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S u m m a r y . - - I n  this report, two matters  are dealt with which were left in an unsatisfactory state in the Appendices 
of Refencence 1. The first concerns the conditions obtaining near the front of a flat plate in a uniform stream with 
constant continuous suction through the plate. We now satisfactorily prove that  the boundary-layer velocity profile 
tends to the well-known Blasius profile as the front end of the plate is approached. The second mat ter  concerns the 
solution of the boundary-layer equations of motion when " similar " velocity profiles are assumed--i t  is shown that  
only two types of outside stream velocity distributions lead to " s imilar"  profiles, under ordinary conditions. 

1. Flat Plate, Uniform Stream, Constant Suction.--1.1. In the usual notation, the equations of 
steady motion of flow within the boundary layer are 

82~t au 8u UU'  + v . . .  . . . . . . . . . . . .  (1) 

The equation of continuity 

~u + 8v 
~ ----- 0 . . . . . . . . . . . . . . . .  (2) 

allows the use of the stream function ~ for which 

u - a~ v - a~ (3) I . • • • • • I o ,  • • . - ,  • i 

ay ~x 

We are here concerned with the flow past a flat boundary in a uniform stream, when there is a 
constant velocity at and normal to the boundary. The boundary is the positive part of the 
x-axis, i.e. y = O, x >~ O. This flow has been exhaustively studied (Reference 2 gives a complete 
review of the work on the problem) and no exact solution has been found in finite terms. It has 
always been assumed that  as x--+ + 0 the velocity profiles of the boundary layer tend to Blasins' 
profile. No indication has yet been found o'f the German reasons for this assumption, and no 
valid proof has yet been given. The proof in Appendix I of Reference 1 assumes the answer and 
we now remedy this unsatisfactory state of affairs as follows. 

New independent variables (}, ~) are introduced for which 

~o(XU~ } ' 

= -- 2' \ U W  
U ~/~ . . . . . . . . . . . . . . .  (4) 

.(81516) A 
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The coefficients of x '/~ and yx -~/~ in these co-ordinates were chosen not only to make 2, ~ non- 
dimensional, but also to obtain an equation whose boundary conditions are independent of the 
ratio vdU. 

v0 is the velocity at and normal to the boundary. For suction with which we are really 
concerned, vo is negative. 

Suppose ~o = (~,Ux)*/2f(& n) . . . . . . . . . . . . . . . . . .  (5) 

in which f is a function of ~ and n and is to be determined. Using (3) we obtain 

(?)" '(  ' z -  I) + Of v---½ ~-~ 

v ( u o'f o'u _ u ( o f, 
ay 4 \ ~ ]  a~ --~'  ay ~ 8 \~x /a~  ~ . . . . . .  (6) 

Ou 1 U a=f I Uvo O=f 
Ox 4 x  n -  an" 8 (Uvx)V, 0~3~ 

Using the expressions derived in (6), the equation of motion (1) becomes 

1 U~vo Of a2f 1 U~fO2f + Uvo(U)l/~O~f O f _  vU2Uf 
16 (U~,x) ~/' a n OnO~ 8 x "On 2 ~ ,,;x) On ~ O--~ - -  8vx On ~ '  

(7) 

which simplifies to 

an8 J 0n 2 ana~ 0n ~ (8) 

The boundary conditions which must be satisfied are 

u = 0 l y = 0 , "  u =  U, y = o o .  . .  
V ~ V o  ! 

(9) 

Two of these conditions give 

b ~ 0 f - - 0 ' ~ = 0 '  } 

0f -- 2, ~ = m .  
0~ 

(1o) 

For the third, we have from (6) that  at y ---- 0 

V (Uv~,l/Zf v° ~-]y=0 --  = [ - - ½ ' , x Y  + 4Of 
4 

(11) 

We require v = vo at y = 0. 

If thereforef  = 2~ for n = 0, (11) gives 

Vo (2} ) 
v = - g k T  + 2 =vo .  

The third boundary condition of (9) therefore requires that  

f = 2 L ~ - - - - - 0  . . . . . . . . .  02) 
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The equation of motion (1) has thus been transformed into 

+ fog (of oy _ og of) = ' ' "  

with the boundary conditions 

f = 2 ~ "  Of 2 , ~ = o o .  
0 f _ 0  ~ = 0 , ~ =  

I o 

J 0~ 

The solution is required for positive values of ~ and ~. 

(13) 

( 1 4 )  

and so on. 
The boundary conditions become 

fo(O) = O, fo'(O) = O, fo'(~) -= 2, ] 

fl(0) = 2, f~'(0) = 0,fl'(oz) ----- 0, ~ . .  

f,(0) = 0, f / (0 )  ----- 0, f,'(oo) = 0, n ~> 2. 

1.2 The solution of (13) appears to be regular in the neighbourhood of the origin, and hence is 
expansible in powers of # for small values of ~. Let us put therefore 

f =  f0(~) -}- ~fl(~) + ~f~(~) + . . . . . . . . . . . . . . .  (15) 

By substitution of this expression for f in (13) and equation of coefficients of powers of ~ to 
zero, we get successively. 

, "f.i" + f o f o " = O ,  ] 
f l " '  + f l f / ' - - f o ' f ~ '  + 2f0"f~ = 0, ~ . . . . . .  (16) 

f ( "  + fo f (' - -  2fo' f ( + 3fo" f ~ = (f~')~ - -  2r  ,~ " ~ ] l J l  , 

Dashes denote differentiatiqn with respect to ~. 

. . . . . . . .  (17) 

The nth  equation in (16), n > 0, is linear inf,(v). The first equation is non-linear and is Blasius' 
well-known equation. Tile form of (15) shows at once that  as ~--~ + 0, the velocity profiles tend 
to the Blasius profile. This question therefore appears to have been cleared up satisfactorily. 

2. O n  S i m i l a r  P r o f i l e s . - - I n  Appendix II  of Reference 1, it was shown that  the usual method 
of " similar " profiles could not be applied to the constant suction problem considered in §1. 
This is, of course, hardly surprising since we now know the profiles are different at the two ends 
of the boundary. However on extension of the analysis in Appendix I I ,  Reference 1 gives the 
result that  there are only three general cases of boundary-layer motion in which " similar " 
profiles exist. We now go on to find these three cages. 

For simpl.icity, let us use the independent variables x/v,  y / v ,  so that  the equation of motion 
(1) becomes, using x and y for the new variables 

02u 
Ou Ou U U '  + - -  . . . . . . . . . . . . . .  (18) u ~ +  v ~ =  Oy ~, 

the dash denoting differentiation with respect to x/v.  
Suppose that  we have a flow in which the velocity distributions through the boundary-layer 

are similar for each x. 
We can write, without loss of generality, 

-= p(x)  F(y f (x ) )  + g(x) ... . . . . . . . . . . . .  (19) 

and we suppose t h a t  neither p(x)  or f(x) is identically zero. 



This gives 
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u = p f  , v = p ' F  y p f ' F '  g'(x), 

Ou _ p]-~F,,, °~u -- p p F  "1, Oy oy2 
O U  
Ox (Pf' + p ' f ) F '  + yp f f 'F" .  

Herein dashes on F denote  differentiation with respect to v = yf(x) .  
We have the  two boundary  conditions 

u =  0, y = 0 a n d u =  U , y = o o  . . . . . . . . . . .  

We may  suppose tha t  F'(oo) = 1, wi thout  loss of generality. 
Then from (20), 

U = pf,  t . . . . . . . . . . . . . .  
u'  = pf' +t )7 .  

Using the expressions of (20) and (22), the equat ion of mot ion (18) becomes 

f p F '  [(pf' + p ' f ) F '  + ypf f 'F"]  -- Ep'F + y p f ' F '  + g'] p f fF"  

= Pf(Pf '  + P' f )  -f- p f s F "  . . . . . . . . . . . . .  

(20) 

(21) 

(22) 

(23) 

o r  

o r  

[(F') ~ --  13 (pf '  + P'f)  - - p ' f F F "  - - f f F "  - - f g ' F i '  = O. 

This equat ion is soluble for F(~j) if and only if 

fg-- = P ' f  + p f '  __ P ' f  _ f f  
d c b a 

(24) 

(2s) 

f t 

g, P ' + P ] _ p ,  f . . . . . . . . . . . . . .  (26)  
d c b a 

a, b, c, d being numerical  constants,  for the coefficients of the F's  in (24) cannot  be expressed as 
functions of rl since they  do not  contain y. 

(24) then becomes 

a F "  + bF"F  + c [1 -- (F')  2] + dF" = 0 . . . . . . . . .  (27) 

From (26) since f ¢ 0, a =# 0, for otherwise there would be no mot ion at all. We m ay  further  
suppose tha t  d --# 0, since this would mean g '  --  0, or the addit ion of a constant  to ~0 which is not  
significant. We also have 

a , (28) f = ~ P  . . . . . . . . . . . . . . . . . .  

and 

and thence 

o r  

p l  b i 
---- ~ g ,  . . . . . . . . . . . . . . . . . .  (29) 

(p')~ + pp" _ p' 
C b '  

p, - ($ . . . . . . . . . . . . . . . . .  (30) 
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We must  now distinguish between the following cases : - -  

p,,__p, 
(i) c = 2b, c # 0, then ~ - - i T '  . . . . . . . . . . . .  (31) 

whence p ~- Be A~, 

a e,,,~, f . . . . . . . . . . . . . . . .  (32) f = A B ~  

and U = A B ~ b e2a~" . . . . . . .  : . . . . . . . . .  (33) 

In  this case 

a F "  + F F " ( I  + d )  ~ q - 2 [ 1  - -  ( F ' )  ~] = 0  . . . . . . . .  (34) 

Here the s t ream Velocity is an exponent ial  function of x, as is also the boundary- layer  thickness. 
This solution was independent ly  found earlier by E. J. Watson.  

(ii) c = b = 0, then p '  = 0. 

and  f 'P  -- 0 ~ . . . . . . . . . . . . . .  (35) 
f 

Thus since p # 0, f '  = 0 . . . . . . . . . . . . . . . . . .  (36) 

and f---- C , p - =  D. 

g, = d f ,  from equat ion (26). Mso, 

Therefore g '  = d C, 

d Cx . . . . . . . . . . . . .  (37) whence g ~ a . . . . . .  

the  arbi t rary constant  being insignificant in the value of the s t ream function. 
Equat ion  (27) becomes 

aF ~" + dF" = 0 . . . . . . . . . . . . . . . .  (38) 

whence F ' =  1 -- e -~d/~ . . . . . . . . . . . . . . . . .  (39) 

the constants  having been disposed of to ensure tha t  the two boundary  conditions F'(0) ~- 0, 
F'(oo) = 1 are satisfied. 

In  this case, the velocity at and normal  to the boundary  is equal to -- g', or -- (d/a)C. This 
is a constant ,  equal, say, to vo. Fur ther  the s t ream velocity at infinity, U is equal to p f  and i s  
constant.  

Thus the equat ion (89) can be rewri t ten as 

tt __ 1 - -  e ~°y u . . . . . . . . . . . . . . . . . . .  (40) 

which is the Griffith and Meredith asymptot ic  suction profile. 

(iii) c # 2b, then p-~ = ~ -  1 . . . . . . . . . . . . . .  (41) 

+ constant, 

(81,516) ~B 



p ' =  Ap(~Jo)-~ . . . .  

p1-(~l~l dp  = A d x  , 
1 

2 - -  (c/b) ~- 

6 

. . . . . . . . . . . . . . .  (42) 

+ ° ' ' - '  . . . . . . . . . . . . .  

At the front end of the boundary,  x -- 0, we assume the boundary  layer to be of ei ther zero or 
infinite thickness, and hence B - 0. 

(43) then gives 

/ ~ -  b A l A x  (2 --c) ]  ('-~l'<'b-.' D J , • . . . . . . . . . . .  ( 4 4 )  

whence U = p f = a A  A x 2 - -  (45) b . • • • ° • . . . ° . . o 

Here U is proport ional  to some power of x. 
This is the  general mot ion considered by Falkner  and Skan in which U = cx"'. 
Tile boundary  conditions, u -- 0 at y = 0 and w -- U at y = oo become, as usual, 

F ' ( 0 ) =  0, ~"(~o) = 1. 

The normal velocity at the boundary  is, from (20) 

vo = - -  (p 'F(O) + g') 

- P'(F(OI + ~)" 

If therefore F(0) ~- - -d /b ,  we have the solution of tlow along an imperlneable wall, and if 
i;(0) / - -  d/b there is a distr ibution of suction along the wall proport ional  to p' .  If U ~ x " ,  
t hen the corresponding suction di.stribution to give " similar " profiles is vo oc x~"'-~*/"~. 

Several authors have pointed out the possibility of solving the boundary- layer  equations of 
motion under  this particular type of s tream and suction velocity distributions. In part icular  
Holstein in Germany has carried out the computa t ion  in a number  of cases. 

In (i), (ii) and (iii), above, we have therefore shown tha t  solutions of the boundary- layer  
~'quations to give " similar " velocity profiles exist in only three general cases. With  each case, 
there is an associated distr ibution of boundary  suction velocity, for which " similar " profiles 
also exist. 

C o n c l u s i o n . - T h e  assertion that  the boundary-layer  velocity profiles tend to Blasius' profile 
~Ls the front end of a plate in a uniform stream under  constant  continuous surface suction is 
approached has, we believe, now been satisfactorily proved. 

It has also been shown that  " similar " profiles can be obtained in boundary- layer  flow in 
only three general cases of s tream velocity distributions, in each of which there is associated a 
particular distr ibution of surface suction giving also similar profiles. 

No. Author 
! B. Thwaites . . . .  

2 B. Thwaites . . . .  

3 H. Holstein . . . .  
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