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Summary.--The incompressible two-dimensional flow about an aerofoil with circulation is calculated using relaxation 
on the square mesh formed by the incompressible velocity equipotentials (¢ = constant) and the streamlines (~v = con- 
stant). Log (l/q0) and 0o, where (qo, 0o) is the incompressible velocity vector on polar co-ordinates, are harmonic 
functions in the (¢, ~0)-plane, and can be found by well-known relaxation or squaring methods. Boundary conditions 
are specified in the (x, y) or physical plane, but starting from an assumption for the surface velocity, approximate 
boundary conditions can be found for the (¢, ~0)-plane, which then enable a more accurate value of the surface 
velocity to be calculated, and so on. The circulation is imposed on the field by having a smaller number of equipo- 
tential lines of the mesh cutting the lower surface of the aerofoil than cutting the upper surface. 

Non-linear compressible flow equations involving log (l/q) and O, where (q, O) is the compressible flow vector, are 
solved by  relaxation on the (¢, ~v) grid. The results for a worked example are compared with experimental curves 
provided by the National Physical Laboratory for the same aerofoil at approximately the same angle of incidence. 
There is reasonable agreement. Supersonic patches were experienced and are not difficult to treat by relaxation, 
although the difference equations become poorly conditioned. 

Nomemlature  
(x, y) 
(¢, 9) 

(qo, 0o) 

L0 
q , L , O  

# 

C 

#o 
R 

Physical plane, in which z = x + iy 
The transformed incompressible flow plane in which the aerofoil is represented 

by a slit on ~ = 0. w = ¢ + i ~ o  
Incompressible velocity vector in polar co-ordinates. 00 is the angle between the 

x-axis and the velocity vector 
= log (l/q0) 
Similar quantities for compressible flow 
Angle between the compressible and incompressible velocity vectors 
= L  --Lo 
Angle of incidence measured from the chord 
Aerofoil chord length 
Zero-lift angle 
Radius of curvature of the boundary 
Interval of the square mesh 

* Oxford University Engineering Laboratory Report No. 35. 
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N o m e n c l a t u r e - - c o n t i n u e d  

s Distance along a boundary or streamline 
X Residual of the relaxation process 
V Undisturbed stream velocity, taken throughout as unity 

M Local Nach number 
M0 Undisturbed stream Mach number 
q, Incompressible velocity on the aerofoil surface 
a Local velocity of sound 

a0 Stagnation sound velocity 
v + 0 /D¢ 

A " Front stagnation point 
H Rear stagnation point 

1. I ~ t r o d u c t i o ~ . - - I t  was decided that the most suitable shape of aerofoil for investigation 
would be one for which full experimental results were available at a range of Mach numbers. 
An aerofoil that had shown unusual freedom from shock-waves in the National Physical Labora- 
tory High Speed Tunnel was selected as a suitable example. Tile aerofoil was NACA 16, a 10 
per cent propeller aerofoil designed for high speed. Table 1 gives the profile co-ordinates provided 
by tile National Physical Laboratory. They also provided, experimental results for comparison 
with the theoretical ~ solution, and since these were given for an angle of incidence of 1.4 deg, 
it was decided to aim as close as possible to this angle. All calculations were carried out in the 
(¢, ~0)-plane in which the aerofoil is represented by a slit along ~o = 0. The ends of the slit represent 
the stagnation points for incompressible flow. For zero circulation there must be as many 
equipotentials of tile square mesh cutting the upper edge of the slit as cutting the lower edge. 
The circulation can be secured about an aerofoil by arranging that  there are a different integer 
number of equipotential lines of the mesh cutting each edge of the slit representing the aerofoil 
surface. This method was adopted and Fig. lb shows the type of field in which the relaxation 
was carried out. Log (l/q) (=  L) was the dependent variable of the relaxation. For incom- 
pressible flow Lo, and 0o are conjugate harmonic functions, R. & M. 2726 gives the details of the 
relaxation solution of 

V~Lo = 0 . . . . . . . . . . . . . . . . . .  (1) 
subject to the boundary conditions 

~Lo 1 
~ ,  - -  R q s  " . . . . . . . . . . . . . . . . .  (2) 

on the aerofoil surface. Lo becomes infinite at stagnation points and sharp corners, and a special 
treatment is necessary at these singularities (R. & M. 2726). 

For compressible flow it can be shown that (R. & M. 2731 a) 

which assumes that  ~, the angle between the Compressible and incompressible-flow vecto)s, is 
small enough for its squares and higher powers to be neglected. The boundary conditions are 

8L aLo 1 
~'P - -  ~W - -  Rqs • . . . . . . . . . . . . . . . .  (4) 
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The terms involving c~ in (3) can be ignored with little loss in accuracy, and so 

F ' L  = g M . . . . . . . . . . . . . . .  ( 5 )  

cannot be ignored at the front stagnation point since it indicates the movement of this stag- 
nation point off the incompressible flow grid. A relaxation treatment of (5) has been given 
(R. & M. 273U). Fig. 2 shows the relaxation pattern employed, for the diamond labelled 1, 2, 3, 4 
in Fig. lb. I f ,  is required it can be calculated from 

- , . . . . . .  . . . . . . . .  ( 6 )  

which can be applied when L has been approximately calculated using (5). When (6) has been 
solved it becomes possible to allow for the terms involving ~ in (3). Alternatively the equations 
(R. & M. 27313) 

( 7 )  

can be used to compute . from the known L-field. Suitable difference equations representing 
(7), for the mesh labelled in Fig. 1, are 

c~2-'- ~z~ + (~1 - -  ,~3) - -  Ms~(LI - -  L3) - -  (M2,)5 (L~ - -  L~) . . . . .  (8) 

I t  had been found that  for a circular cylinder in a compressible fluid with a Mach number high 
enough for supersonic patches to appear (M0 ---- 0. 425), c~ was never greater than 3 deg, and so 
in the aerofoil example of this paper v. was ignored, except at the front stagnation point (A). 
Equations (7) enabled an integration to be carried out from the aerofoil surface, where , = 0, 
into the field and then to the front stagnation streamline, then along this stream line to the mesh 
point adjacent to A. Extrapolation then e n a b l e d ,  at A, and hence the actual movement of the 
stagnation point off the incompressible grid, to be determined. 

The aerofoil was taken to be situated in an open stream and so the boundary condition at 
infinity was L ---- 0 (since the undisturbed stream velocity is taken to be unity). However an 
outer boundary condition at between two to three chords radius from the  aerofoil centre was 
calculated theoretically, by  replacing the aerofoil by  a substitution vortex 5. The only alternative 
to this is the inversion of the w-plane to limit the field, but  this is not a very convenient pro- 
cedure with numerical methods, and further the existence of circulation and compressibility 
make it quite impractical. 

A.  I m o m # r e s s i b l e  F low.  

The suffix 0 to denote incompressible values will be generally omitted in this section, since 
only incompressible quantities appear. 

1. Glauert 's  T h i n  Aero fo i l  T h e o r y . - - W h i l e  the method of computing incompressible flow given 
in R. & M. 2726, and outlined below in section 4, is independent of the accuracy of an initial 
guess for q, = q,($), nevertheless it saves labour if this initial guess is relatively accurate. To this 
end Glauert's thin-aerofoil theory has been used to determine an approximate solution as a 
starting point. 

The values of q(x/s) calculated from Glauert's theory are shown graphed in Fig. 4. These are 
for an angle of incidence/3 = 1.54 deg. The theory also yields 8o = 2.28 deg which compares 
favourably with the experimental result of 2.3 deg, although this agreement is a little fortuitous, 
as indicated in section 6. 
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2. The Substitution Vortex.--The x-axis is taken to be along the chord in this and following 
sections. A vortex of strength K at the origin of the z-plane, in a uniform stream of unit velocity 
at an angle of incidence $, gives rise to a w-plane (or stream function) defined by 

iK  
w ----- ze'~ + ~ log z . . . . . .  (9) 

• • , ° ° ° , .  2 .  

i.e., ¢ + iv -"- x 2~ + i + ~ logr . . . . . . . .  (10) 

where z = re~L and ~ is neglected with negligible error. Since y -~-tan -~ (~v/¢), and r ~--- (¢~ + ~)1/~ 
at large values of r, from (10) we have approximately 

K K 
x ---- ¢ + ~ tan -~ (~/¢), y = ~ -- ~ log ~/(¢~ + ~)  . . . .  : .  (11) 

from which can be calculated r = ~/(x 2 + y2), y ----- tan -~ (y[x) for any given (¢, ~). 

Also from (9) 

qe_~O dw __cos~ + K ( K ) dz ~ r  sin ~ + i sin/~ + ~ cos 

K s i n ( 7 + / ~ ) +  2--aar 0 = t a n  -1 i.e., q~= 1 + ar 
sin/~ + (K/2ar) cos 
cos/3 + (K/2ar) sin 

or since r >  > K  and/~ is small, 

1 K K 
L_=_logq- -  2~r s i n ~ , a n d 0 = ~ + 0 1 ,  where01--  2~r cosy. ..  (12) 

Thus, given K, (11) and (12) enable L0 = L(¢c, ~c) and 0c = 0(0c, ~,) to be found on the outer 
boundary (¢c, ~00). 

The substitution vor texshould  be placed at the centroid of circulation (x~, Ye) where 

x ~ = ~  xqds, Y , = B 2  yqds, . . . . . .  .. :. . 

which cannot be calculated until  the solution is known. However Using the resultsl from Glauert 's 
theory (x~, y~) can be calculated approximately, which is sufficient, since the Values of L and 0 
at distances of two to three chords radius are little affected by relatively large variations in the 
position of the substitution vortex. In  fact the centroid of circulation could be taken at the 
quarter-chord point with little loss in accuracyL 

The accuracy of the substitution vortex was investigated by  calculating values of L by  the 
method of this section at a radius of about one-and-a-half chords from the aerofoil centre and 
comparing them with the relaxation results obtained in a field the outer boundary of which was 
at about two-and-a-half chords radius. The maximum deviation of the substitution vortex values 
of (12) from the relaxation values was 1 per cent while the standard deviation was 0.4 per cent. 
The greatest errors were on the portions of the boundary immediately in front and behind the 
aerofoil. The standard deviation on the two thirds of the boundary which excluded these portions 
was only 0.1 per cent. At two-and-a-half chords radius these errors would be much smaller. 

3.1. The Circulatio~c.--The following approximate theory is of assistance when deciding on 
the arrangement of the mesh about the aerofoil. 
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From aerofoil theory K = ½cC~., and from Glauert's thin-aerofoil theory CL = 2=(/3 +/~0), 
and so approximately, 

K = z~c($ +/~o) . . . . . . . . . . . . . . . . .  (14) 

The origin for x, s, and ¢ will be taken at H, the trailing edge. The value of ¢ at A, the front 
stagnation point, will depend upon the path  taken from H to A .  Suppose ¢v and ¢L are the 
values of ¢ at A obtained by taking paths along the upper and lower surfaces respectively, then 
the potential jump at A, ¢v -- ¢L, is equal to the circulation K. c can be written approximately 
½(¢v + eL), and (14) becomes 

¢ ~ - ¢ L  
¢~ + ¢~ _ ff (~ + ~o), . . . . . . . . . .  . . . . . .  ( i s )  

The values of ¢ u and ¢L must in which ~ is known and/~0 can be taken from Glauert's theory. 
be selected so that  (15) is approximately satisfied, and are such that  the stagnation points fall 
on the mesh. Thus the closeness with which (15) can be satisfied depends upon the amount of 
subdivision of the mesh near the nose. 

Results at a specified angle of:incidence could be obtained by the interpolation of results found 
at several angles of incidence by varying the circulation a discrete amount each time. 

3.2. The Angle of Incideme.--The actual angle of incidence for a given value of ¢v and ¢L 
remains to be found. Suppose that  by relaxation a solution L = L(¢, ~o) has been found. Inte- 
gration of the Cauchy-Riemann equations connecting L and ¢ yields 

0(¢, ~) = 0(~, ~) + ~7 & - g ~  de . . . . . . . . . . .  ( i s )  

0 (6, 0) on the aerofoil is known, and so integrat ing to the outer boundary at (¢c, ~oe) 

From (12) 

[~ aL f*e aL 0o=0e(¢o,~)=0(¢,01 + Jo g &  -- ~ de. 

0o(G, we) --/~ + 01(G, we), i.e., ~ = 0~ -- 01 

(17) 

. . . . . . . . . .  (18) 

in which 0e is calculated from (17), and 01 from (12). Since the substitution vortex is an approxi- 
mation only, [3, calculated from (18), can be expected to be a function of (¢e, ~0e) instead of a 
constant. However the average value of ¢? so found will be reasonably accurate. 

. 

the incompressible flow about an aerofoil with circulation. In practice, 
differentiations and integrations of this section are performed numerically. 

(i) Determine from the profile co-ordinates 

(a) _Sc -- sc = 1 +k , . dx j  ] d . . . . .  

Outline of the Method.--Following is a summary of the steps to be taken to find by relaxation 
of course all the 

(b) semi-perimeter p ----- mc say, from 

. . . .  ( 1 9 )  

i ,  = ~ I +  \ ~ x / _ I  , . . . . . . . . . . . .  (20) 



in which qfi denotes in tegrat ion r ight  round the profile ; 

[ c c d~Y -dx-x (c) R - - R  = e ~  1 . . . . . . . . . .  (21) 

(ii) F ind  Cv and eL from (15), and set out the mesh in the  (¢, ~)-plane. 

(iii) Use (12), in which K = Cv --  Cr, to determine L and 0 on an outer boundary  at  two to 
three chords radius. 

Assume or calculate from Glauert 's  thin-aerofoil  theory  an approximate  ( i v )  

= . . . . . . .  

(qs = 1 could be taken  as the  init ial  assumption).  

(v) Since 

de and from (20) c - s(¢) = q~(¢), 2m 

(22) 

/ i  

_ _  i de (23) 
J qs(¢)' " " 

C 
----~ (4). (24) then-s ( ¢ ) =  2m f l c  q~)d(~/(fdckq,(¢)/i "~' hence from (19)and  (21)we can find R 

8L 1 c l  
The bounda ry  condition, 8~ --  c R q,' . . . . . . . . . .  

follows from (22), (23) and (24). 

(25) 

q 

s in0  de -b cos__0 d% 
q ~ q 

and hence from (26) we have L0 = Lo(x,y), Oo = Oo(x,y). 

(x) Final ly  the  angle of incidence is found from (18). 

Ins tead  of relaxing to find Lo(¢, ~0), and then in tegra t ing  to find 00(¢, ~o), we could have relaxed 
to find 00, which had  fixed bounda ry  values, and then  in tegra ted  to find L0. Generally, however, 
the prime aim of an invest igat ion is to find qs, and for this  it is more direct to relax the L-field. 
Also numerical  in tegra t ion  is l ikely to involve cumulat ive  errors which can be largely avoided in 
re laxat ion by  arranging tha t  the  small  unre laxed residuals sum to zero over blocks of squares. 

. . . . . . . . . . . .  (26) 

. . . . . . . .  (27) 

y = y ( ¢ ,  

relaxation.  
W h e n  this is complete we will have 

L = L(¢, ~) . . . . . .  
and using (16) we can find 

0 = 0(¢, 

(ix) The (¢, ~o) and (x, y)-planes are now related by  

x = x(¢, ~o) = cos 0 de --  sin 0 d% 
~ q 

(vi) Laplace 's  equation subject  to the  bounda ry  condit ion (25), is now solved by  re laxat ion 
in the  (¢, ~o)-plane. The singularities (L = oo) at A and H are t rea ted by  the methods  of R. & M. 
2726. From this solution a more accurate q, = q, (¢) is obtained to use in step (iv). 

(vii) Steps (v) and (vi) are repeated unt i l  q, remains unchanged.  

(viii) Equa t ion  (13) is used to find the posit ion of the centroid of circulation, and if this  is far 
from the quarter-chord point  the outer boundary  values will alter slightly, necessi tat ing fur ther  



5. A s  Example." NACA 16.- -This  aerofoil, and  the reasons for selecting it as an example  
received some a t ten t ion  in tile in t roduct ion.  Glauert ' s  thin-aerofoil  theory  gave/30 = 2 .3  deg, 
and  since tile exper imenta l  results were for/3 = 1.4 deg, these values were used in (15) to enable 
a suitable (~, ~o)-mesh to be selected. The mesh selected was such tha t  along the main  por t ion 
of the  aerofoil the mesh size was one uni t  of veloci ty  potential .  At  the nose the mesh was graded 
down to 1/128th of a unit ,  while at  the outer  b o u n d a r y  the  mesh size was 8 units. In  all over  
eight hundred  mesh points were involved, i.e., eight hundred  s imul taneous equat ions  had  to be 
solved. 

In  R. & M. 2726 the t r e a tmen t  of the singularities at  the s tagnat ion  points is based on the 
approximate  equat ion  

T 
L0( , 9) = log + . . . . . . . . . . . .  (28) 

in which ~ is the leading or trailing edge angle and the origin is at the singulari ty.  Equa t ion  (28) 
is a val id approximat ion  only if ~/(~2 + ~02) is small  relat ive to R near  the s tagnat ion  point.  
This condi t ion is easy to satisfy at sharp trai l ing edges since R is general ly large in their  vic ini ty  
bu t  at  the  nose of a small nose radius aerofoil the condit ion is satisfied at mesh points neigh- 
bour ing the s tagnat ion point,  only if the mesh is very  fine. This was the  reason for the very  fine 
mesh  used in the example.  

Now on the profile 

f dO + + = O, 7; A T H  

is s imply one of the condit ions tha t  the profile is closed. Wi th  a finite number  of mesh points 
on the  boundary ,  say m of them, then  the condi t ion becomes 

i = 1  

since d0 = --  O~o Rq, ' ,:=1 ~-- TM . . . . .  (29) 

I n  order  to secure closure of the profile, equat ion (29) mus t  be satisfied exact ly  regardless of 
the real value of TA. AS m--+ oo, VA --+~, bu t  even wi th  the ve ry  small mesh near  the nose in the 
present  example  (29) gave *A = 135 deg ins tead of 180 deg. 

The exact  location of the front s tagnat ion  point  A was very  impor tan t  since it was found 
t ha t  a m o v e m e n t  of A a distance of c/l ,000 along the profile al tered the veloci ty peak, which  
occurred at 0.01c, by  as much  as 10 per cent.  In tegra t ion  from the trail ing edge is l ikely to 
involve cumula t ive  errors and  so an a l te rna t ing  m e t h o d  of locating A was used. This was to use 
(16) to find 0 at A (OA), by in tegra t ing  th rough  the field from some point  on the aerofoil boundary ,  
where  0 is known,  to the s tagnat ion streamline,  then  along this s t reamline to A. Ext rapo la t ion  
was used over the  last mesh interval.  Knowing  tha t  the b o u n d a r y  at A was at  an angle of OA + :~/2 
to the  chord, it was a simple ma t t e r  wi th  a large scale drawing of the  nose and  a pro t rac tor  
to find the position of A. This process was carried out  several t imes dur ing the relaxat ion.  
The final value of 0~ was 27 deg ; f rom which  it was deduced tha t  A was at  x/c = 0" 0025 on the  
under  surface. 

No other  special difficulties arose. 

6. Discussion of Results.--In Fig. 6 the flow pa t te rn  and equiveloci ty contours  are shown. 
The lines of equal values of 0 are a family of curves or thogonal  to the  equiveloci ty  curves. Table  
2 sets out  the pressure coefficients. In  Fig. 4 the pressure dis t r ibut ion is compared  wi th  pressures 
calculated for M0 = 0 from the exper imenta l  results at M0 = 0 .4  by  Glauert 's  correction, 

i . e . ,  @, i~i0 = 0 / =  (1 ---Mo2) 1/2 @, ll~o = o.41. 
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This procedure was adopted since experimental results at lower speeds were not available. 
Also plotted in this figure are the results obtained from Glauert's thin-aerofoil theory. 

The experimental results indicate a loss of lift from t h a t  theoretically possible, which loss 
is due to the divergence of the experimental and theoretical pressure curves towards the trailing 
edge. This can be explained as due to the increase in thickness of the boundary layer as the 
trailing edge is approached. Agreement between the curves is good in the range 0 ~< x/c <~ O. 6. 
The curve obtained from Glauert 's theory is not very accurate although it has nearly the same 
general shape as the relaxation curve. In fact if/30 is increased from 2.3 deg to 2.7 deg Glauert's ' 
theory reproduces the relaxation results very closely. 

One disadvantage of the relaxation method is tha t  it offers no method of calculating/3ooapart 
from completely recalculating the problem at zero circulation. By an application of (18)/3 was 
found to be 1.54 deg. The value of CL found from the relaxation curve of Fig. 4 was 0.510, also 
from CL = 2K/c we find the same value of CL = (0. 510). A further method of calculating CL is as 
follows. If 4r is the length of the slit in the (¢, ~v)-plane representing the aerofoil at zero incidence 
(i.e., r is the radius of the circle which transforms into the aerofoil), then we have exactly 5 

cL = 2 (/3 + /3° ) .  4r/c . . . . . . . . . . . . . . .  (30) 
For a first approximation 4r = c, and substituting/3 = 1.54 deg (relaxation result) and/30 = 2.3 
deg (experiment and Glauert), in (30) yields 

CL = 2z(1.54 + 2.3). z/180 = 0.421, 

and unless c/4r = 421/510 = 0.825, which is most unlikely for a th in  aerofoil, this value of 
CL is too small. At this stage it seemed that  the error was most likely to be in the value of/3o. 
The boundary layer would have an effect on the experimental value of/30, and Glauert's theory 
is only approximate. This view was confirmed some time later by  an entirely new approach 
termed the ' polygon method ,8. This new method of calculating the incompressible flow about 
an arbitrarily shaped aerofoil is based on the solution of an integral equation and is much quicker 
than relaxation. 

From the polygon method it was found that  c/4r = 0. 9268 and/30 = 2.27 deg. Thus with 
/3 = 1.54 deg and/30 = 2.73 deg equation (30) gives CL = 0.505, which agrees closely with the 
relaxation result. Further from the polygon method it was found t h a t  at an absolute angle of 
incidence of/3 +/30 = 1.54 deg + 2"72 deg = 4.26 deg, A was at x/c = 0.0026 from the leading 
edge, which compares very well with the relaxation result which was 0" 0025. Also it has been re- 
marked above tha t  the results from Glauert 's theory agree closely with the other results if/30 is 
increased from 2.3 deg to about 2- 7 deg. All these points seem to indicate that ,  theoretically at 
least,/30 should not be taken as 2.3 deg, but as 2.72 deg. I t  seems that  in this case the effect of the 
boundary layer is to reduce /30. The experimental value of CL (by extrapolation to M0 = 0, 
see Fig. 10) is CL = 0 .43 ,  which is about 16 per cent less than the theoretical value. This 
corresponds in (30) to a reduction of/30 by 0.7 deg ; but of course as the incidence changes the 
boundary layer will change and the loss in lift will be less at the smaller angles of incidence. 
Thus it would seem that  the boundary layer has resulted in a reduction of/30 by  0.4 deg. 

B. Compressible Flow. 

Incompressible values are distinguished in this section by the suffix 0. 

7. The Relaxation Solution.--The mesh is the same as that  used for incompressible flow, and 
so it is only necessary to find L = L(¢, ~) then from (27) L ---- L(x, y) follows immediately. 

Equation (5) is solved by relaxation (R. & M. 27318) subject to the same aerofoi'l boundary 
conditions as for incompressible flow (see (4)). The outer boundary conditions calculated from 
the substitution vortex require modifying as follows. 
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Glauert's correction 5, relates the incompressible circulation K0 to the compressible circulation 
K by  

K = K o ~ / ( 1  - -  M02), 

and so (12) becomes 

Ko sin y K0 cos 7 (31) 
L -~- 2ar~/(l_Mo2) , 0 = ~ + 2ar~/(1 -- M0 ") " ' . . . . . . . .  

In R. & M. 273V it is shown that  the residuals X for equation (5) are best calculated from (see 
Fig. 1) : - -  

• ---] ~//- 2 / ~ 0 ~ 2 ( L 1  3) , (32)  X5 = (1 - -  Ms~)L1 + L~ + (1 - -  Ms~)L3 + L 4 -  2 ( 2 -  M~)L5 + ~-~5 k,.a .J --  L ~ 

but tha t  the most convenient relaxation pat tern is (Fig. 2) 

_ _  ~X5 ~X5 ~X~ _ 1, -- 4 -- (M6 ~ + MT~), aX5 _ (1 -- MT~), -- (1 -- M6~). (33) 
~L2, 4 ~L5 ~L1 ~L3 

One new feature is the movement of A from its incompressible posKion towards the foremost 
point on the aerofoil; which, ignoring pressure waves, i t  should reach when Mo = 1. The method 
of computing this movement has been given in the introduction. Since A is not On a mesh point 
interpolation formula are now needed when dealing with the infinity in L at A by  the methods 
of R. & M. 2726t These can easily be deduced from the equations given in this reference. 

Relaxation in the supersonic patches is still possible, but  somewhat less convergent than in the 
elliptical region of the differential equation. An essential requirement of relaxation is that  the 
elimination of a residual at one mesh point should not involve the  appearance of larger residuals 
at neighbouring mesh points (not including residuals already at these points). Examinat ion 
of the relaxation pat tern of Fig. 2 for M > 1, reveals that  for this requirement to be fulfilled 
it  may be necessary to eliminate a residual at one point by altering L at a neighbouring mesh 
point. This procedureworks for a time but  it has been discovered tha t  when M reaches a certain 
value it becomes impossible to find a continuous solution for L, ire., it is not possible to eliminate 
all the residuals. I t  is however possible to arrange the unrelaxed residuals in pairs of opposite 
sign along the lines in the field, and to deduce from these the existence of a discontinuity in L 
lying between them. The magnitude and position of this shock-wave can also be deduced from 
the size of the residuals 7. 

8. Results for N A C A  16.--Table 2 sets out the pressure cofficients for each of the Mach num- 
bers calculated. 

In Figs. 4 and 5 are compared the experimental and theoretical results for Mo ---- 0.4 and 0- 65. 
They compare well in the range 0 ~< x/c <~ O. 6, but, as can be expected, discrepancies appear near 
the trailing edge. However tile theoretical results for Mo = 0.75 do not agree very well with the 
experimental results at any of Mo = 0.75, 0.775 and 0.80. I t  appears that  the theoretical curve 
would correspond best to an experimental curve for a value of M0 between 0.775 and 0.80. 
The main source of error is the boundary layer, and for these high Mach numbers the velocity 
peak moves rapidly towards the trailing edge where boundary layer effects cannot be ignored. 
Nevertheless tile theoretical results for Mo = 0-75 reproduce the general features of the high- 
speed experimental curves, e.g., the appearance of a velocity peak on the rear half of the aerofoil. 

In  Figs. 7, 8 and 9 show the theoretical equivelocity contours for Mo = 0.40, 0.65 and 0.75 
respectively. Results for M0 = 0.75 were completed for the upper half of the plane only. Values 
in t he  lower half plane were changing quite slowly and to save time were estimated by extrapola- 
tion for this last case. The relaxation pat tern for large values of M is such that  residuals have 
little effect on mesh points in the ¢ direction, and so errors in the lower surface values would 
have little effect on the upper surface values. There is a suggestion of Prandtl-Meyer flow round the 
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nose in Fig. 9. Tile lines of constant  veloci ty are a lmost  t h e  s t ra ight  radial lines characteristic 
of this type of flow. Afihock-wave appears to be impending towards the  trailing edge. 

Turning now to the  results shown in Fig. 10 we notice tha t  both  the theoretical  and experi -  
menta l  CL against M0 curves increase at a smaller rate than  implied by the Glauert  law 

CL = CL0 ~/(1 --  M0 ~) . . . . . . . . . . . . . . .  (34) 

The displacement  of the  CL curves by  almost a constant  percentage is due to the loss of lift near  
the  trailing edge ment ioned  in section 6. Applying the  Glauert law to the upper  surface value 
of Cp actually underes t imates  it ~, but  from both  theory  and exper iment  the lovTer surface value 
Cp decreases slightly instead of increasing. This explains why  

CL= J d(dc) 

falls short of the  value predicted by  (34). The displacement  of the curves in Fig. 11 is clearly 
due to the  loss of lift near  the trail ing edge in the exper imental  results. 

9. Conclusions.--The method  appears to be satisfactory t r ea tmen t  of the  compressible flow 
of an inviscid fluid about  an aerofoil. Discrepancies wi th  exper iment  appear at high Much num- 
bers due to the  m o v e m e n t  of the velocity peak towards the trailing edge, in the  ne ighbourhood 
of which the  boundary  layer cannot  be ignored. Bette'r methods  of  dealing wRh the compressible 
flow have been developed, but  an exact t r ea tmen t  of compressible flow thr0ughout  the  field 
seems to demand  a numerical  approach of the  type given in this paper. 

If accurate exper imental  low-speed veloci ty  distributions are available for an aerofoil an 
adapta t ion  of the  polygon method  would enable the inviscid flow profile to be deduced, and 
subtract ing the  original profile from this would leave the  boundary  layer displacement  thickness. 
Now if the compressible flow about  the  deduced profile were ca!culated, and the change in the 
boundary  layer wi th  increase of M0 could be neglected, the results  of the calculation should agree 
closely with exper imental  results. 

The aerofoil chosen presented a difficult case for Calculation as the  nose was very sharp. 
The numerical  work for an aerofoil with a larger nose radius would not  be so lengthy.  
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TABLE 1 

Ordinates for 10 per cent Aerofoil NACA 161 5 in. Chord 

1 
Dist. 

From L.E. 
in. 

0 
0.005 
0.010 
0.015 
0.02 
0.025 
0.03 
0.035 
0.04 
0.05 
0.06 
0.07 
0- 08 
0.09 
0.10 
0. 125 
0.15 
0.175 
0.2 
0.25 
0.3 
0.35 
0.4 

' 0.45 
0.5 
0 . 6  
0 . 7  
0-8 
0.9 
1.0 
1.1 
1.2 
1-3 
1.4 
1.5 

! .6 
1.7 
1.8 
1.9 

2 
Upper 

Surface 
in. 

0 
0.0165 
0.0236 
0 .0292 
0.0339 
0.0382 
0.0420 
0.0455 
0.0489 
0.0550 
0.0605 
0.0657 
0-0705 
0.0750 
0-0793 
0.0892 
0.0982 
0.1065 
0.1142 
0.1283 : 
0.1410 
0.1526 
0.1634 
0.1734 
0.1828 
0.2001 
0.2156 
0-2296 
0.2424 
0.2540 
0.2647 
0.2744 
0.2833 
0.2914 
0.2987 
0.3052_ 
0.3100 
0.3151 
0.3206 

3 
Lower 

Surface 
in. 

0 
0.0146 
0 .0202 
0.0243 
0.0277 
0.0306 
0-0332 
0.0356 
0.0377 
0.0416 
0.0450 
0.0481 
0.0509 
0.0535 
0.0559 
0.0613 
0.0660 
0.0702 
0.0741 
0.0809 
0.0868 
0.0921 
0.0968 
0.1012 
0.1053 
0.1125 
0.1189 
0.1245 
0.1297 
0.1345 
0.1389 
0.1429 
0.1465 
0.1498 
0.1528 
0-1555  
0.1579 
0.1601 
0.1620 

1 

in. 

2"0 
2"1 
2"2 
2"3 
2"4 
2"5 
2"6 
2"7 
2.8 
2"9 
3"0 
3"1 
3.2 
3"3 
3"4 
3"5 
3"6 
3"7 
3"8 
3"9 
4"0 
4"1 
4.2 
4"3 
4"4 
4"5 
4"6 
4"7 
4"8 
4"9 
5"0 

2 

in. 

0"3244 
0.3274 
0.3299 
0.3316 
0.3325 
0.3327 
0.3324 
0-3313 
0.3295 
0.3269 
0.3235 
0.3192 
0-3140 
0.3079 
0.3007 
0.2925 
0.2832 
0.2729 
0-2614 
0.2487 
0.2345 
0.2188 
0.2016 
0.1829 
0.1627 
0-1410 
0.1177 
0-0927 
0.0658 

0 . 0 3 6 6  
0 . 0 0 5  

T:E. Radius 0.005 

in. 

0.1636 
0.1649 
0.1659 
0.1666 
0.1671 
0.1673 
0 .1671  
0 .1666  
0.!658 
0.1645 
0.1628 
0.1607 
0.1580 
0.1548 
0.1511 
0.1467 
0.1417 
0.1361 
0.1299 
0.1231 
0.1156 
0.1076 
0.0989 
0.0897 
0.0797 
0.0690 
0.0576 
0.0455 
0.0327 
0.0192 
0.005 

t t  



T A B L E  2 

PressureCoe~cients 

Upper Surface 

x/c M = O  M = 0 - 4  M = 0 . 6 5  M = 0 . 7 5  

--0.0008 
0.0000 
0.0001' 
0.0005 
0.0008 
0.0017 
0.0027 
0.0047 
0.007 
0.010 
0.015 
0-022 
0.033 
0.053 
0-073 
0.114 
0.155 
0.197 

0 - 2 8 3  
0.367 
0.452 
0.543 
0.631 
0.715 
0.802 
0.848 
0.895 
0.918 
0.942 
0.971 
1.000 

0.656 
0 . 3 4 5  
0.084 

--0.103 
- -0 .348 
--0.493 
--0.698 
- - 0 . 7 8 8  
--0.836 
- - 0 . 8 2 8  
- -0 .738 
- -0 .706 
- -0 .658 
--0.625 
--0"570 
--0.535 
--0.506 
--0.482 
--0.474 
- - 0 . 4 6 7  
- - 0 . 4 5 8 .  
- - 0 . 4 4 3  
--0.411 
- - 0 . 3 4 1  
- - 0 . 2 7 1  
- -0 .169 
--0-103 
--0.017 

0.099 
(Stagnati, 

(Stagnation Point) 
0.669 
0 . 3 4 0  
0 .063 

--0.148 
--0.407 
- - 0 . 5 5 0  0.005 
- - 0 . 7 6 4  - - 0 " 3 8 3  
- - 0 . 8 4 2  . - -0 .569 
- -0 .898  --0.894 
--0.883 - - 1 . 0 0 4  
--0.786 --0.938 
- - 0 . 7 4 6  --0.902 
--0.701 - - 0 . 8 5 8  
--0-673 --0.819 
- -0 .620 --0.758 
--0.584 --0.726 
--0.550 --0.681 
--0.531 - - 0 - 6 6 0  
--0.524 --0.655 
--0.513 --0.644 
--0"507 --0.634 
--0-496 --0.619 
- -0 .460 --0-577 
- -0 .386 --0"505 
--0.305 --0"350 
--0 .193 - - 0 . 2 3 0  
- -0 .119 --0.139 
~ 0 . 0 2 6  --0.041 

0.096 0.083 
n Point) 

(Coarser Mesh 
u s e d n e a r  

nose). : 
0.575 0.!626 

0.1134 
- - 0 ? 2 3 9  
--0.525 
-0.855 
--0.871 
--0.~94 
--0.885 
- -0 .876 
- - 0 . 8 5 0  
--0.809 
-0.754 
- - 0 - 7 1 6  
--0.716 
--0.729 
--0.750 
--0.790 
- - 0 . 8 2 0  
--0.701 
--0.537 
--0.370 
--0.239 
--0.;145 
--0.045 

0.085 

x/c 

0.0008 
0.0044 
0.0068 
O. 0085 
0.010 
0.012 
0.014 
0.019 
0.023 
0.031 
0.039 
0.054 
0.068 
0"097 
0.124 
0.178 
0~231 
0.284 
0.387 
0.488 
0.588 
0.686 
0.787 
0"836 
0-887 
0"915 
0"940 
0"968 
1"000 

Lower Surface 

M = O  M - - 0 . 4  M = 0 . 6 5  
I i I 

(Stagnation Point) 
0.921 
0.840 

0 . 7 7 6  
0 . 7 3 3  

0.641 
0.609 0.620 
0.535 0.545 
0.487 0.496 
0.424 0.438 
0.378 0.388 
0.306 0.310 
0.254 0.257 
0.203 0.205 
0.169 0.171 
0.123 0.114 
0.090 0.085 
0.063 0-055 
0.025 0.004 

--0.005 --0.027 
--0.030 - -0 .058 
--0"040 --0"071 
--0"016 --0"031 

0"014 0"006 
0.059 0.055 

• 0.095 0.090 
0.139 0.140 
0-212 0.215 

(Stagnation Point) 

0.888 
0.814 
0.753 
0.713 
0.625 
0.594 
0.523 
0.478 
0.417 
0.372 
0.308 
0.259 
0.206 
0"174 
0.129 
0.096 
0"071 
0"033 
0.005 

--0.019 
--0.027 
--0.001 

0.025 
0.070 
0.103 
0.150 
0.225 

0"769 
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