
. . . . . . . . . . .  '" . . . .  " .... '~" "~1:~?: ~' 'i ':~'u¢; ' ?~, 

, '  " 7 ,- 

i s~ t  ;." 

2%. & ~go gOo 3749 

(13,1e~, 14og1'7) 
Ao~.~,. T e e h n i c ~ l  l~elm,~ 

MtbTiSTRY OF SUPPLY ...... " ~ '  

A E R O N A U T I C A L  R E S E A R C H  C O U N C I L  

R E P O R T S  A N D  M E M O R A N D A  

Aerodynamic ForCes on Biconvex Aerofoils Oscillating 
in a Supersonic Airstream 

By 
W. P. JON~S, M.A. and SYLVIA Wo SKAN~ 

of the Aerodynamics Division, N.PoLo 

EffEct o£ Thickness on the Aerodynamic Forces on 
Biconvex Aero£oils Oscillating in a Supersonic 

Airstream~ and Calculation of" Forces 
for Aero£oiI with FIap 

By 
SYLVIA W. SI~AN~ 

of the Aerodynamics DivisiOn~ NoP,Lo 

Crow~ Copyright Reserved 

LONDON: HER MAJESTY'S STATIONERY OFFICE 

I953 
N I N E  S K I L L I N G S  N ~ ' r  

f 



Aerodynamic Forces 
a Supersonic Airstream 

By 
W. P. JoN~.S, M.A. and SYLVIA W. S~AN, 

of the Aerodynamics Division, N.P .L.  

on Biconvex Aerofoils Oscillating 

Reports and Memoranda No. 2 74-9 

 qu ust, 19 5 1 

! " " ~ ~ ; ~ , , " . ~ , - ' , : : r  i* , -  ' . m  ' °  " 7 "~':>'~ 

:! 

i i 

Summa~'y.--A method for the calculation of the aerodynamic forces on an oscillating aerofoil which allows for the 
effect of thickness is developed. The steady flow regime for zero or mean incidence is first determhaed for isentropic, 
irrotational and inviscid flow conditions. A small disturbance is then assumed and the non-linear equation defining 
the subsequent motion is reduced to a linear equation for the velocity potential of the disturbance. This is expressed 
in difference form and solved numerically by a step-by-step process. The results obtained show good agreement with 
the known solutions for a thick aerofoil at incidence in steady flow, and for the case of an oscillating flat plate. 
Consequently, it is believed that  the results derived for an oscillating biconvex aerofoil are reasonably accurate. 

Aerodynamic lift and pitching moment derivatives for a 5 per cent thick, symmetrical, circular-arc aerofoil at Mach 
numbers M = 1-4, 1.5 and 2.0 are given for a range of frequencies and compared with values obtained on the basis 
of the flat plate theory. The effect of thickness appears to be important at the lower values of M, and the results 
indicate that  the flat plate theory is not sufficiently accurate. 

1. I~troductio~¢.--Measurements of the aerodynamic forces on an oscillating aerofoiP indicate 
that  the linearised flat plate theory for the calculation of such forces is inadequate. This is not 
surprising as it is known that  even in steady motion the simple Ackeret theory, which neglects 
the effect of thickness, is unreliable when chordwise lift distributions are required. Busemann's 
second-order theory ~, however, gives better agreement with experiment, and the object of this 
paper is to develop a method which will give the same degree of accuracy for solutions of 
oscillatory problems. 

The method suggested is tried out for a biconvex aerofoil describing pitching and translational 
oscillations. A thickness/chord ratio of 0.05 is assumed, and derivatives are calculated for a 
range of Mach numbers and frequencies for comparison with results based on the flat plate theory. 
As shown in Figs. 5 and 6, the chordwise lift distributions differ considerably, and it appears 
that  in the calculation of flutter derivatives allowance should be made for effects due to the shape 
of the aerofoil. 

Wind tunnel tests to check the accuracy of the present theory are to be made shortly at the 
National Physical Laboratory. The experimental information obtained should provide much 
useful data for possible further theoretical development. However, if the effects due to the 
boundary layer and the leading-edge shock wave are negligible, the present theory should give 
agreement with experiment. 

Attempts to investigate the effect of viscosity could be made by assuming the aerofoil section 
to be thickened so as to include the boundary layer. This approach presupposes that  the 
boundary-layer thickness is independent of time, and any results obtained on this basis would 
presumably be valid only for slow oscillations of infinitesimal amplitude. 

* Published with the permission of the Director, National Physical Laboratory.  
A.R.C. Report  No. 13,162. May, 1950. 
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If the effect of the shock wave at the nose is to be included the flow can no longer be regarded 
as irrotational and isentropic. In principle, however, if the local values of q,, 0~, #, could be 
determined everywhere, and if the correct boundary conditions could be established, tile numerical 
technique used in this report could be applied. 

For the particular aerofoil considered the assumption that  the flow.is isentropic and irrotational 
should be approximately valid in view of the low value of the thickness/chord ratio, namely 
5 per cent, which corresponds to a wedge angle of about 12 deg. Experiment has shown that  
for aerofoils of this order of thickness Busemann s second-order theory gives good accuracy in 
the steady case ~. In view of this evidence it is considered tha t  the results given by the present 
method for the unsteady case are reasonably accurate. They should certainly be an improve- 
ment on those given by flat plate theory. 

Further calculations for biconvex circular-arc, symmetrical aerofoils of various thickness/ 
chord ratios are proposed for suitable ranges of Mach number and frequency parameter to provide 
complete sets of  derivative coefficients corresponding to translational and pitching oscillations 
of the aerofoils. The method can also be used to determine control surface derivatives when 
the angular displacements are small. 

2. Equations of Mot ion . - -For  isentrol~ic, irrotational and inviscid flow in two-dimensions, the 
equations of motion are 

dt --  "g a x '  dt --  ~ ay . . . . . . . . . . . . .  (1) 

d 
where dt = at 
respectively. 
the usual r e l a t i o n  

where k and y are constants. 

~- ~ ~ + ~ ~ and ~, g denote the velocity components parallel to the x and y axes 

Since the flow is assumed to be isentropic, the pressure p and the density ~ satisfy 

. . . . . . . . . . . . . . . . . .  (2) 

The equation of continuity yields 

dP a2 (a~t a~) 
dt + g - x +  = 0 ,  . . . . . . . .  

where P - -~- and a ( -  yP/P) denotes the local velocity of sound. 
P0 P 

following relation is also valid, namely, 

~y -- ~x . . . . .  

From the above equations it follows tha t  

(a . _ ~ )  ~ -- 

and that  

2 5 ~ -  -l- ( ~  - -  ~-2) 3Y _ 3t ~ + Ot ' 

a 

--  1 + ~ + 2 - =  const. ,  

. . . . . .  (3) 

For irrotational flow, the 

. . . . . .  ( 4 )  

. . . . . .  ( s )  

. . . . . .  ( 6 )  



where ~ - #5 + ~2 and ~ is the velocity potential. 

(~  - ~)  ~ + r ~ 
__ 1 % 

- uv ',77 + r g ~ / +  - -  

where #, ~ now represent r 0-~ and ~ respectively. 

In polar co-ordinates r, ~, equation (5) yields 

r - -  at  2 + St . .  (7)  

3. Linearisation.--It can be assumed tha t  the flow around an infinitely thin fiat plate at zero 
incidence is constant everywhere. If this flow is disturbed slightly the subsequent components 
of the velocity and the local speed of sound may be expressed as 

# = U ~ + u ,  g = v ,  ~ = a , + a ,  

where Us is the constant velocity of the undisturbed stream*. Substitution in (5) and omission 
of second-order terms then yields the standard equation 

(a, ~ - U } )  D + ass Oy ~ - ~t ~ + 2Us  OxOt '  " "  (s) 

where ~ is the velocity potential of the disturbance. The solution of this equation is readily 
derived and will not be discussed in detail in this report (R. & M. 2140 ~ and 2655~). 

In the more general case of a thick aerofoil, linearisation leads to a more complicated equation 
than (8). For a biconvex circular-arc profile, which is the particular case considered in this note, 
the appropriate equation can be expressed most conveniently in terms of polar co-ordinates. 

Vs 
Lt t 

Xt 

> qo 

(~,o, po) 

O C  = c 

Us = % cos ( e + q J )  

Vs = % sin ( e + ¢ ' )  

BP = Memh l ine 

/z = sin-' 

X = cR sin 0 + 0.5c 

Y = cR cos ~ - 0 . 5 c  co~ 

T = C ~  

OS 

FIG. 1. 

* Ti le  suff ix s d e n o t e s  s t e a d y  f low a t  ze ro  i nc idence .  
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If the flow regime at zero incidence is specified by Us, V, as shown above with corresponding 
fields of pressure and density, then by writing ~ = U, + u, ~ = Vs + v, and ~ = as + a, and 
substituting.in (7), the following linear equation can be derived for the disturbed flow, namely, 

OU ~s a -  Us ~ D¢t V 2 Og 
(as2-- V'2) ~ + r O~ + r (as --  )'q'2 + Vs~) --  2UsVs s )  

2 r g ~  + v S )  q ? - - ( ~ - - l )  Us "~ UOr r a P )  

-- ~t~ + 2 U s - g { + 2 V s ~ { +  2~as=-~ 0t r 07 ~-t- V s ~  qs 2. 

. . . .  (9) 

In the above equation, 4 represents the velocity potential of the disturbance ; U,, Vs are the 
1 ~4 04 

known velocity components for steady flow at zero incidence; and u, v denote 
r D7 j '  Dr 

respectively. For thin aerofoils 0 is small, and for points in the neighbourhood of the aerofoil 
~' is also small (see Fig. 1). At the surface of the aerofoil 0 + 7 ~ = 0 and Vs is zero. It  may 
therefore be assumed that  

u~ = qs , v s  = qs (o + ~ )  . . . . . . . . . . . . . . . .  (lO) 

to a reasonable degree of accuracy. Since V, = 0 at the surface, and since it is small elsewhere, 
it is assumed further that terms involving Vs as a factor can be neglected. Equation (9) then 
reduces to 

v 

O V O 
- 1 ) q :  

D24 0~ v - 1 D4 ( ~ s )  2 0qs 
-- 0t ~ -¢- 2 q s T { + ~  a t \ a ~  ~ . . . . . . . . . . . .  (11) 

1 ~4 ~4 
Since u - r a ~ '  v - ~- ,  the above equation then leads directly to the following linear equation 

for 4, namely, 

2 ~ 2 4  a ,  2 - -  q,~ 0 ~ 4  a ,  ~ - -  qs ~ 0 4  
as 5)~ + r ~ 0 ~ + r Or -- - -  

( r - l )  (00 04 D0 0 4 )  

D~4 2qs 024 ~ - -  1 34 (q,)2 Dqs 
et ~ + r ~ ~ + ~ Dt , , ~  o ~ " 

(7 -}- 1) [-1 0qs ~ 04 
2 - L ; 2 0 ~ 0 ~  + - -  

. . . . . . . . . . . .  (12) 

When the motion is steady the right-hand side of (12) vanishes, and the solution of the resulting 
equation with the boundary conditions appropriate to the case of an aerofoil at incidence should 
agree with the known exact solution for isentropic conditions. Equation (12) also reduces to (8) 
when the thickness o± the aerofoil tends to zero. In general, however, the coefficients in (12) 
are variable and an analytical solution cannot readily be determined. The coefficients could be 
represented approximately as simple functions oi r and ~ and an at tempt at such a solution 
could be made~ but for the particular aerofoil considered in this report a numerical method of 
solution is developed. 
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The aerofoil is assumed to be describing simple harmonic oscillations of small amplitude with 
frequency p / 2 =  in the pitching and vertical translation degrees of freedom. For convenience in 
the subsequent analysis ~ is replaced by q~e% where # represents the amplitude of the velocity 
potential of the disturbance. Substitution in (12) and omission of the exponential factor then 
leads to an equation of the form 

-where R - r/c,  Z0 -pC/qo, and 

A o - a g / q l  ~ 

=_ ( a ? -  

-Bo -- - -  qo~/q~ ~ 

B~ ( 7 - - 1 ) ( q ° ) ( q ' ~  ~ ( q s )  

B~ - 2qoq,/qi  ~ . 

(14) 

The above coefficients are all determined by the flow past the aerofoi[ in its undisturbed position. 
When the aerofoil is oscillating about a mean incidence which is not zero, however, the coefficients 
are different according as to whether the flow above or below the aerofoil is considered. Hence, 
in general, the supersonic flow solutions would be determined by two forms ot (13) which would 
refer to each side of the aerofoil respectively. 

4. D e t e r m i n a t i o n  o / t h e  C o e f f i c i e n t s . - - - F o r  the case considered in this paper, the aerofoil is 
assumed to be symmetrical and to be oscillating about the zero incidence position. Hence the 
undisturbed flow about the aerofoil in its mean position is symmetrical and the coefficients 
Ao,  B0, etc., will be the same at corresponding points above and below the aerofoil. It  will be seen 
from (14) tha t  these coefficients will be determined over the region of flow- under consideration 
when the undisturbed velocity qs and its direction 0 are known everywhere. Let us suppose tha t  
the values of Ao, B0, etc., at P in Fig. 1 are required. At points along the characteristic line BP 
the flow is constant in magnitude and direction and is therefore determined when the flow at B 
on the boundary is known. The direction of flow is parallel to the tangent to the aerofoil surface 
a t  B, and qs is a function of 0 ( - = / T B N )  and the local Mach angle ~, ( - /  PBT) as defined by 
the known relationS. 

1 dq 
q dO - -  - -  tan  ~, . . . . . . . . . . . . . . . . .  (15) 

When w is small, the value of ~ at B is given in terms of the deflection 0 and the Mach angle 
/z0 of the undisturbed flow by 

0 = f (~ )  --f(,.o) . . . . . . . . . . . . . . . . .  (16) 

(7 + 1Y'tan_l/(r + } 
where f(#) - \ 7 - -  12 ( \ 7 - -  12 taI l~  - - ,u .  
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In addRion, for steady motion, 

~ ~ ~0 ~ ~ 
~ , - - 1 + 2 - - ~ , _ 1  -1--_ 

where ~ - ~ sin ~,. Hence, 

= 0 ' - - 1 +  2 sin ~ ~0~ ~/2 
qo 7' 1 + 2 sin~/z / ' 

= constant . . . . . . . . .  (17) 

. .  (18) 

which gives ~ when ,u has been derived from (16). Before the above equations can be used, 
however, the point B must be determined such tha t  BP is a characteristic line. Let Xo, Yo and 
X, Y be the co-ordinates of B and P respectively, where X and Y are known and where Y0 is a 
function of Xo which defines the shape of the aerofoil. Then it is evident from Fig.1 that  the 
X0 co-ordinate defining the position of B must satisfy the relation 

X - - X 0 =  ( Y - -  Yo) C O t ( ~ + 0 ) ,  . . . . . . . . . . . .  (19) 

where Yo, ~, and 0 are known functions of X0. From (19) the appropriate value of Xo for the 
point ]3 associated with a particular point P(X, Y) in the region of flow can be determined 
graphically or by an iterative method. For the biconvex circular-arc aerofoil considered, the 
tollowing approximations are valid to the required order of accuracy 

Yo = ~(Xo - x : ) ,  ] 
(20) . . . . . .  o . . . . . . .  

0 = w ( 1  - 2 X o ) .  

I t  was also found tha t  for high Mach numbers the following approximate formula could be used, 

cot # = c~ + fiXo . . . . . . . . . . . . . . .  (21) 

where c~, /~ are constants determined by the Mach number of the main flow upstream. 

The coefficients A0, A1 . . . .  Bo, B~ . . . .  of (14) vary from point to point in the field of 
flow, but the values appropriate to a particular point P are readily derived once the co-ordinate 
X0 of the associated point B on the boundary is determined. Since q,, 0 are constant for all points 
on BP it follows immediately tha t  along the characteristic line BP 

0qs 1 8q, 
8R cot (~ + 0 + ~ ) R  0 ~ '  

0o 1 8o 
~ R - -  -- cot (~ + 0 + ~) R 0~"  

(22) 

By the use of (14), (16), (18) and (22) the appropriate form of the differential equation (13) in 
the neighbourhood of any point B in the field of flow can be determined. 

5. Aero fo i l  at I n c i d e n c e . - - I t  is interesting to note tha t  (15) leads to a simple formula for the 
pressure distribution ~p on an aerofoil at a small incidence ~. in terms of the local values of p,, 
p s, q,, and tts along the surface of the aerofoil at zero incidence. Let ¢ represent the velocity 
potential of the small disturbance resulting from the change of incidence c~. Then, if O/Os, O/On 
refer to changes along and normal to the streamline through the point P in the field of flow, the 
velocity increments due to the disturbance will be 

dq = __qs + 8 s /  + \g-~/_1 - -  q~ - -  ~s . . . . . . . .  (23) 

and  q dO = 8¢/On . 
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Substitution in (15) yields 

as - -  3n 
tan ¢~, . . . . .  - . . . . . . . . .  (24) 

and since a¢l~n = - -  q,c~ on the surface of the aerofoil, it follows that  the pressure difference 
p --t5, due to incidence is given by 

a¢ 
15 - -  p ,  = p,q, as - -  p,q,~ t a n / z , .  ~ . . . . . . . . . . .  (25) 

For small values of c~, (25) corresponds and is equivaIent to Busemann's third-order formula for 
isentropic flow. To allow for the effect of the shock wave at the leading edge, the Busemann 
correction term (6) could be added to give 

where 
- -  \ q o /  ~ . . . . . . . .  

w - the semi-angle at the leading edge, 

(Y +I)M°~ ! 1 D - 4 8 ( M o ~ _  1)7/3 (5- -3y)Mo ~ - l - 4 ( y - 3 ) M o  ~-1-8 , ..  (27) 

and Mo is the Mach number of the main flow. 

6. Numer ica l  Method of  S o l u t i o n . - - T h e  method used to obtain the results given in this paper 
is based on the representation of (13) in difference form. The field of flow is divided by a system 
of lines drawn normal to the surface at equal intervals apart and by circular-arcs as shown 
below (Fig. 2). 

I/ ,/'C 

ck~". / 

cA, 

. f  US 

FIG. 2. 

The normals to the aerofoil surface OBC intersect the leading Mach line OL at L1, M1, N~, etc., 
and through these points circular-arcs are drawn-- the  circular-arcs all having a common centre 
O' (see Fig. 1). Each circular-arc is divided into equal segments but the circular-arcs do not 
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cut  the normals  at  equal  intervals.  For  convenience the  ne twork  is ex tended  below the  surface 
of the  aerofoil to enable the  b o u n d a r y  condit ions to be represented numerica l ly  as differences. 
I t  can easily be shown that ,  in difference form, 

l ~R -- h,, ~ h,, ~- h,, t i '  
. . . . . .  (28) 

1 3 4  4(2)  - 4(1)  
R a T  -- 2k,~ ' 

2 + - + 

a R  = - -  1%,'< ~, h /~,, + l m l  ] ' 
. . . .  (29) 

1 324 ¢(1) q- 4(2) --  2@(0) 
R ~ ~ T ~ --  k,~ , 

where  4(1), 4(2), 4(3), 4(4) denote  the  values of 4 at  the  corners oI the  typical  cell marked  in 
Fig. 2 and 4(0) represents the  value at  the  inside or ' c e n t r e '  point  O. The values of 7%, k,, 
correspond to the  cell under  considerat ion and va ry  over the field of flow. By  the use of (28) 
and (29), equat ion  (13) can then  be represented by  a sys tem of l inear equations* relat ing the  
values of the  4 ' s  over the whole field of flow. 

Along OL, ¢ = 0, and  it is assumed tha t  in the  ne ighbourhood of OL the  solution approximates  
closely to tha t  given by  the  flat plate  theory  for the  Mach number  M,  of the  deflected flow. 
On this basis the ae rodynamic  forces on a th in  oscillating wedge in an a i rs t ream Mo would corre- 
spond to the  forces given by  the  flat plate  theory  for the  Mach number  M1. This is cer ta inly  so 
in s teady motion,  for (25) is in effect Ackeret ' s  formula with  P0, q0, if0 for the  undis tu rbed  main  
flow replaced by  the  local values p,, q,, if, for the  wedge. 

L 

> Mo 0 ~ . . . . . . . .  ; ; ~ C  

FIG. 3. 
L 

For  a flat plate  0 D  oscillating in an airs t ream of Mach n u m b e r  M1, it can be shown tha t  

a a ¢ ( 9 )  
a-~ 4 (@ ---- --  t an  if, ay (30) 

3 4 ( o )  . . . . . .  

---- --  t an  if, .  exp (--  i t ,  seal/** &) . a y  

where ,ll = pc~q,, cosec ffl ---- M,,  and where  a4(0) /ay  represents the  b o u n d a r y  condit ion at  0.  
At  the  origin, 

34(0) 34(0) 
~ -  a R '  . . . . . . . . . . . . . . . .  (31)  

* The equations are used in complex form except when solutions for t 0 --> 0 are required. 
replaced by two real equations for M and N, where $ =- M -6 il0N. 
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and the following general relations are valid 

1 ~e((?) 
R Dku - -  

DO(Q) 

tan (u + w + ~) DO(Q) 
D R "  

~o(Q) cos (~ + w + ~)  
DR - Dy 

~o(O) Do(o) 
- -  D R  

cos/~ 

• exp (-- iZ~ sec ~ ~,~ Xo). 

. . . . . . . .  (32) 

By the use of (32) it is possible to estimate the derivatives of # at the points L1, M~, N~, etc., on 
the leading Mach line since DO(O)/~R is known. When the centre points of the cells are on 
the line OL, at N1 for instance, formulae (29) are replaced by 

D R  2 

2 Do(N~) 1 
--  l~O I #(M~) + h. g ~  j 

[ D®(N,)] 2 o(N,)  k, 
- -  k ~  - -  ~ g - ~  J ' 

. . . . . . . .  (33) 

R 2 D ~ 2  

where O#(NI)/DR, DO(N~)/D7 ~ are given by (32) in terms of the boundary condition at 0. 
Substitution of (33) in (13) leads to an equation for #(N,) in terms of #(M~) for the cell of centre 
N1. Similarly,~(M2) can be determined when O(L,) is known, and ~0(L,) when O(B,) is determined. 
In the present calculations # (B~) was assumed to have the value corresponding to that  given by 
flat plate theory for the mean flow conditions over 0B, and the values of 0 along B2N2 were then 
readily derived from the difference equations in the way already described. For the cell with 
centre at B~, the finite difference form ot (13) gives #(B~) in terms of O(B,) and #(U~), where 
O(B,) is assumed and 

DO(B~) (34) 
o(u~) = - 2h~ DR • . . . . . . . . . . . . . .  

Similarly, O(B4) is given in terms of #(L2), #(B~), O(B3) and #(U4), where 

DO(B~) 
o(U~) = o(L~) - 2h~ ~R . . . . . .  (3s) 

The value of OO/DR on the boundary is determined by the motion of the aerofoil. 

With the aid of the preceding formula, it is possible to derive values of @ along tile aerofoil 
surface and hence to deduce the pressure distribution. The various stages of the calculation are 
listed below for reference : - -  

(1) Choice of spacing for the network. 
(2) Determination of the X, Y and R, N co-ordinates of the corners of the cells. 
(3) Calculation of q,, 0 at each point of intersection of the normals and the circular-arcs. 
(4) Calculation of Ao, A1, A2, A3 and B0, B1, B~ for each point by the use of (14). 
(5) Estimation of #(B2) as suggested and the calculation of the first derivatives of O along 

OL by (30). 
(6) Determination of # (L2), # (Ms), etc., along the first line by use of the above results and a 

particular difference form of (13). 

(7) Calculation of # values over the network using the full form of the difference equations 
and the appropriate surface boundary conditions. 

(8) Determination of the pressure distribution. 

(9) Calculation of the aerodynamic derivative coefficients. 
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7. B o u n d a r y  C o n d i t i o ~ s . - - L e t  us suppose.the aerofoil is describing translational and pitching 
oscillations 

> .  

% 

Y 

I . ipt 
I _ # e  - - -~% 

FIG. 4. 

as shown in Fig. 4, where the point N distant hc from the leading edge denotes the position of 
the axis of oscillation. The velocity distribution q, corresponding to steady flow at zero incidence 
is known, and the condition for tangential  flow at the upper surface when the aerofoil is oscillating 
can be expressed as 

0~ 
c ~R - -  q~o: + i q o G ( X  - -  ; )  c~ + iqoGZ . . . . . . . . . .  (36) 

when terms of order c ~  ~, z ~  ~ are neglected. The amplitudes of oscillation are assumed to be 
small and, since the aerofoil in the case considered is only 5 per cent thick, (36) can be regarded 
as being correct to second order. To this order of accuracy, the shape of t h e  aerofoil section 
only affects the first term in (36). For convenience, iet the velocity potential # for the flow 
above the wing be represented in the form 

0 = - -  c[c~q~q~l + iqoaoC~q)~ + iqoZo(z -- ;cz)'/'3] . . . . . . . . .  (37) 
The symbols ~1, q4, ~3 respectively are the Velocity potentials corresponding to the boundary 
conditions 

0~I q~ 
. . . . . . . . . . . .  (38 )  OR - -  q l '  

~-~ ---- X . . . . . . . . . . . . .  (39) 

c~# 3 
= 1 . . . . . . . . . . . . .  ( 4 0 )  

where ql in (38) represents the speed of the deflected airstream at the leading edge when the 
aerofoil is fixed at zero incidence. When the solutions of (13) corresponding to (38), (39), (40) 
have been determined, the general solution corresponding to simple harmonic motion of the aerofoil 
is given by (37). 

For the case of an aerofoil at incidenc e in steady flow the right-hand side of equation (13) 
vanishes and the general solution of the reduced equation for boundary condition (38) above 
should agree with the known exact solution for isentropic conditions. 

8. A e r o d y n a m i c  D e r i v a t i v e s . - - T h e  pressure distribution over the aerofoil's surface can be 
derived from equation (6) as follows: Let p, ,  ps, qs represent the local pressure, density and 
velocity at the aerofoil's surface when at zero incidence. Then, if $ represents the potential of 
a small disturbance, it can be deduced from (6) that  the pressure change p - -  Ps at a particular 
point is given by 

• . . . . . . . . .  

where O$/Os defines the rate of change of ~b along the surface of the aerofo i l . .From (41) it follows 
tha t  the lift distribution 
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where the suffix u refers to the upper surface and l to the lower. Then, to second-order accuracy 
in the displacements and the thickness/chord ratio (R. & M. 26796), it can be shown tha t  the total  
lift L and pitching moment M about the reference point are given by  

L = c  ( A -  A,) a x  
0 

. . . . . .  (43) 

M = - -  c 0 ( A  - -  A , ) ( X  - -  h) d X .  

Since ¢ = #e~Pt and vl0 ----pC/qo, (42) can be expressed in the form 

l ( X )  2(p~)[i~0¢ + ( q ~ ) ~ 1 ,  (44) 
poqo c . . . . . . . . . .  

when s = cX  is substituted. By  the use of (37) and (44), equations (43) lead to expressions for 
the amplitudes L',  M '  of the lift and pitching moment of the form 

L '  1 ql 
- -  7tL3) 1 + . P°cq° ~-- - - 2 Y o ( ~ ) {  c~[~o.L ~ +i~o(L~ i~ozL3 }dx . (45) 

poC,qo ~ - 2 f o  po cz .L~Jr-iZo(L2--TtL~) +i~oL~z  ( X - - h )  d X ,  . .  . .  (46) 

where La ---- i2o q~ + qj • oq~ qo -~-~-, etc. From (45) and (46), the values of the derivatives can be 

determined. In the notation of R. & M. 2140 ~ and 26796 

L '  
P°cq° ~ --  (l~ + i,~ol~)z + (l~ + i~o l~)c~ . . . . . . . . . .  (47) 

M '  
poC~qo ~ - -  (m~ + i~o m~)z + (m~ + i~o m~)c~ . . . . . . . .  (48) 

so tha t  when the complex coefficients of z and ~ in (45) and (46) have been calculated the values 
of the derivative coefficients l,, l~, m~, m~, m~, m~, lo, I~ can readily be derived. 

9. Numerical Ap~l icat ions . - -The method of solution suggested was used to calculate the pressure 
distribution and tt{e lift and pitching-moment derivatives for a biconvex, symmetrical, circular-arc 
aerofoil of 5 per cent thickness/chord ratio. In order to test the reliability of the method, 
network solutions were first obtained for the following c a s e s -  

(a) an oscillating flat plate*, 

(b) an aerofoil at incidence in steady flow, 

and they are compared with the known exact solutions in Figs. 5 and 6. I t  was found that  the 
network obtained by dividing the surface of the aerofoil into ten equal segments was sufficiently 
fine. The results show good agreement with the exact solutions for (a) and (b), and in view of this 
it is believed that  the solutions obtained for the oscillating thick aerofoil are reasonably accurate. 
As the speed decreases, however, the leading Mach line OL increases in slope and the network 
becomes rather extended in the direction normal to the surface. For the lower values of M0 a finer 
network might have to be used. 

In the determination of the pressure distribution from the cMculated values of #, it was found 
advisable to represent c~ as a quartic in X of the form 

= ~ Y +  ~ X  2 + ~ X  3 + ~ X  ~ . . . . . . .  (49) 

where c¢ [ - (a~/aX)x=o] was chosen to give the correct value at the leading edge. The best values 
of fi, y, a were then determined by the least-squares method. In all cases it was found that  the 

* In  both cases the values of ~¢/Sx and ~¢l~y along OL and of eB were assumed as suggested in  section 6. 
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values given by (49) agreed well with those derived from the network. Since slight irregularities 
in q~ lead to marked irregularities in a#/aX when differences are taken, the values of a¢)/OX were 
deduced from (49) rather than by differencing. 

For the particular aerofoil considered the theory breaks down at ~ about M - 1.3 as the flow 
at the leading edge is then subsonic. However, it is thought tha t  the values for the aerodynamic 
derivatives given in this report for Mo = 1.4, 1.5 and 2.0 are reliable within the limitations of 
inviscid, isentropic, irrotational flow theory. Values Of - -m,  and - -ma  are plotted in Figs. 
8, 9 and 10 for various values of ~0, and it will be noted that  the values of the damping coefficient 
-- m~ are larger at the lower Mach numbers, but  slightly lower at the highest Mach number, than 
those given by  the flat plate theory. The variation in -- m~ with the position of the axis of 
oscillation is shown in Figs. 1 la, b and c, for certain values of M0 and ~0. Similar curves for the 
other derivative coefficients are given in Figs. 12 to 14. 

10.  Concludi~g Remarks.--The results show that  thickness has a marked effect on the 
aerodynamic derivatives for a two-dimensional aerofoil and, in view of this, some allowance for 
such an effect should be made in flutter and stabili ty calculations. For oscillations about the 
half-chord axis, the value of the damping coefficient -- ma is increased, but for more forward 
axis positions, thickness appears to have the opposite effect. According to the flat plate theory 
the damping is positive for oscillations about the leading edge, when M )  -\/2 but  Fig. 1 lb shows 
tha t  the damping for the thick aerofoil is still negative a t  M -- 1.5. This indicates tha t  the 
range of Mach number and axis position for which it is possible to get one degree of freedom 
instabil i ty would be dependent on the thickness of the aerofoil. 

In R. & M. 2679 ~ it was assumed tha t  the effect of thickness was independent of the frequency 
parameter. This is approximately true-as far as the pitching-moment aerodynamic-stiffness 
coefficient is concerned, but  the results for --m~ shown in Fig. 9c, for instance, give an i n i t i a l  
decrease in the amount of correction due to thickness followed by an increase as the f requency 
parameter X0 increases. 

Measurements of aerodynamic damping on oscillating aerofoils in two dimensions and on half- 
delta wings are to be made at the National Physical Laboratory. These tests will provide a 
control on present theory and a guide to further development. An at tempt to allow for thickness 
effects on derivatives for a wing of finite aspect ratio could be made by the use of strip theory in 
conjunction with the present method. Such a procedure may, however, not be valid in general 
a n d  one must look to experiment for guidance on this question, particularly in the case of low 
aspect ratio wings. 
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The Effect of Thickness 
Oscillating in 

on the Aerodynamic Forces on Biconvex Aerofoils 
a Supersonic Airstream, and Calculation 

of Forces for Aero£oil with Flap* 

By 
SYLVIA W .  SKAN,. 

of the Aerodynamics Division, N.P.L. 

Sumrnary.--The lift distribution and the aerodynamic force coefficients are calculated for a 7.5 per cent thick 
symmetrical circular-arc aerofoil at Mach numbers M o = 2.0, 1.7, 1.5 for a range of frequencies. These results are 
compared wffh those given in an earlier report (Ref. 1) for a 5 per cent thick aerofoil, and with the values derived on the 
basis of flat plate theory. 

A limited comparison is also made between the calculated results and those obtained experimentally. 

The same scheme of computation is then applied to the determination of tile derivatives for an aerofoil with a flap 
hinged at 0.6 chord from the aerofoil leading edge, for M 0 = 1.7 only. The values thus obtained for the 7-5 per cent 
and the 5 per cent thick aerofoils are compared with the limiting values for 20 tending to 0 derived by Temple and 
Jahn for a thin aerofoil witll flap (Ref. 2), and with tile two-dimensional derivatives calculated for several values of 10 
from formulae given in a paper by I-Iuckel and Durling (Ref. 5). 

1. I~troductio~.--Isentropic, irrotational and inviscid flow conditions are assumed. The known 
flow at zero incidence is slightly disturbed, and the non-linear equation defining the resulting 
motion is reduced to linear form. The differential equation thus obtained is put  into difference 
form, and is solved by a step-by-step process to give #, the amplitude of the velocity potential 
of the disturbance. For the numerical applications given here and in Ref. 1, the field of flow 
is divided into a network by lines drawn normal to the surface of the aerofoil through ten 
equally spaced points and by circular-arcs parallel to the surface. 

The derivation of the differential equation and the numerical method of solution are described 
in detail in Ref. 1. The same notation is used here as in Ref. 1, and a list of symbols is given 
below. 

Mo 

qo 

Po 

C 

t 

r = c R  

zv 

ql 

VS 
P~ 

List of Symbols 

Mach number 

Velocity of undisturbed main flow 

Air density in undisturbed main flow 

• Chord of aerofoil 

Thickness of biconvex aerofoil at mid-chord 

Radius of a circular-arc of the network 

Semi-wedge angle 

Velocity of deflected airstream at leading edge when aerofoil is 
at zero incidence 

Local undisturbed velocity 

Local air density 

*Published with the permission of the Director, National Physical Laboratory. 
A.R.C. Report No. 14,217. August, 1951. 
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¢ (=  e'O 
cX 
ca 

czeip t 

cte lV t 

cXy 
cYI 

• f l e i p t  

l(x) [=  .eo o (R + i/)] 
L (-- L'e ipt) 

M ( -  M'e ipt) 

H (-  H'd~ '~) 

List of Symbols--continued 
Local Mach angle 

Frequency ill cycles per second 

Frequency parameter 

Velocity potential o~ disturbance 

Distance measured along aerofoil from leading edge 

Distance of axis of oscillation of aerofoil from its leading edge 

Vertical displacement of aerofoil 

Angular displacement of aerofoil as a whole 

Distance of a point P on the flap from the hinge 

Distance of flap hinge from leading edge of aerofoil 

Angular displacement of flap relative to aerofoil 

Lift distribution 

Total lift 

Pitching moment 

Flap hinge moment 

2. Estimation of Accuracy.--The method developed in Ref. 1 was used there to determine 
the forces on a 5 per cent thick aerofoil for Mach numbers M0 = 2.0, 1.5, 1.4, and additional 
values are given here for M0 = 1-7 and ,10 = 0. For this aerofoil, which has a wedge angle of 
about 11.4 deg, the flow at the leading edge becomes subsonic, and the theory thus breaks down, 
at about M0 = 1.3. For the higher thickness/chord ratio of 7.5 per cent, corresponding to a 
wedge angle of about 17.2 deg, the flow at the leading edge is subsonic when Mo is just under 
1.4, and the calculations for this aerofoil cannot be carried much below Mo ---- 1.5. 

In order to gain some idea of the degree of accuracy to be expected, the estimated lift 
distribution for steady motion is plotted in Fig. 1 for the 5 per cent and the 7.5 per cent thick 
aerofoils, together with the known exact solutions. At M0 ---- 2.0, 1-7, and 1.5 for the thinner 
aerofoil, and Mo = 2.0 and 1.7 for the thicker aerofoil, agreement between the estimated and 
the exact values is extremely good. For the thicker aerofoil at 21//0 = 1.5 the maximum error 
over the range X = 0 to X = 0 . 9 i s  about 5 per cent.(at X = 0.4), compared with about 2 .6  
per cent (at X = 0.4) for the thinner aerofoil at M0 = 1.4. The slightly greater divergence 
of the estimated curves at X = 1 is due to the fact that  the # values obtained from the network 
were represented as a quartic to facilitate the determination of ~#/~X. 

I t  is probable that  better agreement would be obtained at the lower values of M0 if a finer 
network were employed. 

3. Discussion of Results for Rigid Aerofoils.--Values of the mid-chord derivatives for the 
5 per cent thick aerofoil (Ref. 1) are given in Table 1, and the values obtained here for the 
7.5 per cent thick aerofoil are given in Table 2. Comparisons between the results for the two 
aerofoils and those for the fiat plate are represented graphically in Figs. 2-12. 

Figs. 2 and 3 give the chordwise lift distribution for M0 ----- 2 .0  and M0 = 1.5. Numerical 
results were obtained for ~0 = 0, 0.25, 0.5, 0.75 ; but, in order not to confuse the diagrams, 
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only extreme values of 20 are included. The diagrams show that  the thickness effect on the lift 
distributions R and I is reasonably linear when M0 = 2-0, but  tha t  there is a more rapid 
variation with thickness when 3//o = 1.5. 

In Figs. 4 and 5 the aerodynamic stiffness coefficient -- m~ and the damping coefficient -- m~ 
for pitching oscillations about the mid-chord axis are plotted against '%0 for M0 = 2.0 and 21//o= 1.5. 

I t  ~ be seen from Fig. 4 tha t  the variation of the coefficient --  ms with thickness is approxi- 
mately linear for both values of M0. Fig. 5 shows, however, tha t  the variation Of -- ma with 
thickness deviates considerably from a linear law, especially at the higher frequencies and lower 
Mach number. This effect is shown more clearly in Fig. 6, where -- ma is plotted against the 
thickness/chord ratio for constant ,%0. I t  will be noted also from Fig. 6 tha t  the value of -- ma 
for the mid-chord axis position falls slightly as the thickness increases at 21/7o = 2.0, but  that  
there is a definite increase of -- m~ with thickness at Mo = 1.5. 

Fig. 7 shows the variation of -- m~ with Mo for various values of '%0, together with the fiat 
plate results for 2o = 0, and experimental results for '%o tending to 0 taken from Ref. 3. 
I t  will be seen flora Fig. 8, where -- m~ is plotted against h for Mo = 1.5 and ,%0 tending to 0, 
tha t  the mid-chord axis position is relatively sensitive and tha t  a small change of axis position 
would give close agreement between theory and experiment. Fig. 7 may thus give a misleading 
impression of the divergence between the present theory and the available experimental results. 

In Fig. 9, -- mo is plotted against h for Mo = 1.5 and ¢~o tending to 0, and the results again 
show that  a small change of axis position would give good agreement between theory and 
experiment. I t  will be seen that  Hilton's static measurement is nearer to tile theoretical vMue 
than  Brat t ' s  oscillatory measurement. 

The other derivative coefficients are plotted against 2o for constant M0, and against Mo for 
constant Zo, in Figs. 10-12. 

4. Force and Moment  Derivatives for  Aerofoil with F l a p . - -  

LEADING EDGE 

cz¢ i p t  

The diagram above shows the motions of an aerofoil carrying a flap. The aerofoil as a whole 
is describing transIational and pitching oscillations about an axis N at a distance ch from the 
leading edge of the aerofoil. In addition, the flap is oscillating about its hinge H, distant cH 
from the leading edge of the aerofoil. Xj denotes the distance of a point P on the flap from the 
hinge. The angles z. and/3 are assumed to be small and are exaggerated in the diagram. 

The condition for tangential  flow at the upper surface, corresponding to equation (36) of 
Ref. 1, is now 

13#  
c ~R --  q'~ + iqoZo(X --  7¢)c~ + iqo'%oz when X < n 

= q,c~ + iqo'%o(X --  h)~ + iqo'%oZ + q,~ + iqo'%oXj~ when X ~> H .  . ,  (1) 
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The velocity potential #0 for flow above the aerofoil as a whole, and the additional velocity 
potential ¢I for the flap, are represented in the form 

~o = - -  c [,xql~l + iqo~o,Z~2 + iqo~o(Z - -  ;c~)~] . . . . .  . (2a) 

~ = - -  c [fiq~c~ a + iqo~oP~e] 

= 0 w h e n X ~ < H ,  . . . . . . . . . . . . . .  (2b) 

where #~, #~, #~ correspond to the boundary conditions 

0 ~L) 1 " qs  

OR - -  q., ' 

OR - - X ,  

OR = 1; 

and the boundary conditions over the flap corresponding to #~a and ¢,a are 

a¢~a q~ 
OR - -  q~' 

. . . . . . . . . . . . . . . .  (3) 
0¢~a 
aR - x s .  

The liit" distribution is given by 

I ( X )  2p~ Iilto¢ + q~ 0¢] 
p0~--: = c E ~ 5 2  ' "" 

where ¢ represents the potential of a small disturbance. 

(4) 

Equations (2) and 
moments 

L '  

=_ (z. + iXoZ;)z + (L + aoZ~,)~ + (z,~ + i~oz~)~ . . . . .  

-- (m~ + iZomi)z  - /  (m,~ -5- iZoma)oc + (m~ + iZom¢)~ , . .  

p0dqo 2 - -  2 + --  + 

Po 

(4) lead to the following expressions for the amplitudes of the lift and 

= (~. + ia0h;)z + (h.~ + i~0h~l~ + (he + i~oh~)~, 
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The calculation for the rigid aerofoil to give #1, #2, #8 having been completed, it is only 
necessary to obtain in addition network solutions for a small aerofoil extending from X = 0.6  
to X = 1 tog ive  #~a and #2a. For this small aerofoil the angle corresponding to the semi-wedge 
angle  w of the complete aerofoil is -- 1-14496 when tic = 0.05 and -- 1. 71566 when tic = 0" 075. 
The same spacing for the network is used as before, yielding values of # at X = 0.7, 0.8, 0.9, 
1.0 (X~ = 0.1, 0.2, 0.3, 0.4). In this case the # values obtained from the network solution 
are represented as a quadratic for the purpose of determining O#/OX. 

5. Results for Aerofoil with Flap.--The coefficient of /~ in the lift distribution is plotted in 

q' (for X = 0" 6 Fig. 13, together with the exact values associated with O#I~/OX = -  tan  ~ s ~  

to 1). The variation of the inphase component R of the lift distribution with frequency is so 
small tha t  it cannot be shown in the diagram. For a four-point network solution, the agreement 

between the exact and the estimated values of ~ is very satisfactory. 

The additional mid-chord derivatives for an a.erofoil with flap are given in Table 3 ; and they  
are plotted against ~10 in Fig. 14, together with values for a flat plate with flap calculated from 
approximate formulae given in Ref. 5. 

In Table 4 the results obtained here for ,~0 tending to 0 are compared with the limiting values 
of the leading-edge derivatives given by Temple and Jab n's formulae* for a thin aerofoil with 
flap (Ref. 2). 

For the purpose of comparison, the leading-edge derivatives for Z0 tending to 0 calculated for 
the 5 per cent and the 7-5 per cent thick rigid aerofoils are given in Table 5, together with the 
corresponding values obtained from Temple and Jahn 's  formulae for a thin aerofoil. 

A comparison of Tables 4 and 5 shows tha t  the derivatives for an aerofoil with flap vary with 
thickness in much the same way as those of a rigid aerofoil. 

6. Comluding Remarks.--The results given here for a rigid aerofoil confirm the conclusions 
given in Ref. 1 tha t  thickness has a marked effect on t h e  aerodynamic derivatives; and 
it is shown, moreover, tha t  this effect ceases to be linear as tic increases. 

I t  is difficult to judge from results so far available how nearly theory agrees with experiment. 
Fig. 7 shows, however, that ,  for mid-chord axis position, the present theory agrees with experi- 
ment  in giving an increase of -- m~ as M0 decreases, whereas flat plate theory gives a decrease 
in -- m~ as M0 decreases. 

The theory developed in Ref. 1 neglects the effect of the shock wave at the leading edge, 
and the effect of the boundary layer. The latter effect Would result in a falling off of lift towards 
the trailing edge of the aerofoil (Ref. 4). In order to get some idea of the magnitude of 
this effect, tile value of the mid-chord stiffness coefficient -- ms for the 7.5 per cent thick aerofoil 
at M0 = 1.5 is calculated when the lift is neglected beyond a certain value of X. I t  is thus 
found tha t  the experimental value of -- m~ (-- 0.254) is arrived at by  neglecting the lift beyond 
a point estimated to be X = 0.748. The value of the damping coefficient -- ma obtained by 
neglecting the Iift beyond the point X = 0-748 is found to be 0" 173, which agrees more nearly 
with the experimental value of 0.28 than the value of 0.070 corresponding to the normal lift 
distribution of the present theory. The effect due to boundary layer would thus appear to be in 
the right direction. 

As already indicated, however, the effect of axis position on the experimental values needs 
further investigation. 

* If x 0 (denoted here by h) is put equal to 0 in the expressions of 1Ref. 5, the resulting leading-edge de~rivatives 
for 10 tending to 0 agree with those given by Temple and Jahr.'s simple formulae. 
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In view of the marked effects of the boundary layer near the trailing edge, no accuracy can be 
claimed for the calculated values of the derivatives for an aerofoil with flap. The calculation 
was carried through for one value of M0 (1.7) merely to indicate whether  the scheme of 
computation used for a rigid aerofoil could be applied satisfactorily to an aerofoil carrying a 
flap. The results obtained appear to be of the right order, and suggest that  reliable values could 
be obtained if a finer network were used and the present theory were modified to allow for the 
effect of the boundary layer. 
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TABLE 1 

Mid-chord Derivatives for  Biconvex A erofoil (t = 0.05c) 

~o 

2 '0  

1"7 

1"5 

1.4 

0 
0-25 
0"5 
0"75 

0 
0.25 
0.5 
0.75 

0 
0"05 
0"15 
0"25 
0.5 
0"75 

l a  

1,168 
1"150 
1.102 
1"031 

1"472 

1.813 
1.731 
1.513 
1.260 

2.083 
2"075 
2.022 
1 . 9 1 9  
1.539 
1.184 

--0-334 
--0"370 
--0"340 
--0"299 

--0.595 

--1,086 
--1.114 
--0,907 
- -0 .633 

--1.712 
--1.886 
--1.822 
--1.702 
--1.222 
--0.651 

0 
0.018 
0.067 
0.135 

0 

0 
0.065 
0,221 
0.378 

" 0 
0.004 
0.040 
0.105 
0.322 
0.456 

1.176 
1.168 
1.133 
1-082 

1.493 

1.848 
1.778 
1.597 
1.362 

2.135 
2.128 
2.081 
1.990 
1.639 
1.271 

- -  ~ a  

- -0 .048 
--0.052 
--0.061 
--0-073 

--0.057 

--0.083 
--0.097 
--0.131 
--0.158 

--0.108 
--0.109 
- -0 .118 
--0.135 
--0.184 
--0.197 

0.062 
0.054 
0.061 
0.072 

0.060 

0.054 
0.049 
0.097 
0.156 

0"038 
0.004 
0.018 
0.046 
0"153 
0.263 

0 
0"002 
0"009 
0"015 

0 
0.007 
0.017 
0.008 

0 
0 
0"004 
0"009 
0"012 

--0"034 

--0.061 
--0,062 
--0.070 
--0,081 

--0.074 

--0,110 
--0.125 
--0.160 
--0,198 

--0.145 
--0.146 
--0.155 
--0.172 
- - 0 . 2 3 3  
--0"272 
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T A B L E  2 

Mid-chord DeriVatives for Biconvex Aerofoil (t = 0 . 0 7 5 c )  

Mo ~o  l,~ l ~  l ,  t;  - -  m .  - -  m a  - -  m z  - -  m ;  

2.0 

1"7 

1.5 

0 
0.25 
0"5 
0-75 

0 
0.25 
0.5 
O. 75 

0 
0.25 
0.5 
0-75 

1.185 
1.162 
1.100 
1.011 

--0.420 
--0-472 
--0-432 
--0-373 

0 
0.022 
0.082 
0.164 

1"213 
1.198 
1.154 
1.088 

- -0 '072 
--0"076 
- -0 '087 
--0"102 

0.062 
0.050 
0"060 
0.074 

0 
0.003 
0.010 
0.016 

1-485 
1.436 
1.304 
1.132 

1-826 
1.690 
1-366 
1.056 

--0"733 
--0.787 
--0.687 
--0.536 

--1.410 
--1.488 
--1.095 
--0.619 

0 
0.042 
0.152 
0.283 

0 
0.090 
0.284 
0.414 

1"531 
1"493 
1.389 
1.243 

1.906 
1.786 
1.487 
! .158 

- -0 '087 
- -0 '096 
--0"117 
--0.139 

--0.130 
--0.151 
--0"191 
- -0 '199 

0.065 
0.054 
0 '078 
0.112 

0.070 
0.067 
0.153 
0.241 

0 
0.004 
0.014 
0.015 

0 
0-007 
0-008 

--0-032 

--0.088 
--0-091 
--0-101 
--0-115 

--0"114 
--0.122 
--0.143 
--0.169 

--0.174 
--0.197 
--0"247 
--0 '281 

T A B L E  3 

Mid-chord Derivatives#rBieonvexAerofoilwith Fl~.  M o =  1 . 7  

i 

gc ~o ~ ~ - ma - m~ - ho -- hl 

0.075 0 
0.25 
0.5 
0-75 

0.468 
0.467 
0.466 
0.465 

0.0362, 
0.0336 
0.0337 
0.0340 

0.136 
0"135 
0'135 
0.135 

0,0128 
0"0119 
0.0119 
0.0120 

0 
0-0047 
0.0155 
0-0240 

0.0866 
0.0807 
0.0648 
0.0444 

0.05 0 0.501 0.0420 0.147 0.0151 0 0.0952 

t /c  ~o - h~ ha - -  h~ - -  h~ 

0.075 

0.05 

0 
0.25 
0.5 
0"75 

0.0896 
0.0835 
0.0658 
0"0457 

0.0978 

--0.0382 
--0.0467 
--0.0294 
--0.0046 

--0.0282 

0.0896 
0.0886 
0.0884 
0.0882 

O- 0978 
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0"00922 
0"00856 
0.00858 
0"00863 

0.01087 



TABLE 4 

Leading-edge Derivatives when 20--+ 0 for Biconvex Aerofoils with Flap, Compared 
with Corresponding Limiting Values for Thin Aerofoil with Flap 

Der iva t ive  

- ~  

- L  

- L  

- g  

Temple  and  J a h n ' s  F o r m u l a  for Thin  
Aerofoil  (Reference 2) 

2E tan/~  . . . . . .  

E 2 t an  ~ (1 - -  tan  ~/~) . .  

E (2 - -  E) t a n / ,  . . . .  

E~ (1  - -  E )  t an  t~ (1 - -  tan~ 1~) 

. . . . . .  ° ,  

E 2 t an  !~ . . . . . .  

E ~ t an  ~ . . . . . .  

E~ (1  - -  E )  tan/2 (l - -  tan2/~) 

E 2 t an  v . . . . . .  

2 Ea t an  ~ (1 - -  t an  ~ p) . .  
3 

• I 

I p 

Value Given 
b y  Formula  

0 .582 

0.055 

0 . 4 6 6  

0 .047 

0 

0-116 

0-116 

0.047 

0 .116 

0.015 

Value given b y  Network  
Solut ion for Biconvex Aerofoi 

t = 0.05c 

0.501 

0 .042 

0 .398 

0 .036 

0 

0.095 

0 .098 

0.919 

0.098 

0.011 

t = 0 . 0 7 5 c  

0.468 

0 .036 

0 .369 

0.031 

0 

0.087 

0.090 

0 .005 

0.090 

0.009 

Bars  are used here to dis t inguish the  leading-edge der iva t ives  from the  mid-chord  der ivat ives  o{ Table 3. 

= Mach angle, t an  a ----- 0.7274 for M 0 - -  1.7. 
E = ra t io  of flap chord to  to ta l  chord = 0.4.  

Leading-edge 

TABLE 5 

Derivatives when 20--+0 for Biconvex Aerofoils, 
Corresponding Limiting Values for Thin Aerofoil 

Compared with 

Der iva t ive  

L 

L 

L 

m ~ a  

Temple  and J ahn ' s  F o r m u l a  for Thin 
Aerofoil  

. . . .  

2 t an  !~ . . . .  

2 tal l /~ . .  

t a n  V (1 - -  t an  2 ~*) 

0 . . . .  

t an  #, . . . .  

tan # . . . .  

t an  ~ (1 - -  V) t an  ~ 

Value given 
by  F o r m u l a  

0 

1-455 

1.455 

0 . 3 4 3  

0 

0.727 

0.727 

0 .228 

Value given b y  Network  
Solut ion for Biconvex Aerofoil  

t ----- 0 .05c 

0 

1.493 

1.472 

0.152 

0 

0.673 

0.680 

0 .099 

t - - - -0 .075c 

0 

1. 531 

1-485 

0.032 

0 

0-652 

0-655 

0-024 

Bars  are used here to  dis t inguish the  leading-edge der ivat ives  from the mid-chord  der ivat ives  of Tables I and  2 

tan /*  ---- 0.7274 for M 0 ----- 1.7. 
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0,25 "lo 0.50 0.75 

l%{id-chord derivat ives  for biconvex aerofoil  wi th  flap. M o = 1-7. 
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