so that  this part 
of the analysis can be applied to a structure with asymmetric or varying booms. 

10 



Y '.7 y 

o ~-~ o 

FIG. 7. 

ZERO-CU RVATURE 
AXIS 

Direc t ion  of zero-curva ture  axis. 

Referring to Fig. 17 where ~zc has been p lo t ted  for various values of Y ,  ~ and ~ (it is, of course, 
independent  of X) it will be noticed tha t  ~ is positive over the  range 0 deg < ~1 < tan-1 ~/v and 
negat ive over the  range tan  -~ ~/v < ~ < 90 deg. 

The particular case when Y is infinite reduces to the form 

s (  , , c  - s 

t an  ~ = c(1 + s ~ - -  ~c ~) 

which is in agreement  with the  result found in Ref. 3 (equation 137a). 

For comparison this is shown on Fig. 17b where a marked  difference between Y = m and 
Y = 1, say, can be noticed. 

4.1.1. Torsional st i f fness.--I f  a m o m e n t  M,c is applied about  the  zero-curvature axis the  twist  
per uni t  length 0 will be such tha t  

M~ --  32 b%~t W-~ + ~ + eK " 
(24) 

4.2. Direction of Zero-twist A x i s . - - T h e  type  of s tructure considered and the  directions of the 
applied moments  are as shown in Fig. 6. We search for an axis (called here the  axis of zero twist) 
about  which applied moments  will produce pure flexure about  Oy. 

For there to be no twisting about  the  axis Ox the  shear stresses in the  webs ,and in the  panels 
mus t  be such as to produce only warping of a section, from which it can be deduced tha t  

q_ J ,) ?- -H- -  

= Z1, say . 

(25) 

With  such an applied loading the  stress in the  booms will be 

ax = f (e  --  2OZ1)/K 

= Zf f ,  say, 

11 
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a nd  the  condi t ion  for zero twis t  is such t h a t  t he  m o m e n t  is appl ied  abou t  an axis t h a t  makes  w i th  
Oy an angle 

Y 

/ 2Z1 
~ '  - -  --  tan-~ ~,1 + A Z J  

A = ( 1 ~  + I~)/4bth ~ 

(27) 
whe re  

ZERO-TWIST  AXIS 

O ~ O ~ x  

FIG. 8. Direction of zero-twist axis. 

~,~ has been p l o t t e d  in Fig.  18 for a va r i e ty  of s t ruc tu ra l  pa ramete r s .  

I t  will be no t iced  t h a t  ~,~ is posi t ive  over  the  range 0 deg < ~ < t a n  -1 ~/v and  nega t ive  over  t he  
range t a n  -~ V% < ~ < 90 deg, f rom which  it follows t h a t  t he  d i rec t ion  of .~, and  ~,, are a t  r ight-  
angles only  when  v = 0 deg, t a n  -~ ~/v or 90 deg in which  cases ~ and  ~,~ are b o t h  zero.* 

4.2.1. Flexural Stiffness.--If a m o m e n t  M,~ is appl ied  abou t  the  zero-twist  axis t he  radius  of 
c u r v a t u r e  R of t he  box  will be such  t h a t  

RM.t (1 @ AZ~)(I1 --~-,I~) 
g -- ~ AZ~ cos ~A . . . . . . . . . . . . . .  (28) 

4.3. Relationship Between the Torsional and Flexural Stiffnesses.--Using the  resul ts  of equa t ions  
(24) and  (28) it  m a y  be shown  t h a t  

tors ional  stiffness _ sin ~ ,  (29) 
f lexnral  stiffness --  sin ~ . . . . . . . .  b ZC 

This  f u n d a m e n t a l  re la t ionship  m a y  also be deduced  f rom Maxwell 's  Reciprocal  Theorem.  

4.4. Resolution of General Loading.--To de t e rmine  the  d is tor t ion  of a box  u n d e r  a general  
s y s t e m  of m o m e n t s  it  will be necessary  first to resolve these  m o m e n t s  in t e rms  of M ,  and  M,~. 

If  a rb i t r a ry  m o m e n t s  M,  and  My are appl ied  to  the  box  t h e y  m a y  be resolved as follows 

a nd  
M~, cos (~, + ;~c) = My cos ;~c --  M~ sin ~ 

M~ cos ($~ + ~c) = M ,  cos ~ --  My sin $~t 
(3o) 

* This result is a particular case of Maxwell's Reciprocal Theorem. 
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$~ and 8,~ are both comparatively small and in an aircraft wing My is greater than 21/f, so as an 
approximation we might  take 

2PI~ ~ M y  

and M~ ~ M, -- My sin 8,~ . 

An example of a swept rectangular box is discussed in Appendix I. 

5. Co~clusio~s.---A method for determining the stresses in a sheet reinforced by stringers and 
skew ribs has been developed. The assumption has been made tha t  the discrete stringers and 
ribs are represented by equivalent elastic sheets. This simplification has made possible the intro- 
duction of a stress-functionwhich, in turn, has greatly facilitated the solution of ~a number of 
practical problems. 

T h e  theory hasbeen  applied to a swept wing, in which the ribs are parallel to the direction of 
flight, and the following conclusions are drawn: 

(a) the flexural behaviour of a wing with less than about 40 deg sweepback may be adequately 
predicted by neglecting the effect of rib skewness. For very high degrees of sweepback, 
or particularly stiff ribs, the exact behaviour may be obtained with little extra work, 

(b) if the sweepback angle is tan -1 ~/.v (about 30 deg for most materials) the contribution of 
the ribs to the flexural stiffness of the wing is nil, 

(c) due to sweepback, increases of the order of 5 to 20 per cent may be expected in the 
torsional stiffness of a wing, 

(d) there is an appreciable twisting component due to ordinary bending loads (unless the 
sweepback angle is around tan -1 ~/v) which in a high aspect ratio wing may even be 
greater than the twisting component due to ordinary torsion loads, 

(e) there are two axes, called here the axes of zero curvature and zero twist, about which 
applied moments produce pure twist or pure flexure of the wing. Simple formulae are 
given for determining these axes, which are not in general at right-angles. 

Ox, Oy 

OY 

E 

G 

t 

X 

NOTATION 

Cartesian co-ordinate such that  0x is parallel to one set of stiffening members 
(X-members or stringers) and @ is cut at an angle ~ by 0Y  

Direction of the other set of stiffening members (Y-members or ribs) 

Angle between a line parallel to the Y,members and a line normal to the 
X-members 

Sweepback angle of a wing in which the Y-members (or ribs) are parallel to 
the direction of flight 

Young's modulus for the sheet, X- and Y-members 

Shear modulus for the sheet 

Poisson's ratio for the sheet 

Thickness of sheet 

Relative thickness of equivalent sheet of X-members 

section area of a stringer (or X-member) 
¢ × pitch of stringers 
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Y 

V 

O's~ O'y 

Txy 

0"X~ O'y 

as, ~y, ¥,,y 

f 
q 
¢ 

A , B , C , D , E ,  
F , G , H , J  

K 

c~,fl, 7',~,e 
0 

2b 
2a 

The following 
2h 

li, /2 
W. W~ 

Z1, Z2 
A 

M., 
R 
0 
k 

~L, # ,  

0d, fl', y', 

Relative thickness of equivalent sheet of Y-members 

effective section area of a rib (or Y-member) 
t × pitch of ribs 

Displacements of a point in tile sheet parallel to Ox and 0y 

Displacement of a point in the sheet parallel to O Y 

Direct stresses in the sheet with reference axes Ox, Oy 

Shear stress in sheet with reference axes Ox, Oy 

Direct stress in X- and Y-members respectively 

Mean applied stresses (with reference axes Ox, 0y) such that  loads in stiffened 
sheet/unit length = tas, ray, tT.~y 

Particular value for as 

Particular value for Ysy 

Stress function 
Stress function coefficients for the sheet stresses 

Stress function coefficient for the mean applied stresses 

Coefficients in the stress function equation 

Applied load 
Breadth of strip bounded by y = ± b 
Length oi strip 

additional symbols are used in the discussion on swept boxes 

Height of box of rectangular section 
Moments of inertia of front and rear spars 
Thicknesses of front and rear spar webs (or equivalent thicknesses capable of 

resisting shear) + t 
Moment applied to box about axis Ox 
Moment applied to box about axis 0y 

Angle which zero-twist axis makes with 0y 
Angle which zero-curvature axis makes with Ox 
Defined ill equations (25), (26) 

Defined in equation (27) 
Moments applied about zero-twist and zero-curvature axes 

Radius of curvature 

Twist per unit length of structure 
Introduced in Appendix I 
Introduced in Appendix I I I  
Introduced in Appendix IV 

The following abbreviations are used throughout 

s = sin ~/ 
C ~ COS 

14 
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8-), 

(b)  MEAN APPLIED STRESSES ACTING ON AN ELEMENT OF STIFFENED SHEET 

FIG, 9a and 9b. Figures sllowing general notation. 
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No. Author 

1 S. Timoshenko 

2 A . E . H .  Love 

3 W . K .  Wittrick 

4 M. Fine . .  

R E F E R E N C E S  

Title, etc. 

Theory oJ Elasticity. Chapters 1 and 2. Mcgraw-Hill, 1934. 

Mathematical Theory of Elasticity. Dover Publications, 1944. 

Preliminary Analysis of a Highly Swept Cylindrical Tube under Torsion and 
Bending. A.C.A. 39. May, 1948. 

Comparison of Plain and Stringer Reinforced Sheet from the Sheal Lag Stand- 
point. R. & M. 2648. October, 1941. 

A P P E N D I X  I 

Examlble of Swept Box 

We shall examine the  behaviour  of the  swept  box of doubly  symmetr ica l  rec tangular  section 
shown in Fig. 19 due to a uni formly  dis t r ibuted upload whose centre  of pressure lies 35 per cent  
be tween  the front and rear spars. The t r iangular  port ion bounded  by  section bb and the  fuselage 
side (assuming t ha t  the box represents the  load-carrying s t ruc ture  of a swept  wing ) is, let us 
suppose, stiff enough to be regarded as rigid. (The purpose of this example is to demons t ra te  
the  impor tance  and use of the  axes of zero curva tu re  and zero twist  ; secondary problems such as 
shear  lag will not  be considered.) 

The main  s t ruc tura l  parameters  m a y  now be de te rmined  and we find: 

X --  10 x 0 - 1 3 _  u. 3 
4 .4  

h Y = (0.12 + ~ x 0"04) + (0" 1 x rib pitch) 

: 0 .25 

since h = 6 in. and  rib pi tch  --  8 in., 

and  
= 50 deg 

= 1, s a y .  

W1 = W 2 - -  0"2__ 2, 
0"1 

A _ _  

l i  + I2  __ 1.6 x h a +  4 x 0-2 x h a 
4bth 2 8-8 × h ~ 

= 0 . 2 7 .  

16 



F r o m  equa t ions  (7), (10) and  (13) we now  have  

K - -  1.607 F - - - - - - 0 . 0 4 9 9  

A ---- 0. 0473 G --  - -  0. 0471 

B ---- 0. 1901 H ---- - -  1 .410 

C =  1 .179 J - - - 0 . 0 5 9 5  

D = I .  568 ~ ---- 0-0744 

E ---- 0 .1653  e = I .  192 

~0 and  ~ m a y  be found  f rom equa t ions  (23) and  (27): 

~=---- - -  t a n  -~ (~/e) 

---- - -  3 .57  deg 

Z1 : O. 0366 

Z~ = O. 738 

whence  
/ 2Z1 

~t  = --  t a n - 1 .  [1 + A Z J  

---- - -  3- 50 d e g .  

The  tors ional  a nd  f lexural  st iffnesses can be ob ta ined  f rom Equations (24) and  (28) which  g ive:  

GO 1 f h b(2b]- sH)} 
M= -- 16b~h2t I W + eK 

C6S $= 

: 7"94 × 10-% (inch rad ian  units)  

which  compares  wi th  8 . 9 4  × 10 -~ if t he  ribs are ignored.  

RM~t _ 4bth~(1 + AZ~) 
E Z~ cos ~ 

---- 516 in. 4 

which  compares  wi th  497 in. 4 if t he  ribs are ignored.  

I t  is w o r t h  no t ing  t h a t  while  the  to rs iona l  stiffness increases by  13 per  cent  due  to rib skewness  
t he  f lexural  stiffness increases b y  on ly  4 per  cent.  

The  box  is d o u b l y  s y m m e t r i c a l  and  so t he  shear  cen t re  will be a t  t he  geomet r ica l  cen t re  of t h e  
box. 

The applied moments M~ and My are therefore of the form 

= 0.6(x/b) 

= (x/b) 2 

where  k ---- b 3 (pressure/uni t  area). 

M,~ an d  M,c are f ound  f rom equa t ion  (30) 

kM~, = 1.O06(x/b) ~ + O.0377(x/b) 

kM= = O.0614(x/b) ~ + 0.604(x/b). 

17 
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I t  will be noticed tha t  at the root section of the box (x/b = 9.55) M, and My contribute about 
the same amount to M=. Thus although the torsional stiffness has increased slightly due to rib 
skewness the torsional moment M= has increased considerably more so. Conversely, if the 
moment Ms were of the other sign (nose-down instead of nose-up) the resultant twisting of the 
box might be very small. 

The deformation of the box due to M, and M / h a s  been plotted in Fig. 20. The scale has been 
chosen so that  with the ribs ignored the value of the vertical deflection and the rotation at the 
tip would be 100 units. The deformation predicted by stiff-rib theory (Y = oo) is also shown. 

A P P E N D I X  II  

Applied Loading to Produce Elementary Types of Distortion 

(a) Extension without shear deformat ion. - -By combining the results of sections 3.1 and 3.2 it 
can be shown tha t  if z,y is zero 

= U/H)f 

in which case the stringer stress (which determines the extension ) is 

• { C H - - J B - -  v ( J E - -  F H ) } f / K H  . . . . . . . . .  

(b) Shear deformation without exteusion.--In this case the applied loading is determined by 

f _  ( B -  
( c -  ,,F) 

= 

(31) 

and the shear stress in the sheet, which determines the distortion of the stiffened sheet is given by 

~,y/q = ( 2 ~ / -  eH) /eK  . . . . . . . . . . . . . . .  (32) 

I t  will be noticed that  we have not considered the effect of an applied tensile loading f ' ,  say, 
in the 0y  direction , nor have we considered the extension in the 0y  direction. These have been 
ignored because in an aircraft wing--par t  of one surface of which we have represented by such 
rectangular s t r ips-- the presence of forces ay is usually practically impossible. 

However, if we include the possibility of a uniform applied loading oy = f '  the condition of zero 
shear distortion and zero extension in the 0y direction is 

f : f '  : q = { (HD --  GE) + v(BG --  AH)}  : 

{(JE -- H F )  + v ( H C -  BJ)} : { ( JD --  FG) + ,,(GC --  A J ) } .  

Similarly for shear distortion alone we should have 

f : f '  : q ---- ( A E - -  BD)  : ( B F  --  CE) : ( A F  --  CD) . 

18 



A P P E N D I X  I I I  

The General Solution of the Stress-function Equation 

The equat ion to be solved is. 

>4 >¢ >¢ >¢ >¢ 
oc-gT~ + 4fl ax ~ ay + 2y Dx ~ oy ~ + 40 ax oy ~ + e oy---~ = o . . .  (12 bis) 

We search for a solution in the  form 

¢ = F(x + zy), 

where F is any function and ~ is a constant.  This satisfies equa t ion  (12) provided 

q- 4 / ~  + 2~,~ ~ 4-  4fi~ a + e~ ~ = 0 . . . . . . .  (33) 

Equa t ion  (33) will have four roots ~,, G, G, &. Thus we can take  as the  complete solution of 
the  stress function equat ion 

¢ = F~(x + z~y) + G(x + z~y) + G(x + ~y) + G(x + Z,y) 

where the F 's  are four arbi trary functions. 

In  this form the  solution ma y  not  be part icularly manageable,  but  i t  may  be t ransformed as 
follows : -  

The four values of Z are all complex and can therefore be wri t ten  as ,u, 4- iO, and ~= 4- i02 
and F1 + F2 may  be wri t ten  as 

or as 

or as 

or a s  

Fl(x + IqY + io,y) + F=(x + tqY --  io,y) 

H, {e "(* + ~'~) sin uO~y} + H2 {e '~(* + ~*) cos no,y} 

(A, sin holy + B,, cos n01y)e ''(~ + , ,Y) . . . . . .  (34) 

where G and H are arbi t rary functions, n is a parameter  and A,,  B,, are constants.  A similar 
expression exists for F3 + F4, namely  

(C,,, sin me=y + D,, cos mo=y)e ''('~+',') . . . . . . .  (35) 

I t  may  be convenient  to have the  t r igonometr ic  terms in equations (34) and (35) with the same 
period, i.e., we could write u0~ = m02 = n say. The complete solution could then  be wri t ten  in 
the  form 

¢ = ~ { (At, sin my + B; cos ~y) e r'l* +,,~)/~, 

+ (C; sin ~y + D ;  cos gy) e ~(~ +",')/-°2}. 

Example 

Suppose we have a s tructure in which 

X = I  y m  1 

v = } ~2 = 45 deg .  
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F r o m  e q u a t i o n  (13) we  f ind t h a t  

= 2 - 6 6  = O. 264 

= 0 . 1 1 7  s = 1 .43  

a n d  the  roo t s  of 

are  

a n d  

so t h a t  

r = 2 . 4 4  

2 - 6 6  + 1.056Z + 4 .88~ ~ + 0 .468~  3 + 1.4344 = 0 

- -  O. 127 J= iO-820 

- -  0 - 0 3 6 5  ~ i l . 6 5  

t~l = - -  0- 127 Q1 = 0" 820 

#~ = - -  0"0365  ~ = 1 " 6 5 .  

A P P E N D I X  I V  

Boundary Conditions Parallel to the Ribs Period and Space Oblique Co-ordinates 

W h e n  b o u n d a r y  cond i t ions  para l le l  to  t he  r ibs  are  to  be  sat isf ied it  m a y  s eem a d v a n t a g e o u s  to  
e m p l o y  ob l ique  co-ord ina tes .  This  poss ib i l i t y  is cons ide red  here  in detai l .  T he  o b l i q u e  axes  
OX, OY a n d  the  axis  OZ (normal  to  OY) are  s h o w n  in Fig.  10 a. OZ has  b e e n  i n t r o d u c e d  m e r e l y  
for  conven i ence  in des igna t ing  t he  s t resses  ac t ing  on t he  sides of t he  e l emen ta l  pa r a l l e log ram 
s h o w n  in Fig.  10 b. 

Y 

/ 
/ 

/ 
/ 

! 

7 (x .,I) 

~ - x X  

Fla. 10. 

/// 

Notation with oblique axes. 
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With  the same stress function as t ha t  in t roduced  in equat ion  (6), bu t  expressed in oblique 
co-ordinates,  we have  

a2¢ 
G = K OX ~ 

~z = K ay~ 

{ +'+ G} 7 % = - - K  s e c ~ 3 x ~ - - t a n v  

f~z = --  K sec ~ OX 3-----Y --  t an  ~ 3YU 

(37) 

The compat ib i l i ty  

where 

3'¢ 
+ 4fl' OX a OY + 27' 

equat ion  (see equat ion  (12)) has now a symmetr ica l  form in X and  Y:  
a+¢ a"¢ a~¢ 

aX ~ a Y~ -t- 4a '  aX a Y~ + e' a Y~ --  0 . . . .  

~' = 1 + c~X(1 + ,)(~ + s ~ - ~c ~) 

~ ' -  s { l +  c~X(1 + ,)} 

r '  = 1 + 2s" + c~(1 + v){X + Y + c~XY(1 - v~)} 

~' = - s {1 + c~y(1 + ~)} 

~' = 1 + c~y(1  + ~)(1 + s ~ - ~c ~) 

The stresses in the  

(38) 

.. (39) 

sheet m a y  be found from equat ion  (9) by  using the  operat ional  identit ies" 

i?x ~ - OX ~ 

ax a ~  - sec ~ ~X a Y --  t an  rl 3X 2 
U 3 2 

3y~ - s e c  2 rl a y ~  - -  --  2 sec ~ t an  ~ 3X a Y ~ tan2 ~? aX ~ 

. . . .  (40) 

The b o u n d a r y  strains m a y  be de te rmined  from ~, and % which reduce s imply to 

ox = sec ~ ~ ( ( s  ~ - ~c ~) a ¢  a ¢  + ,  a ¢ ~  + 2a'  a X  a Y a YU 
. . . . . .  (41) 

sec ~ ,7 f~ '  a ¢  a ¢  a ¢  (Yy g ~  + 2~' aX a---~ + (s~ - 'c~) aY ~ J 

I t  will be not iced from a considerat ion of Appendix  I I I  t h a t  there  is little or no th ing  to be 
gained by  employing ob!ique axes. 

This is due, mathemat ica l ly ,  to the  non-or thogonal i ty  of functions of the type  given in equat ion  
(36) caused by  the  presence of the  ff's. (There will, of course, be ff's in the  solution of equat ion  (38).) 

T h e  following relations are given here for completeness : 

+ 2sc ax a---} + c" ayV 

-7~ = - K (sc a¢  a¢  a¢'~ + (  c ~ - s ~ ) a x 3 y  s c a g / .  
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