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1. Summary.—A brief review of existing work is given and the possibility of certain simple solutions for velocity
distributions of the type U = kx™ with their appropriate suction distributions is indicated. An improved approximate
calculation of the “ entry flow " along a flat plate, through which constant suction is applied, is given in some detail.
Also Prandtl’s original calculation (based on the momentum equation) for boundary-layer flow with constant suction
and a constant adverse velocity gradient is repeated, using Howarth’s accurate solution for flow without suction. It is.
also demonstrated (subject to the accuracy of the approximations) that distributed suction should be much more
economical in quantity than suction flow through the minimum number of isolated slots required to prevent separation
in the flow under a constant adverse velocity gradient.

i

Practical applications of porous suction are then considered and illustrated by simple examples. These fall under
two headings :—(a) the stabilisation of laminar flow against disturbances, (b) the prevention of separation. If the
stability calculations made by Pretsch are correct, then a suction velocity v,, given by »,/Uz 1-82 x 1075, where U is
the free-stream velocity, should make the boundary-layer flow past a flat plate stable against all small disturbances.
Thus by use of a very small suction flow it may be possible to stabilise the flow over a laminar flow type wing against
the adverse effects of waviness. The prevention of laminar separation, coupled with the increase of stability, makes
possible a wing with 100 per cent. laminar flow. Bluff shapes as extreme as a circular cylinder require only a compara-
tively small suction flow to overcome laminar separation. The application of porous suction to the attainment of a
high €}, max. is 2lso considered, and it is demonstrated that, even for a thin wing, a very high C; s, should be made possible
by a surprisingly small suction flow applied over less than 10 per cent. of the chord.

It is also suggested that pbrous suction could be used as a valuable research tool to thin the boundary layer and thus
simulate high Reynolds number conditions at small test Reynolds numbers for both incompressible and compressible

flow.

Some consideration is given to the practical realisation of a porous surface which approximates to the mathematical
concept. It is concluded that porous bronze, made by sintering metallic powder, is the most suitable existing material
for laboratory experiments. There seems to be no reason why a similar * surface " should not be made in light alloy
for the flight applications. It is considered that the simulation of a porous surface by the use of isolated slots is not
suitable unless their spacing and width are small compared with the boundary-layer thickness.

It is concluded therefore that porous suction may have important practical applications to flight at both small and
large C,’s. Experiments are needed to confirm the ideas put forward in this report. Also accurate solutions of the
boundary-layer equations for the flow under an adverse pressure gradient with porous suction are required to check the
approximate treatment used herein. '

9. Imtroduction.—Suction as a means of boundary-layer control dates back to the inception of
the boundary-layer theory itself. Prandtl' (1904) appears to have been the first to consider it.
He also devotes some space to it in his article The Mechanics of Viscous Fluids in Aerodynamic
Theory, Vol. 111 (1935)%. Both distributed and concentrated suction are considered. It is the
latter which has received most attention both in this country and abroad, the latest stage of
development here being the thick Griffith aerofoil and the Lighthill nose suction aerofoil.
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Distributed suction has received less attention experimentally, presumably because of the
difficulty of simulating the permeable surface envisaged in the theory. Prandtl® shows how
laminar separation can be prevented in the flow under a constant adverse velocity gradient.
Griffith and Meredith in an unpublished note (1936) obtained the simple solution cf the boundary-
layer equations for the flow past an infinite plate with uniform suction. They also shcwed that
considerable improvement in performance could be obtained if, under suction, the flow proved
to be more stable (as seemed likely) than without suction, so that much more extensive laminar
flows could be maintained. No satisfactory experiments were made to check this. Schlichting®
(1942) made approximate calculations of the boundary-layer flow along a semi-infinite flat plate
under conditions of constant suction and air injection both for laminar and turbulent flows.
For laminar flow with suction at large distances from the nose of the plate he obtains the solution
already derived by Griffith and Meredith. The merit of Schlichting’s work is that it gives an
approximate picture of the  entry flow * near the nose of the plate and how this joins on to the
exact ““ asymptotic ”’ solution corresponding to large distances from the nose.

The stability of the laminar boundary layer of a flat plate with constant suction has recently
been examined by Pretsch* (1942). His conclusions are startling and of the utmost practical
importance. For a flat plate without suction, oscillations in the laminar boundary layer are
amplified if Us*/» > 680. With suction Ué*/» > 5-52 % 10* before amplification occurs and
the maximum amplification is $th that occurring without suction. If v,/U >1-82 x 107°, the
flow is always stable. This is of course an exceedingly small suction velocity. Thus the
possibility of totally laminar flow wings (as was visualised by Griffith and Meredith) is presented.
The only experimental evidence which supports this conclusion is contained in a brief paper by
Ackeret and Pfenninger® (1941). The authors simulated a porous surface by a large number
of fine slots disposed in the region of adverse pressure gradient along a flat wall. Without
suction, the flow downstream of the region with adverse gradient was turbulent : with suction
the flow remained laminar. The Reynolds number of the tests appears to have been about
5 > 10% and no details of the slot width nor of the suction flow are given.

The purpose of this report is (a) to point out the possibility of certain exact solutions of the
houndary-layer equations with suction, (b) to give an improved treatment of the flow along a
flat plate with constant suction along the lines given by Schlichting?®, (c) to extend this solution
s0 that together with a solution similar to one given by Prandtl® practical calculations for wings,
cte. can be made, (d) to suggest possible applications and experiments for testing the theory.

3. Exact Solutions of the Boundary-layer Equations with Suction.—(a) Solution of Griffith and
Meredith— Infinite Plate with Constant Suction.— The equation of motion (with zero pressure
gradient) is
ou ou _ 'u
ox oy oy?
and the equation of continuity is

u

ou v ‘
e 2 =0 .. .. .. .. .. .. .. .. .. 2
cx - oy (2)
We assume that Z—% =0,
0X
then from (2) v = const, = -9, .. . .. . .. . . (3)
and from (1) ‘
A 2
vl {1/; -~i-—- Py _.a__Mz i O 5
2y oy
% !
whence — =z ] — pmtul e .. .. .. .. .. .. .. 4
U, 4

gives a solution satisfying the boundary conditions and which represents conditions far from
the leading edge of a semi-infinite flat plate with constant suction.



3.

(b) Semi-infinite Plate. Suction o 1/x**.—If we put in equation (1) (asin Modern Deuvelopments
in Fluid Dynawmics (Vol. 1, p. 135)%,

n = HU/vx)"?y , p = (vUX)V*f, .. .. .. .. . (5)
where " = 2—;‘% = g ! v = ——g% —_—%'(Uq;/x)ll2 . —=n, .. .. (6)
we obtain frf =0, .. .. . . . (7)
(where the primes denote differentiation with respect to 7). |
| The boundary conditions are # = U at y = and x =0 and # =0, v = —v, at y = 0
which in terms of the new variables give ’

fr=2atg =0, .. el (8)

ff=0aty =0,

f=21)1/<gx—v>l'/2‘atn=0, .. .. .. . .. 9)
so that if v, o 1/4'? :

f=const.aty =0. .. .. . .. .. . .. (10)

The sclution of (7) with f = 0 at 5 = 0 is the well-known Blasius solution. The solution of
(7) with f = const. and the other boundary-layer conditions the same, will therefore correspond
to v, o 1/x'/2 for each value of f;; the boundary-layer thickness will develop at a slower rate than
without suction, but its variation with x will still be parabolic. The velocity profile will still
be the same at all sections, but will differ from the Blasius profile by being more convex. In
fact it follows from (7) that /,” = u; +# 0, when f, has a value different from zero. The actual
solution of (7) can be carried through by a numerical step-by-step process, but it is most con-
veniently done on a differential analyser for a whole series of values of f,. B. Thwaites is co-
operating with the Mathematics Division, National Physical Laboratory, in connection with this
and other examples. Its jnterest is largely academic, but experimentally the condition
v, ocv1/22 could be simulated by applying a constant suction head across a wall, the thickness
- of which « x'2, if the flow through the surface is of the viscous type. :

(¢c) Flow near a Stagnation Point. U = gx. Constant Suction Velocity through Surface.—The
equations of motion are (Ref. 6, p. 139)

0 0 2
£+Z"¥: X ‘C“Z/Z,
- .. .. .. .. 11
D oy ' (11)
U —= —, U = -0
0y 0x
with # = 0, v = —v, at y=0; u=0,x=0, u= px at y =, where g, = const.
By takin = (8% . x . ,
y taking v hmtz J(n) 1 (12)
7 = (B:/?)"y, J |
w=Bxf'(n),  v=—(B)"fn); e e (13)
the equation for fis (Ref. 6, p. 139)
f2— =14 f". .. .. .. .. .. .. .. (14)
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The boundary conditions give

ff=laty=w, .. . . . . . . (15)
"=Q0aty =20,
/ Y . (16)
f=uv/(»8)"*aty=0.

Hence if v, = const., fo = const. .. .. .. .. .. .. .. (17)

[Equation (12) can therefore be solved numerically or preferably by machine for a series of values
of f,. The solution is of some importance if, for any reason, constant suction is applied from the
front stagnation point of a wing over a part or whole of the chord.

The solutions indicated in (b) and (c) are particular cases which are included in the more general
flow given by U = kx™ and a particular distribution of suction can be found for any value of m,
which will enable the partial differential equation to be reduced to an ordinary differential
equation of the same form as for zero suction. (See Ref. 6, p. 140-141.)

4. Approximate Solution for the Laminar Boundary-layer Flow along a Permeable I'lat Plate
with Suction.— (a) Note on Schlichting’s Solution.—Schlichting® (1942) has given an approximate
solution of this problem, which can be improved on in detail, though the method of attack is the
same. This is worked out in some detail in this section, as it has applications to wings with
permeable surfaces.

As mentioned in the introduction (Section 2) Schlichting® has derived Griffith and Meredith’s
solution for the flow at large distances from the leading edge. This has been given in Section 3a.
Schlichting also noted that the flow at the leading edge is given by the Blasius solution for zero
suction. That this is correct can be seen from equation (9), where at

y=0,

f = 20,/(Us )
gives the value of f at the surface.
If v, = const., then as x— 0 - the leading edge, f— 0 and conditions then are identical for
those with zero suction.

Schlichting takes
ulU = Fi(n) + KFun) ,

where », = v/é,, 6, being a measure of the boundary-layer thickness and K is a form parameter.
‘He then takes F,(y) = 1 — e¢7" corresponding to the asymptotic solution given in § 3a and

Foln) =¢e™. ’
When K — — }, corresponding to the leading edge of the plate,
%: 1 — e ——ge“"

is taken to correspond to the Blasius profile. This is a rather poor representation, since, when
inserted in the momentum equation for zero suction, it gives for the momentum thickness 6

0 = 0-83+/(vx/U), instead of this exact value
6 = 0-664+/(»x/U) ;
and for the displacement thickness 4*
o* = 1-814/(vx/U), instead of the exact value

0% = 17214/ (vx/U) ;
whilst .

H = 6*/0 is given by
H = 2-182, instead of by its exact value
H = 2-591.

I
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The actual profile is shown in Fig. 5a for comparison with the Blasius profile and the * asymptotic”’

profile of Griffith and Meredith. It is nearer to the latter than to the former, which it 1s
attempting to represent. Hence some doubt as to the accuracy of Schlichting’s subsequent

calculation must exist.

(b) I'mproved Solution.—It is proposed to take a one-parameter family of velocity profiles
~having as their limiting forms the exact Blasius profile and the asympiotic profile given in section
(3a). These profiles are distributed along the plate so as to satisfy the momentum equation and
the differential equation of motion 3.1 near the surface; the boundary conditions being

automatically satisfied. ‘
Thus we take

v=1@) = F) + K(FG) — B@y - e (4]
" where
F=yor, o =[(1—wOdy ,.. .. .. .. . (4
]
- F(§) = Blasius Profile {(See Fig. 1a , 43)
Fy(5) = Asymptotic Profile = 1 — ¢7F ’ H N '
whilst K is a form parameter and is a function of x the distance along the plate.
The equation of motion 3.1, when y = 0, gives :—
ou % '
-y {— = v (= . .. .. . .. . . . 4
o 8y>y=u Y ay2>y=o (4 )
which, with u = U. f(§), y = § . 6%, gives: '
o0 | 4.5)
fo = . fo .. .. .. . .. . .. (4.
where primes denote differentiation with respect to 7.
Now from 4.1
fo = (1 — K) (F{)o + K(F:)
=0—K , .. . . .. S .. .. (46
and fo = (1 — K) (F)o + K(F3)o
where (Folg=1 -, '
n _ U.o% )
and (F)y = = ‘(;‘U"z)l N 7 )
where subscript , denotes the Blasius proﬁle."
Now in Modern Developments in Fluid Dynamics, Vol. 1, p. 136°
. . ' p \1/2
ot = 17208¢ ()
70 \ _ . 220 y \Y?
and (;(72)1_ 0-88206 (1)
whence | (F})y=0:57141 = a , . . .. . . .. .. (4.8)

B

so that fl=a+(1—aK.



Substituting (4.6) and (4.9) in (4.5) we obtain

0,0% K 4.10)
v ad(1—a)K - (4.10
Now w|U == Fi(§) + K {F,(§) — Fy(9)}
) T U s _ 5
and ) ) (1 )dy o’ (1 U> ay E
so that 1 - [l (1 — F) -+ K(F, — F)}dy
JO
-fu—Fm@+K“ma“fg@«J11mme},
40 i} ]
MtKHwFWW:KH+EMhﬂ.. O 78 B

by definition, so that a velocity profile compounded from {wo other velocity profiles having the
same value of o* also has the same value of %,

Now 0 = VU (1 — dv = ()* cu <1 — “)d
or - ;:fﬁﬂmlmuﬁOIP*waw+KﬂFmU~FMy
J Jo
_hmu_mmwa.(pu_wqy} L 412
Now for the Blasius profile
© 5 0-66412
[f - - — ‘-
fﬂ (1 — F)dy = S0 = 0:38504 (4.13)
and for the 'asymptotic profile from (4.3)
ﬂﬁulmFW@:; R R )
and by numerical integration we found
2 [ Fy(F, — F)dy = — 0-12800 N O S 1)
so that
)—* = b -+ cK - dK>?
where ’ b= 0-38594 . .. .. .. . .. .o (4.18)

¢ = 0-12800
d = — 0-01394

, . db
We shall r s 22
e shall require —-
v _ do* 2 « AK oo
e (b + cK + dK? + o ‘Eﬁ—c(c - 2d)






On integration this gives :
g 1 L
(1—a)t (B 1)*(E?

o L e o v (AE*— BE*+ CE — D)(E*—1y] )
+(AE*4 BE*+CE*+ D) log, (E*—K) Eo) } L C,(4.23

S [A(E 1 (E*— 1)K — (4 -+ B+ C + D) log. (1 — K)

which on inserting numbers gives

“ t s 5 7 « O 55)25)1 l 2
N T t O 9 _— ; 4 *‘ "'l;' ;S) 1 e .;;; T AR AA TTEST .

Lf suction is applied over the whole plate stavting at the leadmg edge, then K = 0 for & = 0

and

775 |
[ 0-35419K — 2-70141og. (1K) +3-5798 log (1 1—7—7—75) 0- 59291713717(5 (4.25)
{ le1a3332J

which we note makes & —x K — 1—the asymptotic profile.

’

then
[ |- K (1- r%s;)
§of | 0-35419(K - K)) - 2-70141log. (1 = L ) + 3-5798log, ~ . 2111
t T 7775)
. 1-7775 1-7775
— 0-59291 S Z e 428)

LU (S 0

- 1-3332 1-3332
&, 1s found as follows. The momentum thickness 6 must be continuous at the pomt £ = &,
Now, from equations (4.16), (4.10) writing K = K,

3

™) - (7’ (0-38594 + 0-1280K, — 0-01394K,%) .. .. .. .. .. (427)
U]Ok _ K, - 9
( y ) - (-57141 + 0-42859 K, o o o - N )

Now for zero suction the Blasius flow gives

v, 0 ‘ o, \ 2 Ux]1/2 1/2
W geeeare [0 UM 66412
064 KU)I , | T etz

J’
Hence

7,0 o
£y = ) 066412)2 , (4.29)

so that when K, is given, &, follows from (4.29), (4.28) and (4.27). Note that there will be a’
v, 0% U 1,
, and in = -

discontinuity at & = &, in v, pU?’
()1 pU.

which is given by

U, 7 10-57141 + 0-42859 K}?
A pU 'K

(4.30)
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The Drag.—The drag is computed as follows. In the first place it can be split up into two
parts—the “ traverse”” or “ wake” drag and the “ pump ” drag. Consider one surface.

Then the * wake ” drag coefficient is given by
0 .
(CD)W:Z& . .. . - . . . .. .. (4.31)

where 6 is obtained from (4.16) and (4.10) or from Fig. 6. If p, is the pressure external to the
surface corresponding to a free stream velocity of U and if p, is the suction pressure on the
other side, then we can write :

Py Lovd 4+ H = p, + 1pU? e (43
where H = loss of head and since v, is small compared with U

H :__]59 pl 1. 433
LU . 1pU® + .. .. . .. .. (4.33)

If no further losses of head occur, 7.. we neglect duct losses, then the pump power required to

eject a quantity Q at the free stream pressure and velocity is (for a pump efficiency of #,)

p=Y.o.-m .. .. (434

N2
and the *“ pump ” drag coefficient is

N =P Q- H :
<CD)[’ - JQPU?""‘. x — 172 Ug_g %4_[_-,—0:2 3 .. .. .. .« - (4.35)

where 7, is the efficiency of the propulsive system. _
Now Q=uv(x — %), .. ce .. .. .. .. (4.36)

if suction commences at x,

Hence
' Y _ % — P
(C'))F;zz—](l D Cog 1)
The total effective drag coefficient is
Co=(C Co)y =20 + 10 (1= Ty (B Py 4
p = (Cp), + (Ch), x+ pw + . .. (4.37)

Let us suppose () that suction commences at the leading edge, (b) that the resistance of the

porous surface is low so that 2 9 — D1is small compared with unity, (¢) that the pump efficiency

1,0
equals the propulsive efficiency and (d) that asymptotic conditions are attained, i.e. & is large.
Then 6=0,="23vfv, .. .. .. . . ... .. (438

and for one surface we have

%:%+g-%=%< C“U> 10+9 L (439)

For example Ux/v = 107, /U = 1073, then ¢=10 and C, = 0-0011. for one surface. If
Pretsch’s* conclusions are true, then laminar flow would be maintained and very large improve-
ments in performance are seen to be possible, as was noted by Griffith and Meredith.
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Results.- Vigs. 5a and 5b show the profiles corresponding to K = 0, K = 1, e.g. the Blasius
and asymptotic profiles, where they are compared on the axis of equal ““ displacement thickness ”’
and *“ momentum thickness.” Schlichting’s profile for zero suction is also shown in Fig. 5a.
- . % 0 h* . , . . . s
[able | gives &, "o 00 H (0 , and v T("]z. for various values of K ranging from 0 to 1-6.

v v veop
The values of & correspond to suction over the whole plate. If suction does not start at the
leading edge, this table enables & to be found, via equations (4.26) and (4.29), for chosen values
of K,. .

L - . . )
Figs. 6 and 7 show WO ind WY as functions of ¢, where they are compared with Schlichting’s
v V
calculations.  The differences are appreciable for the smaller values of &, the present calculations
giving a slower approach to the asymptotic values. TFig. 8a shows H as a function of & as com-
puted by Schlichting and the present method. The greatest discrepancy is at £ — 0. Fig. 8b
shows the form parameter K asa function of &, The most rapid changes in velocity profile will there-
fore occur near the leading edge. Figs. 9, 10, 11 and 12 show the effect of suction commencing
downstream of the leading edge, K, 7)10, V0™ and U, Tz"ﬁ are shown as functions of £ 0 is
v v Uy op

made continuous at the commencement of suction so that discontinuities occur in é* and 7,.

The approximate solution given in this section might be expected to be a very good one, as it is
exact at the leading edge and far down the plate. Moreover the boundary conditions are satisfied
and the differential equation is satisfied at the surface and at the  edge ” of the boundary layer,
whilst the integral of the differential equation, e.g. the momentum equation is satisfied exactly.
The range of velocity profiles lies between the Blasius profile and the asymptotic profile of
Griffith and Meredith and these cannot be said to be greatly different, so that the possibility
of appreciable errors existing is small. Nevertheless it would be very interesting to compare
the present approximate solution with an accurate solution if this could be obtained.

5. Approximate Calculations of Laminar Boundary Laver Flow for Aerofoils with Permeable
Surfaces across which Suction is Applied.—(a) Extension of the Flai Plate Theory of Section 4.—
The momentum equation for boundary layer flow with suction and with pressure gradient is

TO, . lU} 1 . dU . e d() 1
L U+U g (H+2)0‘6_Z;c .. .. . .. . (5.1)
and the differential equation
Sy _du alu %u . «
'?9—54_037“(]5}“%]‘97?2 .. .. - .. .. .. . (5.2)
yields at the surface, wherey = 0,4 = 0,7 = v,
cu au 0% | =
— () =U%2 ) .. .. . .- . . 3
v, ay){) R <8y” 0 (5.3)
As in section 4 with {47 = f(v]o%)
these become : .
, -+ Us* do
0 —= Z t ———— — .. .« . .. » e - .4
Jo=v -+ 7 e | (5.4)
and
fo=—v . fo—2.. . .. .. . . . (5.5)
where y vy . O
v
: (5.6)
PR G 2% |
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‘Now if the suction flow is sufficiently large, the displacement thickness * will be very small
and hence i will be small compared with y, and so can be neglected in (5.4) and (5.5). These,
with U variable, are now identical with (4.19) and (4.5) and so the solution will be the same
; as that of section 4 if ¢ is given by (from the integration of (4.20) with U variable)

v12U0€ U, ' _
= U) [Sedwe . (67

when ¢ = chord, U, = free stream velocity.

This assumes that the starting profile is the Blasius one. Near a front stagnation point this
is not true, as U = B,x and the solution mentioned in § 3c is required. However it is assumed
- that this will not influence the calculations about to be made as asymptotic conditions are
assumed—that is we assume that we are far enough from the starting point of the suction for
the boundary layer profile to have become constant. Then from Appendix I for K = 1-0

b =% _ 1.0 ]
4
fo= . (5.8)
1= —1
H=2 )
Hence 2 must be small compared with 1.0.
From (5.8)
o=
and from (5.6)
Lo (L .y
§* 2. dx/ '
. whence v, v = (1' dlU/chy/z ,
or v | aUjUy)\"* '

(5.9)

U, \UC /1 d(xjc) |

As we are concerned with adverse velocity gradients and the prevention of separation, then 1

4U|U,)

and are negative.

(o)
If 4 = —0-1
then
B AU TN
9 gae(l « — AU :
T, 6( d(x/c)> (510
1= —0-01;
then
5 i/l AUJUNT
Do (L JAUIUNT
U, O<R>< 4z ]0) (5.19)

Hence for a given aerofoil, where d(((]/ /(L])) is known, we can compute the suction llow at any K

SO that .conditions are remote from separation,
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(0) Alternative Calculation to that of Prandtl® for the Suction necessary to just prevent Laminar
Separation for a Constant Adverse Velocity Gradient.—Prandtl®, in « Mechanics of Viscous
Flwds " —Aevodynamic Theory, Vol. 111, p- 118, uses the Polhausen method to demonstrate
that suction can be used to prevent separation. The result of his calculation can be written

in the form )
b oaa(l L dUJUN
v, 418 (R X 7@‘)“) |
L a1
R = U |

v

which is similar in form to (5.9) and the constant can be compabred with those in (5.10) and (5.11).

However, what should be a more accurate result can easily be obtained by using Howarth’s
accurate calculations of laminar boundary flow under a constant adverse velocity gradient.
Following Prandtl, we assume that the flow against the adverse gradient is just on the verge

of separation, so that r, = 0. We also assume that 8* 60, H and d(; afe constant and that the
a

separation profile is that computed for zero suction by Howarth” (1938). The momentum
equation (5.1) becomes v

__au, AU H 4+,
= =57 (H + 2 2?56(“}{—)6 e (513

and equation (5.3) is satisfied by Howarth’s separation profile since (g;;) = 0 and so suction
0
does not affect this equation.

Now at separation Howarth finds :

__au o o -
— 1= o 7-—1110 .. .. . .. .. .. (5.14)
H = 1110 = 0-290 = 3-83 .. .. .. .. .. .. (5.15)
, H+2
S0 g = 1-525.
Thus oF (1:%’ >1/2
dx

and substituting in (5.13), we obtain
vy == 1-607 (— » . dU/dx)"?,

~ U607 (— AUIU) 1N
" g, 1107 ( dfxje) ®) (5.16)
where R = Ug/v

Thus (5.16) gives the minimum suction flow to just avoid laminar separation. This is less than
that found by Prandtl (equation (5.12)) using the Polhausen separation profile. Equation (5.16)
should be considerable service in applications to thin wings for which a high .C, .. is desired.
For by sucking over a small part of the upper surface at the nose (say < 0-1c) laminar separation
and the subsequent stall caused by the large adverse gradients in the neighbourhood of the
nose can be prevented. For wings in which laminar flow to the trailing edge is envisaged,
prevention of separation is not enough—a stable 7:c. a convex velocity profile is necessary.  Thus
— 4 must be small and so the suction given by (5.10) or (5.1 1) will be needed. In this connection
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-an accurate solution of the boundary layer equations for the flow past a flat plate under a constant
adverse gradient under all suction conditions or even an approximate solution of the momentum
equation (5.4) and equation (5.5) would be very valuable, as it would remove the arbitrary
value attached to — 4 in deriving (5.10) and (5.11).

(c) Examples of the Application of Suction through a Permeable Surface as a Means of Boundary-
layer Control.—The best way of demonstrating the advantages of this type of boundary-layer
control is to compute the suction flow in typical applications.

Example 1. Circular Cylinder—This example is chosen because of its simplicity and because
it might be made the subject of an experiment to illustrate the effects of suction, since without
suction a strongly separated flow exists.

The potential flow velocity at the surface is :

U .
= =92sin 6.
7, 2 sin

The distance around the surface from the stagnation point is

Wiy

x==10,
where D is the diameter.

CAUIUY _ e
Whence 05/D) 4 cos

and so the adverse gradient has a maximum value of

_4U]U,)

/D) = 4 at b —= .

Suction will be confined to the rear half of the
cylinder as there is no danger of separation over the
front half. The suction flow will be computed on
the basis of a constant velocity v, through the surface %
of the rear half based on a value of — dU/U,) _ ,  — .
d(x/ D) .

which should over-estimate the suction required as ‘ D
the gradient ranges from 0 to — 1, as ¢ ranges from

n/2 tox. Equation (5.16) with D written for ¢ is :

% _ e dUJUY
0.7 (G o)

f=2x 1607 - (U:D)lfz — 3214 (U:D>”2 .

The quantity sucked per ft. run is given by :

1/2

‘ Fic. 1.
whence

1/2

T oD —39[4.7. v
Q=% uD=3214-7 U0D<U0D> ,

or Co= 2 =3-214-%7(U:D)”2.
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If we take D — lin. dia., U, — 106 it jscc., then Z°P —- 5.95 » 100
v

v, = 1-40 ft./sec.
¢ = 11-0 cu. ft./min. per ft. run.
Co = 0-022.

U,z
Note that v, « 130175 ,0Q o« UM, D2,

Example 2. Wing of Low-drag Type for High Speed.

U/o = 1164

Vo= 10

Ul 0878

_

Frc. 2. Aerofoil MR 513-010 (Ref. 9) Velocity Distribution on Upper Surface C, = 0-13.

©-5C

The section shown in Fig. 2 was designed by Thwaites® ; it is approximately 10 per cent. thick.
It is designed to achieve laminar flow up to 0-5¢ and has a good C; range—0-13 < C, = (-13
and for its thickness a low U/U, max. = 1-164 on the upper surface at C, = 0-13. This is
flat to 0-5¢ when it falls in a linear manner to U/U, == 0-874 at the trailing edge. Hence

d(UJU,) _ 6-290
dxje) 05

Let us suppose that by suction completely laminar flow up to the trailing edge can be obtained.
Thus it will be necessary to suck sufficiently hard for a convex, i.e. stable velocity profile to be
obtained over the rear half of the aerofoil. Very slight suction would also be applied over the
{ront half to ensure that the flow under zero pressure gradient was sufficiently stabilised against
the effect of waves. Over the rear half the suction must be greater than that required to prevent
separation (equation (5.16)). It will probably lie between the values given by formulae (5.10)
and (5.11). The calculations which follow will be based on equation (5.11) and will neglect

= 0-58.

compressibility.

Take the mean chord c - 7-5 ft.
and Uy == 600 m.p.h. == 880 ft./sec.,
then U 36 x 10%.

P
Hence from (5.11) with dUIUs . .58
K dx/c

s obtai > g v 10 X (0-58)"* 4 49197
we obtain for the upper surface U, "7 6% 10° 0-00127 .
Thus v, == 1-12 ft.[sec.
and Co— & — P11 0-00064.

Ue U,
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These values are qulte small and for a wing 300 sq. ft. in area suction involves a quantity
flow of 336 cu. ft./sec. through the upper surface at 600 m.p.h. The momentum thickness at
the trailing edge, assuming asymptotic conditions to be obtained in the boundary layer, is given
from (4.38) by
v, » _, 10° 1

Y1V Y —_0n.
LT T T Yy X gaqe — 00000656

so the “ wake " drag will prove to be negligible against the pump drag.

The “ pump ”’ drag is computed as follows. Let p, be the pressure inside thé rear half of the
wing and # the pressure outside corresponding to the velocity U. Then neglecting compressibility :

P+ devt + H=2p+ 3pU° = py + $pU
where H = loss of head through crossing the surface. Since v, is very small
H b0 — P
= + 1.
U 1pU
Neglecting duct losses and assuming the pump ejects the air at the free stream' velocity and
pressure, ¢.¢. completely restores its loss of head, the power required by a pump of efficiency s, is:

P:Q.H_.
e

1If the efficiency », is equal to that of the propulsive system of the aircraft 4,, we can define a
drag coefficient (Cp), by

_m. P e, H (P
(CD)P 7N %pr.S ¢ %pU?‘ -G <1 U2 T 1>

Now ?LUP ! Ib ‘i _Ué”’ where p,, corresponds to U, the max. Velomty on the surface = 1:1640U,
2P 0

in this case, 0therw1se flow into the wing in this region would not take place.. Ideally we should
like p, to be low enough to swamp external variations of pressure and so obtain a constant suction
velocity v, through a surface of constant thickness, but the low suction head would give rise to
large loads on the wing surface and at the same time increase the power required. Hence we
assume that the thickness of the porous surface or the porosity can be adjusted to suit the
pressure difference. ‘

- Now for the present example

?ﬁ*;—zy;"‘ = (1-164)* — 1 =10-36
2 0

and if p, is the pressure at the trailing edge

Po P (0-874) — 1 = — 0-235.
Thus 75 ﬁ 7= (}- 595 .

If we take ﬁ—":—ﬂ‘ =0-5,

then at the half-chord position

1/)2;"?]6} =0-5—0-36 =014
5P
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and at the trailing edge,

P — P . .595 = 0-73
e = 0714+ 0-595 = 0735

which means a variation in porosity or of thickness of 5: 1. With the above value of p,,
(Ch)e — 0-0064 % 1-5 — 0-00096 for the upper surface.
The lower surface should require slightly less, for the adverse gradient will be rather lesé.
Hence the total drag coefficient may be expected to bé
C, = 0-002

on the present basis of estimating suction by (5.11). This C,, is roughly half that to be expected
for this wing with zero suction, assuming laminar flow is maintained at 0-5c.

Example 3. Thin High-Speed Wing with Suction over the Nose to give a High C, ...

20 I | C{. Py 2'-0 I ] [
’ » = o
7.0 e CLL 10 }Simplz Joukowski t/c=6%
D"‘La \ ..__......CLm 108 2 2 blC 312%7
B‘o 6-0 \
7.0 5 \
eo AERN
TN
v 5.0 3.0
4 b —)
o, L P D e S ]
04“0 ’/ 7/ ‘-.__h-—.:---- _.:_:_-‘_

l\ 4 e SUET T e

30 4L 1.0 :
L, N —1 1 Distance along surface , x/c
=0 S| _-0.0Z 061 g 001 00z 008 0.04 005 006 667 606 005 016 o1
RN oy o - '-‘-..‘-.m..-n-,p._r_ __________
[ o R s U SN, F— et etk Bl XXX =
Distance along chord x/c
0 i | I
LE. 0l o2 o3 0-4 05 06 07 " 08 09

Fic. 3. Velocity Distributions over Nose of Joukowski Aerofoils.

Thin aerofoils are known to have a smaller C, ,., than aerofoils of medium thickness. For
instance from NACA TR 460, NACA 0006 aerofoil has a C, ., of about 0-9 at R = 3 x 108,
but the lift and moment curves are no longer linear above C, = 0-6. On the other hand
NACA 0012 has a C, ., = 1-5 and the lift and moment curves are closely linear up to this C,.
The different behaviour is due to the smaller leading edge radius of curvation of NACA 00086,
it being exactly } that of NACA 0012. This results in high velocity peaks at the nose at high
lifts for the thinner section and in larger adverse gradients which causes early separation and an
early stall. Fig. 3 illustrates this for two symmetrical Joukowski aerofoils 8 per cent. and
12 per cent. thick. From experiments on a 12 per cent. simple Joukowski aerofoil the velocity
distribution for C, = 1-0 is known to be safe, 7.e. no turbulent separation occurs before the
trailing edge. Hence if suction is applied over such an extent of the thin aerofoil nose so that
the velocity gradients outside the suction region are not appreciably different for those on the
12 per cent. aerofoil without suction, then turbulent separation and the stall will be prevented.
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To illustrate an important application of this type of boundary layer control and to obtain
an idea of the suction flow required, we consider a fighter (using a symmetrical 6 per cent. thick
Joukowski section) at landing or take-off. Let us take

=7 ft.
mean ¢ =7 Y _7.04 x 100
U, =180 ft./sec. v
span & = 30 ft.

Suction is assumed to be uniform and sufficient to prevent laminar separation (equation 5.16)
for the largest velocity gradient occurring at a specified C,.

For €, = 1-0.—From Fig. 3 suction must take place from the leading edge to x/c = 0-015
along the surface. The average value of — AU T, == 100

d(x/c)

whence from (5.16).

v 1607 x 10 _ o
U, 38z % do0 0007
The quantity is given by :
Q=b.v. %= 2" Vy.b.c=32 cu Itfsec. = 194 cu. ft /min,
0

Eq_r C L= 2<-__9:~Fr0m Fig. 3 it would seem that suction should be applied between 0 < x/c <

0-10. The largest value of the velocity gradient is

_ 40Uy _.
e = 3%

v, _ 1-607 X 18-25
U, 2-82 x 10° ,
It the suction flow is maintained from 0 < x/c < 0-10

Q = 39-3 cu. ft./sec. = 2,360 cu. ft./min.

This calculation neglects compressibility effects.

whence = 0-0104 .

If equation (5.16) is correct, then this is an over estimate, since the gradient falls very rapidly
as the distance from the leading edge increases. However it is plain from both cases that the
suction flow required is very small and that the scheme offers great possibilities as a high-lift
device.

Lighthill® (1945) has designed a series of nose-suction aerofoils in which, above a certain C,,
he relies on “ sink  effect to reduce the velocity peaks and adverse gradients. A typical example
of an 8-6 per cent. wing is given in p. 3 of A.R.C. Report No. 8658, where at a C, = 1-715 the
quantity sucked per unit span is 0-016 Uy. Taking ¢, U, and b as above, we find :

@ (Lighthill) = 0-016 x 180 x 7 x 30 cu. ft./sec. = 600 cu. ft./sec.
' = 36,000 cu. {t./min.

which is an enormous flow and impossible to accommodate on a fighter.

We might note that the high velocity peak for the 6 per cent. Joukowski aerofoil at C, = 2-0
would be appreciably modified by compressibility which has been neglected here. There is
obviously considerable scope for skilful design as regards the nose shape of thin aerofoils, in
order to keep down the high velocity peaks and gradients by increasing the leading edge radius
of curvature.

(84255) ' B
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6. Applications of Distributed Suction.—(a) Prevention of Separation—H 1gh C; 1 .-—Examples
(1) and (3) of section 5 show that quite small amounts of suction are needed to prevent laminar
separation, and the most immediate important practical application is to thin high-speed wings
or even to wings of medium thickness in order to attain a high C,,.,. In this connection it is
greatly superior to the ‘“sink ” effect suggested by Lighthill’®, because of the prohibitively large
quantities of air which have to be handled in practical applications of this device. If a sym-
metrical or slightly cambered wing is used then a large C1 mix. may possibly be obtained without
the use of flaps and hence with no change of trim, which makes it of great importance in tailless
aircrait. Moreover, the stall when it occurs will be gentle, as it will start by turbulent separation
at the trailing edge. The performance of the wing at low C,’s, at high speeds, should be better
as the porous nose should in no way interfere with the attainment of laminar flow, as would be
the case with slots or nose flaps. The scheme should also work for wings with sharp leading
edges, provided suction commences at the front stagnation point on the lower surface, so that
no boundary layer exists as the flow passes round the sharp nose.

In this paper we have been concerned solely with laminar flow, but it is evident that suction
could be used to prevent turbulent separation, say in diffusers. Unfortunately, conditions in a
turbulent boundary layer near separation are not very well understood and so calculations are
not possible.

(b) Laminar Flow Wings.—The work of Pretsch® (1942) shows that, with suction, the stability
of the laminar boundary layer is greatly increased for a flat plate and that the suction required
is extremely small. This should be even more marked in the region of favourable pressure
gradients on a laminar-flow wing. The chief obstacle to the achievement of laminar flow over
say 60 per cent. of the chord is the difficulty of obtaining a stressed-skin construction free from
waves. Hence by a very small amount of suction in the region of favourable pressure gradients
the adverse effects of waviness might be nullified and by a stronger suction in the region of
adverse gradient laminar flow may be held to the trailing edge, if the wing surface is everywhere
convex. Example 2 of section 5 shows the order of suction required under these circumstances
and the C, which might be expected. Lower drags and suction quantities would be obtained
by having the pressure minimum well back—say as far as 75 per cent. of the chord as

Co o {d(UJU,) /(x/c)}%, thus localising the region of strong suction. The example shows that
the < wake ” drag is negligible compared with the “ pump "~ drag and so great emphasis must
be laid on pump and ducting efficiency. It may be noted that there is no restriction on thickness
and that it should be possible to design an aerofoil, say 30 per cent. thick, which in the event
of suction failure would have better qualities than the Griffith type designed for concentrated

suction.

A point which may have considerable importance for high-speed wings, is that when distributed
suction is in operation, the boundary layer is extremely thin and so the drag rise associated
with boundary layer separation due to the formation of shock waves might not take place under
suction conditions.

(¢) As @ Research Tool.— Scale effect on the sectional characteristics of wings and controls
is known to be closely connected with the boundary layer thickness near the trailing edge, which,
for given transition points, decreases as the Reynolds number increases. Thus by a judicious
use of distributed suction, full scale boundary layer conditions might be simulated at moderate
Reynolds numbers in a small wind tunnel and thus enable design data to be obtained without
doubtful extrapolation.

In the same way by sucking away the boundary layer Mach number effects might be isolated
from Reynolds number effects in tests on models in the high-speed tunnels, where in general
the Reynolds numbers are small and so the boundary layers are relatively thick. Also shock
wave formation could be studied in the absence of boundary layers.

7. Experimental and Practical Aspects.—(a) The Surface.-- Theory envisages a continuous
suction flow through the surface. The examples show that although the suction velocity through
the surface is low, considerable pressure differences may have to be tolerated. Thus considerable
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resistance to the flow is required. The ideal surface would be one composed of extremely fine
honeycomb cells. Experiments by Perring and Diprose (unpublished) (1937) have been made
in the past to simulate distributed suction by a finite number of slots whose spacing was large
compared with the slot width. Instead of stabilising the flow as was hoped, it appears from
these experiments that when the flow into the slot exceeded a certain amount, turbulent flow
was set up. Slot entry shape may have had considerable influence on the stability of flow.
In Ackeret’s experiments the slots were stated to have been closely spaced and his experiments
were successful. If slots are to be used, then their spacing should probably at least be equal
to the slot width, which in turn should be less than the boundary layer thickness. In Appendix I
it is shown that if the minimum number of slots is used to prevent separation, then probably
8 times as much air as is required by porous suction will have to be sucked. Obviously the
building up of a porous surface of any extent in this manner is a difficult undertaking. Likewise
a porous surface made by drilling a large number of small holes will be tedious if not impossible
to construct as the hole spacing must be close. If this is not so, then there will be a danger of
transition to turbulent flow, as some unpublished experiments show that by sucking through
an isolated pressure orifice 1/100 in. dia., transition can be brought about. Ceramics such as
are used for filtration purposes seemed to offer possibilities and the advice of Chemical Research
Laboratory, D.S.I.R. was sought. It was Mr. Roff of C.R.L. who suggested the use of porous
bronze. ’

This material is obtained by pressure moulding powdered metal using a particle size to give the
desired porosity and size of passages. It can be obtained in sheet form up to a maximum size
of 121in. X 61in. and the thickness ranges from 5 in. to § in.

The size of pores range from 2} microns to 100 microns and their uniformity appears to be good.
Samples representing extremes in the size of pores have been obtained and are being tested.
A report on these will be issued shortly. The use of metal offers obvious advantages. It can
be brazed or soldered. It has some mechanical strength, though the surface cannot be machined
as the pores would be closed up. From the point of view of model experiments it would appear
to meet all our requirements. For application to flight it will probably turn out to be too heavy
for surfaces of considerable extent, even if the light alloys can be used, as its strength is not great.

(b) Suggested Expeviments.—(1)Hollow cylinders of porous bronze can be obtained from stock,
in diameters ranging from 1 in. to 3 in. It is proposed to test a 1 in. dia. cylinder in a 1 ft.
tunnel to check the calculation made in the section 5c. This would also be suitable for test
in'the 20 in. x 8 in. High Speed Tunnel and would enable valuable information to be obtained
on the effect of the boundary layer in the formation of shock waves.

(2) The problem of C; .. for thin high-speed wings is now a matter of urgency. It is suggested
that a porous nose could be fitted to a 30 in. chord aerofoil for test in the 9 ft. X 7 {t. tunnel
to check the calculation of Section 5. If this were successful, flight tests might follow on an
existing machine.

(3) As model wings for the 20 in. X 8 in. High Speed Tunnel are usually of 5-in. chord, it should
be possible to have these made in two halves from this material. Suction over various portions
of the wing could be effected by filling up the pores of the portions for which zero suction is
required ; with wax this could be dissolved out again if required. This would enable the effect
of suction at high Mach numbers to be studied.

(4) The Compressed Air Tunnel provides an easy method of effecting suction by allowing air
from the wing to leak to atmosphere. The standard models are 4 ft. span X 8 in. chord giving
a maximum Reynolds number of 8 x 10% so that landing conditions could be simulated and
scale effects on suction could be explored. -

(5) Experiments should be undertaken to test out Pretsch’s conclusion that the stability of
the laminar boundary layer is greatly increased by suction and to substantiate its proposed
use for low-drag wings. These however will probably have to wait until the problem of con-
structing a porous skin of considerable area has been overcome.

(84255) . ¢
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8. Conclusions.—As regards the theory, certain simple exact solutions of the boundary layer
equation indicated in section 3 would be worth obtaining, as also would be an accurate solution
of the flow along a semi-infinite plate for which an approximate solution is given in section 4.
From the point of view of application to the design of suction wings, an accurate or even approxi-
mate solution for the boundary layer flow under an adverse gradient with suction is required
immediately to amplify the simple formulae obtained in section 5.

The most immediate application of distributed suction is to thin high-speed wings, in order to
obtain a high C, ... by suction over the nose. The numerical example worked in section 5 suggests
that the suction flow required will be quite small, compared with that required for ‘ nose-
suction ” aerofoils relying on “sink ”’ effect. There is the possibility that two cabin super-
chargers, using the auxiliary drives on existing engines, could be able to cope with this flow.
The practical attainment of laminar flow wings may also be brought nearer by use of suction.
Use may also be made of distributed suction to simulate high Reynolds number conditions by
thinning the boundary layer and for study of Mach number effects with boundary layers absent.
From an experimental standpoint the new porous metal should go a long way towards meeting
the mathematical requirement of a surface through which a continuous flow can take place.
The simulation of a porous surface by a number of isolated slots or holes is to be discouraged,
because of their distabilising influence on the laminar boundary layer. A big new field for
experimental investigation is presented, which up to the present has remained almost untouched.

TABLE 1

£ v \* UX 0,07 0 o Uz,
K (?J v v v v, PU?
0 0 2-591 w
0-1 0-01088 0-1628 0-0648 2-509 3-773
0-2 0-04663 0-3044 0-1251 2-433 2-159
0-3 0-1138 0-4286 0-1813 2-364 1-633
0-4 0-2230 0-5385 0-2342 2-299 1-380
0-5 0-3916 0-6364 0-2841 . 2-240 1-235
0-6 0-6505 0-7241 0-3315 2-185 1-144
0-7 1-059 0-8033 0-3765 2-134 1-085
0-8 1-757 0-8750 0-4195 2-086 1-045
0-9 3-195 0-9403 0-4606 2-041 1-018
0-91 .
0-92 3-706 0-9527 0-4686 2-033 1-014
0-93
0-94 i 4-389 0-9648 0-4766 2-025 1-010
0-95
0-96 5-389 0-9767 0-4844 2-016 1-006
0-97
0-98 7-161 0-9885 0-4923 2-008 1-003
0-99 1 8-986 0-9943 0-4961 2-004 1-001
0-995 10-83 0-9971 0-4981 2-002 1-001
1-000 @ 1-0000 0-5000 2-000 1-000
11 +2-1765
1-2 —0-3126 1-105 0-5741 1-925 0-982
1-3 —2-133
- 14 —3-7950 1-195 0-6428 1-859 0-9802
1-5 —5-5425
1-8 —7-677 1-273 0-7064 1-802 0-9878
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APPENDIX I

Suction Quantity to Prevent Separvation using the Minimum Number of Isolated Slots in the Flow
against @ Constant Adverse Velocity Gradient

Ay
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'\52 Cy
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The details of the boundary-layer flow against a constant adverse velocity gradient have been
‘given by Howarth’ (1938).

Let the velocity at the edge of the bbundary layer be given by

U x -
U _4,—BX, .. . .. ... (AL
G =4—BZ, | (ALL)
or Uz&%~%?x R 0% &-)
= Bo— B¥, .. e ... (AL

‘in Howarth’s notation,

Howarth introduces the variable & for the distance along the surface and » for the distance
normal to the surface, defined by

5:%xsg% e ALy
1 1/2
1=5(P) "y o L (AL

Let the boundary layer commence at x = ( and continue until laminar separation is imminent.
The whole of the boundary layer is now sucked away via a slot at this position and a new
boundary layer starts and continues until separation is again imminent, when it is sucked away
by a second slot, and so on. In this way we shall use the minimum number of slots. We ignore
the ““ sink ” effect of the slots on the flow. '
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Howarth finds that separation occurs at |

£=0-12, ]L
- f:éxO-IZ. J . .. .. . . .. .. (A.LS6)

c b
For the separation profile, the «“ displacement thickness ™’ 6* is given by

o 1 v 1/2

5 — 1 11(.51) ALy
and also the value of y, where »/U -= 1:000, 7.e. the boundary-layer thickness ¢ corresponds to

ns =42 .. . .. .. .. . o . .. (ALS)
whence from (A.1.5)

_ vya\YE o (r\Y?
5—2’7"(3;) —8 4<E> N - )

(If /U == 0-990 defines the edge of the boundary-layer, then , = 3-2 and there is an arbitrary
element arising from the definition of the edge of the boundary layer.)

At separation & = (8,/Bo)x = 0-12, whence

5 — 844/0-12 (ﬂll)l’z:z-m (%)’ . (AL10)

" 5 — 5% — (2:91 — 1 11)(”)”2—1 80(”)”2
N [ /)
which, since g, = BU,/c, gives

1/2
o —o*=1-80 (22 ) . .. .. .. .. .. .. . (ALl
(BUO> ( )
The quantity sucked at the first slot is
Q,=U,6 — % ..~ .. .. . .. . . .. (AL12)
and
1-80/UN 1
(CQ)l = gf& == ‘Rsz— <—(7"(;>1 Bf/é y .. .« . s e - . .. (A.Il3)
where
U (ALY

and (U/U,), is the value of (U/U,) at the first slot (¢ = 0-12).
Now from (A.L.1)

()= 4=,

but from (A.I.6)

x — AO .
(E>1‘_—,><012, .. .. .. .. . .. .. .. (AIIS)
whence

¢

U»—— — (B — ¥ |
(U_)l_Ao(l 0-12) = 0-884,. .. .. .. .. .. .. (ALl6
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Hence from (A.I.13) and (A.1.16)

A, B2
(Co), = 0-88 =2 = X 1-80 R
or using (A.I.6), giving A,/B = (x/c), (1/&) = (x/c) (1/0-12), .
_0-88 x 1-80 B BY? s x
(Coh =222 ”‘1@&( = 13_}@ﬂ<51. L (AL1Y)

The position of and the flow into the second slot can be computed in the same way. The
starting value of U/U, is now

U\ _ o, o
<_U——0 = 0-884, = 4,, say,

and the_distance of the second slot from the first is

( ) 0- 12A _0-12 X O-88A0, (A118)
B
and exactly as before
BY*rx :
(%h—132HﬂQQ{ (AL
Hence for # slots, the total Cis
' 13-2B'* &
(Co)r = Z (Co)y = i Zl (x/c),, .. .. .. .. .. (A1.20)
where
(x/c), = (0-124,/B) (0-88)"!, .. .. .. . .. . (AL21)
or '
B'* %
(Co)p = 183-2 —— R (A.1.22)

where x/c is the distance of the nth slot from the origin or leading edge and is the distance over
which suction is taking place through isolated slots.

Now, for distributed suction, Prandtl’s method (Section 55) using the Polhausen separation
profile gives
B x

Co=2-18 P (A.1.23)
and using the Howarth separation profile, it gives
B %
Co = 1-607 = B .. (A.1.24)

both of which are very considerably less than the suction necessary with the maximum spacing
of isolated slots.

(842535) : D
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