

AERONAUTICAL RESEARCH COUNCIL REPORTS AND MEMORANDA

The Scope and Accuracy of Vortex Lattice Theory

By
V. M. Falkner, B.Sc., A.M.I.Mech.E., of the Aerodynamics Division, N.P.L.

Including supplementary tables to R. F. M. No. 2461

Crown Copyright Reserved

LONDON: HER MAJESTY'S STATIONERY OFFICE 1952

EIGHT SHILLINGS NET

The Scope and Accuracy of Vortex Lattice Theory

By

V. M. Falkner, B.Sc., A.M.I.Mech.E., of the Aerodynamics Division, N.P.L.

Reports and Memoranda No. 2740
 October, 1949

Summary.-The report gives an outline of the development of the principles on which potential problems in liftingplane theory are solved by the use of a vortex lattice for the purpose of computing downwash. The conditions of convergence necessary for an accurate solution are defined, and the main purpose of the report is to show that those connected with the lattice have been, or can easily be satisfied.

Published solutions by this method have been mainly concerned with spanwise load grading and local aerodynamic centre and examples are given here of earlier checks on accuracy for rectangular and triangular wings, and a yawed infinite wing, based either on an alteration of the lattice spacing or on comparison with downwash obtained by surface integrals. The study of accuracy is now advanced by a comparison based on exact values calculated from surface integrals given by W. P. Jones, and applied to a rectangular and a sweptback wing. The downwashes obtained from the lattice are shown to converge to the exact values, but by a comparison of two solutions for the sweptback wing it is shown that the beneficial coupling effect of the lattice makes it unnecessary to obtain individual downwash values to great accuracy, at least for spanwise load grading and aerodynamic centre calculations.

Trial calculations reveal that there would be no difficulty in extending the convergence to detailed pressure distribution or other properties of any thin wing, but it is desirable to give prior attention to the main effects of wing thickness and viscosity.

1. Introduction.-Recent criticism of the work which has been completed on the calculation of aerodynamic wing loading by a theory involving the use of a lattice for computing downwash, coupled with the fact that the planning of extensive programmes of research may depend on an accurate judgment of this work, makes it advisable for a clear statement of the objective to be rendered. A previous note ${ }^{1}$ on the accuracy of the calculations was issued in May, 1946, but with the completion of more work it is possible to state the case with greater knowledge.
2. Outline of Theory.-The work which has so far been completed has been based on the following developments :-
(a) A generalisation of the work originated by Blenk ${ }^{2}$ on a rectangular wing, and extension to arbitrary plan form and to include wing twist, discontinuities due to deflected flaps, effects of compressibility, and so on.
(b) The solution of potential problems, and many non-potential problems as, for example, those which include the effects of viscosity, to a prescribed degree of accuracy, by the use of a network instead of a continuous medium for the evaluation of downwash.
[^0]These two lines of advance are being dealt with concurrently in a programme which has so far been mainly directed to an exploration of whether problems expressible in terms of vortex sheets can be solved by the use of a network of vortices simple enough to make the work economically suitable for general use. Favourable circumstances are met at the outset in that lifting line theory, in which the chordwise distributed vorticity is reduced to a single line vortex for the purpose of downwash calculation, has been in use for years with marked success, and it is reasonable to anticipate that improved accuracy is obtainable by building on the foundations of lifting line theory without going so far as to lose the essential simplicity of the representation.
2.1. At the outset, it was necessary to make a choice between spending a great amount of time in carrying to the limit one typical case, with complete proofs as to accuracy, or of proceeding on the assumption that the developments were valid and covering, in consequence, much more ground. Because of the importance of the application of the work to design problems, the latter choice was made, and there is no doubt about the correctness of the decision, for it has led to considerable advances in general knowledge and the provision of a framework of general information from which it is apparent that a rigid proof of accuracy for a simple case would be useless from the point of view of the general application of the theory. The difficulty in providing positive proof of accuracy is that the simpler forms of corroborative evidence, e.g., wind tunnel tests, are not pure potential solutions, the provision of which for a complicated case is an exceedingly difficult matter.
2.2. Early in the work, comparisons were made between solutions obtained by using exact integrals of downwash and by the lattice, and, after a suitable procedure for allowing for the discontinuity in plan had been developed, the effort was concentrated on covering a wide range of thin wing solutions with a complication sufficient only to ensure that the spanwise load grading and local aerodynamic centre were given to good accuracy. From the coefficients given with these solutions the pressure distribution over the surface could be worked out, but this was obviously a case where the user must take the risk of unspecified accuracy. It was known some years ago that the two chordwise terms used for the calculations were inadequate to give the detailed pressure distribution to great accuracy in the region of a discontinuity, and, so far, a solution to the required degree of complication to give final covergence has not been worked out. The writer has satisfied himself by trial calculations that the same method taken to more terms will give a convergent pressure distribution, but there is little point in finishing a calculation of this nature until the main effects of wing thickness and perhaps viscosity have been investigated, as these are always present in any application of the theory.
2.3. For most of the work which has so far been published, the lattice is used as a quick method of evaluation of downwash, and, as it will be shown below that this process is convergent, the work conforms to the now established practice of lifting plane theory in whatever form this may be expressed.

The use of a lattice, however, will be shown below to offer certain advantages in saving of labour, because it introduces a beneficial coupling between the downwash values.

For wings with deflected flaps, the use of a lattice offers in addition a means of simplifying the solutions so that these can be effected rapidly when the detailed pressure distribution is not required, but only accuracy in the spanwise load grading and local aerodynamic centre.
3. Development of the Downwash Calculations.-At an early stage it was decided to standardise the principle of representing a continuous circulation in the spanwise direction by a system of rectangular vortices for purposes of downwash calculation, by making the strength of each rectangular vortex the same as the value of the continuous circulation at the midpoint of the transverse vortex. It was an obvious move to try out this sytem by comparison with lifting line theory, with which agreement is essential to form a proper foundation for the work, and this procedure has the advantage that the downwash associated with this theory is defined by a simple mathematical formula.

As a result of a study of the induced downwash, it was found that a corrector vortex was required at the position 0.9625 and, with this included in the pattern, the downwash was correct for all practical purposes up to $0 \cdot 8 \mathrm{~s}$, but not beyond, when a spacing of 20 to the span was used. It also appeared that $0.9 s$ could be reached by using precisely the same pattern with the spacing halved, and that this method of extension was repeatable. The way in which the whole scheme becomes practical when the corrector vortex is added is shown in Fig. 1, in which are plotted the induced downwash as calculated by the lattice compared with the same calculated mathematically for the 19 -vortex pattern, i.e., excluding the two end corrector vortices, and the 21 -vortex pattern. The details of calculation can be readily deduced from the information given in R. \& M. $1910(1943)^{3}$ and 2591 (1947) ${ }^{4}$.

The results of a further investigation are given in Table 1, which compares the values of induced downwash corresponding to lifting-line theory, as obtained by a lattice of vortices for several spanwise gradings of $K / 4 s V$, with the exact values. It will be noted that the 21-vortex pattern is reasonably good to $\eta=0 \cdot 8$, even for $\eta^{10}\left(1-\eta^{2}\right)^{1 / 2}$, but that a considerable general improvement is shown when the 41 pattern is used. The general convergence in the spanwise direction with respect to number of vortices seems to be well established.
3.1. The convergence in the chordwise direction is based on two-dimensional considerations, and the sequence is as in Fig. 2. The idea is that any chordwise function can be represented for purposes of downwash calculation and not necessarily for loading, by replacing the continuous function by a finite number of line vortices spaced at even distances along the chord, e.g., 4 at $1,3,5$ and 7 eighths of chord, and so on. The magnitudes of the line vortices are then calculated by making the two-dimensional values of the downwash due to the line vortices the same as those due to the continuous distribution at stations midway between the line vortices, the spare condition being used to make the total vorticity correct. The first approximation involves one line vortex only, and the analysis must therefore be limited to the term $\cot \theta / 2$. The line vortex of equal total magnitude is placed at the half-chord, and the control point, for which the downwash due to the line vortex equals that due to the distributed vorticity will be at $1 \cdot 0$ chord. Because the downwash due to $\cot \theta / 2$ is uniform, it is possible to improve the representation by moving the vortex and control point forward until the vortex coincides with the centre of pressure (C.P.) of the continuous distribution, i.e., the vortex is now placed at $1 / 4$ chord and the control point at $3 / 4$ chord. As the solution is based on the use of the continuous distribution, and the representation of line vortices is used only for the determination of downwash, this variation would have no effect on a wing of constant chord, and only a minor effect in the general case. The first approximation is correct for two-dimensional flow, but there is an appreciable error when the flow is three-dimensional.
3.2. The second approximation involves a limited number of vortices, say 4 or 6 , or more, and it will be seen that, for the 4 -vortex system as shown in Fig. 2, for which the magnitudes are given in Table 7 of R. \& M. 25911, the C.P.'s of the system for the terms $\cot \theta / 2$, $\sin \theta$, and $\sin 2 \theta$, are $0.313,0.5$, and ∞ instead of the values $0.25,0.5$ and ∞ given by the continuous loading. The wing loading system does not, of course, depend directly on these values, which are incidental to a system designed for the computation of downwash, but it is of interest to note that the C.P. for the $\cot \theta / 2$ term of the lattice could be altered from 0.313 to 0.25 by moving the system forward by 0.063 chord. A variation of this kind would seriously impair the symmetry of the arrangement and the ease of application of the method, but would lead only to a trivial variation in the solution. Where 12 chordwise vortices are used (see Table 12) the C.P. of the $\cot \theta / 2$ lattice is at $0 \cdot 271$, a much nearer approach to the quarter chord. With the second approximation, the two-dimensional values of downwash are accurate, while the errors in the threedimensional values are greatly reduced. The number of vortices in the second approximation requires adjustment depending on the plan of the wing.
When the number of vortices has been increased sufficiently, e.g., the approximation n, it will be found that the C.P. will be the same for the continuous and line vortex systems, and that the values of downwash will be accurate for both two and three dimensions. The success of
the application depends, however, upon a close approximation to the limit having been reached with a few vortices, and there is abundant evidence that a considerable amount of useful and accurate work can be effected with the 4 or 6 -vortex pattern, although in some special and advanced cases a greater number will be necessary.
4. General Scheme of Convergencies.-The following convergericies must be nearly simultaneously complete if an accurate solution for a wing is to be obtained :-
(a) Convergence of solution with respect to lattice spacing spanwise.
(b) Convergence with respect to lattice spacing chordwise.
(c) Convergence with respect to number and position of control points.
(d) Convergence with respect to the number of unknown coefficients or loading functions used in the solution.
The first two depend upon varying the size of the mesh of the lattice ; the fourth upon the use of a Fourier series or other special functions by which the vortex sheet representing the wing is defined; and the third to a certain extent upon the other three.

The degree of complexity of the solution which is required to establish convergence of the four items will vary with the nature of the problem to be treated and with the characteristics in question. For example, a wing of circular plan form will require much less work than a wing with discontinuities in plan, and the effect of deflecting flaps will be greatly to increase the complication. Also, experience has shown that there is a variation in rate of convergences : for example, the grading of spanwise circulation converges quickly, and often involves only one chordwise term, $\cot 0 / 2$; and a considerable amount of evidence has been collected which supports the view that the local aerodynamic centre can be adequately defined by the use of two chordwise terms only. Much valuable information can be obtained by a study of the circulation and aerodynamic centre, but trial calculations have shown that a reasonably accurate calculation of pressure distribution in the neighbourhood of a discontinuity in plan would require at least three or four terms and there is no doubt that an approach to the accurate solution in the vicinity of a corner would require a large number of terms.
4.1. The method of obtaining covergence can vary considerably. For instance, the number of control points can, and should in many cases, be greater than the number of unknown coefficients, and, by subsequent normalisation of the equations connecting the unknowns, the effect of any error at an individual control point reduced considerably. In fact, it appears that the averaging effect of this process is often particularly valuable in assisting the convergence of the solution.
4.2. It should now be quite clear to the reader that when a solution is published the meaning to be attached to it is that the work has been carried out to a degree of complication sufficient to establish to a reasonable degree of accuracy certain properties, of which the circulation and the local aerodynamic centre are two of the most important. It should not be assumed that the solutions may not later be improved, if the necessity arises, by extending the work to give accuracy in respect to further properties of the wing, when the pressure distribution at selected stations is required to specified accuracy. It should be remembered that there is no hope of finality in this work, as the analysis could gradually be extended to questions which are merely academic and could have no possible practical application, for instance, the behaviour of the solution in the immediate vicinity of a corner on the wing plan.

Because of the indefinite nature of the convergences and the fact that finality in the provision of potential solutions is quite impossible, the main effort has been put into making maximum use of the application of the work. Published solutions which claim to have reached a certain degree of convergence have been checked by internal evidence and by any external evidence which bears on the problem, and the writer has so far found, nothing which can be used to prove that the developments are invalid. A final point is that there is little merit in over-elaboration of a solution for a thin wing when it is known that all wings have a finite thickness.
4.3. We now present some of the latest evidence as well as evidence which has been collected at intervals during the development of the work from the original rectangular wings. The object of providing this evidence was to show that the calculations were proceeding on the right lines and not that a hypothetical 'exact solution' had yet been reached.
5. Examples of Convergence : Rectangular Wing.-The solution for a rectangular wing of aspect ratio 6 was originally calculated by the use of the 84 -vortex lattice using 6 control points, located at $\frac{1}{4}, \frac{1}{2}$, and $\frac{3}{4}$ chord and $\eta=0.2$ and $0 \cdot 8$. The same wing was also considered some years ago by Argyris using 6 control points in very nearly the same position, but with the downwash at each point calculated from the formula applicable to the surface integral instead of by a network or simpler means. In this work Argyris corrected some of Blenk's ${ }^{2}$ results which were known to be slightly in error. The two results are now given in Table 2 and Fig. 8, and, although neither solution has been taken to the limit, and so complete agreement is not to be expected, the agreement was close enough to support the conclusion that the downwash for a straight wing could be calculated by the use of a network of vortices.
5.1. Although calculations of downwash at an individual point are of limited use in assessing the accuracy of the overall solutions, because they involve too narrow an issue, they can be used to show that the calculations of downwash by the lattice method are convergent. It is possible to make an advance in the work by the use of exact mathematical formulæ, given by W. P. Jones ${ }^{5}$ in R. \& M. 2225, by which the values of the downwash at the mid-chord points of a rectangular wing of aspect ratio 6 can be calculated for vorticity distributions corresponding to the most important terms of the series normally used. The accuracy of the values given by Jones was a little uncertain and they have now been recomputed to greater accuracy by the Staff of the Mathematics Division of the Laboratory, who have provided the exact values now given in Table 3. The values corresponding to vortex sheets $2 V\left(1-\eta^{2}\right)^{1 / 2} \cot \theta / 2,2 V \eta\left(1-\eta^{2}\right)^{1 / 2}$ $\cot \theta / 2,2 V \eta^{2}\left(1-\eta^{2}\right)^{1 / 2} \cot \theta / 2$, and $2 V \eta^{4}\left(1-\eta^{2}\right)^{1 / 2} \cot \theta / 2$ for the mid-chord point at $\eta=0 \cdot 2$, 0.5 , and 0.8 are given in this table. In order to show how the lattice calculations converge, work has been completed which includes the use of 4,6 or 8 vortices to the chord and 21 or 41 to the span. In R. \& M. 2591^{4} it is shown how, after a certain side displacement from the control point, the number of vortices is reduced to one for the $\cot \theta / 2$ or $\sin \theta \operatorname{term}$, and the effect of varying the number of columns with the full number of vortices has now also been studied. It is most convenient to define the system by the semi-range, expressed as a proportion of the span, covered on each side of the control point by the columns with the full vortex system, for example, 9 columns of 21 vortex $\equiv 4$ columns on each side $\equiv 0.2$ span semi-range.
5.2. Before considering final details of the convergence revealed by the figures of Tables 3 and 4, we consider some points of interest. The downwash factors are usually obtained direct from the critical tables ($\mathrm{R} . \& \mathrm{M} .2461^{6}$) to three places of decimals, and an examination of the integrals has shown that there would be no appreciable advantage in increasing the places of decimals to four in the close range over which the full number of vortices are used. Outside this range, where one only vortex per station is used, error assessment indicates that there is a slight advantage in using four places of decimals, and, in order to allow this to be done accurately, additional tables of downwash have been included as an Appendix. These tables are supplementary to the 'Tables of complete downwash due to a rectangular vortex' (R. \& M. 24616). All future work will therefore use three places of decimals within the close range, and four places outside this.
We now consider the magnitude of the range over which the full number of vortices are used. If examination be made of items 2,3 and 4 , items 7,8 and 9 , and other similar sets of calculations given in Tables 3 and 4, it will be seen that the computed downwash has for all practical purposes converged to its final value at semi-range $0 \cdot 3$, and all future work will adopt this value as the standard for either 21 or 41 vortex work.
5.3. A selection of results for points 1,2 and 3 has been plotted in Figs. 3 and 4. It will be seen that for points 1 and 2 the lattice with 21 spanwise vortices will give a very close approximation
to the true values of the downwash, while for point 3 it may be necessary to go to 41 spanwise vortices if an accuracy of closer than 1 per cent is required. The results establish without doubt that the lattice process converges rapidly for the rectangular wing. It seems that for this wing all the accuracy normally required is obtainable by using not more than 8 vortices chordwise, but further work on another wing described below with 12 vortices will show that greater accuracy is obtainable if required.
6. Examples of Convergence: Infuite Yawed Wing.-Calculated values of the downwash at selected points on an infinite wing of constant chord at 45 deg yaw have been made with various patterns of lattice to compare with the exact values. The four cases treated are shown in Fig. 5 and include patterns equivalent to the 21 -vortex solution ; 84 -vortex solution; and 126 -vortex solutions with $2 y_{v}=0.25$ chord, which is the same as a spacing of $0.1 s$ with aspect ratio 5 , and $2 y_{v}=0.33$ chord, equivalent to a spacing of $0 \cdot 1 s$ with aspect ratio $6 \cdot \dot{6}$. The latter case has been included as the pattern changes its character when y_{v} is varied.

The values of downwash were computed by summing the effects of the individual vortices by the standard method and using the standard chordwise factors, the spanwise loading function being taken as unity. The summation was carried out to the limit of the published tables $(y=76)$ and the limits for an infinite number of terms estimated by using the condition, which is easily verified for an unyawed vortex, that the limit is approached hyperbolically. It would be possible to examine the limit more closely by pure mathematical analysis but it is thought that the addition accuracy would be so small as not to warrant the time spent on it.
6.1. For an infinite wing with circulation $K=\frac{1}{2} \pi V c$, the true value of w / V over the wing is $1 / \sqrt{ } 2$ or 0.707 . In Table 5 are given the values of w / V for the same circulation obtained by summation of the effects of the lattice of vortices. The result given by the single vortex is a trifle high, which is consistent with the known fact that solutions by this pattern usually give a slightly low value of the circulation. The other values which include points at $0.5,0.75$ and $0.8 \dot{3}$ chord are extremely close to the true value, and better agreement is hardly to be expected considering that the limits of the sums of the downwashes due to the lattice pattern are obtained by a method which is not exact.

This work shows that there is no fundamental error for a sweptback wing due to the use of a lattice orientated parallel to the wing direction.
7. Examples of Convergence: Triangular Wing.-Further work has been carried out on the triangular wing for which a number of solutions have been described in R. \& M 2591^{4}. In order to remove the variations near the tip which, although of no practical importance, tend to mask the degree of convergence, a comparison is now made of two solutions (a) 126 -vortex, 6 -point solution, with control points at $\eta=0.2,0.6$ and 0.8 and at 0.5 and $0.8 \dot{3}$ chord and (b) 328vortex, 12 -point solution, with control points at $\eta=0.2,0.5,0.7$, and 0.8 and at $0.25,0.5$ and 0.75 , chord. The solutions were standard solutions with the application of the centre line correction, and the additional condition was used that the local a.c. at the tip is at $0 \cdot 25$ chord. It has been explained in R. \& M. 2591 ${ }^{4}$ that this condition is a likely one in that it agrees with the assumption that the curvature of flow at the tip remains finite. The two solutions are given in Table 6, and Fig. 9 and show that, as far as the load coefficient and local aerodynamic centre are concerned, the solutions have converged for all practical purposes with respect to the alteration of lattice spacing and number of control points within the limits of the loading functions used. The slightly low value of $d C_{L} / d \alpha$ for the 126 -vortex solution is usual and is corrected by the formula given in R. \& M. 2591.
8. Examination of V-Wing.-A considerable amount of work, both theoretical and in the wind tunnel, is being carried out on the wing defined in report ${ }^{7} 11609$, i.e., a V-wing of aspect ratio 3 with uniform chord, and 45 deg of sweepback. This wing provides a more difficult case than a straight wing as it involves the important discontinuity in direction of trailing edge at
the wing centre, the effect of which it is required to establish. An examination is the more desirable in that it is intended to use this wing for a more detailed investigation into pressure distribution.
A plan of the wing is given in Fig. 6, showing the five points at $\eta=0,0.2$ and 0.8 at which the accuracy of the lattice calculations of downwash is to be gauged. Because of the time involved in calculating the accurate surface integrals, it has been necessary to limit the investigation to the spanwise distribution represented by $\left(1-\eta^{2}\right)^{1 / 2}$, and to one or two terms chordwise, but the results given for the rectangular wing in section 5 leave no doubt that this is sufficient to establish the general accuracy.
8.1. Exact values of the downwash w / V have been calculated by a surface integral for points $2,3,4,5$ for the vortex distribution $2\left(1-\eta^{2}\right)^{1 / 2} \cot \theta / 2$, and for point 1 for the distribution $2\left(1-\dot{\eta}^{2}\right)^{1 / 2}[\cot \theta / 2-\sin \theta]$. The variation for point 1 is necessary because the $\left(1-\eta^{2}\right)^{1 / 2}$ loading function does not contain the singularity which is present in the complete loading functions for a wing with discontinuity, the effect of which is to cause the downwash at points on the discontinuity to remain finite.
In the absence of the special spanwise loading functions it therefore becomes necessary to introduce the condition $k=0$ at the control point, k being the intensity of vorticity, but it is important to note that this does not invalidate the demonstration of convergence.

The evaluation of the surface integrals was undertaken by the Mathematics Division of the Laboratory, the required formulæ being given by W. P. Jones ${ }^{8}$ in R. \& M. 2145.
8.2. The true surface integrals, and values obtained by lattices of varying complexity are given for the five points in Tables 7, 8 and 9 . The major effort has been connected with the points at the half chord because previous experience has shown that accuracy is more difficult to obtain the further forward the control points are placed. The figures for points 1,2 , and 4 are plotted in Fig. 6. It will be seen that it is inadvisable generally to use a semi-range of less than $0 \cdot 3$, and, taking this value as the criterion, the lattice gives an answer exceedingly close to the exact value for point 2 when the $21 / 6,21 / 8,21 / 12$ or $41 / 12$ lattices are used. As regards point 4, this has been shown by past experience to be one of the most difficult points to deal with as it is near the tip and in the region of rapidly decreasing circulation. The results, however, show that the lattice calculations are convergent, there being a considerable improvement from the $21 / 6$ value of 0.909 to the $41 / 12$ value of 0.945 , the true value being 0.960 . There is no doubt that the calculations with an 81 lattice would give still closer agreement.
8.3. Finally, the values for point 1 obtained by the standard process are all high and do not appear to be converging to the exact value. As a result of this disagreement, the use of the process at a discontinuity was examined and it was decided that a slight modification was justifiable and necessary. The modification is shown in Fig. 7 which is concerned with that part of the wing in the neighbourhood of the discontinuity. The use of the standard lattice is equivalent in one respect to representing the area by the stepped diagram as shown. The rectangles represent the average area of the wing satisfactorily except that the one enclosing the discontinuity is too far forward. The modification consists in shifting this rectangle backwards as a unit with its enclosed pattern of vortices and control points to make the areas A and B equal. In the general, or non-symmetrical case, the shift backwards would be governed by averaging on the area CDEFGH.
The success of this modification is shown by the results given in Table 9, and in Fig. 6, where the figures of items 4,5 and 12 relating to the revised lattice, with the centre rectangle only shifted back 0.5 semiwidth of vortex, indicate satisfactory convergence to the true value of w / V.
8.4. Although convergence is not complete for points at the discontinuity and near the tip, it is at least certain that the values of w / V given by the latest lattice of 41 spanwise and 12 chordwise are very much nearer the exact values than those obtained by the lattice of 21 spanwise and 6 chordwise.

For point 1, the figures in the order 21/6 (original lattice, 0.2 semi-range), $41 / 12$ (modified lattice, $0 \cdot 3$ semi-range), and exact, are $2 \cdot 317,2 \cdot 163,2 \cdot 190$; for point $2,2 \cdot 082,2.089$ and $2 \cdot 085$; and for point $4,0.905,0.945$, and 0.960 .

The investigation can, if required, be carried to a further degree of accuracy, but the following work will show that it is doubtful whether such a step will be necessary.
9. Simplification of Downwash Calculations: Spanreise.-Before making a final assessment of the accuracy of solutions based on the 21/6 lattice which have previously been published, an account is given of a simplification of the work by employing the principle of interpolation. The simplification is such that it is easily possible to use the $41 / 12$ lattice, with the advantage of superior accuracy, and the demonstration of this gives an opportunity of expounding a quicker method of setting out the calculations.

Consider firstly a control point at $\eta=0$, or at the wing centre. It is obvious from published work, for example, Table 3 of R. \& M. 2591^{4} that the magnitude of the downwash factors rapidly diminishes as the distance from the control point increases, and the simplification is based on the omission of some of the smaller factors and their replacement by proportions of the factors retained.

A study of the rate of decrease of the factors showed that standard interpolation formulæ were not valid, except when the factors were very small. A successful method of interpolation was obtained by polynomial interpolation on the factors multiplied by y^{2}, where y is the displacement from the control point less one vortex width. The details of interpolation must be omitted due to lack of space, but there is no new principle involved and the final results only are given. In Table 10 are given the location of the spanwise vortices retained, and the factors to be applied to the downwash to compensate for the missing Stations. The results are given for $\eta=0,0.2,0.6$ and 0.8 and apply to any lattice of 41 spanwise. For $\eta=0$, only one half the wing need be included.

Plans have been made for further simplification by working on the chordwise distribution in a similar way, but this development must be omitted from the present report.
9.1 An example is now given of the details of the calculation of downwash (the short process) for point 1. By the use of a table of distances as shown in R. \& M. 25914, the downwash factors for 12 chordwise vortices, or 1 chordwise vortex near the tip, can be written down direct as shown in Table 11, being taken from critical and other tables from relative distances given on the calculating machine by a simple calculation. This table is converted direct to the composite factors for $\cot \theta / 2$, and $\sin \theta$ of Table 13 by using the appropriate factors given previously in Table 7 of R. \& M. 25914, and now augmented in Table 12 by the addition of figures for a 12 point solution. Another column of Table 13 gives $\left(1-\eta^{2}\right)^{1 / 2}$ increased by the interpolation factors of Table 10, and the downwash w/V corresponding to the vortex sheet $2 V\left(1-\eta^{2}\right)^{1 / 2}$ $[\cot \theta / 2-\sin \theta]$ is $\Sigma\left(1-\eta^{2}\right)^{1 / 2}$ (factors) $[\cot \theta / 2-\sin \theta]$ multiplied by a factor related to the lattice, in this case $20 / 3$. This integral becomes $2 \cdot 173$ as against the value of $2 \cdot 163$ obtained by the long process, and the exact value $2 \cdot 190$.

A selection of values obtained by the long and short processes, is given in Table 14 for comparison with the exact values for points 1 to 5 , and it will be seen that in every case the long can be replaced by the short without sacrificing any appreciable accuracy.
10. Accuracy of Published Solutions.-It is clear from these results that the figures given by the lattice of 41 spanwise and 12 chordwise, even if not exact, are very much closer to the exact values than those given by the previously used lattice of 21 spanwise and 6 chordwise, and this is true whether or not the short method of calculation is used. For example, in the order 21/6, $41 / 12$, and exact, the figures for point 1 are $2 \cdot 317,2 \cdot 173$, and $2 \cdot 190$; for point $2,2 \cdot 082,2 \cdot 104$, and $2 \cdot 085$; and for point $4,0.905,0.940$ and 0.960 .

Hence, a measure of the accuracy of the solutions already published and obtained by the use of the 21 lattice, can be found by computing further solutions based on calculations by the 41/12 lattice. The comparison is for the moment limited to the two quantities which have been the main objective of the work so far completed, i.e., the load grading and the aerodynamic centre, and it is not intended for this to be the final verdict on pressure distribution. Two eight point solutions have been calculated for the sweptback wing of Fig. 6, the first using the 21/6 lattice with semi-range 0.2 , and the second the equivalent of the $41 / 12$ lattice with semi-range $0 \cdot 3$, the values of the downwash being obtained however by the short process as described in section 9. For these solutions, the control points were located at $\eta=0,0.2,0.6$ and 0.8 and at 0.5 and $0.8 \dot{3}$ chord and the loading functions used were $\left(1-\eta^{2}\right)^{1 / 2} ; \eta^{2}\left(1-\eta^{2}\right)^{1 / 2}, \eta^{4}\left(1-\eta^{2}\right)^{1 / 2}$, with the special function $P=0.65 P_{a}+0.35 P_{b}$, as described in R. \& M. 2596^{9}, in order to allow for the centre-line correction. The values of the latter function used in the calculations, and applicable to the lattice of 41 spanwise, are given in Table 16.
10.1. The two solutions are given in Table 15 and have been plotted in Fig. 10 from which it will be seen that the agreement is remarkably good, the only difference being a slight variation in the curve of local aerodynamic centre. It is therefore concluded that the answer would be little different if the downwash integrals had been exact. Although the degree of agreement is surprising in view of the changes in individual downwash values, it supports other evidence that published solutions based on the $21 / 6$ integrals are sufficiently accurate. It is clear that the lattice representation adds something beneficial to lifting plane theory, presumably due to a favourable coupling between the downwash values, even though each is not necessarily given to close accuracy.
11. Conclusions.-The report has provided corroborative evidence that published potential solutions of spanwise load grading and local aerodynamic centre do not suffer appreciable inaccuracy on account of any defect in calculations of downwash at control points, and are therefore almost as if the downwashes had in fact been calculated to great exactitude by surface integrals.

Trial calculations by the writer have shown that the same methods and loading functions are likely to give convergence is detailed pressure distribution, but three or four terms instead of two may be needed in the region of a discontinuity. As the application of the work to practical problems must invariably involve wing thickness and viscosity, there is little point in paying minute attention to thin wing solutions. The effort should be put into finding the simplest variation to allow for wing thickness, concentrating first on load grading and local aerodynamic centre after which the detailed pressure distribution can receive attention.

In conclusion the writer wishes to acknowledge the help received from Dr. E. T. Goodwin and Mr. F. W. J. Olver of Mathematics Division, both in respect to advice received in discussion of some of the mathematical problems involved, including the use of statistics and interpolation, and in the general implication of the work of computing the surface integrals. Acknowledgments are also due to Mr. W. P. Jones, who has helped the writer considerably in elucidating some of the problems and difficulties concerned in the use of his surface integrals.

REFERENCES

REFERENCES-continued

No		Author			Title, etc.
3	V. M. Falkner				The Calculation of Aerodynamic Loading on Surfaces of any Shape. R. \& M. 1910.
4	V. M. Falkner				The Solution of Lifting Plane Problems by Vortex Lattice Theory. R. \& M. 2591. September, 1947.
5	W. P. Jones				Note on Lifting Plane Theory with Special Reference to Falkner's Approximate Method and a Proposed Electrical Device for Measuring Downwash Distribution. R. \& M. 2225.
6	Staff of Mathem	ics Divi	N.P.L.		Tables of Complete Downwash due to a Rectangular Vortex*. R. \& M. 2461. July, 1947.
7	V. M. Falkner	.	.	.	Proposed Work on Three-dimensional Potential Solutions. A.R.C. No. 11609.
8	W. P. Jones	\ldots		.	Theoretical Determination of the Pressure Distribution on a Finite Wing in Steady Motion. R. \& M. 2145.
9	V. M. Falkner	\ldots		\ldots	Calculated Loadings due to Incidence of a Number of Straight and Sweptback Wings. R. \&'M. 2596. June, 1948.

[^1]
APPENDIX

Tables supplementary to R. © M. 2461
Value of $-F$

	$Y=26$		$Y=28$		$Y=30$		$Y=32$	
$\pm X$	$X \quad$ +ve	$X \quad$-ve	X +ve	$X \quad$-ve	$X \quad$ +ve	X -ve	X +ve	$X \quad$-ve
0	$0 \cdot 00296$	$0 \cdot 00297$	$0 \cdot 00256$	0.00256	$0 \cdot 00222$	$0 \cdot 00222$	0.00196	0.00196
5	$0 \cdot 00240$	$0 \cdot 00353$	$0 \cdot 00210$	$0 \cdot 00301$	$0 \cdot 00186$	$0 \cdot 00259$	$0 \cdot 00166$	0.00225
10	$0 \cdot 00190$	0.00403	0.00170	0.00341	$0 \cdot 00152$	0.00293	0.00137	$0 \cdot 00254$
15	0.00148	0.00445	0.00135	0.00376	$0 \cdot 00123$	0.00322	0.00113	$0 \cdot 00278$
20	0.00115	$0 \cdot 00478$	0.00107	0.00404	$0 \cdot 00099$	0.00346	$0 \cdot 00092$	$0 \cdot 00299$
25	$0 \cdot 00091$	$0 \cdot 00502$						
30	$0 \cdot 00072$	$0 \cdot 00521$	0.00069	0.00442 0.00465	0.00065 0.00044	0.00380 0.00401	0.00062 0.00043	0.00329 0.00348 0.00360
40	0.00048	$0 \cdot 00545$	0.00046	0.00465 0.00478	0.00044 0.00032	0.00401 0.00413	0.00043 0.00031	0.00348 0.00360
50	0.00033	$0 \cdot 00560$	0.00033	0.00478	0.00032 0.00023	0.00413 0.00422	0.00031 0.00023	0.00360 0.00368
60	$0 \cdot 00024$	0.00569	$0 \cdot 00024$	0.00487	0.00023	0.00422	0.00023	0.00368
80	$0 \cdot 00015$	0.00578	$0 \cdot 00014$ 0.00009	0.00497 0.00502	0.00014 0.00010	$\begin{aligned} & 0 \cdot 00431 \\ & 0 \cdot 00435 \end{aligned}$		$0 \cdot 00382$
100	$0 \cdot 00010$	$0 \cdot 00583$	$0 \cdot 00009$				0.00009	
	$Y=$		$Y=$		$Y=$		$Y=$	
$\pm X$	X +ve	$X \quad$-ve	X +ve	$X \quad$-ve	X. +ve	X - ve	X +ve	X -ve
0	$0 \cdot 00173$	0.00173	0.00154	0.00154	0.00138	0.00138	$0 \cdot 00125$	$0 \cdot 00125$
5	$0 \cdot 00148$	0.00198	0.00134	0.00175	0.00120	0.00157	0.00110	0.00140
10	$0 \cdot 00124$	$0 \cdot 00222$	0.00113	0.00196	0.00103	$0 \cdot 00174$	$0 \cdot 00095$	0.00155
15	$0 \cdot 00103$	$0 \cdot 00243$	0.00095	0.00214	0.00088	0.00189	0.00081	$0 \cdot 00169$
20	$0 \cdot 00085$	$0 \cdot 00261$	$0 \cdot 00079$	0.00230	$0 \cdot 00074$	0.00203	0.00069	0.00181
30	0.00059	0.00287	0.00055	0.00254	$0 \cdot 00053$	0.00224 0.00239	0.00050 0.00037	0.00200 0.00213
40	$0 \cdot 00041$	0.00305	$0 \cdot 00040$	0.00269	0.00038	0.00239	0.00037	0.00213 0.00293
50	0.00030	0.00316	0.00029	0.00280	0.00028	0.00249 0.00255	0.00027 0.00021	0.00223 0.00229
60	0.00022	0.00324	$0 \cdot 00022$	$0 \cdot 00287$	0.00022 0.00009	0.00255 0.00268	0.00021 0.00009	0.00229 0.00241
100	$0 \cdot 00009$	$0 \cdot 00337$	$0 \cdot 00009$		0.00009		0.00009	$0 \cdot 00241$
		42	$Y=$	44	$Y=$	46		$=48$
$\pm X$	X +ve	$X \quad$-ve	X +ve	X-ve	$X \quad$-ve	$X \quad$-ve	X +ve	$X \quad-\mathrm{ve}$
0	0.00114	$0 \cdot 00114$	$0 \cdot 00104$	0.00104	0.00094	0.00094	$0 \cdot 00087$	$0 \cdot 00087$
5	$0 \cdot 00100$	$0 \cdot 00127$	$0 \cdot 00092$	0.00115	$0 \cdot 00084$	0.00105		
10	$0 \cdot 00087$	$0 \cdot 00140$	$0 \cdot 00081$	0.00126	0.00075	0.00114	$0 \cdot 00069$	$0 \cdot 00105$
20	0.00065	$0 \cdot 00162$	$0 \cdot 00060$	$0 \cdot 00147$	$0 \cdot 00057$	0.00132	$0 \cdot 00053$	0.00121
30	0.00047	0.00180	0.00045	0.00162	$0 \cdot 00043$	0.00146	0.00041	0.00133
40	0.00035	0.00192	0.00034	0.00173	0.00033	0.00156	0.00031	0.00143
60	$0 \cdot 00020$	0.00207	0.00020	0.00187	0.00020	$0 \cdot 00169$	0.00019	$0 \cdot 00155$
100	$0 \cdot 00009$	$0 \cdot 00218$	0.00009	0.00198	0.00009	$0 \cdot 00180$	$0 \cdot 00009$	0.00165

APPENDIX-continued

Value of $-F$ (continued)

	$Y=50$		$Y=52$		$Y=54$		$Y=56$	
$\pm X$	X +ve	$X \quad$-ve	$X \quad$ +ve	$X \quad$-ve	X +ve	X -ve	X +ve	$X \quad$-ve
0	$0 \cdot 00080$	$0 \cdot 00080$	$0 \cdot 00074$	$0 \cdot 00074$	$0 \cdot 00068$	$0 \cdot 00068$	$0 \cdot 00064$	$0 \cdot 00064$
10	$0 \cdot 00064$	0.00096	$0 \cdot 00060$	$0 \cdot 00088$	$0 \cdot 00056$	$0 \cdot 00081$	$0 \cdot 00052$	$0 \cdot 00076$
20	$0 \cdot 00050$	0.00110	0.00048	$0 \cdot 00100$	$0 \cdot 00045$	0:00092	$0 \cdot 00042$	$0 \cdot 00086$
30	$0 \cdot 00039$	0.00121						
40	$0 \cdot 00030$	0.00130	0.00029	0.00119	$0 \cdot 00028$	0.00109	$0 \cdot 00027$	0.00101
60	$0 \cdot 00019$	$0 \cdot 00141$	$0 \cdot 00018$	$0 \cdot 00130$	0.00018	0.00119	$0 \cdot 00017$	0.00111
	$0 \cdot 00008$		$0 \cdot 00008$	0.00140	0.00008	$0 \cdot 00129$	$0 \cdot 00008$	0.00111 0.00120
.								
	$Y=58$		$Y=60$		$Y=62$		$Y=64$	
$\pm X$	X +ve	$X \quad$-ve	$X+\mathrm{ve}$	$X \quad$-ve	$X \quad$ +ve	$X \quad$-ve	$X \quad$ +ve	X-ve
			$0 \cdot 00056$	$0 \cdot 00056$	$0 \cdot 00052$	$0 \cdot 00052$	$0 \cdot 00049$	$0 \cdot 00049$
0 10	$0 \cdot 00060$ $0 \cdot 00049$	$0 \cdot 00060$ $0 \cdot 00070$						
20	$0 \cdot 00040$	$0 \cdot 00079$	0.00038	$0 \cdot 00073$	0.00036	$0 \cdot 00068$	0.00034	$\begin{aligned} & 0 \cdot 00064 \\ & 0.00075 \end{aligned}$
40	0.00026	$0 \cdot 00093$	0.000250.00016	0.000860.00095	$0 \cdot 00024$	$0 \cdot 00080$	0.000230.00016	
60	$0 \cdot 00017$	0.00102			0.00016	0.00088		$\begin{aligned} & 0 \cdot 00075 \\ & 0 \cdot 00082 \end{aligned}$
100	$0 \cdot 00008$	$0 \cdot 00111$	$0 \cdot 00008$	$0 \cdot 00103$	$\stackrel{0}{0.00008}$	0.000880.00096	$0 \cdot 00008$	0.00082 0.00090
	$Y=$		$Y=$	68	$Y=$		$Y=$	
$\pm X$	$X \quad$ +ve	$X \quad$-ve	X +ve	$X \quad$-ve	$X .+\mathrm{ve}$	$X \quad$-ve	$X \quad$ +ve	X -ve
0	0.00046	0.00046	0.00044	$0 \cdot 00044$	$0 \cdot 00041$	$0 \cdot 00041$	$0 \cdot 00038$	
20	0.00033	$0 \cdot 00059$	$0 \cdot 00031$	$0 \cdot 00056$	$0 \cdot 00030$	$0 \cdot 00052$	$0 \cdot 00028$	$0 \cdot 00049$
40	$0 \cdot 00022$	$0 \cdot 00070$	0.00021	$0 \cdot 00066$	$0 \cdot 00021$	0.00061	$0 \cdot 00020$	0.00057
60 100	0.00015	0.00077	$0 \cdot 00015$	$0 \cdot 00072$	$0 \cdot 00014$	$0 \cdot 00068$	$0 \cdot 00014$	$0 \cdot 00063$
100	$0 \cdot 00008$	$0 \cdot 00084$	$0 \cdot 00008$	$0 \cdot 00079$	$0 \cdot 00007$	0.00075	$0 \cdot 00007$	0.00070

	$Y=74$	
$\pm X$	X +ve	$X \quad-\mathrm{ve}$
	' 0.00036	
0	$0 \cdot 00036$	$0 \cdot 00036$
20	$0 \cdot 00027$	$0 \cdot 00046$
40	0.00019	0.00054
60	0.00013	$0 \cdot 00060$
100	0.00007	$0 \cdot 00066$

APPENDIX-contimued

Values of $-4 F$

	$Y=53$		$Y=61$		$Y=69$		$Y=77$	
$\pm \frac{1}{4} X$	$X \quad$ +ve	$X \quad$-ve	X +ve	$X \quad-\mathrm{ve}$	$X \quad+\mathrm{ve}$	$X \quad$-ve	X +ve	$X \quad$-ve
0	0.00285	0.00285	$0 \cdot 00215$	0.00215	$0 \cdot 00168$	$0 \cdot 00168$	$0 \cdot 00135$	$0 \cdot 00135$
5	0.00184	$0 \cdot 00386$	0.00148	0.00282	0.00121	0.00215	$0 \cdot 00101$	$0 \cdot 00169$
10	0.00113	0.00457	$0 \cdot 00097$	$0 \cdot 00333$	0.00084	0.00232	$0 \cdot 00073$	$0 \cdot 00197$
20	$0 \cdot 00047$	$0 \cdot 00523$	0.00044	$0 \cdot 00386$	$0 \cdot 00041$	$0 \cdot 00295$	$0 \cdot 00038$	$0 \cdot 00232$
40	$0 \cdot 00014$	0.00556	0.00014	0.00416	0.00014	$0 \cdot 00322$	$0 \cdot 00013$	$0 \cdot 00257$
60 100	0.00007 0.00003	0.00563 0.00567	0.00003	$0 \cdot 00427$	$0 \cdot 00003$	$0 \cdot 00333$	$0 \cdot 00002$	$0 \cdot 00268$
100	$0 \cdot 0000$	-						

	$Y=85$		$Y=93$		$Y=101$		$Y=109$	
$\pm \frac{1}{4} X$	X +ve	$X \quad$-ve	$X \quad$ +ve	$X \quad$-ve	$X \quad$ +ve	$X \quad$-ve	$X \quad$ +ve	$X \quad$-ve
0	$0 \cdot 00110$	0.00110	$0 \cdot 00092$	$0 \cdot 00092$	0.00078	0.00078	0.00068	$0 \cdot 00068$
5	$0 \cdot 00085$	0.00136	$0 \cdot 00073$	$0 \cdot 00112$	$0 \cdot 00063$	$0 \cdot 00094$	0.00055	$0 \cdot 00080$
10	$0 \cdot 00064$	0.00157	$0 \cdot 00042$	$0 \cdot 00143$	$0 \cdot 00038$	0.00119	$0 \cdot 00035$	$0 \cdot 00100$
20	$0 \cdot 00035$	0.00186						
40	$0 \cdot 00013$	$0 \cdot 00208$						
50			$0 \cdot 00009$ 0.00002	0.00176 0.00183	$0 \cdot 00008$ 0.00002	0.00149 0.00155	$0 \cdot 00008$ 0.00002	0.00127 0.00133
100	$0 \cdot 00002$	0.00219	$0 \cdot 00002$	$0 \cdot 00183$	$0 \cdot 00002$	$0 \cdot 00155$	$0 \cdot 00002$	$0 \cdot 00133$

	$Y=117$		$Y=125$		$Y=133$		$Y=141$	
$\pm \frac{1}{4} X$	X +ve	$X \quad$-ve						
0	$0 \cdot 00058$	$0 \cdot 00058$	$0 \cdot 00051$	$0 \cdot 00051$	0.00045	0.00045	$0 \cdot 00040$	$0 \cdot 00040$
5	$0 \cdot 00049$	$0 \cdot 00068$	$0 \cdot 00043$	$0 \cdot 00059$	0.00038	$0 \cdot 00052$		
10	$0 \cdot 00032$	$0 \cdot 00085$	$0 \cdot 00029$	$0 \cdot 00073$	$0 \cdot 00027$	$0 \cdot 00063$	$0 \cdot 00029$	0.00051
25							$0 \cdot 00017$	$0 \cdot 00063$
50	$0 \cdot 00008$	$0 \cdot 00109$	0.00008	$0 \cdot 00094$	0.00008	$0 \cdot 00082$		
100	$0 \cdot 00002$	0.00115	$0 \cdot 00002$	$0 \cdot 00100$	$0 \cdot 00002$	0.00088	$0 \cdot 00002$	$0 \cdot 00078$

	$Y=149$		$Y=157$		$Y=165$		$Y=173$	
$\pm \frac{1}{4} X$	X +ve	$X \quad-\mathrm{ve}$	$X \quad$ +ve	X-ve	X +ve	$X \quad$-ve	$X \quad$ +ve	$X \quad-\mathrm{ve}$
0	$0 \cdot 00036$	$0 \cdot 00036$	$0 \cdot 00032$	$0 \cdot 00032$	$0 \cdot 00030$	$0 \cdot 00030$	$0 \cdot 00026$	$0 \cdot 00026$
10	$0 \cdot 00027$	$0 \cdot 00045$	$0 \cdot 00024$	$0 \cdot 00041$				
15					0.00019	$0 \cdot 00040$	$0 \cdot 00018$	$0 \cdot 00035$
25	$0 \cdot 00016$	$0 \cdot 00056$	$0 \cdot 00015$	$0 \cdot 00050$				
50					$0 \cdot 00007$	0.00052	$0 \cdot 00006$	0.00047 0.00051
100	0.00002	$0 \cdot 00070$	$0 \cdot 00002$	$0 \cdot 00063$	$0 \cdot 00002$	$0 \cdot 00057$	$0 \cdot 00002$	$0 \cdot 00051$

APPENDIX—continued

V alues of $-4 F$ (continued)

	$Y=181$		$Y=189$		$\dot{Y}=197$		$Y=205$	
$\pm{ }_{4}^{1} X$	X +ve	X-ve	X +ve	$X \quad$-ve	$X \quad$ +ve	$X \quad$-ve	X +ve	$X \quad-\mathrm{ve}$
0	$0 \cdot 00024$	0.00024	$0 \cdot 00022$	$0 \cdot 00022$	$0 \cdot 00020$	$0 \cdot 00020$	$0 \cdot 00019$	$0 \cdot 00019$
30	$0 \cdot 00011$	0.00038	$0 \cdot 00010$	0.00035	0.00010	$0 \cdot 00031$	$0 \cdot 00009$	0.00029
100	$0 \cdot 00002$	$0 \cdot 00047$	0.00002	$0 \cdot 00043$	0.00002	$0 \cdot 00039$	0.00002	$0 \cdot 00036$

	$Y=213$		$Y=221$		$Y=229$		$Y=237$	
$\pm \frac{1}{4} X$	X +ve	$X \quad$-ve	X +ve	$X \quad$-ve	X +ve	$X \quad$-ve	$X \quad$ +ve	X -ve
0	$0 \cdot 00018$	$0 \cdot 00018$	$0 \cdot 00016$	$0 \cdot 00016$	0.00016	0.00016	$0 \cdot 00014$	$0 \cdot 00014$
30	$0 \cdot 00009$	$0 \cdot 00026$	0.00009	$0 \cdot 00024$	$0 \cdot 00008$	$0 \cdot 00023$	$0 \cdot 00008$	$0 \cdot 00020$
100	$0 \cdot 00002$	$0 \cdot 00033$	$0 \cdot 00002$	0.00031	$0 \cdot 00002$	$0 \cdot 00029$	$0 \cdot 00002$	$0 \cdot 00026$

	$Y=245$		$Y=253$		$Y=261$		$Y=269$	
$\pm \frac{1}{4} X$.	X +ve	$X \quad$-ve	$X+\mathrm{ve}$	$X \quad$-ve	$X \quad$ +ve	X -ve	$X \quad$ +ve	$X \quad$-ve
0	$0 \cdot 00014$	$0 \cdot 00014$	$0 \cdot 00012$	0.00012	0.00012	$0 \cdot 00012$	$0 \cdot 00011$	$0 \cdot 00011$
30	$0 \cdot 00007$	$0 \cdot 00020$	$0 \cdot 00007$	0.00018	$0 \cdot 00007$	$0 \cdot 00016$	$0 \cdot 00007$	$0 \cdot 00018$
100	$0 \cdot 00002$	$0 \cdot 00025$	$0 \cdot 00002$	$0 \cdot 00023$	$0 \cdot 00002$	$0 \cdot 00021$	$0 \cdot 00002$	$0 \cdot 00020$

	$Y=277$		$Y=285$		$Y=293$		$Y=301$	
$\pm \frac{1}{4} X$	X +ve	X-ve	X +ve	$X \quad$-ve	X +ve	X-ve	$X \quad+\mathrm{ve}$	$X \quad-\mathrm{ve}$
0	$0 \cdot 00010$	$0 \cdot 00010$	$0 \cdot 00010$	$0 \cdot 00010$	0.00010	$0 \cdot 00010$	$0 \cdot 00009$	$0 \cdot 00009$
30	0.00006	$0 \cdot 00015$	$0 \cdot 00006$	0.00014	$0 \cdot 00006$	$0 \cdot 00013$	$0 \cdot 00006$	$0 \cdot 00012$
100	$0 \cdot 00002$	$0 \cdot 00019$	$0 \cdot 00002$	$0 \cdot 00018$	$0 \cdot 00002$	$0 \cdot 00017$	$0 \cdot 00002$	$0 \cdot 00016$

TABLE 1
Comparison of Induced Downwash Calculated by Lattice of Vortices for Several Gradings of $K / 4 s V$ with the Exact Values for Lifting-Line Theory

η	Places of decimals in factors	Spacing in terms of semi-span	Number of vortices	$\left(1-\eta^{2}\right)^{1 / 2}$		$\eta\left(1-\eta^{2}\right)^{1 / 2}$		$\eta^{2}\left(1-\eta^{2}\right)^{1 / 2}$		$\eta^{4}\left(1-\eta^{2}\right)^{1 / 2}$		$\eta^{6}\left(1-\eta^{2}\right)^{1 / 2}$		$\eta^{8}\left(1-\eta^{2}\right)^{1 / 2}$		$\eta^{10}\left(1-\eta^{2}\right)^{1 / 2}$	
				Lattice	Exact												
$\bigcirc{ }_{\sim} 0.2$	4	$0 \cdot 1$	21	1.003	$1 \cdot 000$												
0.5	4	$0 \cdot 1$	21	1.003	$1 \cdot 000$												
$0 \cdot 7$	4	$0 \cdot 1$	21			1-406	$1 \cdot 400$	$0 \cdot 978$	$0 \cdot 970$	$0 \cdot 360$	$0 \cdot 340$	$0 \cdot 001$	-0.023	$-0 \cdot 151$	-0.174	-0.192	-0.211
0.8	3	$0 \cdot 1$	21	$1 \cdot 007$	$1 \cdot 000$												
0.8	4	$0 \cdot 1$	21	1-004	$1 \cdot 000$	$1 \cdot 606$	$1 \cdot 600$	1.431	$1 \cdot 420$	0.991	$0 \cdot 963$	$0 \cdot 553$	$0 \cdot 508$	$0 \cdot 233$	$0 \cdot 177$	0.025	-0.034
$0 \cdot 8$	4	$0 \cdot 05$	41	1.006	$1 \cdot 000$			$1 \cdot 426$	$1 \cdot 420$			$0 \cdot 523$	0.508			-0.017	-0.034
0.9	4	$0 \cdot 05$	41	1-006	1.000											$1 \cdot 155$	1-106

TABLE 2
Rectangular Wing, Aspect Ratio 6: Six Point Solutions, $\eta=0.2$ and 0.8

Blenk-Argyris, based on surface integrals		Based on 84-vortex lattice	
a_{0}	$0 \cdot 06713$	a_{0}	$0 \cdot 06768$
a_{1}	$\bigcirc 0.00156$	a_{1}	-0.00095
a_{2}	- 0.00009	a_{2}	-0.00018
c_{0}	${ }^{0} 0.03196$	c_{0}	$0 \cdot 03468$
c_{1}	$\bigcirc 0.02312$	c_{1}	-0.02668
c_{2}	$\bigcirc 0.00474$	c_{2}	-0.00502
$d c_{L} / d \alpha$	'4.231'	$d c_{L} / d \alpha$	$4 \cdot 295$
a.c.	$0 \cdot 2391 \bar{c}$ behind L.E.	a.c.	$0.2393 \bar{c}$ behind L.E.

η	$C_{L L} / C_{L}$	Local a.c.	η	$C_{L L} / C_{L}$	Local a.c.
0	1-182	0.247	0	$1 \cdot 180$	$0 \cdot 249$
$0 \cdot 05$	$1 \cdot 182$	$0 \cdot 247$.	$0 \cdot 05$	$1 \cdot 179$	$0 \cdot 248$
$0 \cdot 10$	$1 \cdot 180$	$0 \cdot 247^{\circ}$	$0 \cdot 10$	$1 \cdot 178$	$0 \cdot 248$
$0 \cdot 15$	1-177	$0 \cdot 246$	$0 \cdot 15$	$1 \cdot 174$	$0 \cdot 248$
$0 \cdot 20$	1-173	0.246	$0 \cdot 20$	$1 \cdot 170$	0.247
$0 \cdot 25$	1-167	0.245	$0 \cdot 25$	$1 \cdot 165$	$0 \cdot 246$
$0 \cdot 30$	1-159	$0 \cdot 244$	$0 \cdot 30$	$1 \cdot 158$	$0 \cdot 245$
$0 \cdot 35$	$1 \cdot 149$	$0 \cdot 243$	$0 \cdot 35$	$1 \cdot 148$	0.244
$0 \cdot 40$	$1 \cdot 137$	0.242	$0 \cdot 40$	1.136	$0 \cdot 242$
0.45	$1 \cdot 122$	0.240	$0 \cdot 45$	$1 \cdot 121$	$0 \cdot 241$
$0 \cdot 50$	1.103	$0 \cdot 239$	$0 \cdot 50$	$1 \cdot 103$	$0 \cdot 239$
0.55	1.079	$0 \cdot 238$	$0 \cdot 55$	1.080	0.238
$0 \cdot 60$	1.051	$0 \cdot 236$	$0 \cdot 60$	1.052	$0 \cdot 236$
$0 \cdot 65$	$1 \cdot 015$	$0 \cdot 234$	$0 \cdot 65$	1.017	$0 \cdot 234$
$0 \cdot 70$	0.972	0.233	$0 \cdot 70$	0.973	$0 \cdot 232$
$0 \cdot 75$	0.917	$0 \cdot 231$	$0 \cdot 75$	0.920	$0 \cdot 230$
$0 \cdot 80$	$0 \cdot 849$	$0 \cdot 229$	$0 \cdot 80$	$0 \cdot 852$	$0 \cdot 227$
$0 \cdot 85$	$0 \cdot 761$	$0 \cdot 227$	$0 \cdot 85$	$0 \cdot 764$	$0 \cdot 225$
$0 \cdot 90$	$0 \cdot 644$	0.225	0.90	$0 \cdot 646$	$0 \cdot 223$
0.95	0.472	0.223	0.95	$0 \cdot 474$	$0 \cdot 221$
$1 \cdot 00$	$0 \cdot 000$:	0.221	$1 \cdot 00$	$0 \cdot 000$	0.218

a.c. abbreviation for aerodynamic centre
L.E. ," , leading edge

TABLE 3
Comparison of Computed Values of w/V at Mid-chord Positions on a Rectangular Wing of Aspect Ratio 6

Vortex sheet $k=2 V\left(1-\eta^{2}\right)^{1 / 2} \cot \theta / 2$					
Item	Integration		Point 1	Point 2	Point 3
1	W. P. Jones, exact surface integral		$1 \cdot 270$	$1 \cdot 163$	$0 \cdot 931$
2	Lattice 21 to span, 4 to chord, semi-range 0.2		$1 \cdot 259$	1.152	0.914
3	Lattice 21 to span, 4 to chord, semi-range 0.4		1-264	1.156	0.918
4	Lattice 21 to span, 4 to chord, semi-range 0.5		1.264	1.156	0.918
5	Lattice 21 to span, 6 to chord, semi-range $0 \cdot 2$		$1 \cdot 263$	$1 \cdot 157$	$0 \cdot 920$
6	Lattice 21 to span, 6 to chord, semi-range 0.4		$1 \cdot 267$	1.159	0.923
7	Lattice 21 to span, 8 to chord, semi-range $0 \cdot 2$				$0 \cdot 920$
8	Lattice 21 to span, 8 to chord, semi-range 0.4				0.923
9	Lattice 21 to span, 8 to chord, semi-range 0.5				0.923
10	Lattice 41 to span, 4 to chord, semi-range 0.1		$1 \cdot 238$	1.135	$0 \cdot 908$
11	Lattice 41 to span, 4 to chord, semi-range $0 \cdot 2$		$1 \cdot 263$	$1 \cdot 156$	$0 \cdot 920$
12	Lattice 41 to span, 4 to chord, semi-range 0.3		$1 \cdot 267$	1.159	$0 \cdot 922$
13	Lattice 41 to span, 8 to chord, semi-range $0 \cdot 2$				0.926
14	Lattice 41 to span, 8 to chord, semi-range $0 \cdot 3$				0.928

- Vortex sheet $k=2 V \eta\left(1-\eta^{2}\right)^{1 / 2} \cot \theta / 2$

Item	Integration		Point 1	Point 2	Point 3
15	\dot{W}. P. Jones, exact surface integral		$0 \cdot 316$	$0 \cdot 738$	$1 \cdot 003$
16	Lattice 21 to span, 4 to chord, semi-range $0 \cdot 2$.	$0 \cdot 313$	$0 \cdot 729$	0.982
17	Lattice 21 to span, 4 to chord, semi-range 0.4		$0 \cdot 313$	0.729	0.983
18	Lattice 21 to span, 4 to chord, semi-range $0 \cdot 5$		$0 \cdot 313$	$0 \cdot 729$	0.983
19	Lattice 21 to span, 6 to chord, semi-range $0 \cdot 2$.	$0 \cdot 314$	$0 \cdot 733$	0.989
20	Lattice 21 to span, 6 to chord, semi-range 0.4	.	$0 \cdot 314$	$0 \cdot 732$	0.989
21	Lattice 41 to span, 4 to chord, semi-range $0 \cdot 2$.	$0 \cdot 313$	$0 \cdot 730$	0.983
22	Lattice 41 to span, 4 to chord, semi-range $0 \cdot 3$		$0 \cdot 314$	$0 \cdot 730$	
23	Lattice 41 to span, 8 to chord, semi-range $0 \cdot 2$				0.993
24	Lattice 41 to span, 8 to chord, semi-range $0 \cdot 3$.			0.994

TABLE 4
Comparison of Computed Values of w/V at Mid-chord Positions on a Rectangular Wing of Aspect Ratio 6

Vortex sheet $k=2 V \eta^{2}\left(1-\eta^{2}\right)^{1 / 2} \cot \theta / 2$					
Item	Integration		Point 1	Point 2	Point 3
1	W. P. Jones, exact surface integral		-0.088	$0 \cdot 287$	$0 \cdot 856$
2	Lattice 21 to span, 4 to chord, semi-range $0 \cdot 2$		-0.082	$0 \cdot 287$	$0 \cdot 838$
3	Lattice 21 to span, 4 to chord, semi-range $0 \cdot 4$		-0.080	$0 \cdot 288$	$0 \cdot 838$
4	Lattice 21 to span, 4 to chord, semi-range 0.5		-0.080	$0 \cdot 288$	$0 \cdot 838$
5	Lattice 21 to span, 6 to chord, semi-range 0.2		-0.083	$0 \cdot 288$	$0 \cdot 845$
6	Lattice 21 to span, 6 to chord, semi-range 0.4		-0.082	$0 \cdot 288$	$0 \cdot 845$
7	Lattice 41 to span, 4 to chord, semi-range $0 \cdot 1$		-0.086	$0 \cdot 282$	0.836
8	Lattice 41 to span, 4 to chord, semi-range $0 \cdot 2$		-0.083	$0 \cdot 288$	0.839
9	Lattice 41 to span, 4 to chord, semi-range 0.3		-0.081	$0 \cdot 288$	0.839
10	Lattice 41 to span, 8 to chord, semi-range $0 \cdot 2$				0.847
11	Lattice 41 to span, 8 to chord, semi-range $0 \cdot 3$				$0 \cdot 848$

Vortex sheet $k=2 V \eta^{4}\left(1-\eta^{2}\right)^{1 / 2} \cot \theta / 2$

Item	Integration		Point 1	Point 2	Point 3
12	Lattice 21 to span, 4 to chord, semi-range 0.2		-0.053	-0.010	$0 \cdot 558$
13	Lattice 21 to span, 4 to chord, semi-range 0.4	\cdots	-0.052	-0.010	$0 \cdot 558$
14	Lattice 21 to span, 4 to chord, semi-range 0.5	.	-0.052	-0.010	$0 \cdot 558$
15	Lattice 21 to span, 6 to chord, semi-range $0 \cdot 2$		-0.053	-0.011	$0 \cdot 563$
16	Lattice 21 to span, 6 to chord, semi-range 0.4	.	-0.052	-0.011	$0 \cdot 563$
17	Lattice 41 to span, 4 to chord, semi-range 0.1	.	-0.053	-0.015	$0 \cdot 552$
18	Lattice 41 to span, 4 to chord, semi-range 0.2	.	-0.053	-0.012	$0 \cdot 553$
19	Lattice 41 to span, 4 to chord, semi-range 0.3		-0.052	-0.012 .	0.553
20	Lattice 41 to span, 8 to chord, semi-range $0 \cdot 2$	\cdots	-052	-0.012.	0.559
21	Lattice 41 to span, 8 to chord, semi-range 0.3				0.559

TABLE 5

Downwash at Points on an Infinite Yawed Wing obtained by Summation of Effects of a Lattice of Vortices

Description	Point	w / V
True value for all points		$0 \cdot 707$
1 vortex on chord, chord $=8 y_{v} \ldots$	1	$0 \cdot 722$
4 vortices on chord, chord $=8 y_{v}$	2	0.704
	3	0.705
6 vortices on chord, chord $=8 y_{v}$	4	0.706
	5	$0 \cdot 705$
6 vortices on chord, chord $=6 y_{v}$	6	$0 \cdot 705$
	7	$0 \cdot 706$

TABLE 6
Comparison of Two Solutions for a Triangular Wing

	126 vortex, 6 point		328 vortex, 12 point	
$d c_{L} / d \alpha$	$2 \cdot 513$		$2 \cdot 590$	
η	Load coeff.	Local a.c.	Load coeff.	Local a.c.
0	$1 \cdot 328$	$0 \cdot 298$	1-335	$0 \cdot 302$
$0 \cdot 05$	1-326	$0 \cdot 297$	1-333	0.302
$0 \cdot 10$	$1 \cdot 320$	$0 \cdot 297$	1-327	$0 \cdot 301$
$0 \cdot 15$	$1 \cdot 310$	0.295	$1 \cdot 317$	0.299
$0 \cdot 20$	$1 \cdot 296$	0.293	1-303	$0 \cdot 297$
$0 \cdot 25$	$1 \cdot 278$	$0 \cdot 291$	1-285	$0 \cdot 294$
$0 \cdot 30$	$1 \cdot 256$	$0 \cdot 288$	1.262	$0 \cdot 291$
$0 \cdot 35$	1-228	$0 \cdot 285$	1.235	$0 \cdot 288$
$0 \cdot 40$	1-196	$0 \cdot 282$	1-202	$0 \cdot 284$
0.45	$1 \cdot 158$	$0 \cdot 278$	$1 \cdot 163$	$0 \cdot 279$
$0 \cdot 50$	$1 \cdot 115$	$0 \cdot 274$	$1 \cdot 119$	$0 \cdot 275$
0.55	1.065	0.270	1-068	$0 \cdot 270$
$0 \cdot 60$	1.008	$0 \cdot 266$	1.009	$0 \cdot 266$
$0 \cdot 65$	0.944	$0 \cdot 262$	0.943	$0 \cdot 261$
$0 \cdot 70$	0.873	$0 \cdot 258$	$0 \cdot 868$	$0 \cdot 257$
$0 \cdot 75$.0:792	. $0: 254$. $0 \cdot 784$	$0 \cdot 253$
$0 \cdot 80$	$0 \cdot 701$	$0 \cdot 252$	$0 \cdot 690$	$0 \cdot 250$
$0 \cdot 85$	0.598	$0 \cdot 250$	$0 \cdot 584$	$0 \cdot 248$
0.90	$0 \cdot 478$	$0 \cdot 248$	$0 \cdot 462$	$0 \cdot 247$
0.95	$0 \cdot 328$	$0 \cdot 248$	$0 \cdot 314$	$0 \cdot 247$
$1 \cdot 00$	$0 \cdot 000$	$0 \cdot 250$	$0 \cdot 000$	$0 \cdot 250$

TABLE 7
Computed Values of w/V for a Sweptback Wing of Aspect Ratio 3 Corresponding to the Vortex Sheet $k=2 V\left(1-\eta^{2}\right)^{1 / 2} \cot \theta / 2$

Item	Integration	Point 2
1	Surface integral using formula given by W. P. Jones	$2 \cdot 085$
2	Lattice 21 to span, 4 to chord, semi-range $0 \cdot 2$..	$2 \cdot 120$
3	Lattice 21 to span, 4 to chord, semi-range 0.3	$2 \cdot 128$
4	Lattice 21 to span, 6 to chord, semi-range 0.2	$2 \cdot 082$
5	Lattice 21 to span, 6 to chord, semi-range 0.3	$2 \cdot 086$
6	Lattice 21 to span, 8 to chord, semi-range 0.2	$2 \cdot 077$
7	Lattice 21 to span, 8 to chord, semi-range 0.3	$2 \cdot 080$
8	Lattice 21 to span, 12 to chord, semi-range $0 \cdot 2$	$2 \cdot 087$
9	Lattice 21 to span, 12 to chord, semi-range 0.3	$2 \cdot 088$
10	Lattice 41 to span, 8 to chord, semi-range $0 \cdot 2$	$2 \cdot 099$
11	Lattice 41 to span, 8 to chord, semi-range 0.3	$2 \cdot 104$
12	Lattice 41 to span, 12 to chord, semi-range $0 \cdot 2$	$2 \cdot 084$
13	Lattice 41 to span, 12 to chord, semi-range $0 \cdot 3$..	$2 \cdot 089$

TABLE 8
Computed Values of w/V for a Sweptback Wing of Aspect Ratio 3 Corresponding to the Vortex Sheet $k=2 V\left(1-\eta^{2}\right)^{1 / 2} \cot \theta / 2$

Item	Integration	Point 4
1	Surface integral using formula given by W. P. Jones	0.960
2	Lattice 21 to span, 6 to chord, semi-range $0 \cdot 2 \quad \ldots$	0.905
3	Lattice 21 to span, 6 to chord, semi-range 0.3 .	0.909
4	Lattice 21 to span, 8 to chord, semi-range 0.2	0.917
5	Lattice 21 to span, 8 to chord, semi-range 0.3	0.920
6	Lattice 21 to span, 12 to chord, semi-range $0 \cdot 2$	0.931
7	Lattice 21 to span, 12 to chord, semi-range $0 \cdot 3$	0.934
8	Lattice 41 to span, 8 to chord, semi-range $0 \cdot 2$	0.941
9	Lattice 41 to span, 8 to chord, semi-range $0 \cdot 3$	0.945
10	Lattice 41 to span, 12 to chord, semi-range $0 \cdot 2$	0.943
11	Lattice 41 to span, 12 to chord, semi-range $0 \cdot 3$	0.945

TABLE 9
Computed Values of w/V for a Sweptback. Wing of Aspect Ratio 3 Corresponding to the Vortex Sheet $k=2 V\left(1-\eta^{2}\right)^{1 / 2}(\cot \theta / 2-\sin \theta)$

Item	Integration	Point 1		
		$2 V\left(1-\eta^{2}\right)^{1 / 2} \cot \theta / 2$	$2 V\left(1-\eta^{2}\right)^{1 / 2} \sin \theta$	Difference
1	Surface integral using formula given by W. P. Jones			$2 \cdot 190$
2	Lattice 21 to span, 6 to chord, semi-range $0 \cdot 2$.	3.875	1.558	$2 \cdot 317$
3	Lattice 21 to span, 6 to chord, semi-range 0.3.	3.874	$1 \cdot 555$	$2 \cdot 319$
4	Revised lattice 21 to span, 6 to chord, semirange $0 \cdot 2$..	$3 \cdot 461$	$1 \cdot 337$	$2 \cdot 124$
5	Revised lattice 21 to span, 6 to chord, semirange $0 \cdot 3$.	3.459	1.335	$2 \cdot 124$
6	Lattice 21 to span, 8 to chord, semi-range $0 \cdot 2$.	$3 \cdot 826$	1.548	$2 \cdot 278$
7	Lattice 21 to span, 8 to chord, semi-range $0 \cdot 3$.	$3 \cdot 825$	1.547	$2 \cdot 278$
8	Lattice 21 to span, 12 to chord, semi-range $0 \cdot 2$	$3 \cdot 813$	1.554	$2 \cdot 259$
9	Lattice 21 to span, 12 to chord, semi-range 0.3	$3 \cdot 809$	$1 \cdot 552$	$2 \cdot 257$
10	Lattice 41 to span, 8 to chord, semi-range $0 \cdot 3$.	$4 \cdot 362$	$2 \cdot 034$	$2 \cdot 328$
11	Lattice 41 to span, 12 to chord, semi-range 0.3	$4 \cdot 274$	$2 \cdot 000$	$2 \cdot 274$
12	Revised lattice 41 to span, 12 to chord, semirange $0 \cdot 2$.	$3 \cdot 903$	1.740	2.163
13	Revised lattice 41 to span, 12 to chord, semirange $0 \cdot 3$.	3.901	1.738	$2 \cdot 163$

TABLE 10
Simplification of Doronwash Calculations by Omission of Vortices, and Factorial Treatment of those Retained

* Position of control point

$\eta=0$		$\eta=0 \cdot 2$	
Station retained	Factor	Station retained	Factor
$\begin{aligned} & 0^{*} \\ & 0 \cdot 05 \\ & 0 \cdot 10 \\ & 0 \cdot 15 \\ & 0 \cdot 20 \\ & 0.40 \\ & 0 \cdot 60 \\ & 0 \cdot 80 \\ & 0.98125 \end{aligned}$	$\begin{gathered} 1 \\ 2 \\ 2 \\ 2 \\ 3 \cdot 0154 \\ 13 \cdot 1458 \\ 2 \cdot 1118 \\ 13 \cdot 7270 \\ 2 \end{gathered}$	0.98125 0.80 0.60 $.0 \cdot 40$ 0.35 0.30 0.25 $0.20 *$ $0 \cdot 15$ $.0 \cdot 10$ 0.05 0.00 -0.20 -0.40 -0.60 -0.80 -0.98125	$\begin{aligned} & 1 \\ & 5 \cdot 0302 \\ & 5 \cdot 4023 \\ & 1 \cdot 5675 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \cdot 5 \\ & 6 \cdot 5077 \\ & 2 \cdot 4717 \\ & 2 \cdot 1195 \\ & 3 \cdot 5571 \\ & 6 \cdot 3440 \\ & 1 \end{aligned}$
Total	41	Total	41

$\eta=0 \cdot 6$		$\eta=0.8$	
Station retained	Factor	Station retained	Factor
$0 \cdot 98125$	1	$0 \cdot 98125$	1
$0 \cdot 9$	$2 \cdot 9097$	$0 \cdot 95$	1
$0 \cdot 8$	$1 \cdot 0625$	$0 \cdot 90$	1
0.75	$1 \cdot 0278$	$0 \cdot 85$	1
$0 \cdot 70$	1	0.80*	1
$0 \cdot 65$	1	$0 \cdot 75$	1
$0 \cdot 60^{*}$	1	$0 \cdot 70$	1
0.55	1	0.65	1
$0 \cdot 50$	1	$0 \cdot 6$	$1 \cdot 5077$
0.45	1	$0 \cdot 4$	$6 \cdot 4717$
$0 \cdot 4$	$1 \cdot 5077$	$0 \cdot 2$	1.8053
$0 \cdot 2$	$6 \cdot 4717$	0	$5 \cdot 4700$
$0 \cdot 0$	$1 \cdot 8053$	-0.2	$1 \cdot 7453$
-0.2	$5 \cdot 4700$	-0.4	8.75
-0.4	3.8078	--0.6	-2.50
-0.6	$1 \cdot 3750$	-0.8	$8 \cdot 75$
-0.8	$7 \cdot 5625$	-0.98125	1
-0.98125	1		
Total	41	Total	41

TABLE 11
Factors for Integration of Dowweash at Point 1. Short Process

0	0.05	0.10	0.15	0.20	0.4	0.6	0.8	0.98125
4.007	-1.325	-0.255	-0.100	-0.048	-0.006	-0.002	-0.0008	-0.0001
4.010	-1.320	-0.248	-0.092	-0.041	-0.005	-0.002		
4.016	-1.310	-0.233	-0.078	-0.033	-0.004	-0.002		
4.032	-1.282	-0.197	-0.058	-0.024	-0.004	-0.001		
4.088	-1.166	-0.127	-0.037	-0.017	-0.003	-0.001		
4.691	-0.501	-0.062	-0.023	-0.012	-0.003	-0.001		
-0.691	-0.104	-0.031	-0.014	-0.008	-0.002	-0.001		
-0.088	-0.038	-0.017	-0.010	-0.006	-0.002	-0.001		
-0.032	-0.019	-0.011	-0.007	-0.005	-0.002	-0.001		
-0.016	-0.011	-0.007	-0.005	-0.004	-0.001	-0.001		
-0.010	-0.007	-0.005	-0.004	-0.003	-0.001	-0.001		
-0.007	-0.005	-0.004	-0.003	-0.002	-0.001	-0.001		

TABLE 12
Factors to Represent Chordwise Functions as Line Vortices

Solution	Position on chord from L.E.	$\cot \theta / 2$	$\sin \theta$	$\sin 2 \theta$
	0.0417	0.1612	0.0099	0.0182
	0.1250	0.0771	0.0175	0.0262
	0.2083	0.0550	0.0215	0.0250
	0.2917	0.0435	0.0240	0.0201
	0.3750	0.0358	0.0257	0.0128
	0.4583	0.0301	0.0264	0.0044
	0.5417	0.0254	0.0264	-0.0044
	0.6250	0.0215	0.0257	-0.0128
	0.7083	0.0179	0.0240	-0.0201
	0.7917	0.0145	0.0215	-0.0250
	0.8750	0.0110	0.0175	-0.0262
	0.9853	0.0070	0.0099	-0.0182

TABLE 13

Station	$\cot \theta / 2$	$\sin \theta$	$(1-\eta)^{1 / 2} \times$ factors
0	1.61851	0.50000	1
0.05	-0.50407	-0.14293	1.9974
0.10	-0.08956	-0.02330	1.9900
0.15	-0.03288	-0.00823	1.9774
0.2	-0.01525	-0.00388	2.9545
0.4	-0.00211	-0.00069	12.0481
0.6	-0.00079	-0.00030	1.6894
0.8	-0.00040	-0.00015	8.2362
0.98125	-0.00005	-0.00002	0.3854

TABLE 14
Comparison of Short and Long Processes for Downwash Calculation

Vortex Sheet	Solution	Point				
		1	2	3	4	5
$2 V\left(1-\eta^{2}\right)^{1 / 2}(\cot \theta / 2-\sin \theta)$	Exact 41/12 Long 41/12 Short	$\begin{aligned} & 2 \cdot 190 \\ & 2 \cdot 162 \\ & 2 \cdot 173 \end{aligned}$				
$2 V\left(1-\eta^{2}\right)^{1 / 2} \cot \theta / 2$	Exact 41/12 Long 41/12 Short		$\begin{aligned} & 2 \cdot 08 \\ & 2 \cdot 089 \\ & 2 \cdot 104 \end{aligned}$	$\begin{aligned} & 2 \cdot 08 \\ & 2 \cdot 114 \end{aligned}$	$\begin{aligned} & 0.96 \\ & 0.945 \\ & 0.940 \end{aligned}$	$\begin{aligned} & 1 \cdot 21 \\ & 1 \cdot 206 \end{aligned}$
$2 V\left(1-\eta^{2}\right)^{1 / 2} \sin 2 \theta$	41/12 Long 41/12 Short				$\begin{aligned} & 0.925 \\ & 0.925 \end{aligned}$	
$\underline{2 V \eta^{2}\left(1-\eta^{2}\right)^{1 / 2} \cot \theta / 2}$	41/12 Long 41/12 Short				$\begin{aligned} & 0.652 \\ & 0.652 \end{aligned}$	
$2 V P_{65 / 35} \cot \theta / 2$	41/12 Long 41/12 Short				$\begin{aligned} & 0.769 \\ & 0.769 \end{aligned}$	
$2 V P_{65 / 35} \sin 2 \theta$	41/12 Long 41/12 Short				$\begin{aligned} & 0.531 \\ & 0.530 \end{aligned}$	

TABLE 15
Comparison of Two Solutions for Sweptback Wing

η	Solution based on original 21/6 lattice		Solution based on 41/12 lattice, short process	
	$C_{L L}$	Local a.c.	$\mathrm{C}_{L L}$	Local a.c.
0	1.030	$0 \cdot 340$	$1 \cdot 030$	
$0 \cdot 05$	1.045	$0 \cdot 326$	1.046	$0 \cdot 324$
$0 \cdot 10$	1.072	$0 \cdot 302$	1.073	$0 \cdot 300$
$0 \cdot 15$	1.093	0. 286	1.095	$0 \cdot 283$
$0 \cdot 20$	$1 \cdot 110$	$0 \cdot 273$	$1 \cdot 112$	0.270
$0 \cdot 25$	1-122	0.264	1. 125	0. 261
$0 \cdot 30$	$1 \cdot 132$	0.258	1.134	0.255
$0 \cdot 35$	1-138	$0 \cdot 253$	$1 \cdot 141$	$0 \cdot 249$
$0 \cdot 40$	1-142	$0 \cdot 248$	$1 \cdot 144$	$0 \cdot 244$
$0 \cdot 45$	1-141	$0 \cdot 243$	1.143	$0 \cdot 239$
$0 \cdot 50$	1. 136	$0 \cdot 237$	1. 136	$0 \cdot 234$
$0 \cdot 55$	1.124	$0 \cdot 231$	1.124	$0 \cdot 228$
$0 \cdot 60$	$1 \cdot 105$	$0 \cdot 223$	1-105	$0 \cdot 221$
$0 \cdot 65$	1.077	$0 \cdot 214$	1.076	0.213
$0 \cdot 70$	1.037	$0 \cdot 204$	1.036	$0 \cdot 203$
$0 \cdot 75$	0.984	$0 \cdot 191$	0.982	0.192
$0 \cdot 80$	0.912	$0 \cdot 177$	$0 \cdot 910$	0.179
$0 \cdot 85$	$0 \cdot 817$	$0 \cdot 159$	$0 \cdot 814$	0.163
0.90	0.689	0. 138	$0 \cdot 686$	$0 \cdot 145$
0.95	0.501	$0 \cdot 114$	$0 \cdot 498$	$0 \cdot 124$
$1 \cdot 00$	$0 \cdot 000$	$0 \cdot 086$	$0 \cdot 000$	$0 \cdot 099$
$d c_{L} / d \alpha$	$2 \cdot 714$		$2 \cdot 671$	
a.c.	$0 \cdot 926 \bar{c}$ behind apex		$0.924 \stackrel{\rightharpoonup}{c}$ behind apex	

TABLE 16
Values of P_{a} and P_{b} for 0.05 Lattice

η	P_{a}			P_{b}			$0.65 P_{a}+0.35 P_{b}$		
	True	$\begin{gathered} 0 \cdot 05 \\ \text { lattice } \end{gathered}$	w / V	True	$\begin{gathered} 0 \cdot 05 \\ \text { lattice } \end{gathered}$	w / V	True	$\begin{gathered} 0.05 \\ \text { lattice } \end{gathered}$	w / V
0	$0 \cdot 1431$	$0 \cdot 1480$	$1 \cdot 0$	$0 \cdot 2420$	$0 \cdot 2451$	$1 \cdot 00$	$0 \cdot 1777$	$0 \cdot 1820$	1.0000
$0 \cdot 05$	$0 \cdot 1258$	$0 \cdot 1268$	0.5	$0 \cdot 2305$	$0 \cdot 2317$	$0 \cdot 75$	$0 \cdot 1624$	0.1635	$0 \cdot 5875$
$0 \cdot 10$	$0 \cdot 0989$	$0 \cdot 0970$	0	$0 \cdot 2073$	$0 \cdot 2077$	$0 \cdot 50$	$0 \cdot 1368$	0.1358	0.1750
$0 \cdot 15$	$0 \cdot 0836$	$0 \cdot 0830$	0	0. 1795	$0 \cdot 1793$	0.25	$0 \cdot 1172$	$0 \cdot 1167$	$0 \cdot 0875$
$0 \cdot 20$	$0 \cdot 0737$	$0 \cdot 0733$	0	$0 \cdot 1531$	0.1518	0	$0 \cdot 1014$	0.1008	0
$0 \cdot 25$	$0 \cdot 0661$	0.0659	0	0.1352	$0 \cdot 1347$	0	$0 \cdot 0903$	$0 \cdot 0900$	0
0.30	$0 \cdot 0599$	$0 \cdot 0598$	0	$0 \cdot 1218$	$0 \cdot 1215$	0	0.0816	$0 \cdot 0814$	0
$0 \cdot 35$	$0 \cdot 0547$	$0 \cdot 0546$	0	$0 \cdot 1107$	0.1105	0	0.0743	0.0741	0
$0 \cdot 40$	$0 \cdot 0500$	$0 \cdot 0500$	0	$0 \cdot 1010$	$0 \cdot 1009$	0	$0 \cdot 0679$	$0 \cdot 0678$	0
$0 \cdot 45$	$0 \cdot 0458$	$0 \cdot 0458$	0	$0 \cdot 0924$	$0 \cdot 0924$	0	$0 \cdot 0622$	$0 \cdot 0622$	0
$0 \cdot 50$	$0 \cdot 0420$	$0 \cdot 0420$	0	$0 \cdot 0846$	$0 \cdot 0846$	0	$0 \cdot 0569$	0.0569	0
0.55	$0 \cdot 0384$	$0 \cdot 0384$	0	$0 \cdot 0773$	$0 \cdot 0773$	0	$0 \cdot 0520$	$0 \cdot 0520$	0
$0 \cdot 60$	$0 \cdot 0350$	0.0350	0	$0 \cdot 0704$	$0 \cdot 0704$	0	$0 \cdot 0474$	$0 \cdot 0474$	0
$0 \cdot 65$	0.0318	0.0318	0	$0 \cdot 0638$	$0 \cdot 0638$	0	$0 \cdot 0430$	$0 \cdot 0430$	0
$0 \cdot 70$	$0 \cdot 0286$	0.0286	0	$0 \cdot 0573$	$0 \cdot 0573$	0	$0 \cdot 0386$	$0 \cdot 0386$	0
$0 \cdot 75$	$0 \cdot 0254$	$0 \cdot 0254$	0	$0 \cdot 0509$	0.0509	0	0.0343	0.0343	0
$0 \cdot 80$	$0 \cdot 0221$	$0 \cdot 0221$	0	0.0443	$0 \cdot 0443$	0	$0 \cdot 0299$	$0 \cdot 0299$	0
$0 \cdot 85$	$0 \cdot 0187$	$0 \cdot 0187$	0	0.0374	0.0374	0	$0 \cdot 0252$	0.0252	0
$0 \cdot 90$	0.0149	0.0149	0	$0 \cdot 0299$	0.0299	0	0.0201	0.0201	0
0.95	$0 \cdot 0103$	$0 \cdot 0103$	0	$0 \cdot 0206$	$0 \cdot 0206$	0	$0 \cdot 0139$	$0 \cdot 0139$	0
$0 \cdot 9625$	$0 \cdot 0089$		0	$0 \cdot 0178$		0	$0 \cdot 0120$		0
$0 \cdot 98125$	0.0062	$0 \cdot 0062$	0	$0 \cdot 0125$	0.0125	0	$0 \cdot 0084$	$0 \cdot 0084$	0
$1 \cdot 00$	$0 \cdot 0000$	$0 \cdot 0000$	0	$0 \cdot 0000$	$0 \cdot 0000$	0	$0 \cdot 0000$	$0 \cdot 0000$	0

Fig. 1. Induced downwash for $K / 4 s V=\left(1-\eta^{2}\right)^{1 / 2}$ calculated by lattice of vortices.

Approximation 1.
Single vortex at $1 / 2$ chord, contral point at I chord, Analysis limited to $\cot \theta / 2$ for which $w / V=$ const. Hence, vortex and control point can be moved forward to $1 / 4$ and $3 / 4$ chord making vortex coincide with C.P. of continuous load.
Downwash correct for 2 dimensions, in error for 3 dimensions.

Approximation 2 (typical).
Four vortices at $1,3,5$ and 7 eighths chord. Control points at $1 / 4,1 / 2$ and $3 / 4$ chord C.P's of four vortices for $\cot \theta / 2, \sin \theta$ and $\sin 2 \theta$ are 0.313 , $0 \cdot 5, \infty$ instead of values of $0.25,0.5, \infty$ based on continuous loading. The wing loading is based on the continuous representation, and attempted adjustment of vortices would have neglible effect on solution.
Downwash correct for 2 dimensions, and error for 3 dimensions greatly reduced.

Approximation n.

Large number of vortices spaced regularly.
C.P. of vortices agrees with continuous value for all gradings.
Downwash correct in 2 and 3 dimensions.

Fig. 2. Sequence of approximations to chordwise load grading for use in downwash calculations.

Fig. 3. Rectangular wing aspect ratio 6. Trial points.

Fig. 4. Rectangular wing aspect ratio 6. Trial points.

Fig. 6. Trial points on 45 deg swept wing.

Fig. 7.

Fig. 9. Comparison of 126 -vortex, 6 -point and 328 -vortex, 12 -point solutions for a triangular wing.

Fig. 10.

Publications of the Aeronautical Research Council

ANNUAL TECHNICAL REPORTS OF THE AERONAUTICAE RESEARCH COUNCIL (BOUND VOLUMES) -
1934-35 Vol. I. Aerodynamics. Out of print.
Vol. II. Seaplanes, Structures, Engines, Materials, etc. fos. (4os. 8d.)
1935-36 Vol. I. Aerodynamics. Out of print.
Vol. II. Structures, Flutter, Engines, Seaplanes, etc. 30s. (30s. 7d.)
1936 Vol. I. Aerodynamics General, Performance, Airscrews, Flutter and Spinning. 4os. (40s. 9 d.)
Vol. II. Stability and Control, Struchires, Seaplanes, Engines, etc. 505. (50s. 10d.).
1937 Vol. I. Aerodynamics General, Performance, Airscrews, Flutter and Spinning. 40s. (40s. Iod.)
Vol. II. Stability and Control, Structures, Seaplanes, Engines, etc. 60 . (615.)

1938 Vol. I. Aerodynamics General, Performance, Airscrews. 50s. ($£$ Is.)
Vol. II. Stability and Control, Flutter, Structures, Seaplanes, Wind Tunnels, 作aterials. 30s. (30s. 9 d.)
1939 Vol. I. Aerodynamics General, Performance, Airscrews, Engines. $50 s$. (50s. IId.)
Vol. II. Stability and Control, Flutter and Vibration, Instruments, Structures, Seaplanes, etc. 63 s. (64 s . 2d.)
1940 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Icing, Stability and Control, Structures, and a miscollaneous section. 50s. (5is.)
Certain other reports proper to the 1940 volume will subsequeadly be incinted in a separate volume.
ANNUAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL-

1933-34	Is. $6 d .($ ns. $8 d)$
$1934-35$	Is. $6 d .($ rs. $8 d)$.

April I, I935 to December 31, 1936. $4 s$. (4 s .4 d .)

1937	2s. (2s. 2d.)
1938	Is. $6 d .($ Is. $8 d)$.
$1939-48$	$3 s .(3 s .2 d)$.

INDEX TO ALL REPORTS AND MEMORANDA PUBLISHED IN THE ANNUAL TECHNICAL REPORTS, AND SEPARATELY-

April, 1950 R. 3 M M. No. 2600 . 2s. $6 d$. (2s. $7 \frac{1}{2}$ d.)
INDEXES TO THE TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL-

December 1, 1936 - June 30, 1939.
July \times, 1939 - June 30, 1945.
July 1, 1945-June 30, 1946.
July 1, 1946- December 3r, 1946.
Januaiy t, 1947 - June 30 ; 1947. Prices in brackets include postage.

Obtainable from
HER MAJESTY'S STATIONERY OFFICE
York House, Kingsway, LONDON, w.c. 2 423 Oxford Street, LONDON, w. 1 P.O. Box 569, LONDON, s.e. 1

13 Castle Street, $\operatorname{mbinburgre,~} 2$ St. Andrew's Crescent, Cardifr
39 King Street, MANChester, 2 Tower Lane, bristol, 1
2 Edmund Strcet, biriningham, $3 \quad 80$ Chichester Street, belfast. or through any bookseller.

[^0]: Published with the permission of the Director, National Physical Laboratory.

[^1]: * and see Appendix to this present R. \& M.

