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Summary—Introduction—The object of this report is to assist designers of aircraft power plants to avoid harmful
torsional vibration of the crankshaft-airscrew system.

Arvangement of the Report—The report is divided into three parts as follows :—
Part I. Introduction and general comments.
Part II. Practical treatment of the general problem.
Part III. Practical calculation for a typical 12-cylinder Vee-engine.

PART I

Introduction and General Comments

Resonant torsional vibration can be so destructive that the problem of avoiding its harmful
effects has to be given careful attention during the design of any new power plant for aircraft.
The object of this report is to provide assistance to those who are concerned with this problem.

The manner in which resonant torsional vibration comes about will appear from the following :
Dynamically, a crank shaft-airscrew system is in effect a system of flywheels connected by elastic
shafting of negligible inertia. It so happens that this system has natural frequencies of vibration
in torsion of the same order as the frequencies of important constituent harmonics of the piston
torque impulses. The former frequencies are unaffected by shaft rotation (with a virtually rigid
airscrew) whereas the latter are proportional to engine speed. There are thus particular speeds at
which harmonic torque impulses have the same frequency as a natural mode of vibration of the
system : these are referred to as criticals.

* 1..A.8 Report E.3586, received 27th April, 1938.
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The main synchronous speeds for a selection of direct-drive and geared engines are given in
the following tables :—

DIRECT-DRIVE AERO-ENGINES
Main Synchronous Speeds (M.S.S.)

Horse No. iﬁﬁ%e M.S.S. M.S.S.
Power o Olf ‘ Type cycles r.p.m. I\éormgl Remarks
yis per sec pee
100 5 Radial 233 5,600 2-54 Observed
125 4 Line 194 5,820 2-77 Observed
180 7 Radial 143 . 2,450 1-51 Calculated
186 6 Line 176 3,530 1-68 Observed
330 10 Radial 135 1,625 0-81 Observed
370 14 Radial o128 1,100 0-65 Observed
400 12 45° Vee 98 (980)* 0-60 M.S.S. for 60° Vee
408 9 Radial 157 2,100 1-24 Observed
470 9 Radial - 169 2,250 1-27 Observed
510 12 Double Vee 157 1,570 0-67 Observed
600 8 Line 62 930 0-98 Comp. Ign.
560 8 Line 73 1,100 1-25 Comp. Ign.
900 9 Radial 120 1,600 0-64 -Racing Engine

* The 45° Vee engine has no main synchronous speed : the figure relates to 60° Vee-engine.



GEARED AERO-ENGINES
Main Synchronous Speeds (M.S.S.)

Single .
Hose | 0 gy e | ok | Noma | S
cyls. per sec. r.p.m. Speed
450 12 Double Vee *100 1,000 0-5 0-53:1
480 12 60° Vee *80 800 0-4 0-48:1
490 9 Radial *87 1,160 0-52 0-66:1
510 12 Double Vee *92 920 0-39 0-66:1
565 9 Radial *68 900 0-45 0-5:1
565 9 Radial *79 1,050 0-53 0-66:1
580 9 Radial *79 1,055 0-53 0-66:1
650 14 Radial *81 695 0-35 0-65:1
670 14 Radial *87-6 750 0-35 0-594:1
575 12 Vee 1105 1,050 0-40 0-553:1
360 16 H engine *123 925 0-26 0-391:1
* Observed. 1 Calculated.

Criticals may be classified in three groups ; those severe enough to cause very rapid failure,
those which cause failure by fatigue after a period of use, and those not severe enough to produce
stresses exceeding fatigue limits. At what are called ‘ major ’ criticals, harmonic impulses from
all the pistons act in unison* to force vibration in the corresponding mode. At such criticals,
serious torsional vibration must occur involving large torque variations unless the harmonic
impulses are small or the damping in the system is large. Actually, the internal damping is
usually so small that, in order to obviate torsional resonance troubles, it is necessary to arrange
the design so that no major critical with a large forcing harmonic occurs in the range of operating
speeds, or, alternatively, to introduce extra damping by some means. If the natural frequency
of the system for torsional oscillation with a single node between the crank throws and the
airscrew happens to be the same as the frequency of the explosion impulses of the engine at a
full throttle operating speed, the amplification of torque variation caused by resonance will be
such that shaft or aircrew failure will occur after a very short period of operation at this speed,
possibly a matter of minutes (R. & M. 1303").

The single node major critical of firing impulse frequency is sometimes referred to as the
' Main synchronous speed’ because of its severity when it occurs at large throttle openings.
As, however, it may be WeH beyond the maximum engine speed or in a region of small throttle
opening, the term ‘ main ’ is not to be taken to imply that this critical is the most severe. It
forms a convenient datum for reckoning the speeds of other single-node criticals : values for a
number of direct-drive and geared engines have already been given in the preceding tables.

* Harmonic impulses of the same frequency produced by different cylinders may be represented by vectors which have
defined phase relationships for a given system operating under specified conditions.
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Major criticals are not the only ones to be avoided ; what are termed ‘ minor ’ criticals may
also be important. TFor these criticals the corresponding forcing harmonics do not all operate
in unison but offset each other to a greater or less extent according to their phase relationships
and their points of application in the system.

The fact that minor criticals can cause serious trouble was demonstrated by the Graf Zeppelin
engine failures ; these were due to two superposed minor criticals of different modes of vibration,
and they occurred in spite of the fact that the engines were fitted with torsional vibration
dampers.® Failures, due in large measure to minor critical torsional vibration, have occurred
mn 12-cylinder Liberty engines (R. & M. 1304%).

In some text books, curves of resultant torque are given which have been derived by adding
together, with due regard to phase, the curves of applied torque for the several cylinders. It
will be rendered clear from what follows that these resultant curves are quite misleading as
regards the torque variation in the final drive. They represent this variation only for crankshafts
of infinite stifiness, and furthermore they do not necessarily represent the character of the torque
reaction of the engine on its mounting, because resonance effects may be present here also, ampli-
fying particular harmonic components. For example, in the 12-cylinder 60° Vee, articulated-rod
engine considered in Part ITI, the variation of airscrew driving torque with infinitely rigid shafting
and airscrew would be composed mainly of 3rd and 6th order harmonics and the combined
range would be about 60 per cent. of the mean torque. The corresponding limits of torque

oscillation are indicated by the chain-dotted lines in Fig. 7, Part 111 for comparison with the
limits calculated for the actual system.

To arrange a design so that torsional vibration troubles shall be avoided entails having the
power to predict the critical speeds from design data and also to predict the severity of the criticals
that come within the running range, having regard to the various conditions of operation. As
an outcome of research, critical speeds can, as a rule, be predicted with sufficient accuracy for
practical purposes. The prediction of the severity of the several criticals is more difficult and
less precise. Criticals that must be avoided are easily identified, and those which may be
neglected for smooth running conditions may be discovered by a fuller analysis. This fuller
analysis may also reveal what may be termed border-line criticals, the importance of which
cannot be assessed accurately enough to place them in either of the other two categories. The
uncertainty arises {rom limited knowledge concerning damping, extent of unequal operation of
cylinders under operating conditions, permissible stress ranges in material, and possible effects
of airscrew-blade flexibility. The degree of uncertainty is being reduced as investigation proceeds
and the number of cross-checks between theory and observation increases.

In Part II is a description of a process for calculating the torsional resonance characteristics
of an aircraft power plant.

To illustrate the method, there is given in Part III complete calculation for a typical geared
12-cylinder Vee engine. This calculation is made in accordance with a regularised method in
which calculations for different engines are arranged with as much as possible in common as
regards notation, paragraphing, headings and sub-headings, figure and table numbering, and
quantities plotted. In this way, comparison of both detailed working and results is much
facilitated and the difficulty of learning to do the calculations is reduced.

Throughout, the airscrew is treated as being a rigid body. This assumption has, in general,
given results which agree well with torsiograph observations, but anomalies have been noted
which may be due to airscrew-blade vibration, and it may be expected that blade flexibility
will be taken into consideration to an increasing extent as knowledge grows : this matter has an

important bearing on fatigue failure in airscrew blades but its study lies outside the scope
of this report.*

The torsional vibration characteristics of an engine running on a dynamometer test bed are
not examined here but the same general processes can be applied when particulars of the system
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are known. The characteristics may be very different from those when an airscrew is attached,
and it is important that cognizance be taken of this in dealing with engine testing.

Relevant references are given in each part of the report.

The author has drawn freely on the work of those colleagues at the Royal Aircraft Establish-
ment whose names appear in the references, and he desires to acknowledge the assistance in the
preparation of this report given by L. E. Caygill, B.Sc., E. M. Butcher, B.Sc., W. J. Evans, B.Sc.,
and H. P. Baker, B.Sc.
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PART II

Practical Treatment of the General Problem

It has been mentioned in Part I that, for the purpose of examining torsional vibration charac-
teristics, a crankshaft-airscrew system may be regarded as being virtually a flywheel system.
The characteristics of the vibration under specified harmonic impulses are not affected by steady
mean transmitted torque nor by steady rotation : thus at any specified speed and power of
operation the system may be treated as having no rotation and the vibration as occurring about
the condition of the shaft as strained by the mean transmitted torque. '

The dynamic system comprises the airscrew, crankshaft, reciprocating masses, big-end and
balance masses, main reduction gearing (if any), the system upon which the moving parts react,
and driven auxiliaries.

In general, driven auxiliaries such as camshafts, pumps, and magnetos may be ignored. Where
there is a positively driven fan or supercharger, the drive is usually so flexible that the vibration
of the crankshaft-airscrew system is unaffected, but it is important to examine this point and
to include this item in the system if this appears to be necessary (R. & M. 1053Y).

The manner of taking accounting of reciprocating masses will be described later. In treating
any particular problem one proceeds in definite stages, and part or all of the investigation is
carried out according to the needs of the case. The stages involved are shown by the following
index to the description of methods, the main sections of which correspond to those of the worked
example given in Part III.
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Index to Description of Methods

Item Sections Tables Figures
DATA 1
MOMENTS OF INERTIA 2
Crankshaft 2a
Gears 2b
Airscrew 2c
FLEXIBILITIES AND STIFFNESSES 3 1, 2a, 2b, 2c
Ungeared systems 3a
Geared systems 3b
3b to 4
DYNAMIC SYSTEMS 4
Ungeared systems 4a
Geared systems 4b 3
NATURAL FREQUENCIES AND DISPLACEMENT CURVES | 5
Calculation of frequenc1es Sa
Tabular method . 5b
Treatment for a series- ﬂywheel equlvalent system 5b.1 4,5,6
Treatment which takes account of engine inertia and elastic 5b.2 7
support
ORDERS OF VIBRATION, AND CRITICAL SPEEDS .. 6 8
ESTIMATION OF RELATIVE MAGNITUDES OF VARIOUS | 7
CRITICALS
Periodic torques acting on the system 7a
Gas torques : general treatment .. 7a.1 9
Gas torques for a single cylinder and direct cormectmg rod 7a.2 1, 1a, 2, 2a
Inertia torques ditto 7a.3 3, 3a, 4, 4a 10
Gas torques and inertia torques for an articulated rod cyhnder 7a.4 11, 10
Combination of gas and inertia torques for one cylinder. . 7a.5
Comtination of gas and inertia torques for two or more cylinders 7a.6 12, 13a, 13c
operating on the same crankpin
Forced torsional vibration 7b
General . .. .. .. .. 7b.1
Multi-crank engmes in general undamped forced vibration 7b.2 14
away from resonance
Multi-crank engines in general : damped forced vibration 7b.3 14, 15, 16
resonance
8

AMPLIFIED TORQUES AND STRESS RANGES

1. Data.—The data required comprise : Details of crankshaft-airscrew transmission system,
the piston system, compression ratio, performance characteristics, conditions of operation, and

experience of similar engines where available.

2. Moments of Inertia.—2a. Crankshaft.—As a general rule, the quantities involved in aircraft
engine systems are such that, in deriving the virtual system, a sufficient approximation is obtained
by ignoring the inertia of the shafting and substituting equivalent rigid flywheel masses for the
principal inertia masses. It is a straight-forward matter to compute the polar moments of
nertia of the main masses concerned : the effects of piston and connecting rod masses will now

be considered,
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A simple connecting-rod is dynamically equivalent to a system having point masses at the
gudgeon pin and crankpin axes, giving the same mass centre and the same total mass, plus a
massless inertia moment which, when added to the inertia moment of the point masses about
the mass centre, gives the value that holds for the actual system (see end of section 7a.3).

When on dead centre, a crank undergoing small angular oscillation does not impart appreciable
movement to the corresponding piston-mass, but, when the crank is at right angles to this
position, the piston-mass has the same vibratory motion as the crankpin axis. The average
flywheel effect of the piston-mass is approximately that of a particle of half the mass located
at the crankpin axis, and this half-mass is added to the point mass representing the big-end to
obtain the total virtual addition to the crank inertia. Goldsborough has examined the effects
of reciprocating masses®® and one of his conclusions is that the error involved in the foregoing
simplifying assumption is small.

2b. Gears.—Where gears are involved, speed effects have to be taken into account. It will
be shown later (Section 4) that the equivalent inertia at a selected common speed (usually that
of the crankshaft) is obtained by multiplying the actual polar moment of inertia of the geared
mass by the square of its speed ratio.

2¢. Auwrscrew.—The relationship of airscrew and crankshaft speeds needs to be taken account
of in the same way as for gears. To a first approximation, the airscrew may be treated as a
rigid mass : the polar moment of inertia of the airscrew is very large in relation to that of the
remaining masses. For consideration of the effects of blade flexibility, see R. & M. 1758*
and Ref. §.

3. Flexibilities and Stiffnesses.——Information concerning crankthrow stiffness is given in Ref.
6 and R. & M. 1201°. Experience has shown that the empirical formula of Ref. 6 gives results
of sufficient accuracy for practical purposes for shafts of normal design. This formula is given
in Fig. 1. In the notation and units ot this figure, the flexibility of length “ @ ’ inches of straight
steel shafting ot changing diameter and bore may be obtained by integration, using the formula :

© 4
F=086x10"] pim—sradnflbin. .. .. .. .. .. . (6]

The integration may be effected graphically by plotting 1/(D* — 4*) along the shaft axis,
as is shown in Fig. 3b of Part III.

There is elastic yielding between the airscrew boss and the airscrew shaft and allowance requires
to be made accordingly. This quantity is not amenable to calculation but some tests have
been made to obtain data from which its value may be assessed in particular designs. In each
instance the flexibility from the run out of the splines to the airscrew boss has been determined
as the equivalent length of plain parallel shafting having the diameter and bore of the airscrew
shaft at the ‘ run out ’ section. It has been found that the ratio of this length to the diameter
is in the region of unity : actual values are given below :—

ill}}sf?rzr&d Remarks %%i%iﬁ;t
of connection
Wooden airscrew, parallel splines .. .. 0-96D
Wooden airscrew, taper splines .. .. 0-84D
Wooden airscrew, parallel splines .. .. 1-13D
Fig. 2a .. | Wooden airscrew, parallel splines .. .. 1-04D
Fig. 28 .. | Wooden airscrew, parallel splines .. .. 0-82D
Fig. 2¢ .. | Metal airscrew, taper splines .. .. 0-45D
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This method of expressing the flexibility of connection is considered to be much better than
the method adopted hitherto of stating the virtual point of rigid attachment between shaft
and hub.

3a. Ungeared Systems—The flexibility of the shafting between adjacent crank-masses in the
virtual system is normally that of the crankshaft between the middle points of adjacent crankpins.
Instead of replacing a whole crank-throw by a single flywheel, separate equivalent flywheels
may be adopted for each crank-cheek (with balance-masses, it any) and for the crankpins with
the attachments equivalent to the piston-connecting-rod system : then the flexibility of the
shafting between the adjacent flywheels for the crank-throw is that of the crank-throw from the
middle of the crankpin to the corresponding crank-cheek.

3b. Geared Systems.—Elastic yielding in gearing systems is a source of uncertainty in torsional
vibration calculations as is not always amenable to complete calculation.

The gear yielding that can be calculated with fair accuracy comprises three portions :—
(@) depressions at the surface of tooth contact,
(b) bending of the teeth as cantilevers, and
(¢) winding of the disc between boss and rim.

Information concerning (2) and (b) is given in Refs. 8 and 9 : the relevant equations will be
given using the following notation.

P The load on the gear in 1b per inch face width

b Length of flat in inches

» Poisson’s ratio = 0-3

h  Tooth thickness at pitch line

hy Tooth thickness at base

L Distance from base of tooth to apex of triangle approximating tooth outline

x Distance from apex of triangle to point where line of action intersects centre-line

of tooth
7, and 7,  The radii of the pinion and gear
o Pressure angle
2z Number of teeth

6. Angle between the radial line through centre of tooth and the line drawn from
centre of tooth to the line of action

¢ Angle between line of action and line perpendicular to centre-line of tooth : it can
be shown to be equal to tan 6 — 2£ — tan « + «

3b.1 Depression at Contact

2P 4y 4
= nE(l—v),: + log, bl+1ogbz} .. . . . . .. (62
P 7175 \?
whereb:3-04<E><71_l_72>

3b.2 Deflection of gear wheel tooth due to bending

12P L?cos ¢ (3 L 4P (L — x) (1 4+ ») cos¢
= () = e (=g ) G—1) o f + E (b + by

A similar equation is used to obtain (e,), for the pinion wheel tooth.,
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The total tooth deflection along the line of action is the sum of the deflection due to depression
at contact, gear tooth bending and pinion tooth bending.

e = &+ (&) 1 (&),

By virtue of the properties of the involute curve, the total deflection given above, corresponding
to a load P, is equivalent to a movement of the same amount at either one of the base circles,
if the other is held stationary. Corresponding torsional flexibilities can readily be derived.

3b.3 Winding of wheel or pinion disc.—This is given by the formula :—

F=fic\r; R
where F is flexibility in radn/Ib in.
¢ disc thickness in inches
G modulus of rigidity in 1b sq in.
R, external radius of disc in inches
R, internal radius of disc in inches

3b.4 Additional flexibilities—To assist in estimating what allowance should be made for
flexibility beyond the items that can be calculated, static twisting measurements have been made
on three types of aero-engine reduction gearing : the results are given and analysed in
Refs. 1, 2 and 3 at the end of the report, and an application of the investigation is given in

Section 3.6 of Part III.

The investigation shows that, as regards engines similar to those examined, for plain spur
gearing and for epicyclic bevel bearing, the extra flexibility which should be introduced into the
equivalent system (see Section 40) to take account of yielding in the gearing is some 30 per cent
of the total virtual flexibility calculated between the airscrew boss and the first crank mass :
further that, for epicyclic spur reduction gearing there is no appreciable extra flexibility because
the engine nose is very stiff (being approximately cylindrical) and is subjected only to small
torque reactions represented by the difference between crankshaft and airscrew shaft torques.

The flexibility of the epicyclic bevel reduction gearing decreased appreciably with loading,
so that a mean requires to be taken : the yielding of the other gearing was linear.

4. Dynamic System.

4a. Ungeared Systems.—Here the equivalent system is the same as the virtual system, that is,
a series flywheel system.

4b. Geared Systems—When the airscrew shaft is driven through gearing located at one end
of the crankshaft, it is convenient to adopt an equivalent ungeared system having the same
frequencies. This step is possible as an approximation because the engine mass is relatively
large. Strictly the engine mass and the flexibility of the mounting connection to other masses
should be taken into account. A general tabular method of treatment for such systems is

described later (Section 5b.2).

In deriving an equivalent ungeared system, it is usual to adopt crankshaft speed as basis
because the torque impulses come upon the cranks. Consider, for example, the geared system
shown in Fig. 3. Let it be assumed that the gear housing is rigid and rigidly attached to a mass
large enough for its angular moticn to be ignored. Imagine the crankshaft to be extended
beyond the pinion as indicated where inertias and stiffnesses are R* times corresponding values
for the airscrewshaft system, where R is the ratio of airscrew speed to crankshaft speed. Imagine
also, that at any time ¢ the vibration displacement at any point in the extension region is
1/R times the value for the corresponding point in the airscrew shaft system : this must clearly
hold for the flywheel representing the gear wheel. '

9



In the notation given in the figure, we have ;

OM@ @._i&i@_“
AT R At T R A

It follows that the kinetic energy of flywheel I, is equal to that of flywheel 7, at the same instant,
for :
ao A>2 a0,N\?
ACHESAC
Again, the strain energy in the corresponding shafts are the same, for :

Coa (06 — 04)* = C,, (0, — 0,)%

It is easy to show that the frequencies are the same for the corresponding systems and that
vibration torques in the airscrew shaft systems are 1/R times corresponding torques in the
substitute system. Thus, any torques acting upon the airscrew system should be represented
by torques of R times the value in the substitute system.

The same rule of changing moments of inertia and stiffnesses in proportion to the square
of the reduction ratio applies for any number of flywheels and connecting shafts, and, where
there are intermediate gears, as in an epicyclic system, the inertia effects can be taken into account
by working with the appropriate speed ratios.

5. Natural Frequencies, and Displacement Curves.—5a. Having derived an equivalent simple
flywheel system, the next step is to determine the important natural frequencies.

The system being elastic and having polar moment of inertia, can undergo free torsional
vibration in a number of modes and for each mode there is a corresponding natural frequency
and a definite number of points at which no vibrational displacement occurs : these points of
uniform rotation are the nodes and the fewer nodes the lower is the corresponding natural
frequency. Natural undamped vibration in any one mode may be regarded as a transformation
in each swing of strain energy into kinetic energy and back again into strain energy, the inter-
change taking place in such a manner that the total energy is the same at every instant. At
the extremes of swing, all the energy is stored as strain energy (as the entire mass comes to rest
at the same moment) and at mid-swing all the energy is in kinetic form (as the system is then
unstrained throughout and the angular velocity at each point has its maximum value). For
each natural mode of vibration, a graph of definite form results from plotting the extreme angular
deflection of the system at each point : for larger or smaller swings the ordinates of the graph
are all greater or less in the same ratio. If the form of the angular deflection graph be known
for a natural mode of vibration, the strain energy can be computed for any arbitrary amplitude
of swing and, by equating this to an expression denoting the total kinetic energy at mid-swing,
the natural frequency for the mode may be computed. In the present problem, however, the

form of deflection graph is one of the things to be determined and frequencies are obtained
otherwise.

Where the crank masses are equal, and likewise the stiffnesses between them, the single-node
and two-node frequencies for an infinite airscrew inertia can be calculated. If the finite inertia
of the airscrew requires to be taken into account, a value for the flexibility to the node near
the airscrew is assumed and the frequency of the system on either side of this node is determined :
the values are equal when the node position has been correctly assessed. To assist in such assess-
ment frequency discrepancy should be plotted against assumed node position : the point at
which the curve cuts the base gives the true node position.

For systems comprising unequal flywheels coupled by shafts of various stiffnesses, an approxi-

mation to the frequency in any one mode may be obtained by adopting an approximately
equivalent system.

Sb. Tabular Method.—A tabular method of determining frequencies is described below which
involves adopting an approximate value for the frequency at the beginning. The equivalent

system taken in getting this approximation may be obtained by rough compounding or averaging
inertia moments and flexibilities.
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This method ' ''? is particularly useful because it is quite general, it gives the form of the
deflection curve for any natural mode of vibration, and it forms a step towards the treatment of
forced vibrations.

5b.1 Treatment for a series flywheel equivalent system.—Let there be a system of m flywheels
I, 1,1, . ... .. I,, in series and let the stiffnesses of the shafts connecting them be C,,, Cs,3,
Caa o - - .. C m-1, m Let the system be vibrating torsionally in a natural mode with ampli-
tude 6, at 7, and let the frequency be f = #/2=x. The value taken for 0, is arbitrary, as it does
not affect the frequency, and for convenience it is usually taken to be one radian. At the
extreme of the swing when all the flywheels are at rest, the inertia torque for I, is 6, 7, #* and the
twist in the shaft C,,, is therefore 6, I, 7*/C,,.

The amplitude of vibration of I, is thus 6, (1 — I, 7*/Cy,,) and the corresponding inertia torque
is I® times this. By subtracting the torque 6, I, * we get the torque in the shafting C, ; and
thence the twist and so determine the amplitude of vibration of I,.

In this manner, having first assumed values for » and 6, we may tabulate the quantities and
work along to the end of the shaft, when we obtain a value for the torque beyond the last
flywheel. If this value is zero, it indicates that the system can vibrate naturally with the
assumed frequency and, by plotting the amplitude obtained for the motion of the several fly-
wheels and joining the points by straight lines, we obtain the displacement curve. This reveals
the number of nodes and their positions which is a check on the frequency assumed being appro-
priate to the mode of vibration under consideration.

If the value for the torque beyond the last flywheel is not zero, a different frequency is assumed
and a new value obtained. From these two values it is usually possible to infer the true frequency
for the third trial with sufficient accuracy to give practically zero for the criterion value.

By way of example, consider the system shown in Fig. 4. To a first approximation, this is
equivalent to a system of six flywheels of inertia moment / = 111 Ib/in.? connected to an infinitely
large flywheel through a small flywheel which may be ignored.

The single-node frequency is 105 per sec. The actual value will be somewhat lower on account
of the approximations made. Values are tabulated below for two assumed frequencies, namely
100 and 95 per sec.

Units | Ib in.sec? Ib in. Radian 1b in. Ibin. |Radn./Ib in Radian
Mass I 2l rn2Io 210 } <712_[0 X F>
Ju— —— } e — — [ —_—
No. g K g 2. g ! = g
= 108 108 % 108 X 1076 X
a 1 0-288 | 0-114 1-0 0-114- | 0-114 | 0-1745 0-0199
I 2 0-288 | 0-114 0-9801 | 0-1119 | 0-2259 | 0-1745 0-0394
5 3 0-288 | 0-114 0-9407_| 0-1071 | 0-3330 | 0-1745 0-0582
o 4 0-288 | 0-114 0-88257 | 0-1005 | 0-4335 | 0-1745 0-0756
= 5 0-288 | 0-114 0-8069 | 0-0920 | 0-5255 | 0-1745 0-0916
— 6 0-288 | 0-114 0-7153 | 0-0816 | 0-6071 | 0-89 0-541
I 7 0-404 | 0-159 0-1743 | 0-0278 | 0-6349 | 0-493 0-312
~ 8 23-60 9-325 |—0-1377 |—1-285 |—0-6501 — —
. 106 % 106 108 % 1076 x
e~ 1 0-288 | 0-103 1-0 0-103 0-103 0-1745 0-0179
& 2 0-288 | 0-103 0-9821 | 0-1011 | 0-2041 | 0-1745 0-0356
I 3 0-288 | 0-103 0-9465 | 0-0975 | 0-3016 | 0-1745 0-0526
a 4 0-288 | 0-103 0-8939 | 0-0921 | 0-3937 | 0-1745 0-0687
5 0-288 | 0-103 0-8252 | 0-0850 | 0-4787 | 0-1745 0-0835
. 6 0-288 | 0-103 0-7417 | 0-0765 | 0-5552 | 0-89 0-493
» 7 0-404 | 0-144 0-2487 | 0-0359 | 0-5911 0-473 0-291
l 8 23-60 8430 |—0-0423 |-—-0-3570 | 0-2341
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By plotting the remainders as shown in Fig. 6, the value 96-3 is obtained for no remainder,
and this is a close approximation to the true value.

To obtain a first approximation to the frequency in two-node vibration, it suffices to assume
a node near the middle of the crank system and calculate the frequency of the system between
this node up to and including Mass No. 1, taking infinite inertia at the node : the two-node
quantities in the table in section 7b.2 have been obtained by the same general process as that
described for single-node vibration.

The deflection curves for single and two-node vibration are plotted in Fig. 5.

Sb.2 Treatment which takes account of engine mass and elastic support.—The method described
in section 5b.1 suffices for most practical purposes, but special problems arise for which more
precise treatment is needed. The system is analogous to the dynamic system shown in full
lines in Fig. 7 and is of the general kind concerned in the study of the vibration of vehicles.

The restraint given by the gearing imposes the condition that the forces operating between
the gear masses and the rigid rod shall have no resultant force or couple : they may thus be
represented by +7', — T/R and T(1/R — 1) as shown. Furthermore, the displacements ¢,, ¢,
and ¢; must satisfy the gearing equation.

The following elaboration of the tabular method may be employed :

Imagine the crank mass I, to be vibrating with a selected frequency 7/2x with unit amplitude.
Work through the table and determine the force 7', between G, and the rod and the amplitude
¢:. Assume unit amplitude at I; and work along to the corresponding force between G, and
the rod. Then take the pro rata amplitude ¢; that makes the force between G, and the rod equal
to —T,/R. Again, work along the table from 7, and find ¢,, the amplitude at G, which will
make the force between G, and the rod equal to 7% (1/R — 1). The conditions imposed by the
gearing as regards forces are then satisfied and the criterion that the assumed frequency is a
natural frequency of the system is that the gear displacement relationship of equation (64)
shall hold.  Where an end mass is taken to be infinite, the procedure requires to be somewhat
different. For example, if I, is infinite, the displacement ¢, is taken to be that which satisfies
equation (64), and the table for the masses G, I, and I, is worked from the G, end. The criterion
that the frequency taken is a natural frequency of the system is that the displacement at I,
is zero.

It is evident that the same method will apply it there are additional masses and flexibilities
as, for example, those shown by the dotted lines in Fig. 7.

(64)

6. Orders of Vibration and Critical Speeds.—As the explosion impulses repeat after two crank-
shaft revolutions in a four-stroke engine, the harmonic torques occur : 4, 1, 1%, . . . efc.
times per revolution of the crankshaft. Resonant torsional vibration in any particular mode
of vibration occurs when one of these impulses has a frequency equal to the natural frequency
of the system in this mode. The crankshaft speeds at which this happens are called  criticals’
and the number of complete vibrations per crankshaft revolution in any particular instance is
called the ‘“order’ of the critical-—this is clearly 60 times the frequency per second divided by

the crankshaft r.p.m. .

A chart which expresses the relationships between frequency, order, and critical speed is
given in Fig. 8. If ordinates are drawn on this chart representing the extreme values of the
operating speed range of the engine, and if horizontal lines are drawn representing single-node
and two-node natural frequencies, the criticals that may be important are clearly indicated.

7. Estimation of Relative Magnitudes of Various Criticals—Here we have to consider the
effects of gas torques, inertia torques, connecting-rod articulation, and different arrangements
of cranks and cylinders: the subject matter has been divided into a series of sections and sub-
sections accordingly.
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7a. Periodic Torques Acting on the System.—These are of two kinds, active and passive. The
active torques force torsional vibration and are due to gas and inertia forces. The passive
torques are produced by the vibration and they oppose it in the kind of vibration we are con-
sidering : they are the damping torques—to which further reference is made in Section 8.

7a.1 Gas-torques : general treatment—For a four-stroke engine, Fourier analysis of the gas
torque for any particular cylinder gives the mean torque and an infinite series of harmonic
torques repeating : once, twice, three times, . . . . . etc. per two revolutions of the crankshaft.
Thus, gas harmonic impulses occurat 4, 1, 1%, . . . . . elc. times per crankshaft revolution. An
indicated gas-torque curve for an aero-engine cylinder is shown in Fig. 9 and, beneath it to the
same scale two of the component harmonics are shown in full lines. The components may be
regarded as being projections in elevation of corresponding vectors OV as shown. (It will be
seen later that such rotating vectors afford a convenient means of compounding periodic torques
of the same frequency, produced by different cylinders). Each component may be expressed
as a sine curve or as a cosine curve by assigning the phase angle that gives it the correct location
in relation to the fiiing top-dead-centre.

From the general identity :
A sin (0 + o) = (4 sin «) cos 6 + (A4 cos «) sin 0 .. .. . .. .. (69)

it is clear that each component may be expressed as the sum of a cosine and a sine curve, both
having zero phase angle, as indicated by the dotted curves.

Thus the indicated gas-torque for a single-cylinder, whether with a master or articulated
connecting-rod, can be expressed mathematically by the following series :—

q.= Ao + @, cos A + ay cos 24 + . ..a,cos ni + . ...
+ b,sin 2 + b, sin 24 + ... b, sin nld + ... .. .. .. .. (66)

where, for convenience ¢, is taken to represent the gas-torque per unit piston area per unit crank-
throw: 1 is the half-speed shaft angle and equals w#/2, where wf is the angular position of the
crankpin from the firing top-dead-centre after time interval ‘Z’. The constant a, represents
the indicated mean torque for the cylinder and is the corresponding mean effective pressure

divided by 2.

It is important to note that if the ‘ order * of an harmonic torque component is taken to signify
the number of complete cycles per revolution, the nth harmonic in the series above is the
pth order, where p = n/2.

The mean torque applied to the airscrew (and the B.M.E.P.) is connected with the engine speed
and the running conditions by the characteristics of the airscrew. The corresponding average
indicated M.E.P. is inferred by assessing the mechanical efficiency of the engine which is usually
in the region of 90 per cent. for full-power operation.

7a.2 Gas-torques for a single cylinder and divect connecting rod.—Two methods of determining
gas-torque harmonics* will be described :

(I) An indicator diagram appropriate to the conditions of working is adopted and the
gas-torque for each number of crank positions is computed from exact formulae. A Fourier
analysis may then be made of the values so obtained.

(II) An approximate method, in which gas-torque harmonic coefficients are obtained
from tables which have been calculated for a series of representative conditions in respect
of both electrical ignition and compression ignition engines.

* Only varying {riction can damp torsional vibration : the mean friction of pistons and bearings has no damping
effect. In view of this, indicated torques are taken when examining forcing effects.
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Method I.—For any crank angle ¢ and corresponding gas force I, the instantaneous gas-
torque is:
az
Qg::ng;l—C .. .. .. .. .. .. .. .. . .. (67)

where z is the distance between the gudgeon-pin and crankshaft centres: that this is so is evident
from the principle of * Virtual work.’

If R denotes the crank radius and L the connecting rod length, the following exact relationships
hold :

2 1/2
z:RcosC—]—L(l—%sin%) .. .. .. . . .. (68)

. R . R* . -1/
Qg:RFg{51nZ+2~Z51n25<1~Z—251n25> } .. .. .. .. (89)

For particular values of ¢ the corresponding values of z can be computed from (68) and thence
may be found the corresponding values of F, for given conditions of operation. Values of Q,
can then be computed from (69). When there are no other cylinders operating on the same pin,
these Q, values are subjected to harmonic analysis on the basis of the angle 1 : the latter operation
can conveniently be performed by Runge’s tabular method. It is frequently convenient to
performed this analysis on the values for torque per unit piston area per unit crankthrow: then
the coefficients correspond to those of equation (66).

Method IT.—If D denote the cylinder bore and R the crankthrow, both in inches, the cosine
and sine coefficients ¢ and b of equation (66) require to be multiplied by (=/4)D*R to obtain
actual values. Thus, if M, and M, denote the amplitudes of the cosine and sine components
of the actual gas-torque for the pth order

MC:EDZR%, P ()

M,=3DRb, .. .. . (7

and the indicated mean torque (in pound inches) is:
JT
QO:ZDzRaO . .. . .. . . . . .. . (72)

In Tables 1 and 2 values of the cosine and sine coefficients are given for an aero-engine cylinder
operating at different indicated mean effective pressures: these have been obtained by Method I.
By the same method, the coefficients given in Tables 3 and 4 have been obtained for a typical
compression-ignition aero-engine.

7a.3 Inertia torques for a single cylinder and direct connecting rod.—The inertia torque produced
by the reciprocating mass concerned with any one cylinder varies with crank position and repeats
itself in ome revolution. The Fourier components comprise an infinite series of harmonic forcing
torques which occur 1,2, 3,4 . . . . .. .. times per revolution and which, for any one engine
speed, may be combined with the corresponding gas-torque forcing harmonics, having due regard
to phase.

For a cylinder whose axis intersects the crankshaft axis and which operates a normal piston,
connecting rod and crank, there are sine terms only in the inertia-torque analysis, and no fractional
orders.

14



Let M, denote the coefficient of the pth order sine term in pound-inch units, then:

M, =~ o*R?

w
g

L

(73)

where W is the weight of the reciprocating mass in pounds, g is 386 in./sec?, R is the crankthrow
in inches,  is the crankshaft speed in radians per second, and £, is a numerical coefficient which
has the values tabulated below for various obliquity ratios:

Ratio : Connecting-rod/crank
Order Sign
3 3-43 4 4-2 4-4 4-6 4-8

1 + 0-0857 0-07453 0-06351 0-06038 0-05757 0-0550 0-05266
2 — 0-5004 0-50024 0-50012 0-50012 0-50008 0-50007 0-50006
3 - 0-2607 0-22608 0-19217 0-18246 0-17385 0-16601 0-15886
4 - 0-0304 0-02295 0-01613 0-01458 0-01325 0-0120 0-0111
5 + 0-006 0-00418 0-00258 0-00222 0-00193 0-00167 0-00148
6 + 0-0012 0-00073 0-00014 0-00012 0-00009 0-00008 0-00007
7 - 0-000168 | 0-00008 0-00004 0-00003 0-00002 0-00002 0-00002
8 — 0-000044 | 0-00002 0-00001 0-00001 0 0 0

The angular momentum of the connecting-rod has an inertia-torque effect which is additional
to that obtained by replacing the piston and connecting-rod masses by rotating and reciprocating
masses in the usual manner giving the same mass-centre position. This gives another series
of sine terms and these are zero for all odd and fractional orders.

It M."” denote the coefficient of the pth order term (Ib/in.):

» I,
MS:SPS—S"Gwp/Z - . . . . . . . . (74)

where I, is the difference between the moment of inertia of the rod about its C.G. and the moment
of inertia of the point masses about the rod C.G. expressed in Ib/in.? units. (Ref. 14.)*

Values of S, are given in Fig. 10 for various obliquity ratios. Normally, the values of M.”
are very small and may be neglected in in-line engines but must be taken into account in radial
engines owing to the large polar moment of inertia of the big-ends.

7a.4 Gas-torques and inertia-torques for an articulated-rod cylinder.—In. Fig. 11 there is shown
a system in which one connecting rod is articulated on the big-end of another: the cylinder
axes pass through the crankshaft axis. The following are relevant symbols for the system, at
time £.

{  Angle between the crank and its position on top-dead-centre for the master cylinder
A ={/2 and relates to a camshaft at half crankshaft speed

o  Angular velocity of the crankshaft = d¢/d¢

¢  Angular pitch of cylinder.

v Angle between centre-lines of master-rod and link

* The sign convention changes at this point in Ref. 14 : the plus sign is correct for the convention of this report.
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o Angular displacement of master-rod

f  Angular displacement of auxiliary-rod

& Angle between auxiliary-rod and its link

Crankthrow

Length of anchor link

Length of master-rod

Length of auxiliary-rod

Distance between centres of crankshaft and auxiliary piston gudgeon-pin

Force along cylinder axis, at a gudgeon-pin, due to gas or inertia (suffixes g and ¢
respectively)

N
T

Weight of reciprocating mass, in pounds
386 in./sec?

n S

Inch-pound-second units are used throughout and angles are in radian measure.
Corresponding to equation (67), we have:

dy 7
=—FZ. e

The application of this formula to the determination of gas and inertia harmonic forcing torques
will now be examined.

Piston position.—It is clear from Fig. 11 that the position of the auxiliary piston at time £ is
given by :

y:gcos(é‘——qf»)-}—]cos(gb—w~f—a()+Llcos;[i“ .. .. .. (75)

. S . 7

Where sin & = 57 sin ¢ (76)
. S . J . 7

and smﬁ:g—Llsm(i-——qb)—l—;-lsm(gﬁmz/;w%a) .. . .. (77)

whence y can be determined as a function of £.

The following equivalent equations are sometimes more convenient to use:

v =gcos (L —¢)+F By (1 — sin*e)'/* — ky sino 4 L; (1 — sin® gy e .. (75")
k
sin f = Q%~ sin ({ — ¢) — Zl sin o — ?2 (1 — sin®a))'/? . .. .. (77)
1 1 —~1
where : ky = J cos (¢ — v)
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Gas torque—The gas force F, for any value of y can be found in the same manner as for a
single cylinder and direct connecting rod (section 7a.1). By resolution of forces it can be shown
that the corresponding torque is:

Jsind cos¢ }
L cos « (78)

Qg:Fg§se0/3 {Sin(C—‘ﬁ—l—ﬁ)—"

where =9 —¢+ p—ua .. .. . . .. .. .. (79
whence Q, can be found in terms of crank angle, and its harmonics obtained if required.

An articulated rod always operates with a master rod, and there may be other rods articulated
on the same big end : unnecessary computation is avoided by summing (algebraically) the values
of Q, for the several cylinders, for each crank position taken, and applying Fourier analysis only
to the resultant values (see section 7a.5).

Inertia torque.—From equation (67') the inertia torque is:

ay ’
O=—F% . L)
W&y Wb &
where E:Exﬁzéfx%. e (80)

Here o is taken to be sensibly constant.

To obtain inertia torques up to the pth order, the piston position curves computed from
equations (75), (76) and (77) should be analysed to the (p -+ 2) order. Thus we get the coefficients
in the following equation for y:

Co - €,COSE 00828 + ... Fc cos Pl AL 1
| b dysing +desin 20 4+ L. dysinpr 4., ]

For most purposes it suffices to analyse to the 8th term as inertia torques beyond the sixth
order are small. The first and second derivatives with respect to ¢ are:

(81)

dy [ —asin g — e,sin 20 — ... — peysin p¢ — ] (82)
d5*1+dlcosc+2dzcos‘?;é+a,a—{—pdpcospé—l—J..u.
dy | —ticos & — 4e,c08 20 — .. — PPeyco8 L — ... (83)
At | — dysin & — 4dysin 20 — ... — p¥,sin pC — .. ..

From equations (67'') and (80) the inertia torque is minus W?/386 times the product oi the
series given in equations (82) and (83) : multiplying out and simplifying by using the identities:
cos p¢ X sin g¢ = § {sin (p + ¢)¢ — sin (p — g)¢}
cos p¢ X cos gt = % {cos (p + 9)¢ + cos (p — )¢}

we get the coefficients in the following equation for the inertia torque Q;:

Q_sz[ Clcosg‘-{—CzcosZC--{nB,D+Ci,cospé—|—-.,..:|
T 772 | Dysin ¢ + Dysin 20 4+ .. .. 4 D,sin p¢ +. . ..
17
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The coefficients are as follows —

Order

Inertia Torque Coefficients

2d,c, + 6dycy + 12dy0, + 20d,05 4

o 20,y — GCydly — 1204, ~— 20c4ds ~

odydy -+ 6dydy + 12dyd, + 20d,d5 + .

4 20,0, + Bty - 12050, - 200405 + -

— | 4 Bdydy -+ 18y, + 30dydy + 48d,dg - -

2404

4 Bdycy + 168d,c, -+ 80dgey + 48dycs + .

= Beydy — 18cydy — 30c,dy — 48c,dg —

2 2
42 — ¢

+ Bey05 + 160,04 - 3005e5 + 486466 +

6d,c, -+ Bdyey

4 12d,c, + 30docs + Sddycs - Bddges + . .

— 120,y — 30cydy — Sheady — Sdeydy ~

Gdldﬁ - 66102

1 12d,d, + 30dydy + 5ddydy -+ 84dd; 1.

4 120564 -+ 30cyc5 - 5dcgeg ++ Bdogly + -

D, =

12d,¢; + 16dye, + 12d,5c,

e e e e et e

4 20ddy - ASdydy + 84dyd, - 128d,ds . . . . .

+ 20,05 - 48ey0q - Bdcge, + 128c404 +
20d,¢, + 20c,dy + 30d,cq + 30dyc,

+ 30d,ce -+ T0dac; + 120dycy -+ 180d,c) +

— 80¢,dy — 0cydy — 120cydg — 180c,dy — .

20d,d, + 30dudy — 206,04 — 30cyc;

4~ 80d,dy - T0dydy -+ 120dydy + 180d,d, +

4 800,65 -+ 7005¢5 - 1202505 + 180c,04 +

30d,c, + 30dye, -+ 48d,c, -+ 48,0, + 54yt

1 424,60, 4 9Bdatg -+ 162d,c, 4 240,00 +

e 490,y — 9Beydy — 162cydy — 240C,dye — .
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Order Inertia Torque Coefficients

30d,d; -+ 48dyd, - 27d,?
— 30¢ 05 — 48cyc, — 27¢5*
8 Dy
+ 42d:d; + 96d.dy + 162dydy - 240d,d,, -+
-+ 42c,0, I 960,05 + 162¢5¢9 -+ 240¢,c1, + .
@iy q (P — 1) + docyy (4p — 2) + dye, 5 (9P — 3) + dy10 (p— 1)
c Fedyy (P — 1) + oy (4p — 2) + cod,g (9P — 3) + Co1ty (P — 1)?
+dic, + 1 (P2 + B) -+ docyin (20 + 4p) + d3c,is (3P + 9p) +
» — Ol (PP P) — Collyin (20% - 4P) — codpuy (3P% + 9p) —
didy 1(p — 1) + doy s (4p — 2) + dod, 5(9p — 3) + d,_ 1 dy (p — 1)2
D = Gy (P — 1) — 05 (4p — 2) — Calps (9P — 3) — ¢y (P — 1)?
= didyy (B* + ) + doflyss (20 + 4p) + dod, 15 (3p% + 9p) +
+ CiCary (B B) + Colpra (207 + 4P) 4 C3cars (3P% + 9p) +

In a radial engine having NV cylinders equally spaced about one crankpin, if the master cylinder
is No. 1 and the inertia torque of No. 2 cylinder is represented by:

We? =
ey K & . — i
772 X 2 (Cy cos p¢ — D, sin pi)

The inertia torque of No. NV cylinder is:

Wao* t=w :
—,?7% X%:l(m@cospcwl)ﬁ sin p¢)

There is the same relation between the inertia torques for cylinders Nos. 3 and (N — 1): 4 and
(N—2y:...... elc., so that in the summation for all the auxiliary cylinders operating on the
one crankpin, the cosine terms cancel out: it is therefore only necessary to evaluate the sine
harmonics in this instance and the computation need only be made for one side of the master rod.

7a.5 Combination of gas and inertia torques for one cylinder.—Extending part of the notation
given in sections 7a.2 and 7a.3 so as to cover articulated-rod cylinders as well as master-rod
cylinders, let the pth order total applied torque be:

OQn = (M, + M,’) cos pwt -+ (M, + M," + M) sin pot .. .. .. .. (85)

where suffix # signifies one cylinder; M, and M, are due to gas forces; M,’, M., and M, to
inertia forces. The term M, is zero for a master cylinder and, in general, M,” may be neglected
—it is small and it would be difficult to work out its value for an articulated rod. We may
write :

Op = Ay sin { p(wt + £,) } . Ve . - - v .. (86)
19
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where: A, = {(M, 4+ M) 4 (M, + M*" + M,)* P . . .. .. .. (87)
The angle of lead is p&, and:

M, + M/ M, 4+ M+ M

sin p&, = a, 1 Cos pE, = A, (88)
Thus the resultant applied torque per cylinder is :—
Q. =3 D* Ra, + E{Apsinp(wt+gp)} N (- )
where p = 4,1, 14,2, . .. ... efc. (See equations 66 and 86)

7.6 Combination of gas and inertia torques for two or more cylinders opevating on the same
crankpin.—General—The combination is made separately for each order of component torque.
If these components are derived for each cylinder with reference to a common datum crank
position, the cosine components can be added algebraically, and likewise the sine components,
to get the resultant coefhcients for the crankpin. However, as mentioned under the heading of
‘ gas torque’ in sub-section 7a.4, it is usually more convenient to sum the gas-torque values
for the several cylinders operating on the one crankpin and then to analyse the resultant gas
torque. Whichever method is adopted, the resultant pth order torque on the crankpin may be
expressed as:

Q, = {X(M, 4+ M,))} cos pwt + {Z(M,+ M, + M)} sin pwt
= ZA, sin p(wt 4 &,) ‘e . e . . .. . .. (90

where A, relates to the datum cylinder, and the quantity Z is a non-dimensional factor which
expresses the ratio of the resultant pth order torque to that of the datum cylinder: where there
are articulated connecting rods, the datum cylinder is taken to be the master cylinder. Clearly:

ZA, = [{Z (M, + MNP+ {2 (M, + M,/ +M)P1"® .. .. .. .. (91

In particular arrangements of engine, Z can be determined in such a manner as to simplify
the working ; in all arrangements, Z4, will be used to signify the magnitude of the resultant
#pth order torque for one crank.

Two Cylinder Vee Arrangement with Both Connecting Rods Acting Divecily on the Crankpin.—
Consider the torques on one crank of a four-stroke Vee engine having forked connecting rods and
a Vee angle ¢. Let the cylinders be denoted by L and R, where the crank passes the top-dead-
centre for L before that for R. The sequence of firing is usually such that R fires (Zn — ¢)
radians of crank rotation after L. From section 7a.5, the pth order resultant torque for L has
the value at time ¢,

Opr = Aysin {plot + &)} L 8

and the crank has turned through ot radians since the top-dead-centre for the datum explosion
in L. As the crank has turned through of — (2» — ¢) radians since the top-dead-centre for
the succeeding explosion in R, it follows that the pth order resultant torque for R has the value
at time ¢4,

Opr = A,sin [ p {wt — (2n + ) + £, . - - . . .o (92)
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Thus Q.. and Q,.r are respectively the projections in elevation of the vectors:

Ay s plot + &)

and: 4, , plot + &) — pl2n + 4)

shown in Fig. 12.

The resultant pth order torque on the crank at time 4’ is clearly the projection in elevation of
~ the vector:

Z4, , plot + &) =5 @ + 9)

WhereZ:ZCOS{g(Zﬂ-}-QS)} .. . . . .. . . . .. (93)

and must have a value between —2 and +2.
It is convenient to treat Z as a positive quantity and change the direction of the vector by =

when cos {é (2= + &) } is negative.

Numerical values of Z for different orders are tabulated below for some particular values of ¢ :

Order 30° 45° 60° 90° 135° 180°
% 0-261 0-390 6-517 0-765 1-111 1-414
1 1-932 1-848 1-732 1-414 0-797 0
1% 0-765 1-111 1-414 1-834 0-356 1-414
2 1-732 1-414 1-0 0 1-414 2-0
2% 1-218 1-663 1-932 1-834 1-962 1-414
3 1-414 0-765 0 1-414 1-873 0
31 1-565 1-961 1-932 0-765 1-663 1-414
4 1-0 0 1-0 2-0 0 2-0
4% 1-834 1-961 1-414 0-765 1-663 1-414
5 0-508 0-765 1-732 1-414 1-873 0
5% 1-987 1-663 0-517 1-834 1-962 1-414
6 = 6 1-414 2-0 0 1-414 2:0

Equally Spaced Radial Cylinders with Connecting Rods Acting Directly on a Common Crankpin.—
If there are N cylinders, the crank rotation between successive explosions is (4x)/N so that,
at time ‘¢, the crank position in relation to the firing top deadcentre for the cylinder that fires

4

next after the datum cylinder is < wl — N
Thus, at this instant, the vector representing the pth order torque impulse for this cylinder is:

47
Ay, plot+ &) — 2

shown as line 1-2 in Fig. 13a for which N = 5.
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Similarly, vectors 2-3, 3-4, . ... ... eic., may be drawn in firing sequence for the remaining
cylinders, the direction of each lagging (4np)/N radians behind the preceding one. This lag
is always an integral multiple of 2%/NV because 2, is always an integer. Now 2x/NN is the external
angle of a regular polygon of NN sides and thus, when $ = %, the vectors from a closed polygon
(as shown in Fig. 13a for N = 5) giving zero as resultant vector: for any other value of p, each
vector is parallel to a side of this polygon and a closed polygon is obtained except when (4np)/N
= m X 2, where m 1s an integer, that is, when p is an integral multiple of V/2. The resultant
vector is then :

NA,, plot + &)

so that ZA, = NA, in this instance (as shown in Fig. 13c for N = 5).  This condition gives rise
to “ Major criticals .

7b. Forced Torsional Vibration—7b.1 General.—An irregular disturbance of the system gives
rise to natural vibrations which are quickly damped out. The vibrations forced by continued
harmonic disturbances are those to be considered.

If the crankshaft and the airscrew drive were infinitely stiff, no yielding would occur under
the applied torque and there would be no storing of strain energy: thus no elastic vibration
would occur and the applied torques would be transmitted unchanged to the airscrew. A slight
fluctuation of angular velocity of the whole system would result from its acting as a rigid oscillating
flywheel of large but finite polar moment of inertia.

If the crankshaft in the region of the cranks is very stiff relative to the airscrew drive, the crank
mass as a whole operates as an oscillating flywheel with an amplitude so small (because the
torques alternate so rapidly) that there is little torque variation produced in the airscrew drive.
It will be understood that in this extreme instance only single node vibration can occur—as
there are, in effect, only two flywheel masses, the airscrew and the total crank mass. The
conditions are such that the natural frequency is very low in relation to the frequency of any
forcing harmonic.

The conditions for aircraft power plants lie between these extremes, and in examining what
happens, two simplifying principles are applied, namely :

(a) The vibratory movements superposed upon the steady rotation of the system are the
same as would occur under the same variation of applied torque if the shaft were not
rotating and they are unaffected by the mean transmitted torque.

(b) With no damping, or with damping torques proportional to the angular velocity of
vibration at each instant, the resultant motion produced by any number of harmoni-
cally varying torques, applied to the system at any points, is the vector sum of the
motions corresponding to each of the several harmonic torques acting alone.

As regards (a), the speed of rotation determines the frequency of the applied harmonic torques
and thus comes into consideration although it does not affect the natural frequencies of the
system.

As regards (b), it is usual to assume that the damping present is of the kind mentioned, 7.e.,
that it is ‘ viscous-friction * damping. This assumption is made for the sake of simplicity and,
in general, it suffices for practical purposes. Thus the effects of each of the harmonic components
of the torque for each cylinder or crank may be considered separately and the resultant effect of
any group of such forcing torques may be derived by super-position with due regard to phase.

7b.2 Mulii-crank engines in general: undamped forced vibration away from resonance.—DPicture
a series-system of flywheel masses as shown in Fig. 14 undergoing undamped forced vibration
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due to any harmonic torque B,, sin (v + B,) acting at m*. It can be shown that the frequency
of the vibration will be that of the forcing torque, and that each mass will be at one or other of
its extremes of displacement at the same instant as all other masses as in free vibration.

Let | a, | denote the amplitude of motion at the point m and 1, its angle of lag behind
the forcing torque. Then the displacement at m at time £ is:

Oy = | o, | sin (2 + B, — 4,) . . .. . .. . o (94

The input work per cycle is clearly #B,, | «, | sin 1,. This must be zero, because there is
no damping.t It follows that 4, = 0 or= unless | a,, | is zero, that is, unless ‘m’ is at a node, a
particular condition which will be considered later.

Substituting 0 and = for 4,, in equation (94), we get: «, = 4 | a, | sin (#¢ + B,), with the
plus and minus sign respectively. Thus all displacements have extreme values when (vt 4 8,,)
= n[2, that is, when the forcing torque reaches its maximum positive value B,. The system
being momentarily at rest at this instant, the magnitudes and signs of the displacements of the
several masses may be determined by working through a table similar to that in section 5b.1,
but starting with unknown extreme displacement «, at mass 1 and adding in the torque B,, at
the appropriate place, as shown in the table on the next page.

The value obtained for the torque beyond the last mass is of the form (ax, 4 bB,) where
a and b are positive or negative numerals. By equating this torque to zero, we get :

b
U = méBm

which gives the magnitude and sign of «, when 7¢ + 8, = #/2.

The extreme displacements of the several masses at this instant may be evaluated for both
magnitude and sign by substituting for o, in column 4 of the table: whether 4, is 0 or «# may
be determined if desired by substituting in equation (94) remembering that | «, | is positive
by definition. It will be found that the sign of the inertia force for each mass is appropriate
to the corresponding sign of displacement.

Two examples are worked out in the following table and the corresponding resultant deflection
curves are given in Fig. 14. It will be noted that the deflection for f = 75-8 does not correspond
to a natural mode of vibration: this is because the frequency taken for the applied torque is
non-resonant. The node always so locates itself that the natural frequency about it of the
part-system on the side remote from m is that of the forcing torque.

When the node coincides with the point m, one part of the system remains stationary and the
other part vibrates in antiphase to the applied torque. The second example in the following
table has been chosen to illustrate this: note the corresponding deflection curve in Fig. 14. The
torque variation in the shafting one side of s has then the same magnitude as the applied torque,
and the latter is virtually the reaction torque that would exist in an infinite flywheel if it were
added at the node: adding such a flywheel would not affect the motion. This critical condition
of m coinciding with a node is revealed in the investigations of R. & M. 1053'. It is utilised in
the * Harmonic Balancer ’ incorporated in motor car engines by General Motors Ltd., U.S.A.;
design problems in relation to this balancer may be treated by the general methods outlined here.

When several harmonic torques of known amplitudes, having the same frequency and in
phase, operate at various points in the system, the resulting displacements when 7t - 8,, = =/2
can be obtained by the same tabular method, the several torques being added into the table

* m is usually at a mass but if not, a flywheel of zero inertia may be taken to exist at m, and to reckon as one of
the masses. This device enables the analysis to be made in this instance without modifying the form of procedure.

T Except on resonance, in which instance the amplitude of motion increases indefinitely. In dealing with resonant
conditions, however, damping is not neglected : this reservation need not trouble us here.
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at the appropriate places. Separate tables require to be worked out for torques of the same
frequency operating at different points in different phases, because the corresponding motions
have different phases also. The resultant motion is obtained by combining vectorially the
results of the separate tables.

The application of this to the pth order torque component in a multi-crank engine, for a speed
at which some other order is resonating, neglecting pth order damping, will be apparent. In
R. & M. 1304" the matter is examined very fully in regard to the 12-cylinder Liberty engine.
In most problems, however, the effects of the resonating torque predominate and, in consequence,
we are usually concerned only with resonating torques at their several corresponding critical
speeds, the effects of non-resonating harmonics being ignored.

7b.3. Multi-crank engines in general: damped forced vibration on resonance.—Consider a series-
system of flywheel masses, as shown in Fig. 14, undergoing damped resonant forced vibration
due to any harmonic torque 5, sin #¢ acting at any point . The frequency of the vibration
will be that of the forcing torque and each mass will be at one or other of its extremes of displace-
ment at the same instant as all the other masses—assuming that the damping forces are not
large and are proportional to vibration velocity at corresponding points.

As in section 7b.2, the motion of point m is:
Oy = | O | SIN (78 4+ B — A) .. . . .. . .. .. (94)

and the input work per cycle is #B,, | &, | sin 4,.

At resonance, however, the phase of the motion of the point of application of the forcing torque
is such that the input work is the maximum possible, that is to say: 1,, = =/2.

The amplitude of motion is such that the work done per cycle against the damping torque
is equal to the input work per cycle, that is, to: =B, | «,, |.

If all the damping were effected at point m, the damping torque would at each instant counter-
balance the forcing torque at its point of application and the system would swing in the natural
mode corresponding to the frequency concerned. The deflection curve would thus correspond
proportionately to the deflection curve derived when determining the natural frequency in
this mode; the actual amplitude at s would be that which causes the maximum damping torque
to have magnitude B,

If & denote the damping torque per unit of vibrational velocity at m, we have:

ao,, 7

Damping torque = — s —* = — hr|a,| cos (7’15 + B — i)
= —lr | o, | sin (7 -+ B,).

So that when (7 + 8,) = =/2 the damping torqueis: — /| , | which is equal to — B,,. Thus:

B,
o | = 7

and the damping energy per cycle is: zhr | a, |

Also, at this instant, the displacement of m is — | «, | and both the forcing torque and the
damping torque are zero.

If damping torques act at various points in the system, being: — A7 | o | sin (7t + B,);
— hot | oy | Sin (vt 4 Bs) ... ... — Iy | o, | sin (7t 4+ B,) . ... efc., the curve of maximum

deflection will approximate very closely to that for free vibration at the resonant frequency
concerned : the forcing and damping torques are zero at the extremes of the motion, and shaft
torques balance inertia torques then, as in free vibration. At any instant, the torque at any
point is that due to free swinging motion plus the resultant of the forcing and damping torques.
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The phase difference between damping torques and motion is #/2 and thus the total work done
per cycle by the system against damping is:

ar T{h | o |} =B, | «, |

where X signifies algebraic summation.

Ho,0,........ etc., be ordinates of free deflection corresponding to oy |, ||, ... ...
efc., then:
l“tl:l“ZI ::{(Xm‘_m |« ]
7, B, Tp T 5

and by substituting in the above energy equation we get the following expression for the move-
ment at mass 1.

GlemBm
Lo | = 775 (79

Thus the amplitude of vibration produced by B,, for given values of /# and # is proportional to
B,, and also to 6,. The magnitude of the product B, 0, is thus a relative criterion of the
effectiveness of an harmonic torque in forcing resonant vibration in the corresponding mode.

It should be noted that:
- JT
o = | & [sm(rt—{— By — Q>
which is the projection in elevation of the vector:

PP (7 + ).

Where several harmonic torques of the same frequency and known relative phases act at
various points in the system, the resultant vibration at No. 1 mass is obtained by means of
vector summation or its trigonometrical equivalent, whichever may happen to be the more
convenient.

Thus, if B, sin (v 4+ B,) denote the resultant forcing torque of frequency r/(2z) acting on
mass 7, the resultant displacement ¢y, of No. 1 mass due to this forcing torque is represented
by the projection in elevation of the vector:

Py (1)

and so on for other crank masses.

Usually it is only necessary to determine the maximum amplitude of the resultant motion
of No. 1 mass, which leads to simplification of procedure:

As the quantity 6,/r Z(h6% is a common factor in the magnitudes of the several vectors,
and as (7 — x/2) is a common part of their directions, the magnitudes of the resultant is
0, X (BO)/r = (h0?) where % (B6) denotes the magnitude of the closing side of the polygon formed
by the vectors:

Be, B

e

for all the crank masses.
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As in section 7a.5, let the pth order forcing harmonic on any crank mass be represented by

ZA, sin {p(wt + &,")}

Then, by comparison, we put ZA4, for B: pw for 7: and pe,” for . Assume that the damping
torque per unit vibrational velocity has the same value /%, at each crank mass, and the value
h, at the airscrew: let ¢, denote values for displacement curves at the several cranks and 6, the
value at the airscrew—when 0, is the displacement for No. 1 mass on the displacement curve.

The amplitude of the pth order vibration at No. 1 crank is clearly:

b, 3 (ZA,0))
= BT (00 T O (-5

where the summation in the numerator is vectorial and that in the denominator is arithmetic.

The vectors concerned in determining ¥ (ZA4,0,) are:

ZA40., pe,’

e

in respect of the several cranks.

Conditions repeat after two crankshaft revolutions of a four-stroke engine: therefore the
differences of ¢,” add up to 4= radians for the complete engine. The fact that half these differences
add up to 2= is represented by the ‘ Phase diagram ’ shown in Fig. 15. The { order resultant
vectors for the several cranks are thus parallel to the radiating lines shown and the corresponding
vector diagram is as indicated.

The intervals between the vectors for pth order vibrations are 2p times the corresponding
angles for the { order: phase diagrams can be drawn accordingly (as indicated in the figure)
and used for deriving vector diagrams or for getting the magnitudes and signs of the projections
in plan and elevation of the several vectors. Denote these projections by H and V respectively :
then the algebraic summations Z(H) and Z(V) are respectively the horizontal and vertical

components of the resultant of the vector diagram, so that the magnitude of the resultant is:

VI{ZHE)F+{Z(V)]F]

It will be noted that Z (ZA4,0,) is a relative measure of the magnitudes of criticals in a given
mode when %, and /4, are unvarying but not necessarily otherwise known: when the pth order
harmonic torques on the cranks all have the same value, the quantity Z4, may be put in front
of the summation sign.

8. Amplified Torques and Stress Ranges.—To determine the absolute values of «,, from equation
(95) values require to be assigned to the damping quantities %, and %,. For a rigid airscrew so
attached to the shaft that there is little mechanical hysteresis in the connection, the value of
hb, is small in comparison with %, 2 (6.7), because there is a node near the airscrew and in this
case the aerodynamic damping is small (R. & M. 1304"). Values of %, are deduced for particular
airscrews in R. & M. 1562" and 1557 but the deduction is made from very limited data and
until the matter has been explored more completely, values of 4, are better taken on the basis
that A, is zero. With a wooden airscrew, relative movement between flanges and boss may give
h, an important value, but then charring of the boss is likely to occur and the condition is not
one to be reckoned with for normal operation.

The quantity 4, depends upon engine design and engine size'™ and some progress is made towards
setting limits to the uncertainty of its value if the size factor can be separated out.
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Comparison of results of a number of torsiograph experiments has suggested the empirical rule
that 7, varies as the fourth power of linear dimensions. According to this, we may write:

I, 4/5
386

h, = Ec( Ib/in. per radn/sec .. . . . e . .. (96)

where I, is the polar moment of inertia per crank in pounds inches squared and E, is a coefficient
for which the following values have been obtained from analysis of torsiograph observations.

. . E, divided by the number
Engine he E. of cylindeg; per crank
12-cylinder ungeared Vee .. .. . 25 42 21
14-cylinder two-throw ungeared radial .. 234 164 23
9-cylinder geared radial .. . . 1800 360 40
14-cylinder two-throw geared radial .. 271 104 15
16-cylinder two-crank geared H engine .. 5-5 56 28

The last column indicates that the value of £, is roughly proportional to the number of cylinders
per crank: close agreement cannot be expected. There is evidence that in a given system E,
increases with forcing torque (see Fig. 16).

Having assigned a value to E, by comparison with experimentally determined values for
similar engines, the corresponding value of %, can be inserted in equation (95) to obtain a,, values
for the several criticals of interest and for appropriate conditions of running.

The corresponding torque oscillations in any part of the system can then be deduced, as the
angles of twist between adjacent masses are known: the mean torque transmitted through the
part may be superposed. To deduce the corresponding stress limits in the region of the cranks
1s a matter which does not come within the province of this report but stress ranges in the drive
due to torsion only can be computed having due regard to stress concentration factors. Torque
variation in the airscrew drive corresponding to the various orders of vibration may conveniently
be shown in graphical form on a base of engine speed. This has been done in Fig. 7 of Part II1.
The peak heights relative to the indicated mean torque line have been computed from oy,
values and the shapes of the curves leading to the peaks have been obtained as follows :—

Let x denote the ratio of the speed taken to the critical speed concerned

v denote the corresponding amplitude of the superposed airscrew torque variation
for the order concerned

v, denote the value of y at the critical
the ratio: (airscrew r.p.m.)/(crankshaft r.p.m.)

; (on resonancey

: . . . . Z4, %0
denote the ratio of torque amplification at the peak, that is Z];— = Y, / £ I

Then:

ZA, = (0,)
Y :RV{U _.x2)2 e AzxZ}

(97)

where Z4, 2 (6,) must be taken for the off-resonance condition defined by x: for practical purposes
it suffices to adopt the 2 (0, value that applies at resonance.
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The method of obtaining these curves by applying the above formula is worked out by way
of example in section 8.3 of Part III. The practical application is limited to engines with crank-
shafts having mirror symmetry.

To estimate the stress ranges it is necessary to take account of the effect of all the orders
operating at the speed selected. Ideally these effects should be added with due regard to their
phase relationship at the particular speed but when regard is taken of the uncertainty connected
with the assumption of the damping factor and the value taken for the stress concentration
factor, such an extensive computation is not justified. It is therefore considered sufficiently
accurate to add the effects arithmetically, this will of course give results which as a rule will
be greater than the true value. In the engine considered in Part III, the third order critical
is the most important and here it will be seen that the side bands from the other criticals give
but a small addition to the torque oscillation so that, at this critical, the error involved by
arithmetic summation is of the second order of magnitude.
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PART 11,

TABLE 1

Harmonic Coefficients

Single Cylinder 1 sq in. Piston Area and 1 in. Crankthrow

o . R . .
Obliquity Ratio 7 = 3.43 Compression Ratio 3-3:1
Tet LMLEP. 25 ‘ 30 ’ 35 | 40 { 45 ( 50 | 55 { 60 | 65 | 70 | 75 | 80 | 85
per sq in. |
Oligfr Hég?f?gm Cosine Terms

% ay 10-50 | 11-25 | 12-10 | 13-00 | 14-00 { 15-00 | 16-10| 17-20 | 18-30 | 19-55 | 20-80 | 22-20 | 23-55
1 a, 4-25| 460 | 5-00| 5-40| 580 | 6-25| 6-70| 7-20 7-60, 805| 850, S-10] 9-80
14 ag ~Q-15 |—~0-15 |—0-15 {—0-15 |—0-15 {~0-15 |—0-15 {—0-15 |—0-15 |—0-15 |—0-156  —0-15 |—-0-15
2 ay —0-90 (—1-20 |—1-50 |—1-80 |—2-10 |—2-40 |—2-70 |—3-00 |—3-30 |—3-60 |—3-20 |—4-20 |—4-45
2% as —~3:05 [—3-30 |—3-50 {—3-75 |—4-00 |—4-25 |—4-50 |—~4-70 |—4-856 \—5-15 |—5-40 | —5-60 | —5-90
3 ag ~2-40 |—2-60 |—2-75 |—3-00 {—3-20 |—3-40 |—3-60 |—3-75 |—4-00 |—4-20 |—4-40 |—4-60 |—4-80
33 @ —2-20 {—2-40 |—2-65 |—2-90 |—3-15 |—3-40 |—3-65 |—3-90 | —4-20 |—4-40 |—4-65 |—4-80 |—5-15
4 ag —2-50 |—2-55 —2-60 (—2-75 |—2-85 [—2-95 |--3:05 |—3-25 | —3:50 \—3-75 —4-05 |—4-35 |—4-65
4% ag —~2-05 [—2-10 |—2-15 {—2-25 |—2-35 |—2-45 |—2-60 {—2-75 |—2-95 |—3-20 |—3-40 |—3-70 |—3-95
5 g —-0-75 |[—-0-95 |—1-15 [—1:35 |—1-55 |—1-75 |—2-00 |—2-20 |—2-40 —2-60 |—2-80 |—3-00 |—3-25
54 ay —0-45 {—~0-60 {—~0-75 {—0-95 {—1-15 \~—1-30 |—1-45 |—1-65 |—1-80 |—2-00 |—2-15 |—2-35 |—2-50
6 @y —0-25 |—0-40 |—0-55 |—0-75 |--0-90 |—1-05 |—1-20 |—1-35 |—1-50 |—1-65 |—1-80 |—2-00 |—2-10
Net I.M.E.P. 5

Ib per sq in. 90 95 100 105 110 115 120 125 150 135 140 145 150

% ' 25-00 | 26-50 | 27-95 | 29-40 | 30-80 | 32-25 | 33-60 | 35-00 | 36-40 | 37-80 | 39-25 { 40-55 | 42-00
1 a, 10-45 | 11-20 | 11-95 | 1270 | 13-50 | 14-25 | 14-90 | 15-50 | 16-10 | 16-75 | 17-50 | 18-25 | 19-20
14 as —0-15 |—0-15 |—0-15 |—0-15 |—0-15 |—0-15 |—0-15 {—0-15 |—0-15 |—0-15 |—0-15 |—0-15 |—0-15
2 ay —4-70 |—4-90 |—-5-10 {—5-35 |—5-55 |—5-80 |—6-00 |—6-20 |—6-40 |—6-55 |—6-70 |—6-80 |—6-90
24 as -—6-10 {—6-35 |—6-60 |—6-80 |—7-10 (—7-30 {—7-50 |—7-75 |—8-00 |—8-25 —8-50 {—8-70 {—8-90
3 ag —5-00 |—5-20 |—5-35 |—5-55 |—5-75 [—5-90 |—6-10 |—6-35 |—6-55 |—6-70 |—6-80 |—6-85 —6-90
3% ay —5-40 |—5-680 |—5-90 |—6-10 |—6-40 [—6-60 |—6-85 |—7-10 |—7-40 —7-60 |—7-80 |—8-10 | —8:25
4 dag —4-90 |—5-15 |-—5-45 [—5-75 |—6-00 —6-30 |—6-60 |—6-90 |—7-20 |—7-50 |—7-75 |—8-00 |—8-25
41 dy —4-20 (—4-45 (—4-70 (—4-95 |—5-20 |—5-40 {—5-70 [—5-95 |—€-20 |—6-40 |—6-70 [—6-90 |—7-20
5 dyp —345 |—3-65 |—3-85 |—4-05 |—4-25 |—-4-50 |—4-70 |—4-90 —5-10 {—5-25 |—5-45 |—5:65 | 5-85
5% dyy —2:65 |[—2-80 |—3-00 |—3-20 |—83-35 [—3-50 |—3-70 |—3-85 |—4-05 |—4-20 |-—4-40 |—4-55 |—4-75
6 a5 —~2-25 |—2-40 |—2-55 |—2-70 |—2-85 [—3-05 {—3-20 {—8:35 [—3-50 |—3-65 |—3-80 |—4-00 |—4-20

Electric Ignition Engine
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TABLE la
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PART II. TABLE 2

Harmonic Coefficients

Single Cylinder 1 sq in. Piston Area and 1 in. Crankthrow

o . R 1 . .
Obliquity Ratio 7 =343 Compression Ratio 5-3:1

Net LM.E.P.

b ocr sq in. 2 l 30 ' 35 l 40 45 I 50 J 55 j 60 1 65 ’ 70 ’ 75 l 80 ‘ 85
O&(ie.:r Hég?é) tn 1€ Sine Terms

1 b, 7-15| 790 | 875| 9:60 | 10-05 | 11-45 | 12-50 | 13-50 | 14-60 | 15-65 | 16-75 | 17-90 | 19-00
1 by 13-95 | 14-75 | 15-50 | 16-50 | 17-55 | 18-70 | 19-85 | 21-20 | 22-60 | 24-20 | 25-75 | 27-40 | 29-05
13 b, 18-90 | 14-65 | 15-35 | 16-25 | 17-15 | 18-20 | 19-30 | 20-45 | 21-75 | 23-10 | 24-50 | 25-90 | 27-40
2 by 10-60 | 11-05 | 11-50 | 12-10 | 12-75 | 13-45 | 14-20 | 15-00 | 15-80 | 16-70 | 17-60 | 18-60 | 19-65
23 b, 8-00| 8925| 855| 890| 9:30| 9-70 | 10-15 | 10-60 | 11-20 | 11-80 | 12-40 | 13-05 | 13-75
3 Be 6:00| 610 | 6-25| 640 | 660 | 6:85| 7-15| 7-50| 7-90 | 830 | 875| 9-25| 9-75
31 b, 400 | 4-10| 4-25| 440 | 4-60| 4-80| 5-00| 5-25| 550 | 5-85| 6-25| 6-60| 7-00
4 b, 2:50 | 2-55| 260 2:75| 2.90| 3-00| 3-10| 3-25| 3.40| 3-60| 3-80 | 4-00| 4-95
43 by 1-50 | 1-55| 1-60| 1-70 | 1-80| 1-90 | 1-95| 2-00 | 2-05| 2:10| 215| 2-25| 2-55
5 by, 0-80| 0-85| 0-85| 08| 08| 09| 09| 09| 095| 0-95| 1-00| 1-00| 1-05
54 by 0-30| 030 | 030| 0-30| 0-35| 0-35| 0:35| 0-35| 040 | 0-40 | 0-45| 0-45| 0-50
6 = ||—0-10 |—0-10 |[—0-10 |{—0-10 |—0-10 [—0-10 |—0-10 [—0-10 |—0-05 |—0-05 |—0-05 | O | 0-05
Iliet LM.E.P. 90 95 | 100 | 105 | 110 | 115 | 120 | 125 | 130 | 135 | 140 | 145 | 150

per sq in.

3 b, 20-10 | 21-25 | 22-35 | 23-50 | 24-70 | 25-75 | 26-80 | 27-90 | 20-00 | 30-10 | 31-10 | 32-15 | 33-15
1 by 30-75 | 3240 | 34-05 | 35-75 | 37-40 | 89-00 | 40-60 | 42-30 | 43-90 | 45-50 | 47-20 | 48-80 | 50-40
13 b, 2890 | 30-45 | 32-00 | 33-50 | 35-05 | 36-60 | 38-10 | 39-60 | 41-10 | 42-60 | 44-15 | 45-60 | 47-15
2 b, 20-70 | 21-80 | 22-90 | 23-95 | 25-00 | 26-10 | 27-20 | 28-25 | 29-30 | 30-40 | 31-55 | 32-70 | 33-85
24 by 14-45 | 15-15 | 15-85 | 16-55 | 17-30 | 18-00 | 18-75 | 19-50 | 20-20 | 20-90 | 21-60 | 22-35 | 23-05
3 b 10-25 | 10-80 | 11-40 | 11-90 | 12-40 | 12-90 | 13-40 | 13-90 | 14-35 | 14-80 | 15-35 | 15-95 | 16-55
31 b, 7:35| 7-75| 810| 850 | 890 | 9-25| 9.60 | 10-00 | 10-30 | 10-75 | 11-20 | 11-70 | 12-20
4 by 4-45| 4-65| 4-90| 515| 540 | 560 | 5-90| 6-10| 6-40 | 6-65| 7-10| 7-60| 8-20
43 by 2:45| 2-55| 270 | 2:85| 3-00| 3-10| 3-30| 3-45| 3-60 | 3-90 | 4-25| 4-60| 5-10
5 by 1-15| 130 | 1-40| 150 1-60| 1-75| 1-85| 2-00| 2-10 | 2-40 | 2-75| 3-15| 3-70
51 by 0-55| 060 070 0-80| 0.90| 1-00| 1-10| 1-13| 1-50 | 1-80| 2-10| 2-40| 2-80
6 by 0:05| 0-10| 0-15| 0-25| 0-35| 0-45| 0-50 | 0-55| 0-60 | 0-80 | 1-05| 1-50 | 2-10

Electric Ignition Engine
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Compression Ratio 5-3:1

TABLE 2a
50

43

115

1
3
45

R

110

Hayrmonic Coefficients
L

PART II.

40

105

35

100

Single Cylinder 1 sq in. Piston Area and 1 in. Crankthrow
Obliquity Ratio

30

95

25

50 |—0-50 |—0-50 |—0-50 |—0-50 {—0-50 |—0-50 |—0-50 |—0-50 |—0-45 |—0-45 |—0-45 |—-0-45
50 {—0-50 |—0-50 {—0-50 {—0-50 |—0-50 \—0-50 |—0-50 {—0-50 |—0-45 |—0-45 |—0-45 [—0-45
35 —0-35 |—0-35 |—0-35 |—0-35 |—0-35 |—0-35 |—0-35 |—0-35 |—0-35 |—0-35 |—0:35 |—0-35
35 (—0-35 |—0-35 |—0-35 —0-35 |—0-35 |—0-35 |—0-35 |—0-35 |—0-35 |—0-35 |—0-35 |—0-35
—0-30 |—-0-30 |—0-30 |—0-30 |—0-30 |—0-30 {—0-30 |—0-30 \—0-30 |—0-30 |—0-30 |—0-30 |—0-30
—0-30 |—0-30 |—0-30 |—0-30 |—0-30 {—0-30 |—0-30 |—0-30 |—0-30 |—0-30 |—0-30 |—0-30 |—0-30
—0-25 (—0-25 (—0-25 |—0-25 (—0-25 {—0-25 |—0-25 |—0-25 |—0-25 |—0-25 |—0-25 |—0-25 [—0-25
~0-20 {(—0-20 |—0-20 |—0-20 |—0-20 |—0-20 |—0-20 |—0-20 |—0-20 |—0-20 |—0-20 |—0-20 |—0-20
—~0-15 |—-0-15 |—0-15 |—0-15 |—0-15 |—0-15 |—0-15 |—0-15 |—0-15 |—0-15 |—0-15 |—0-15 |—0-15

35 |—0-35 | —0-35 |—0-35 |—0-35 |—0-35 |—0:35 {—0:35

—0-35 |—0-35 |—0-35 |—0-35 |—0-30 {—0-306 |—0-30 |—0-25 |—0-25 |—0-25 |—0-25 |—0-25 |—0-20

—0
—0
—0
—0
—0

90

—0-45 |—0-45 |—0-45 |—0-45 |—0-40 |—0-40 |—0-40 |—0-40 |—0-40 |—0-40 |—0-40 |—0-40 |—0-40
—0-30 |—0-30 |—0-306 |—0-30 |—0-30 |—0-30 |—0-30 |—0-30 |—0-30 |—0-30 |—0-30 |—0-30 |—0-30
-—0-35 |—0-35 |—0-35 |—0-35 |—0-835 |—0-35 |—0-35 |—0-35 |—0-35 |—0-35 |—0-35 |—0-35 |—0-35
~0-35 |—0-35 |—0-35 |—0-35 |—~0-35 |—0-35 |—0-35 |—0-35 |—0-35 |—0-35 |—0-35 |—0-35 |—0-35
~0-30 |—0-30 |—0-30 |—0-30 {—0-30 |—0-30 |—0-30 |—0-30 {—0-30 |—0-30 |—0-30 |—0-30 |—0-30
-0-30 |—6-30 {—0-30 |—0-30 |—0-30 |—0-30 |—0-30 |—0-30 {—0-30 |—0-30 |—0-30 [—0-30 |—0-30
—0-25 |—0-25 |—0-25 [—0-25 |—0-25 |—0-25 |—0-25 |—0-25 |—0-25 |—0-25 | —0-25 |—0-25 |—0-25
~—0-20 |—0-20 |—0-20 |—0-20 |—0-20 |—0-20 |—0-20 |—0-20 |—0-20 |—0-20 |—0-20 {—0-20 |—0-20
~0-15 |—0-15 |—0-15 |—0-15 |—0-15 |[—0-15 |—0-15 |—0-15 [—0-15 |—0-15 [—0-15 |—0-15 |—0-15

~0-20 1—0-20 j—0-15 |—0-15 |—0-15 |—0-10 |—6-10 |—0-10 |—0-05 {005 |—0-05

—0-45 |—0-45 |—0:45 |—0-45 |—0-40 |—0-40 |—0-40

Coefft.

Net LM.E.P.
Ib per sq in.

No.

Order | Harmonic

saBsraagAy
DD D OO D OO O

23

Net LM.E.P.
1b per sq in.

—iee ~fea ={oa ey

i
O NDBDH DO D —
ey

111
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PART II.

TABLE 3

Harmonic Coefficients

C.I. Engine. Single Cylinder 1 sq in. Piston Area and 1 in. Crankthrow

. . R 1
Obliquity Ratio 7 =346

Compression Ratio 13-5:1

Net I.M.E.P. .

Ib per sq in. 25 ‘ 30 ‘ 35 l 40 45 I 50 ’ 55 ; 60 l 65 1 70 ] 75 ‘ 80 l 85

Order | Harmonic c - T

No. Coefit. OSINE 1erms

3 a 900 | 1040 | 11-85 | 13:50 | 14-70 | 16-15 | 17-60 | 19:00 | 20-40 | 21-80 | 23-25 | 24-70 | 26-15
1 @, 4-00| 48] 570 660 7-45| 8-30, 9-25| 10-10.] 10-95 | 11-85 | 12-70 | 13-60 14-40
1} as 020 045 075 1-00 1-25 1-50 1-75( 210 | 2:30 | 2-60 | 2-80 | 3-10 3-35
2 a, 0-751 070} 065 060 | 055 0-50| 0-45 | 0-40| 0-35] 0-30| 0-25| 0-20 0-15
2% as —0-80 {—1-00 {—1-25 {—1-50 |—1-70 |—1-95 |—2-15 |—2-40 —2-60 |—2-80 |—3-00 |—3-25 |— 3-50
3 ag —0-25 |—0-50 |[—0-70 |—0-95 {—0-20 {—1-40 |—1:65 |—1-90 }—2-15 |—2-40 |—2-70 |—3-00 |— 3-30
33 a, —0-75 |—1-00 |—1-15 |—1-40 |—1-60 |—1-85 |—2-10 | —2-35 |—2-60 |—2-85 |—3-15 |—3-50 |— 3-85
4 ag —0-60 |~0-85 |—1-05 |—1:-25 |—1:50 |—1-75 |—2-00 {—2-25 |—2-55 |—2-80 |—3-10 |—3-40 |— 3-70
41 aq —0-55 |—0-80 |—1-00 |—1-25 |—1-50 |—1-75 |—2-00 |—2-25 |—2-45 |—2-70 |—2-90 |—3-15 |— 3-40
5 dy4 —0-65 |—0-90 |—1-10 |—1-35 |—1-55 [—1-75 |—1:85 |—2:20 |—2-40 |—2-60 |—2-85 |—3-10 |— 3:35
5% ay —0-60 |—0-85 | —1-05 —1-30 }—1-50 —1-60 |—1-8 |—2-10 |—2-35 |—2-55 [—2-70 |—2-90 |— 3-10
6 g9 —0-75 {—0-90 |~—1-10 (—1-25 |—1-406 {—1-60 {—1-80 |—1:95 |—2:15 |—2-35 |—2-50 [—2-65 |— 2-85
Net IM.E.P.

1b per sq in. 90 95 100 105 110 115 120 125 130 135 140 145 150

3 a, 27-50 | 28-90 | 30-35 | 31-80 | 33-20 | 34-65 | 36-05 | 37-40 | 38-85 | 40-20 | 41-65 | 43-10 | 44-50
1 a, 15-30 1 16815 1 17-05 | 17-90 | 18-75 | 1960 | 20-40 | 21-35 | 22-15 | 23-00 | 23-90 | 24-75 | 25-60
13 ay 360 3-90| 420 4-40| 4-70} 40| 5-15| 540 570} 590 | 6-20 | 6-45 6-70
2 a, 0-05 |—0:05 |~0-15 |—0-25 |—0-35 |—0-50 {—0-65 |—0-80 |—1-00 |—1-25 |—1-50 |—1-80 |— 2-15
2% as —~3-75 {—4-00 |~4-25 |—4-50 |—4-80 |—5-10 |—5-40 {—5-70 |—6-00 |—6-35 |—6-70 |—7-10 |— 7-50
3 ag ~3-60 |—3-90 |—4-20 —4-60 |—4-90 . —5-30 |—5-70 |—6-15 [—6-65 |—7-20 {—7-75 |—8-35 |— 9-00
3% ay —4-20 |—4-60 |—4-90 |—5-25 |—5:70 |—6-10 |—6-55 |—7-00 |—7-50 |—8-10 |—8-70 |—9-30 |—10-00
4 dag —4-00 |—4-30 |—4-60 |—5-00 |—5-40 |—-5-75 |—6-20 |—-6-60 |—7:20 |-7-75 |—8-40 |—9-00 [— 9-70
41 g —365 |—3-95 |—4-25 |—4-55 |—4-85 |—-5-15 |—5-50 |—5-80 |—6-10 |—6-50.|—6-85 |—7-25 |— 7-70
5 g -~3-60 [—3-85 (—4-10 |—4-35 |—4-60 {—4-90 |—5-20 |—5:50 |—5-80 |—6-14 |—6-50 |—6-85 |— 7-25
53 ap —3-35 |—3-55 —3-75 |—4-00 |—4-25 —4-50 |—4-75 |—5-00 {—5-25 |—5-55 |—5-80 |—6-10 |— 6-40
4] @y —3:05 |—3:25 |—3-40 [—3-65 |—3-85 |—4-10 [—4:35 |—4-60 |—4-85 |—5-10 |—5-40 |—5-70 |— 6-00

Compression Ignition Engine

34



85

80

75

70

65

60

Compression Ratio 13-5:1
55

TABLE 3a
50
Cosine Terms

1

—1-10 |~1-15 |—1-20 {—1-25 {—1-30 }—1-30 |—1-35 |—1-35

45

L 3-48

R

Harmomnic Coefficients

PART II.

40

Single Cylinder 1 sq in. Piston Area and 1 in. Crankthrow

35

Obliquity Ratio

30

C.I. Engine.
25

—0-80 |—1-00 |—1-15 |—1-35 |—1-50 |—1-65 —1-85 |—2-00 |—2-15 |—2-35 |—2-50 |—2-60 |—2-75
~1-05|—1-20 |—1-35 —1-45 {—1-60 {—1-70 |—1-85 |—2-00 |—2-10 |—2-25 |—2-40 |—2-50 |—2-65
~1-15|-1-25 |—1-35 |—1-45 |—1-55 |—1-65 |—0-75 |—1-85 |—1-95 |—2-05 |—2-15 |—2-25 |—2-35
—~1-10 {—1-20 |—1-35 |—1-45 |—1-55 |—1:65 |—1-75 |—1-85 |—2-00 |—2-10 |—2-20 |—2-30 {—2-40
~1-25 |—1-35 |—1-45 {—1-55 |—1-65 {—1-75 |—1-85 1—1-05 |—2-05 |—2-15 |—2-25 |—2-35 {—2-45
~1-15{—-1-25 |—1-35 |—1-45 |—-1-55 }—1:65 |—1-75 |—1-85 |—1-95 |—2-05 |—-2-15 |—2-25 |—2-35
~1-20 t—1-30 |—1-35 |—1-45 |—1-50 |—1-60 |—1-65 |—1-75 |—1-85 |—1-95 |—2-05 |—2-15 |—2-20
~1-15 |—1-25 |—1-35 {—1-45 |—1-50 |-—1-60 |—1-70 |—1-80 |—1-90 |—2-00 |—2-10 |—2-20 |—2-30
—~1-25—-1-35 |—1-45 |—1-55 |—1-60 |-—1-70 |—1-80 |—1-90 |—2-00 |—2-05 |—2-15 |—2-25 |—2-35
~1-10 |—1-35 |—1-55 |—1-70 |—1-85 |—2-00 |—2-15 |—2-25 |—2-35 |—2-40 |—2-45 |—2-50 |—2-55
~1-15 |—1-40 |—1-60 |—1-80 |—1-95 {—2-10 |—2-20 |—2-25 |—2-35 |—2-40 |—2-50 |—2-55 {—2-60

Coefit.

g 1o

. o

vt g

&

Z |3

JU Ty

QL

oy g

O_ 7

<

o~ )

) [#2]

2

v e

o <D
ey o @ = W G @ = Y oy LT T ST & - T R == o B B~ I
FFTF TSI S SEFIFITIs TS

Net ILM.E.P.
1b per sq in.

No.

Order | Harmonic

l2
1_2l2121_200112
Kell ol a Roale slerNeril Sl S sl

135 140 145 130

130

120 125

115

35

~2-90 |—8-10 |—3-20 |—3-35 |—3-50 |—3-65 |—3-85 |—4-00 {—4-15 |—4-30 |—4-50 |—4-65 |—4-80
Compression Ignition Engine

—2-75 |—2-90¢ |—3-00 |—3-10 |—3-25 |—3-40 |—3-55 |—3-70 |—3-85 |—4-00 |—4-10 |—4-25 |—4-40
~—2-45 |—2-558 |—2-65 |—2-75 {—2-85 |—2-85 |—3-05 |—3-15 |—83-25 |—3-35 |—3-45 |—3-55 |—3:65
—2-50 |—2-60 |—2-75 |—2-85 |—3-00 {—3-10 |—3-20 |—3-35 {—3-45 |—3-55 |—-3-70 |—3-80 |—3-90
—2-55 |—2-60 |—2-70 {—2-80 |—2-90-|—3-00 |—3-10 {—3-20 |—3-30 {—3-40 |—3-50 |—3:60 |—3-70
~2-45 {—2-55 |—2-65 |—2-75 |—2-85 |—2-95 |—3-00 |—3-10 |—3-20 |—3-30 |—3-40 |—3-50 |—3-60
—2-30 |—2:40 |—2-50 |—2-55  —2-60 |—2-70 {—2-80 (—2-85 |—2-90 |—3-00 |—3-10 |—3-15 |—3-20
~2-40 |—2-45 |—2-55 |—2-65 |—2-70 |—2-80 {—2-90 [—3-00 |—3-05 |—3-10 [—3-20 [—3-30 |—3-40
~2-45 |—2-55 |—2-60 |—2-70 |—2-80 |—2-90 |—3-00 |—3-05 |—3-15 |—3-20 |—3-30 |—3-40 |—3-50
—2-60 {—2-60 {—2-60 —2-65 |—2-65 (—2-65 (—2-65 —2-65 —2-75 |—2-75 |—2-75 |—2-75 |-2-75
—2-65 |—2-65 |—-2-65 |—2-65 |—2-70 |—2-70 |—2-70 |—2-70 |—2-70 |—2-70 |—2-70 |—2-70 {—2-70
—1-40 |—1-40 |—1-40 |—1-40 |—1-406 |—1-40 |—1-40 \—1-40 [—1-40 |—1-40 |—1-40 |—1-40 —1-40

Net I.M.E.P.
Ib per sq in.

{99681)



PART II. TABLE 4
Harmonic Coejfficients

C.I. Engine. Single Cylinder 1 sq in. Piston Area and 1 in. Crankthrow

oo . R . .
Obliquity Ratio 7= gj%é Compression Ratio 13-5:1

Net I.M.E.P. |
Ib per sq in. 25 ’ 30 35 l 40 45 ‘ 50 J 55 } 60 | 65 ‘ 70 4 75 ! 80 ( 85
Order | Harmonic Sine T
No. Coefft. mne Lerms

3 by 13-70 | 14-40 1 15-15 | 15-85 | 1655 | 17-25 | 18-00 | 18-75 | 19-45 | 20-15 | 20-85 | 21-60 | 22-30
1 by, 23-20 | 24-35 | 25-50 | 26-70 | 27-80 | 28-90 | 30-00 | 31-00 | 32-00 | 32-95 | 33-90 | 34-90 | 36-00
14 by 25-70 | 26-85 | 28-00 | 29-15 | 30-30 | 31-45 | 32-55 | 33-65 | 34-65 | 85-60 | 36-55 | 37-55 | 38-60
2 b, 23-00 | 24-10 | 25-10 | 26-00 | 26-85 | 27-65 | 28-45 | 29-20 | 29-95 | 30-75 | 31-60 | 32-50 | 33-35
21 by 20-15 | 20-90 | 21-65 | 22-40 | 23-15 | 23-85 | 24-50 | 25-15 | 25-65 | 26 20 | 26-70 | 27-20 | 27-70
3 be 16-75 | 17-25 | 17-75 | 18-25 | 18-75 | 19-25 | 19-75 | 20-20 | 20-70 | 21-20 | 21-70 | 22-20 | 22-70
3% b, 13-80 | 14-15 | 14-55 | 14-90 | 15-25 | 15-60 | 15-95 | 16-30 | 1865 | 17-00 | 17-35 | 17-70 | 18-10
4 bg 11-25 | 11-50 | 11-75 | 12-00 | 12-25 | 12-50 | 12-75 | 12-95 | 13-20 | 13-45 | 13-70 | 13-95 | 14-20
44 by 9:45 9-60 | 9-75| 9:90 | 10-05 | 10-20 | 10-35 | 10-50 | 10-65 | 10:80 | 10-95 | 11-10 11-25
5 b1o 7-55| 7651 7-75| 7-85 7-95| 810 | 820 830! 840 | 850 860| 870! 8-80
51 by 6-25 | 6:30 | 6-40 | 6:45| 650 | 6-55| 660| 6:70| 6-75| 6-8 | 690 | 7-00| 7-05
8 b1o 5-15 5:20 | 5:25 ¢ 530 | 585 540 | 5-45| 5-50| 550! 5-55 560 565! 570
Net I.M.E.P. ]

Ib per sq in. 90 95 100 105 110 115 120 125 130 135 140 145 150
3 by 23-00 | 23-75 | 24-45 ) 25-15 | 25-85 | 26-60 | 27-30 | 28-00 | 28-75 | 29-45 | 30-15 | 30-85 31-55
1 by, 37-15 | 38-35 | 39-50 | 40-75 | 42-00 | 43-20 | 44-40 | 45-60 | 46-85 | 48-15 | 49-40 | 50-70 52-00
13 by 38-75 | 40-90 | 42-10 | 4340 | 44-70 | 46-00 | 47-35 | 48-75 | 50-10 | 51-50 | 52-85 | 54-25 55-60
2 b, 34-30 | 35-20 | 36-10 | 37-10 | 38-15 | 39-25 | 40-85 | 41-50 | 42-75 | 44-00 | 45-40 | 46-85 | 48-40
23 by 28-25 | 28-85 | 29-50 | 30-15 | 30-90 | 31-70 | 32-60 | 33-60 | 34-65 | 85-75 | 37-00 | 38-30 39-70
3 b 23-20 | 23-70 | 24-20 | 24-70 | 25-15 | 25-65 | 26-15 | 26-65 | 27-15 | 27-65 | 28-15 | 28-85 28-15
3% b, 18-45 | 18-80 | 19-15 | 19:50 | 19-85 | 20-20 | 20-55 | 20-60 | 21-25 | 21-60 | 21-95 | 22-35 22-70
4 by 14-40 | 14-65 | 14-90 | 15-15 | 15-35 | 15-60 | 15-85 | 16-10 | 1835 | 16-55 | 16-80 | 17-05 17-30
41 by 11-40 | 11-55 | 11-70 | 11-85 | 11-95 | 12-10 | 12-25 | 12-40 | 12-55 | 12-70 | 12-85 | 13-00 13-15
5 b1g 8:60 1 9-00 | 9-10| 920 9-30| 940 | 9-55| 9-65| 9:75| 9-85| 9-95| 10-05 | 10-15
5% by 7-10 | 7-15 7:25 ) 7-35| 740 | 7-45| 7-50| 7551 760 7-70 | 7-75| 7-85 7-90
6 bis 575 5-80 | 5-8 | 5-90| 595| 600 6-00| 6:05| 6-10| 6-15| 6-20| 6-25| 8-30

Compression Ignition Engine
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TABLE 4a
Compression Ratio 13:5:1

1
-46

3

R

Harmowic Coefficients
L

PART IIL.
Single Cylinder, 1 sq in. Piston Area and 1 in. Crankthrow

Obliquity Ratio

C.I. Engine.
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Fic. 1. Empirical formula for crankshaft. Stiffness in bearings.

Equivalent length from A to B in terms of journal shafting is :—
DA —df — dy?
= (2b -+ 0-8h) 4~ < S d4>a hw3 )S

The flexibility from A to B G ¥i where G is 11-8 X 109 Ib/sq in.

for steel, and ! and J in inch units. J being o= 3 (Dyt — d,%)

0-867

1t follows that the flexibility is DT =8 < 10° radn per Ib in.
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PART III
Practical Caleulations for a Typical Twelve-cylinder Vee Engine

Introduction.—The calculations have been made in conformity with a general scheme of
arranging the details in a particular manner and sequence : the main sections correspond to those
of Part II, to which reference should be made for explanation.beyond that embodied here.

Range of Investigation.—The torsional vibration characteristics of the engine, in respect of
both single-node and two-node vibration, have been calculated for the engine running with an
airscrew fitted, assuming the airscrew to be virtually rigid.

In determining the critical speeds, the results of gear-yielding investigations made on similar
engines have been used, and it is thought that the values obtained are fairly accurate.

The fact that the engine has master and articulated connecting-rods has been taken fully
into account. The magnitudes of the criticals have been computed making certain assumptions
respecting damping : the magnitudes are tentative on this account, and subject to revision when
further progess has been made in the study of damping, but they indicate relative values and
show which criticals are liable to prove troublesome.

An index follows to facilitate reference to data and results: it will be noted that general con-
clusions are given in section 9.

Index to Calculations

Ttem Section Tables Figures

DATA .. .. .. .. .. . .. .. o)1

Drawings—Crankshaft—Lay-out .. .. .. .. .. 17, 18
MOMENTS OF INERTI .. . .. .. .. ]2

Crankthrow .. .. .. . . . .. 21

Reduction gears .. .- .. .. .. . 122

Airscrew .. .. .. . .. .. .. .. 123
FLEXIBILITIES AND STIFFNESSES .. .. .. .. |3

Crankthrow by formula .. . .. .. .. .. | 381 19a

Crankthrow by alternative method .. . .. .. .. | 32

Airscrew shaft .. . . . .. . .. .. |33 19b

Airscrew flexibility .. .. .. .. .. .. .. | 34

Other flexibilities .. .. .. .. .. .. .. 135

Flexibilities of reduction gearing .. .. .. .. .. |1 386
DYNAMIC SYSTEM 4

Engine system .. . .. .. 4.1 20a

Equivalent engine system .. .. . .. .. ..o 4.2 20b
NATURAL FREQUENCIES AND DISPLACEMENT CURVES | 5

Tabulation .. .. .. .. .. .. .. .. 1

Single-node curve .. .. .. . .. .. .. 21a

Two-node curve . .. .. .. .. .. .. v 21b
ORDERS OF VIBRATION AND CRITICAL SPEEDS .. .. | 6 22
ESTIMATION OF RELATIVE MAGNITUDES OF VARIOUS | 7

CRITICALS ,

Forcing torques: Z4, .. .. .. .. .. o 71 2

Phase diagrams and 2, .. .. .. .. .. o172 3

Relative severities .. .. .. .. .. .. .. |73
AMPLIFIED TORQUES AND RESULTANT STRESSES .. 18

Magnitudes of criticals. . . .. . .. .- .. 181

Brake mean torque .. .. .. .. .. ... .. | 82

Torques and stresses in splines .. .. .. .. .. |83

Tabulation of results .. . .. . . .. .- 4

Graph of resulis .- .. .. . .. .. .. 23
GENERAL CONCLUSIONS .. .. .. . .. .. |8
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1.0. Data

Bore and stroke master
Bore and stroke mean
Compression ratio
Rating : Normal
Maximum ..
Type .. .. ..
Lay-out .. . . ..
A dimensioned sketch of the cranks
4A 3B 2A 5B 6A 1B 3A 4B 5A 2B

1.1. Reduction gear
Type .. . .
Number ot pinion teeth
Number of wheel teeth
Gear ratio .
Airscrew rotation
Crankshaft rotation
Airscrew type
Airscrew material

1.2. Supercharger®
Type ..

1.8. Conmnecting-rods
Master rods in bank A
Length of master rod ..
Length of articulated rod ..
Location of wrist pin

1.4. Remarks

[erRe R

600 h.p. at 2600 r.p.m.

695 h.p. at 3000 r.p.m.

12-cylinder 60 deg Vee

See Fig. 2

haft is given in Fig. 17. Firing sequence: 1A 6B

Spur

21

38

0-5531

Right-hand tractor
Opposite sense
Two-blade, fixed pitch
Mahogany

Centrifugal, engine driven. Drive contains spring
element and centrifugal clutch

Articulated rods in bank B

9-2in.

6-733 in.

At 2-45 in. link length, 67-5 deg ahead of master
rod

*Supercharger omitted from calculations because it is assumed to be torsionally insulated

from the engine by the flexible dr
2.0. Moments of Inertia.—2.1. Crankthrow

ive.

(@) Reciprocating masses : Cylinder
Master Articulated
Ib Ib

Piston complete with rings and gudgeon pin .. .. 3-25 3-25
Connecting-rod small-end .. . . . 0-70 0-562
Total per cylinder .. . . . .. . 3-95 3-812
Equivalent at the crankpin per cylinder .. .. .. 1-975 1-906
Joint equivalent at the crankpin centre .. . . 3-881 1b

(b) Rotating masses:
Total big-end mass per throw .. .. .. 4-988 1b

(¢) Equivalent attached at crankpin centre .. .. . 8-869 1b

(d) Moment of inertia about crankshaft axis, of :
Equilvalent attached mass . 63-5 1b/in.?

Crankpin
Two crank webs
Journal

Total per crankthrow .

16-81 1b/in.?
98-44 Ib/in.?
9.5 Ibjin.?

111-25 Ib/in.?
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2.2, Reduction Gears

Moments of inertia 1b in.2

Reduced to basis of
Actual crankshaft®
Pinion wheel § 66-5 66-5
Gear wheel | 257-3 79-0
Total 145-5
2.3. Awrscrew 31,000 9,490

3.0. Flexibilities and Stiffnesses—3.1. Crankihrow.—In the notation of Fig. 1 of Part II,
expressing dimensions in inches ; D, is 3-0 and d, is 2+ 8 for all journals except B and F—for which
itis 2-4. In the following table, quantities are related to both types of journal :

‘ p In the terms of the ACD
Dy & 26 journals ;— Eand G Band F
Journal 9.3
3-0 and 1-77 (26 4-0-8% = 2-40 2-40
2-4
. D, b “ 3| Dyt —dyf
Crankpin 7 a == 2-97 2-68
2-5 1-7 2-30 Dyt — dyt
Two ° " ’ ?[D i I 332
Crankwebs 4.9 0-78 5.35 4 BB
Equivalent length of throw in inches = [ == total = 9-06 8-40
Flexibility per crankthrow, in mirco-radians per pound-inch, is : F; = 0-86/(D,*—d,%) = 0-147 0-151
Stiffness of crankthrow, in pounds-inches per mirco-radian, is: C, = 1/F, = 6-97 6-61

* The reduced values are obtained by multiplying the actual values by the square of the ratio of speed to crankshaft
speed.

T The figures contain the moment of inertia of layshaft, efc., from pinion centre to centre of adjacent journal A.
I The figures contain the moment of inertia of 1/3 airscrew shaft measured from gear wheel centre.

The flexibilities between the adjacent crankpin centres are the flexibilities between the crank
masses shown in Fig. 20a.

3.2. Crankthrow Fexibility by Alternative Method.—No alternative method used.

3.3. Awrscrew Shaft.—The shaft flexibility may be derived from Fig. 19b where the shaft dimen-
sions are given together with a diagram constructed therefrom giving 1/(D* — d%) which is pro-
portional at each section to the flexibility per unit length, and thus the area of the diagram is
a measure of the flexibility of the shaft. As mentioned in section 3, Part II, there is uncertainty
arising from the flexibility of attachment of the airscrew. In this case the uncertainty is
removed by the experimental determination of Ref. 1 at the end of the report, which gives the

48



overall flexibility from the gear wheel centre to the airscrew boss of a similar airscrew shaft as
0-132 x 107° radn. per 1b/in. which value is used in these calculations. F 1g. 19b is however,
included to show the method of determination of the airscrew shaft flexibility when experimental
results are not available.

3.4. Airscrew flexibility —The airscrew is taken to be virtually a rigid flywheel.

3.5. Other flexibilities
Between centre-line pinion and centre-line journal A = 0-323 micro-radians/lb in.
Between centre-line pinion and centre-line crankpin 6 = 0-397 micro-radians/lb in.
3.6. Flexibilities of Reduction Gearing.—Torsional stiffness tests have been made on a similar
engine having gearing of the same design. The results show that the major portion of the
yielding in the gears and gear housing is not amenable to calculation. The total flexibility

from test measured from the centre of the gear wheel to the centre of the pinion referred to
airscrew shaft is 0-0834 x 10~ radn./Ib in.

Of this total certain contributions can be accounted for by calculation, iz, ~—

Micro-radians per 1b in.

Ttems Totals
Flexibility due to bending, shear and surface deformation
in the gear teeth .. .. .. .. . .. 000977
Flexibility due to winding of gear wheel body .. .. 0-0057 0-0184
Flexibility due to winding of pinion wheel body .. .. 0-0030
Certain other contributions were provided by the tests, viz :
Flexibility due to rotation of the gear housing .. .. 0-0078 0-0232
Flexibility due to yielding in bearings themselves .. .. 0-0154
Total flexibility accounted for: . . . . 0-0416
Total flexibility unaccounted for: .. . . .. 0-042
It is probable that the unaccounted flexibility exists in the supports of the bearings.
Ttems
Flexibility between the centre of the gear wheel and airscrew boss
reduced to crankshaft datum is:
0-132
Flexibility of gears reduced to crankshaft datum is:
0-0834
mz = 0-272
Therefore the total flexibility from the pinion to the airscrew boss
reduced to crankshaft datum is: 0-703

The corresponding stiffness is
1+42 million Ib in./radn

4.0. Dynamic System.—4.1. The flywheel system corresponding to the foregoing data is repre-
sented diagrammatically in Fig. 20a where the distances between the consecutive masses are
proportional to the flexibilities of the appropriate connections.
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4.2. A diagram is drawn below Fig. 20a representing the system reduced to crankshaft speed
datum by modifying the stiffnesses and moments of inertia of the parts which rotate at speeds
other than crankshaft speed. This diagram is termed the Equivalent Engine System, Fig. 20b.

5.0. Natural Frequencies, and Displacement Curves—To obtain a first approximation to the
frequency in single-node vibration of the system shown in Fig. 20b the system may be simplified
into two flywheels and a connecting shaft, as follows :—

Moment ot inertia of one flywheel = I, = 9,4901bin.?
Moment of inertia of other flywheel = [, = 811 1bin.?

the first flywheel being the airscrew and the other the remaining mass located at mass 5, say:

The corresponding flexibility of the connecting shafting is 1-251 x 107° radn/lb in. and thus
the frequency is:

1 P
% {gC G“ - 71) }1 e { 1*"*?221 % (0-000105 — 0-001232) }”2 — 102
a b.

2

complete vibrations per second.

Starting from this value in using the tabular method, it is found that the single-node frequency
for the system of Fig. 20b is 105 vibrations per second, as Table 1 shows; the corresponding
displacement curve is given in Fig. 21a.

The two-node frequency is found to be 372 vibrations per second (see Table 1) ; the corresponding
displacement curve is shown in Fig. 21b.

6.0. Orders of Vibration and Critical Speeds.—From Fig. 22 it is seen that the orders of single-node
vibration that give criticals in the region of full throttle speeds are 2, 21 and 3: these are minor
criticals. The orders of two-node vibration that give criticals in this speed region are high,
namely: 7 to 9, and the corresponding displacement amplitudes are probably very small.
Although the steepness of the displacement curve in the region of the node (Fig. 21b) connotes
relatively large torque variation for a given displacement at No. 1 mass, it is doubtful if the
criticals in question are important enough to require investigation; in any case, the present
calculation does not extend to examination of criticals higher than the 6th order.

7.0. Estimation of Relative Magnitudes of Various Criticals.—The symbols used in the ensuing
calculations have significance as follows :—

6, Amplitude of vibration (} total swing) at each crank according to Table 1, where
the amplitude crank 1 is taken to be one radian.

0, Corresponding amplitude of vibration at the airscrew.
A4, Magnitude of the pth order forcing torque per cylinder.

ZA, Magnitude of the resultant pth order forcing torque at each crankpin: by its use
the engine may be considered to be reduced to an equivalent 6-cylinder engine.

a, Amplitude (in radian measure) at mass one due to the pth order forcing torques.

%0, Vector sum of the elastic displacements at the cranks using the phase diagrams
appropriate to each order.

ZA,%0, Relative measure of severity of criticals for a given mode and constant velocity-
coefficient of damping.
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7.1. Amplitudes of Harmonic Forcing Torques : ZA,—The forcing torques due to gas and
inertia forces operating on any one crank have been treated separately; gas-pressure curves
have been constructed on a base of piston displacement for the I.M.E.P. considered and the
corresponding torque curves for master and articulated cylinders deduced. These torque curves
have then been added in correct phase and analysed by Runge’s method.

Inertia torque coefficients have been found, taking full account of articulation, using the
methods described in sections 7a.3 and 7a.4 of Part II.

Gas and inertia torque coefficients for any one crank are given in the following table for a
particular condition of operation, namely 2,600 crankshaft r.p.m. and 158 Ib/sq in. I.M.E.P.

. Inertia torque harmonics lb/in.
Gas Harmonics
Ib/in. .
Order / Master Articulated Total
Cos Sin Sin Cos Sin Cos Sin
% —1,006 1,051

1 — 263 4,574 405 —363 46-5 363 4515
11 —2,569 —2,100
2 —1,665 452 —2,720 2,540 1,260 2,540 —1,460
2% 262 —2,590
3 73 42 —1,230 —396 1,040 —396 — 190
31 1,290 -— 997
4 176 854 — 125 — 80 —57 — 80 — 182
41 630 104
5 — 339 814 23 — 11-4 48-5 — 11-4 72
53 92 92
6 — 507 206 4 — 15 — 91 — 1-5 — 5-1

The resultant harmonic torque per crank (ZA,) together with the phase leads of the several
harmonic components are given in Table 2 for selected engine speeds and mean effective pressures
which correspond to speed in the manner indicated.

7.2. Phase Diagrams and the Evaluation of 26,.—The next step in making the vector sum-
mation ZA,20, is to draw phase diagrams to give the displacement vector directions. Phase
diagrams are set out in Table 3 for the firing sequence concerned and for various orders.

The phase diagram for order § is simply the firing sequence as it would be if marked upon
the end of a shaft running at half crankshaft speed. Thus for the equivalent six-crank engine
under consideration, with a firing sequence 1, 5, 3, 6, 2, 4, there is a 60 deg interval between
each pair of successive numbers for order 4.  This interval is increased by 60 deg for each
additional % to the order; thus for order 1 it is 120 deg and so on. Starting with the datum

crank number, the other cranks are put on the several diagrams with appropriate angular intervals.

Using the phase diagram directions, the vertical components V and the horizontal components
H of the several displacements are given in Table 3 for both single-node and two-node vibration ;

also the values of
%0, = V(ZV): 4+ (ZH)®

7.3. Relative severity of criticals ZA,%0,—It should be noted that a forcing torque of amplitude
ZA,%0, acting at mass No. 1 is equivalent in effect to the group of pth order forcing torques
operating on the cranks; it is thus the resultant pth forcing torque referred to No. 1 mass.

Values of ZA, %0, are given in row 6, Table 4. It will be noted that, of the single-node criticals,
the 3rd order is by far the most severe, and that as regards two-node criticals the investigation
does not extend beyond determination of 6th order.
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8.0. Amplified Torques and Resultant Stresses in the Airscrew Shafi.—The resultant maximum
and minimum torques in the airscrew shaft are given by adding to the mean transmitted torque
plus and minus the maximum vectorial resultant of the criticals prevailing at the speed concerned.
It suffices for practical purposes to adopt arithmetic summation, although this usually over-
estimates the stress range.

8.1. Estimation of Absolute Magnitudes of Various Criticals.—Referring to section 8 of Part II,
the value of the damping quantity E, will be taken to be 40 having regard to the fact that the
engine has reduction gearing (which tends to increase the damping). On this basis:

I, \Y 4
h, = E, (@)4 40 G?éé "= 147 1b in. per radn/sec.

The magnitudes of the harmonic torques, expressed in terms of o, the amplitude of vibration
of the free end mass, are derived as follows —

Single-Node Two-Node
Frequency in vibrations per sec. 105 372
Z(6,%) values from 6, values in Table 3 4-85 2-93

074,26,
* = Iafh, 2(0.9)

%y

Twist between airscrew and adjacent mass from Table 1 :—
radians

Flexibility between airscrew and adjacent mass :—Radn/lb in. ..

Corresponding twist in equivalent shaft :~—radians . .
Harmonic torque in equivalent airscrew shaft :—Ib/in.
Gear ratio  Airscrew/crankshaft

Harmonic torque T’y in actual airscrew shaft :—Ib/in.

from equation (95), Part 11, A, being neglected . .

21-2 X 10-¢ Z4, 50,

0-5275
0-703 x 10-¢
0-52750,,
0-75 % 108,
0-353:1
1355 X 108,

0-82 X 1076 Z4, %0

1-23
0-703 x 10-¢
1234,
1-75 X 108a,
0-558: 1

316 X 105,

e .

Values of o, and T computed from the foregoing are given in rows 7 and 8 respectively of
Table 4. The harmonic torque between any two masses in the system can be found by multi-
plying the harmonic torque in the equivalent airscrew shaft by the ratio of the slope of the
displacement curve in the region concerned to the slope for the equivalent airscrew shaft.

8.2. Brake Mean Torque in Airscrew Shaft.~—The brake mean torque in the airscrew shaft
for the conditions of sections 1 and 7.1:is T,,, where

63,020 x BHP 63,020 x 600

T, = Alrscrew R.P.M. 2,600 x 0-553

= 26,300 in. 1b,

Below this speed the torque is assumed to vary as the square of the speed and above the torque
is assumed constant. Values of brake mean torque are given in row 9 of Table 4.
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8.3. Maximum and Minimum Torques and Shear Stresses in the Airscrew Shaft Splines—The
cyclical torque changes are shown diagrammatically in Fig. 23. The side bands of these criticals
have also been plotted : these have been calculated by use of equation (97) of Part II. The 3rd
order is worked out below for guidance. g

Resonant r.p.m. 2,100, 7, = 35,600 from Table 4.
1,240

A g o} °
(0-553) (36,600) — 0063
Gas and inertia torques increasing as the square of Gas torques constant
engine speed f
Engine R.P.M. .. . 1,750 | 2,000 | 2,050 | 27100 2,150 | 2,250 | 2,600 | 2750 | 2,900
Gas M, .. .. .. .. 33 43 45 48% 50 55 73* 73 73
Harmonics M, .. .. o 19 25 26 271 29 31 42% 42 42
Inertia M, .. .. . —180 | —235 | —247 | —259% —272 | —297 | —396% —444 | —494
Harmonics M, .. .. .- — 8| —112| —118| —1241 —130{ --142 | —190% —213| -—237
Resultant M, + M, .. .o —147 | =192 | —202 | —211f} —222 | —242| —323| —371 | -—421
Harmonics M, -+ M/ . — 76 — 87 — 92 — 971 -—101 —111 —148 —170 —195
ZA, i61 211 222 232t 244 266 355 408 464
ZA4,%0c .- o .. 860 1,130 1,190 1,240 1,310 1,430 1,910 | 2,196 | 2,490
{1 — 232 F a2 .. 3-22 9-25 12-9 15-9| 12-75 | 16-08 1-86 1-40 1-10
Ty . .. .- . 5,600 | 18,800 | 27,800 | 35,600 | 30,200 | 15,700 | 6,420 | 5,550 | 4,950
t From Table 2. * From table in section 7.1.

As mentioned in Part I, a chain-dotted curve has been plotted on Fig. 23 to show the torque
variation on the assumption that the shafting and airscrew are rigid. The curve has been con-
structed from a graphical integration of the torque variations on each crank:; it can however,
be obtained from this section. It will be seen from the phase diagrams of Table 3 that all the
orders balance out (assuming rigid shafting) except the series 8, 6, 9, ec. Assuming all orders
above the sixth to be small it is only necessary to add the 3rd and 6th orders in correct phase to
obtain the resultant torque variation, noting that below 2,600 r.p.m. both gas and inertia torques
vary as the square of the speed and that above 2,600 r.p.m., the gas torques do not vary. This
method has been applied and found to give substantially the same results.

Reverting to the actual case, the torque range at various speeds has been obtained by adding
the ordinates of the full-line curves plotted about the mean torque line in Fig. 23. From these
values, the maximum and minimum torques in the airscrew shaft have been deduced in accordance
with section 8.0. The results are given in row 12 of Table 4 and thence the shear stresses have
been estimated from the resultant torques at a section taken across the splines. No concentration
factor has been included. For a ratio of fillet radius to depth of the spline of 1 /5 it is estimated
that the factor would be 2-5, so that the stresses given in Table 4 would be increased in this
proportion,

9.0. General Conclusions.—The total elastic yielding in the gear corresponds to a lowering of
the single node natural frequency of the system from 119/sec to 105/sec, i.e., by 13-3 per cent.

On the basis of the assumed damping, for the engine with an airscrew fitted, there is one
critical of sufficient magnitude to cause torque reversal, namely the single-node critical of order 3
at 2,100 r.p.m. and trouble would be encountered if the engine were run for prolonged periods
at this speed. The remaining criticals are quite moderate.
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Section 5

PART T1II. TABLE 1

Torsional Vibration
NATURAL FREQUENCY TABLE
Single-node frequency f; = 105 vibrations/sec
7 =47 f" =0-436 x 10°
denote 7,°1, /g' by O,
6th order synchronous speed = 1050 r.p.m.
Two-node frequency f* = 372 vibrations/sec
7e" = 4 &%, = 5-45 x 10°
Denote 7,1 /g by O,

Mass No. 1 2 ) 3 4 [ 5 1 6 I 7 ‘ 8 Units

I 111 111 111 111 111 111 145 $490 | 1bin.2

I/g 0-288 0-288 0-288 0-288 0-288 0-288 0-375 24-6 1b sec? in.

F =10"% x 0-151 0-147 0-147 0-147 0-151 0397 0-703 radn/lb in.
I Single-Node

0 = 108 % 0-1255 0-1255 0-1255 0-1255 0-1255 0-1255 0-1635 | 10-72

0 1 0-9810 0-9444 0-8904 0-8199 0-7319 0-4649 | —0-0626 | radian

Dy = 108 x 0-1255 01230 0-1185 0-1117 0-1028 0-0919 00760 |—0-6720 | 1b in.

200 =108 x .. 0-1255 0-2485 0-3670 0-4787 0-5815 0-6734 0-7494 0-0774 | 1b in.

Z(0,6F) 0-0190 0-0366 0-0540 0-0705 0-0880 0-2670 0-5275 radian

Two-Node

Q, = 108 X 1-57 1-57 1-57 1-57 1:57 1-57 2-045 1134-1

0 1 0-7625 0-3550 |—0-135 |—0-593 |—1-923 |—1-213 0-017 radian

0,0 = 10% x 1-57 1-198 0-557 1—0-212 |—0-932 |—1-450 |—2-480 2-28 1b in.

20,0 =105 x .. 1-57 2-768 3-325 3-118 2-181 0-731 | —1-749 0-531 1b in.

Z(Q,6F) 0-2375 0-4075 0-490 0-458 0-330 0-290 |—1-230 radian

Nodal positions
=0-083 x 10~®radn/lb in.

= 0-0098 X 10-8 radn/Ib in.
= 0-405 X 10~ radn/Ib in.

Flexibility from airscrew
Flexibility from airscrew
Flexibility from rear mass
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Section 8

PART III.

Torsional Vibration

TABLE 4

Calculation of Harmonic Torques and Resultant Stresses in Airscrew Shaft

1 Mode of Vibration Single-Node Two-Node
2 | Crankshaft r.p.m. 3150 2520 2100 1800 1575 1400 3720
8 | Order of vibration 2 2% 3 3% 4 4% 6
4 | ZA4, bin. 2680 2450 232 752 177 185 545
5 | ze, 0-0908 0-1856 5-3676 0-1856 0-0908 0-4832 0-4665
6 | Z4,20, 243 454 1240 140 16 89 254
Amplitude of \ Radn $-0051 0-0096 0-0263 0-0030 0-00034 | 0-00188 | 0-00275
7 half swing at :
rear mass « 3, | Degrees| 0-285 0-551 1-5 0-170 0-0194 0-108 0-158
Harmonic torque in
8 airscrew shaft 6970 13050 35600 4060 460 2560 8690
Ty1bin,
Brake mean torque in :
9 airscrew shaft 26300 24800 17100 12650 9630 7650 26300
Ty b in.
10 | T/Ty 0-265 0-526 2-08 0-321 0-048 0-334 0-33
11 | Z Ty (from Fig. 23) 14,000 20,000 38,000 11,000 3,200 4,300 Tu
Max.
. Ib 40,300 44,800 55,100 23,650 12,830 11,950 34,990
Max. and min. in
12 torques in )
airscrew shaft .
(Tu -+ 2T Min.
# 2 b 12,300 4,800 —20,900 1,650 6,430 3,350 17,610
in.
Max.
tons | 4-47 4-96 6-10 2-62 1-42 1-32 3-88
13 | Shear stresses in| 4™
airscrew shaft Mi
in,
tons | 1-36 0-53 —2-32 0-183 0-712 0-371 1-95
sq in.

Remarks :—These stresses are calculated for the splined section in the airscrew shaft, where the modulus of section

is 4-03 in®.

Based on the diameter of uncut shaft.
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FREQUENCIES ~ VIBRATIONS PER SECOND

ORDERS
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500 1000 1500 2000 2500 3000 3500

ENGINE R.PM.

Fic. 22. Frequencies, orders and critical speeds.
Order = complete vibrations per revolution

80 X frequency per sec.
- r.p.m.
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