
. . . . . . . . . . . .  ~. ,..3, } ,..~ .~.~ , ) ~ ~,.~, .. +, : ,.: 

R .  & r ~ .  N o .  2 7 0 9  

( t 2 , 2 6 6 )  

A . ~ . C .  T e e h r ~ i c a l  R e p o r ~  

AERONAUTICAL RESEARCH COUNCIL 

REPORTS AND MEMORANDA 

The Cs]~cu}lsl:£©a ©£ Wh£r]~£ng Speeds 
©£ s 5ys~:em <>£ X©~:ors Keyed} 8o 

Ceo~x£s}l 5hs£~s 
By 

T. S. W X L S O N ,  B.A., B.Sc., 
of D. Napier & Son Limited 

Cro~,n Copyright Reserved 

LONDON : HER MAJESTY'S STATIONERY OFFICE 

I953 

PRICE 6s. 6d. N E T  



The Calculation of Whirling 
Rotors Keyed to Co-axial 

Speeds of a 
Shafts. 

By 
T. S. WILSON, B.A., B.Sc., of D. Napier & Son, Ltd. 

Reports and Memoranda No. 27 °9" 
24th May, 1948 

System of 
] , .  

e • . 

I 
7 

,", %" .~ .:;~-~ ,/' /.p %..., 

• v ,~  / ,  

1. Introduction.--The whirling of shafts carrying rotors is a subject which has at tracted the 
attention of many engineers and mathematicians notably Dunkeffey 4, Chree 1, Stodola 8, Jeffcott 5 
and Morris 6,7 during the past fifty years. The last mentioned writer has given some valuable 
historical surveys and criticisms in addition to his own elucidation of several aspects of the 
general problem. 

The main purpose of this paper is to bring the calculation of whiffing speeds of an important  
class of systems within the scope of the iterative technique of Duncan and Colla# ,a, and to 
demonstrate by  theory and example that  problems involving large numbers of degrees of freedom 
.may thereby be efficiently dealt with. I t  would appear that  the power of this iterative method 
is not so widely appreciated as it might be. One erroneous belief is that  the uti l i ty of the 
method ceases whenever slow convergence of the iteration ensues. An additional refinement 
of procedure, which the writer has exploited, allows two or more modes to be extracted more or 
less simultaneously from an iteration which is converging slowly. 

The idealised system which will be under review is an example of what has been termed a 
' semi-rigid'  system a. It  is to be thought of as derived from an actual system of shafts and 
rotors by collecting the mass into rigid body units at several well chosen positions, and then 
determining, as realistically as is possible from t h e  original continuous system, the elastic 
couplings associated with the several freedoms of the rigid bodies. 

The formulation of th i s  elastic problem presents the real difficulty in these, and indeed in 
most other, vibration problems. I t  is usually assumed for simplicity tha t  lateral flexibility 
arises solely from the bending of shafts, taking such to be covered by the general theory of thin 
rods. That  is the course adopted by the writer, with the additional arbitrary principle tha t  
when any debatable points arise, such as the type of fixing provided by a bearing, the more 
flexible alternative is selected. Such procedure, however, cannot always give a satisfactory 
solution of the real elastic problem. Particularly is this so in aircraft installations where the 
en.g!ne structure supporting the bearings may have, of itself, a flexibility comparable with tha t  
arising from the bending of shafts. In this connection, the importance of static tes ts  of 
flexibility upon existing systems of shafts, and their supports, should not be overlooked. 

The two main features of the modern theory of whiffing, in contradistinction to some of the 
earlier notions 1, 4 are that  any point of the flexural axis of a shaft is allowed to have a small but  
.general vibratory movement, and tha t  the steady rotation, imparted b y t h e  drive, at any section 
is invariably about the tangent to the flexural axis at that  section at any instant  6,7. In the 
sequel, the terms ' shaft rotation ' or ' s teady rotation ' will refer to this rotation due to the 
drive, and is not to be confused with rotary motions in plane closed curves which points of the 
flexural axis may have and which will be referred to as ' whiffing '. 

* D. Napier & Son, Report AQ. IV. y. 18, received 1st April, 1949. 
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With emphasis on numerical aspects, the paper deals therefore with idealised systems of 
rotors, including sometimes mere points of mass, rigidly attached to a nest of light shafts having 
a common flexural axis, and having axial symmetry as regards lateral flexibility. Nominally 
the flexural axis contains the centroids of all the rotors and is coincident with a principal inertia 
axis of each rotor. Small departures from this ideal state of assembly concerning each centroid 
and each inertia axis are known as static and dynamic unbalance respectively, and will be taken 
into consideration as some of the influences responsible for the excitation of the system when 
in a state of steady rotat ion about the flexural axis. In the steady state, the shafts are not 
restricted to have a common rotational speed, but it is assumed that the steady state has only 
one degree of rotary freedom, in which case it is specified by the rotational speed of any one shaft. 
Only rotors having axial symmetry as regards mass are dealt with. 

The writer feels that  any value of this paper would have been enhanced if he had been able 
to cite a personal experience of actual installations which have exhibited whirling. Such 
experience is essential in order to give guidance on the importance of forms of excitation other 
than unbalance, brought about for example by blades of a propeller or turbine having to pass 
close to spaced obstacles in the flow of air or of gases 7. The reader who wishes to see an account 
of experimental work verificative of the now accepted theory of whirling is referred to pages 429 
to 470 and pages 1113 to 1143 of Steam and Gas Turbines, the authorized translation by 
Loewenstein of Stodola's standard workt  

2. The General Problem Briefly Described.--In the general theory of any dynamical system 
vibrating about a state of stable equilibrium, the term ' normal mode ' is used to denote any 
one of the critical configurations or shapes in which the system may pulsate freely without 
external agency. Associated with each normal mode is a definite frequency of vibration, 
referred to as a ' natural frequency'. 

In the case of whirling, which concerns flexural vibration about a state of  steady rotation, 
the words normal mode and natural frequency have a direct physical meaning for those 
systems which are axially symmetrical as regards both mass and elastic properties. For such 
systems, a normal mode denotes any plane shape into which the flexural axis or axes may be 
bent such that  rotation of this plane about the axis of symmetry is freely possible. The definite 
angular velocity ~o with which this plane naturally rotates determines the corresponding natural 
frequency ,o/2~, and is not to be confused with, nor arbitrarily assumed to be equal to and in 
the same sense as, the steady angular velocity ~ of one of the shafts. For any given steady state 
of rotation, represented by the angular velocity ~, there are the same number m of positive 
(i.e., in the same sense as ~) natural angular velocities of whirl, ~oi, ~2,. . . . . .  ~om, as there are 
negative angular velocities - - ~ - 1 , -  ~-~ . . . . . . .  - - o ~ ,  each of these 2m natural angular 
velocities being associated with a modal shape. It  i s  convenient to think of these modes as 
numbered l, 2, . . . . .  : m in such a way that  the members of each of the two sets of moduli 
(o~1, ~o~, . . . . . .  co~) and (o~-1, ~-5, • . . . . .  co_~) are in order of ascending magnitude, and to tlse 
the terms ' forward ' and ' reverse ' to describe the sense of the whirl. 

Only when axial inertia is not insignificant, and gyroscopic effects are therefore present, do 
these natural angular velocities of whirl vary with the imposed rotation of the shafts. As the 
imposed rotation is increased, the angular velocities of the forward whirls increase, and those 
of the reverse whirls decrease, the corresponding modal shapes suffering some change. 

Any natural whiffing state of the axially symmetrical sys tem cannot be sustained at any 
speed of the drive unless suitable forcing excitation is present. If ~ denote, as before, the 
steady speed of one shaft, the case of a general excitation, periodic in one revolution of the given 
shaft, will be envisaged. There will thus be considered the possibility of excitations of frequencies 
~/2~, 29/2~, . . . . . .  n~/2~, the integer n being referred to as the ' order number '. 

The term 'whir l ing speed '  is used in this paper to denote the value of ~ at which any 
excitation causes resonance of any one of the natural whirling states. Two parameters, viz., 
modal number and order number are therefore involved in the array of whirling speeds for any 
system of the type considered here. 
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In the case of systems which are axially unsymmetrical,  there is t h e  possibility of continuous 
regions of steady speed within which the free vibrations are theoretically unstable, but  to wha t  
extent this is of practical importance the writer has no knowledge~ I t  is not intended in this 
paper to deal with such problems, though they do in fact lend themselves to t reatment  by  the 
iterative methods dealt with in Section 8. 

3. Description of the Whirling Properties of some Simple Systems.--Although the acceptable 
theory of whirling was finally established about th i r ty  years ago, there still exists much confusion 
of thought concerning such basic problems as that  of a rotating thin shaft, or of a single heavy 
symmetrical rotor on a light shaft. 

One of the most widespread beliefs is tha t  a perfectly balanced thin uniform shaft, if disturbed 
laterally whilst running at one of the critical speeds associated with Out-of-balance excitation, 
will then assume the whirling state to an ever increasing degree. In actual fact, and as pointed 
out in section 2, sustained whirling of the single uniform shaft  is a forced circular motion of each 
po!nt of its axis, the usual source of excitation being lack of balance of the shaft about its own 
axis. If the perfectly balanced shaft, thin enough to make gyroscopic effects negligible, be 
plucked or struck whilst rotating at any speed, the resulting free vibration is substantial ly in 
the plane of the disturbance and is indistinguishable in other noticeable matters from the 
vibration resulting from plucking the shaft whilst at rest. 

It  is also fallacious to regard the balance of a natural ly straight shaft as modified by  any 
bending produced by invariable forces, such as gravity for example. The notion tha t  the 
whirling of the horizontal shaft is directly influenced by  gravity, is undoubtedly stimulated by 
those elementary treatments which tacitly employ Rayleigh's principle and make use of the 
gravity shape as the approximation to the fundamental  whirling shape. In consideration of bent 
shafts as influencing whirling, contrast should be apparent between one shaft whose central 
line is natural ly curved, and another whose central line is natural ly  straight but  is being 
elastically bent by  gravity. The former shaft is unbalanced as its flexural axis is not its central 
line. 

Let at tention now be given to the case of a light shaft arranged horizontally on two supports 
and carrying an over-hung balanced disc. When the shaft is not rotating, flexural vibration 
of the shaft in a vertical plane will involve a linear vertical oscillation of the centroid of the disc 
together with a ti l t ing oscillation of the disc about its horizontal diameter. There will thus be, 
under these conditions, two normal modes of vibration having, in general, differing frequencies 
o~1/2~ and co~/2~. In the first mode, the vertical sinnsoidal motion of any point of the shaft, 
including the centroid of the disc, may  be regarded as the superposition of two circular motions 
of equal radius but having the opposite angular velocities ~ol and -- o~. Thinking similarly 
of the other mode leads to the idea tha t  four natural  circular whirls of angular velocities ~ 
and o~ in the forward sense, and ~ol and o~ in the reverse sense, are associated with the system 
in its non-rotating state. Now suppose the shaft and disc to be rotating with any steady 
angular velocity ~. There are now, as before, four natural  circular whirls, two forward and two 
reverse, but, owing to the gyroscopic effect of the spinning disc, these are no longer equal and 
opposite in pairs. The change in the natural  angular velocities was described in section 2. 
Moreover, there are now four distinct modal shapes of the shaft. If the shaft of such a system 
be disturbed laterally whilst in steady rotation, all four of the natural  whirls will in general 
appear, so that  the resulting free motion will not be in one plane, neither will it appear circular, 
except perhaps after sufficient time has elapsed to allow the three most heavily damped ones 
to disappear. 

As an example of whirling speeds, suppose tha t  the overhung disc system iust  described was 
excited by giving one of the bearings a sinusoidal vertical movement of prescribed amplitude 
and of the same frequency 9/2~ as tha t  of the shaft revolution. There are thus circular 
excitations of angular velocities ~ and . - -  Q acting on the system. As ~ is slowly increased, 
the first resonance to occur would be the first reverse whirl, characterised by  any point of the 



axis of tile shaft  describing a circle with angular velocity D in the  reverse sense. At higher 
speeds resonances would be obta ined with the first forward whirl and with the second reverse 
whirl, but,  for a relat ively th in  disc, the  frequency of the exci tat ion would never  actually over take  
the frequenc~¢ of the second forward whirl, however  high ~) became. 

The experience such as this wi th  a system having appreciable axial inertia, in contrast  to the 
th in  shaft for example,  discounts the  impression given by  some authorit ies tha t  there is no 
dist inct ion between lateral vibrat ion of shafts when ro ta t ing  and when not  rotating. 

Y 

0 

I 

I 
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FIG. 1. Pictorial representation of the disturbed rotor. 

4. The Dynamic Loads Produced 
by a Disturbed Balanced Rotor.-- 
Ox, Oy, Oz (Fig. 1) form a right- 
handed  system of or thogonal  axes 
fixed in space. The uni t  vectors 
a, b and c, radiat ing from G, the  
centroid of the rotor, are along the  
principal axes G1, G2, G3 of the  
rotor, the corresponding inertias 
being A, B and C (lb in. sec2). In  
the s teady state, G is coincident  
wi th  0, and the uni t  vector  c lies 
along Oz, the  flexural axis of the  
system to which the  rotor belongs. 
The mass of the  rotor  is M (Ib in.-1 
seeS). 

At the  ins tant  t the co-ordinates 
of G relative to the  fixed frame are 
x, y, z, assumed to be small, and the  
vector  c is slightly inclined to Oz. 

If ~, 8, 0 and ¢ are small, and ~0 is an angle of any magni tude,  then  (cos ~0, sin ~0, --/~), 
(--  sin ~, cos ~, --  ~) and (¢, 0, 1) are each uni t  vectors, the  first two being orthogonal  to the  
first degree of smallness. Each  of the first two will be or thogonal  to the  th i rd  if 

~ = - - ¢  sin~o +0cos%0, '~  
(4.1) . • . . . . . o o o o o 

and/~ = ¢ c o s ~  + O s i n  . 

The uni t  vectors a, b and c ma y  thus be given to this degree of accuracy by 

a = (cos ~, sin ~0, --  ~), "] 

J b = (-- sin ~,, cos ~0, - -  ~), 

c =  (¢, O, 1 ), 

(4.2) 

together  wi th  the  relationships (4.1). I t  will be not iced tha t  the vector c fulfils the condit ion 
of being only slightly inclined to Oz. 

The angular veloci ty vector  at  G will be expressible as (51a + r52b + a~c where the  components  
~51.2.3 are given by  

~51----c.1~ = - - ~ . b  = ¢ s i n ~ 0 - - 6 c o s ~ o ,  -7 

J ~5~ = a . ~  = - - g . c  =¢cos~p- t -Os in~v ,  

~5, = b . g  = - - b . a = ~ .  
4 

(4.3) 



Owing to the  fact tha t  the  angle % unlike the angles 0 and ¢, is not  restr icted to be small, 
some care is needed when describing these three angles geometrically.  0 is an anti-clockwise 
rota t ion about  an axis through G parallel to the fixed axis Ox, whilst  ¢ is a clockwise rota t ion 
about  an axis through G parallel to 0y. ~0 is a clockwise rotat ion about  the principal  axis G3 in 
its actual  position. This definition of the  angles may  be shown to be unique by  demons t ra t ing  
analyt ical ly tha t  it is immater ia l  in what  sequence these rotat ions are performed, on the  
unders tanding  tha t  when the  rota t ion ~0 is made,  it must  be about  the  line in which G3 then  
lies (see Fig. 1). 

I t  will be supposed tha t  the angular velocity ~ consists of a constant  part  s~ upon which is 
superimposed a small variable i. Accordingly the angle ~, as defined above, m a y  be wri t ten  

~, = agt + ), + ~, . . . . . . . . . . . . . . . . . .  (4.4) 

where y is a constant  phase angle, and its corresponding derivat ives ~ and ~ are 

= X) + k . . . . . . . . . . . . . . . . . . . .  (4.5) 

and ~ = ~ . . . . . . . . . . . . . . . . . . . . .  (4.6) 

I t  m a y  be remarked  tha t  it is immater ia l  whe ther  the small ro ta t ion ~ is considered to be about  
G3 or about  a line th rough  G parallel to Oz. 

Resolving the  linear m o m e n t u m  of the  rotor into components  (p~, iby, p,) parallel to the fixed 
axes, and taking their  rates of change, it is clear tha t  

1 

= 

(4.7) 

The angular m o m e n t a  about  G1, G2, G3 m a y  be wri t ten  down and then  resolved into 
components  (Po, P~, P,) about  the fixed axes in the  sense of posit ive 0, ¢ and  e. Provided  x, y and z 
are small as premised, the m o m e n t a  (Po, P~, P,) will, to the first degree, be also the  angular  
m o m e n t a  of the rotor  about  the  fixed axes Ox, Oy, Oz. Taking rates of change, it may  be 
shown that ,  to the  first degree of smallness, 

/~0 = {A' + B '  cos 2(~9t + ~,)}0 --  {B' sin 2(89t + ~,)}~ 
- -  2{B' sin 2(agt + ),)}sgO --  {C' q- 2B'  cos 2(agt + ),)}~9¢, 

1¢~ = --  {B' sin 2(tgt + ),)}0 + {A' - -  B '  cos 2(t?t + r)}~ 
+ {C' -- 2B' cos 2(t?t + 7)}X20 + 2{B' sin 2(agt + ),)}89¢, 

~ -= C"e', 

(4.8) 

where A ' =  ½(A + B), -] 

B ' =  - -  B ) ,  

and C' = C, 

(4.9) 

and subst i tu t ion has been made  for ~ and its derivatives.  

A dynamic  load is defined to be the reversed rate  of change of any  l inear or angular  momen tum,  
and corresponds wi th  the  posit ive sense of some linear or angular  variable. Thus the  dynamic  
loads corresponding to x, y,  z, 0, ¢, e of Fig. 1 are --  ihx, --  t5, --  25~, --  150, --  p~, --  p,, respectively. 
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2. Dynamic Loads due to Static and Dynamic Unbalance, and to Other Ef fects . - -The unbalance  
m a y  be though t  of as due to the  a t t achmen t  to the ideal rotor  of the masses shown in Fig. 2. 

I 

j b  j 

f 

J 
J 2 

J 
n 4 

I 

J 
FIG. 2. Representation of unbalance by means of particles. 

The masses of the  part icles and  their  posit ions relat ive to the  axes G1, G2, G3 of the  rotor  are 
as follows: ~mll at  (a, 0, 0), --  ½m~ at  (-- a, O, 0), ½m2 at  (0, b, 0), -- ½m2 at (0, --  b, 0), ½m3 at  
(a, 0, c), --  ½m3 at  (a, 0, --  c), ~m41 at  (0, b, c), and --  ½m4 at  (0, b, --  c). 

I t  m a y  be verified t h a t  these particles make  no addi t ion to the  mass of the  rotor, nor do t hey  
affect its inert ias  A, B and C. They  do, however, shift  the  centroid of the whole assembly to 
the  point  (m~a/M, m,b/M, 0) and int roduce products  of inert ia  F = mlbc and G - - m 3 a c  
corresponding to the  pairs of axes G2, G3 and G3, GI respectively. 

The dynamic  loads due to this  la t t ice  of particles and corresponding to x, y, z, O, ¢, ~. are 
found to be 

mlat2 2 cos (t2t + ~) -- m2b9 ~ sin (t2t + ~ ) , -  

mlat2 2 sin (Qt + ~) + m~bt2 ~ cos (gt  + ~), 

0, 

m3cat2 ~ sin (~9t + r) + m~ b c ~  cos (~Qt + ~,), 

m3ca~ 2 cos (t2t -k ~) -- m4bct2 2 sin (t2t -ky ), 

0, 

. .  ( 2 . 1 )  

respectively,  when the effects of the  small dis turbances are ignored. The omit ted  terms have  
some significance when the unbalance  is large, bu t  it  is not  proposed t o  deal wi th  this  quest ion 
in tile present  paper. 

A n y  loa.ding which is independent  of the  displacements  of the  rotor  will be referred to as 
external  loading. 
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Notice that  the external loads given by (5.1) are of the form 

P cos o t  - Q sin Ot, corresponding to x, 

P sin Ot + Q cos Dt, ,, ,, Y, 

K cos Ot -- L sin Ot, , ,  ~b, 

and K sin 9t  + L cos 9t  . . . . .  O. 

If two similar lattices of particles could exist around G, one rotating with angular velocity 
ns9 and the other with -- nO, the external loads would be of the form 

P.  cos n o t  - -  Q~ 

P.  sin n o t  + Qn 

K~ cos n o t  - -  L .  

K. sin nf2t + L .  

sin nQt  + P _ .  cos n o t  + Q_~ sin m Q t , -  

cos no t  - P_,, sin n o t  + Q_~ cos no t ,  

sin nl2t + K_~ cos n o t  + L _,, sin n o t ,  

cos n o t  - -  K _ .  sin n o t  + L _ .  cos not,  _ 

. .  ( 5 . 2 )  

corresponding to x, y, 6, 0 respectively. 

The most general kind of pure nth  order external loading corresponding to x and y respectively 
would be A cos not  + B sin mot and C cos nsOt + D sin not. The first two forms of (5.2) show 
clearly that  this generality has been achieved with P , , - -  }(A + D), Q~ = ½(C - B), 
P-n = ½(A -- D) and Q_n =- ½(B + C). Similarly the last two forms of (5.2) give the most 
general kind of pure nth  order loading corresponding to 4 and 0. 

The superposition of loadings, formed from (5.2) by giving n all integer values from 1 upwards, 
will be a representation by Fourier series of external loading which is generally periodic in one 
revolution of the rotor, and which might arise, for instance, from aerodynamic effects due to 
the presence of blades attached to tile rotor. 

It follows, therefore, that  tile possibility of such generally periodic external loading of the 
rotor will be catered for by taking loads 

n ~ + o o  

E (P, cos n o t  - -  Q, sin nt?t) along Ox 

E (P. sin n o t  + O, cos no t )  ,, Oy 
. . . .  . . . . . . . . . .  (5 .3 )  
n = + Q o  

E (K~ cos no t  -- Ln sin not) about Oy 

E (K~ sin mot + L~ cos not )  ,, Ox 

The order number n will be referred to by its modulus, together with the descriptive term 
forward or reverse depending upon its sign. 

6. The A s s u m e d  Sys tem and its Elastic P r @ e r t i e s . - - T h e  general type of system to be considered 
consists of m rotors, similar to the one dealt with above, and carried by a system of co-axial 
shafts having a common flexural axis. The centroids of tile rotors nominally lie upon this axis 
at points 1, 2, 3, . . . . . .  r, . . . . . .  s, . . . . . .  etc. Any one of these points, say r, is considered 
to be rigidly attached to the r th rotor which is itself rigidly attached to one of the shafts over 
a certain length usually considered small in comparison with tile length of the shaft itself. 
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In relation to the fixed axes of Fig. 1, the flexural axis of the shafts will lie initially along Oz, 
regarded for convenience as horizontal, and Ox will be thought of as vertical. 

Associated with each of the points r will be small displacements of t ype  x, y, z, O, 4, and 8, 
as defined in section 4. 

The transverse elastic properties of the system, involving displacements of type x, y, ¢ and 0, 
are supposed to be such that  if (uv)r, denote the deflection of type v a t  point s due to unit  loading 
of type u at point r, then, for all r and s, 

(x~)~, = (yy).,  

(~4,),, = (yo)~,, 

(4,¢)~, = (oo),,, 

(xy) . . . .  (y~), ,  = o, 

(xo)~ = (ox)~ = (y¢)~s = (4 ,y) .  = 0, 

(o4,)~$ = (4,o)~ = o, 

. . . . . . . . . .  (6.1) 

together with others which follow as a necessary consequence of Rayleigh's reciprocal 
relationships. The equations (6.1) define what was referred to in section 1 as ' axial symmetry 
regarding lateral flexibility '. 

Assuming tha t  the non-zero flexibilities (yy)~, (yO)~,, (0y)~, and (00)~ arise solely from the 
bending of shafts, a general t reatment  of their numerical evaluation will be outlined in section 9. 

Meanwhile it should be noted that  flexibility due to the structure itself, and determined 
experimentally, is not excluded from the flexibilities provided that  it obeys (6.1). 

7. Formation of the General Equations of Motion, and Those for the Particular Case of Axial  
Symmetry of Mass . - -Le t t i ng  a suffix r be used to distinguish the properties of the r th  rotor 
from those of others, tile displacements x, y,, ¢, and O~ of the sth rotor at time t will be given by 

~, + :~ r(/~)~ ( y y ) , ]  + :~ r(p~), (oy),,] = 
r=l r=l 

a r- {(P,)r cos (nf2,t) -- (Q,)~ sin (nf2&)}(yy)~ 
, . ~ , L + { ( K . ) ,  cos  ( ,~o,t)  - (L°) ,  sin (nt2&)}(Oy),, ' n ~  - - o o  

.. .. (7.1) 

ys -t- ~ [(Py)r (yy)rs] -}- ~ [(P0)r (Oy)'rs] = 
r = l  r~l 

f; ~ [- {(P,), sin (n~t) + (Q,)r cos (nf2rt)}(yy)~s -] 
. . . . . .  ~t[_+{(K,)r sin (us%t) + (L,)~ cos (nD~t)}(Oy)~, _]' (7.2) 

4,, + ~ E@x),: (yo),,3 + ~ E(2#~), (o0),,] = 

F {(P,), cos (nX?,t) -- (O,), sin (n~,t)}(yO),, 
~=~L+ {(K,)r cos (nQ,t) - -  (L,)r sin (nX?,t)}(OO)rs ' (7.3) 



0, + [(iby), (y0),,] + ~. [(/50), (00),,] = 
r = l  r = l  

E F " {(P.),  sin (nO,t)+ (Q.), cos(no,t)}(yO),,. 7 .~ 
,= IL+ {(K~),sin (nO,t) + (L,), cos (nO,t)}(OO),,:-j; ' "" .. (7.3) 

n =  - - o o  

in which the relat ionships (6 .1)appear ,  and (ibm),, (/sy),, (/5,), and (/50), are t aken  from (4.7) and 
(4.8). 

Suppose now tha t  one of the  shafts  be chosen as the  reference shaf t ;  tha t  its s t e a d y  ro ta t ion  
is O, and tha t  only the  external  loading of frequency nf2/2~ .is act ing upon one rotor  of t ha t  
shaft. 

When  there is axial symmet ry  of mass, and therefore 21, = B, for all values of  r, it  follows 
from (4.7) and (4.8) t ha t  

~ ) ,  = ~z,~, ,  

(py),  - M y , ,  

( i~), = Ad; ,  + G o , O ,  

(A) ,  = A,~, - -  C , ~ 4 , .  _ 

The trial  subst i tut ions 

. .  . . . .  ( 7 . 5 )  

give: 

where 

x, = X,  cos n~t, 

y, = X, sin n~t, 

G = #,  cos n~?t, 

0, = #,  sin not,  

(7.6) 

- (G)I = n~O~M, X ,  c o s  not, 
- -  (f~y), = n~O~M,X, sin not,  

--(2b,), = n 'O'(A,  C_~) ~, cos not,  

--(/5o), = n202(A, ~ )  #,  sin not ,  
\ "Vl.r / 

(7.7) 

nr = (OIO,)n -= n u m b e r  of complete cycles of t h e  exci ta t ion pe r 
revolut ion of the  rth shaft  . . . . . . . . . . . . .  (7.8) 

Hence if  only exci ta t ion of the  P and K type  is present, the  equations (7.1), (7.2), (7.3) and  (7.4) 
may  be sat isf ied by  choosing the X, and #,  so tha t  

:~ {Mdyy),,X,} + ~ A , -  E (Oy),,~, --(lln~X2~)X, - 
: .] , = 1 -  ;'=I 

- {Pdyy),, + K,~(OY)r,}/~ ~, 
• . .  . .  ( 7 . 9 )  

and : .~d {Mr(yO)rsXr}. -~- ~ E(Ar -- C'~(O0).s~) r ~ -- ,(II~/~2~2)~)3 
r = 1 r = 1 ] ' l , r /  . 

= - { P , ( y 0 ) , ,  + K,(oo),,}l~'-o~. 
9 



Each of the 2m expressions on the left-hand sides of the set of equations, given by (7.9) when 
s takes all its m values, can vanish when 1/n~? 2 is a latent  root of the matr ix product 

[[yy] , [Oy]-I F[M], EO] -I 
[yO],  [oo]J .L[O], [J]J' (7.10) 

in which [YYl, [Oy], [yO], and [00] each denotes an m × m square matr ix  formed from (yy)~,, 
(Oy),, (yO)~, and (00),,, [iV/] denotes a diagonal matr ix of the masses, and [JJ is also a diagonal 
matr ix  whose diagonal elements are A~ -- CJnl, As -- CJn~, etc. These diagonal elements of []] 
will sometimes be referred to as ' equivalent inertias ' 

When f2 is such tha t  (1/n~T ) is a latent  root of (7.10), a whirling speed has been reached, and 
the balance of the equations (7.9) is undertaken by the usual device of assuming suitable small 
damping loads which a r e  linear expressions in the velocities, and which limit the amplitudes 
Xr, (hr to finite values, in addition to giving a continuous change of u in the phase lag of the 
response of the particular normal mode behind the particular excitation as the whirling speed 
is passed through. As interest here lies only in the whirling speeds, however, a general 
discussion of damping will be avoided. 

• The same matrix (7.10) is obtained as a result of the trial substitutions 

xr -- -- Y~ sin ngt,  

yr = Yr COS ngt,  

¢r = - -  O~ sin nQt, 

and 0r = Or cos n~?t, 

in (7.5) with the object of balancing the excitation of the Q and L type of frequency nt2/2~. 

For convenience in numerical work, the matrix (7.10) is compiled after expressing the 
flexibilities in micro-inches (or micro-radians) per lb (or per lb in.), working with weights (lb) 
in place of masses, and expressing all inertias in the units lb in. ~ The whirling speeds will then 
be given whenever ~ -= 106g/n~ 2 is a latent  root of the matrix so modified. 

When all the elements of [J] are positive, all the latent roots must be necessarily positive, 
and the corresponding whirling speeds NI,, N~,, etc., written in ascending order of 
magnitude, are then calculable from the equation 

187,711 r.p.m., . . . . . . . . . . . . . .  (7.11) 

where ~1,, ~' ,  etc., are the latent  roots written in descending order of magnitude, and the 
numerator is based upon taking g = 386.4 in./sec 2. 

When, however, [J] contains a Certain number of negative dements,  there will be this same 
number of negative latent  roots, which are not of interest in connection with whirling speeds. 
I t  may for instance be found that  Zll = - -200 ,  Z21---- 100 and ~1----25 in some problem 
concerning one large thin disc and another of negligible inertia. In this case there are only two 
whirling speeds under the postulated first order forward excitation, viz., at 18,771 r.p.m, and 
37,542 r.p.m. 

8. The  Iterative Technique.--In order to simplify the description of the method, the notation 
of section 7 will be changed in such a way tha t  there is no symbolic distinction between deflection 
and slope, force and couple, and between weight and inertia. The symboly,  will denote either a 
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linear displacement or a slope, and the corresponding flexibilities will be written f~,. The Symbol 
w, will denote the weight if y, is a deflection, or the equivalent inertia if y, is a slope. The 
dynamic matrix (7.10), modified by using weights in place of masses, would be, for a system 
having four variables y~, y~, y8 and y~, 

-- Wl~i 

WI~I 

~if31 

_ 

in which fi, = f~. 

(8.1) 

The extraction of the latent root of highest modulus, and the corresponding mode, of (8.1) 
would be according to the following p resc r ip t ion : -  

Underneath the dynamic matrix write down a row of 4 numbers. These can be chosen 
arbitrarily, but  if the calculator has a rough idea of the mode he should write down this guess. 
The largest of these numbers should be 1. Let this row be (al, a2, a3, a4). Concentrate on the 
first row of (8.1) and add together the products of corresponding terms from this row and from 
the row (al, a~, a3, a4). Enter  the result, yl, underneath al. Now take the second row of the 
matrix and use it in a similar way, entering the resulting Y2 under as. Carry on this process 
until all four rows of the matrix have been employed, thus completing the row (y~, y~, y~, y~) 
underneath (al, a~, as, a4). Now make a note at the side of the y-row, of the value of the member 
of this row, say ym, which is of greatest modulus, and then form a new a-row underneath the 
y-row by dividing throughout the latter row by y,~. Repeat the sequence of operations upon 
the new a-row, thus giving underneath it a new y-row and a new ym. From this y-row and ym a 
new a-row is obtained, and so on. The work of passing from one a-row to the next is described 
as one round of iteration. The rounds are normally continued until two successive a-rows 
are identical to the order of accuracy employed. This last a-row is the mode corresponding to 
the latent root Z~, whose value is the last recorded value of y~,. 

If during the extraction of 2~, the iterative scheme just described does not appear to be 
converging after five rounds, the calculator should modify the scheme as fo l lows : -  

Starting with the sixth a-row, determine the sixth y-row, but omit the step of dividing through 
this row by its y~, and continue with the y-row instead. The resulting row is, in turn, operated 
upon in like manner, and so on. At least two rounds of this modified iteration must be 
completed, thus giving to hand a succession of rows which will be denoted by 6, 7, 8, etc. First 
see if numbers p~ and p~ can be found so that  

8 - -  p17 + p~6 = 0; . . . . . . . . . . . . . .  (8.2) 

i.e., this equation must hold for the first, second, third, etc., entries in rows 6, 7 and 8. Obviously, 
if all the equations (four in this case) represented by (8.2) were written down they would be more 
than is necessary to determine unique values for Pl and p~. Rather than take a least-square 
solution, it is advisable to solve for p~ and p~ from any two of the equations and then to test the 
remainder with the values obtained. If the test is satisfactory, it means that  21 and ~2 may be 
calculated as the two roots of the quadratic equation 

X ~ -- pl~ + p~ = 0 . . . . . . . . . . . . . . . . .  (8.3) 

Further, the modes are given by 

and 

7 - -  t26, corresponding to ~1, ] 

/ 7 - -  ~16 . . . . .  ~ -  

(8.4) 
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If the test (8.2) fails, complete a further round of this modified iteration and see if p~,/52, and ~b8 
can be found so that  

9 - - p ~ 8 + p ~ 7 - - p ~ 6 =  0 . . . . . . .  

and, if so, 2~, ~ and ~3 may be calculated as roots of the cubic 

(s .s)  

a - + - = 0 . . . . . . . . . . . . . . .  ( 8 . 6 )  

In this case the modes are 

8 - -  (a~ + 43)7 + ~ 6 ,  corresponding to ;l~, 

J 8 - -  ( ~  + ~1)7 + ~,~;h6 . . . . .  ~ ,  

8 - -  ( ~  + ;t~)7 + a1~6 . . . . .  ~3. 

The calculator should 

(8.7) 

not rely upon such separation of even the first mode without testing 
it by  a further round of iteration according to the original scheme. If this is not satisfactory 
he will have to continue the iteration. 

The theory underlying this numerical technique will be dealt with in a separate paper. 

If the calculator has been obliged to separate the modes according to the methods summarised 
in equations (8.2) to (8.7), and has achieved a satisfactory result for al and its mode, he should 
not be content to assume tha t  the second or higher mode has been equally well separated. This 
assumes of course that  he is interested in the modes higher than the firsL If, on the other 
hand, the second mode is required, but  no other, it may be sufficient to test the suspected second 
mode by a round of iteration according to the original scheme. But if this fails, the calculator 
must remove, by  a method given later in this section, the effects of the first mode from the 
original matrix. In the meantime it will be convenient to deal with a simplifying procedure 
based on Rayleigh's principle. 

I t  frequently happens in whirling problems that  only the first latent root of the matrix is 
required and no special interest attaches to the corresponding modal shape. In such a case, 
Rayleigh's principie, appealed to after each round of ordinary iteration, will often enable the 
latent root to be deduced to a given accuracy at a stage of the iteration previous by many rounds 
to tha t  at which Ym would have the same accuracy. The Rayleigh approximation to ~ is deduced 
from an a-row and the y-row which comes from it after operating once with the matrix, and is 
given by 

~ ~ w~Y~ ~ + w~y~ ~ + w3y3 ~ + . . . .  
w~y~a~ + w~y2a., + w3y3a~ + . . . .  (8.8) 

A convenient way of using this to evaluate the row (wlyl ,  w2y~, w3y~ . . . .  ) on a separate sheet 
of paper, offering this up to the a-row andy-row in turn, and using (8.8) as ;~ -"- { E (wy)y}/{ E (wy)a}. 

I t  remains to describe the method of reduction whereby, from a knowledge of the first la tent  
root ~1 and its mode (~1, c~, ~ . .), there can be deduced a new matr ix whose latent roots are, 
in order of descending moduli, ~', ,~3, ~, 0, and whose modes are the second, third, fourth and 
first modes respectively of (8.1). Iteration using this new matrix would proceed as it did for 
the original matrix, but  ~ is now the privileged latent root. The reduction is performed as 
follows : - -  

Underneath the row 

. . . . . . . . . . . . . . . . . . .  ( 8 . 9 )  
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write down the row 
(w l~ ,  w ~ ,  w~3,  w~q) . . . . . . . . . . . . . . .  (8.10) 

The summation of products of corresponding terms in (8.9) and (8.10) gives Ew~ =, and this is 
immediately divided into 21 to give 

~ = ~ d ( x ~ )  . . . . . . . . . . . . . . . . .  (8.11) 

An additional row 

(~,~,/~1~,/z,~a,/z,~,) . . . . . . . . . . . . . .  (8.12) 

is then written down, and then a 4 × 4 matrix is compiled by taking the row (8.10) and 
multiplying throughout by  the first, second, third, etc., members of the row (8.12); this matrix 
is therefore 

/UlWl~Xl0C2, #lW~.0~ 2 2 , /*lWaC%~=, /~ lW~0~,  

/ZlW~O%~a, /ZlW~o%, /zlWac% ~, /~lW~c~a 

(8.13) 

A new matrix is then compiled by subtracting corresponding members of (8.13) from those of 
(8.1) thus giving 

-- W l ( f l  1 - -  /-Zl~ltt), w a ( f l 2 -  /{ZlO~IOC2), w 3 ( f 1 3  - -  /ZlglO¢3)' w 4 ( f l '  - -  / gl~1~x4) -- 

Wx(f~- ~1~3), W2(A3-- ~ ) ,  w~(f~-- ~ ) '  ~°(f~' -- ~1"~') 
(8.14) 

The matrix (8.14) is the required reduced matrix. I t  may be worked with in the same way as 
was (8.1), and may be checked by operating with it upon (8.9) when a row of numbers should 
result which are acceptable as zeros. 

In describing the iterative methods, the writer has tacitly assumed tha t  an ordinary Brunsviga 
type of mechanical or electrical calculating machine is available. Some examples will be found 
in section 10. 

9. Numerical Work in Connection with the Elastic Problem for Co-axial shafts.--The basic 
problem concerns a single shaft of length L, constant flexural rigidity El,  and encastr6 at one 
end 0 (Fig. 3). The flexibilities at any other point A are 

o ~ (yy)AA = L"/aE~, ] 
~ (yo)AA = (Oy)AA = 5"-~2EL 

A 

J ' (oo),~ = L/EL 

Single built-in shaft. FIG. 3. 

(9.1) 

13 

the loads and deflections being positive when 
measured downwards, and the couples and 
rotations being positive when clockwise. 



Consider now the case of several shafts OA, AB, BC, . . . . . .  , (Fig. 4), having flexural rigidities 
(EI)~, (EI)2, (EI)3 . . . . . . .  , lengths L~, L,, L3 . . . . . . .  joined rigidly at A, B, C . . . . . . .  forming 
a single straight shaft encastrfi at the end O. It is required to find the flexibilities corresponding 

0 

n A s. B c 

. . . .  o . . . .  ~ ~ - - - ~ - - ~  , , 
I I I 1 I 

- - _ _  kl 1 
. . . . .  ~ . . . . .  L 2 . . . . .  & ~  . . . .  L 3 - -  _ - . - ~  

Fig. 4. Composite built-in shaft. 

to two points R and S, where OR = a and AS = b. It is clear at once that, with unit load at 
R, the displacement and rotation at R will be ( y y ) ~  = aa/3(EI)~ and (yO)RR = a~/2(EI)~. 
The corresponding movements at S, viz., (yy)Rs and (yO)~s, may be deduced by observing 
that, since the load is at R, the whole shaft beyond R will be straight with a slope (yO)~.  Hence 
(yy)Rs -~ ( y y ) ~  + (Lz -- a + b) (yO)~, and (yO)Rs = (yO)~. Similarly, with unit couple at R, 
it would be found that  (Oy)RR = a"/2(EI) ,  (O0)RR = a/(EI)~, (Oy)Rs = (Oy)RR 4: (L~ -- a -}- b) (00)~, 
and (O0)Rs = (00)~. The flexibilities at A are (yy)AA = L~3/3(E[)~, (yO)AA = (Oy)AA = L~/2(EI)~, 
and (O0)AA = L~/(EI)~. 

With unit load at S, the whole shaft OA is first kept undeflected by applying at A a load -- 1 
and a couple -- b, under which conditions the deflection and rotation at S will be b~/3(EI), and 
b~/2(EI)~ respectively. A is then released by first applying at A a load -]- 1 giving a further 
deflection {(yy)AA + b(yO)Ax} and rotation (yO)Ax at S, and then applying a couple + b at A, giving 
the additional deflection b{(Oy)A~ + b(OO):~A} and rotation b(OO)Ax at S. Similarly, with unit 
couple at S, OA is first kept undeflected by applying a couple -- 1 at A, after which A is released 
by reversing this couple. In this manner it would be found that 

(yy)~ = b~/3(E~)~ + (yy)~ + 2b(yO)~ 4 b~(O0)~, - 

(yo)~ = b=/2(E~)= + (yo)AA + b(OO)~A, 

(Oy)ss = (yO)ss, 
. . . . . .  ( 9 . 2 )  

( 0 0 ) ~  = b / (EZ)~ + (00)AA. 

If the point S were in the next shaft BC, the preliminary calculation of the flexibilities at the 
joint B would be required. These are given from (9.2) by putting b = L~. 

Simple extension of this method of fixing and releasing joints in turn, taking account all the 
while of movements at any chosen points of a composite shaft, enable flexibilities relating to 
these points to be calculated. 

The next problem for consideration is a composite shaft A B C . . . .  D E simply supported at 
A and E, interest lying in flexibilities 

A B C O E 

.' 1 I '  ' I x 
Fig. 5. Composite shaft simply supported at two points. 

at any points 1, 2, 3, . . . . . . .  Consider first the application of a unit load or couple at 1. Since 
there are only two simple supports, the loads P at A and Q at E, acting on the shaft, are known 
from statical considerations. With the bearings A and E released but the point C encastrfi, the 
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shafts are allowed to bend under the action of the unit load at 1 and the loads P and Q at A and E, 
record being made of the deflections of interest at the points 1, 2, 3 . . . . . .  and also the deflections 
yA and yE at A and E. Finally the whole shaft is given a rigid-body movement  represented by a 
displacement 0 of C and a rotation 0 about C, in such a way that  A and E are brought back to 
their original undeflected position. That is, d and 0 are chosen so that  

+ (CE)O + yE = O, 

and ~ -- (CA)0 + yA = O. 

Of frequent occurrence is the uniform shaft 
simply supported at two points, and the results 
for this are quoted with reference to Fig. 5(a). 
A and B are the two supports, and R and S 
the two given points lying within the supports, 
w i t h A R = a ,  R S = b ,  S B = c a n d A B = L .  
The results 

are 
EZ(yy) = {a (b + c)2)/3L, • 

EI(yO)RR = 

EZ(OO)  = 

A R $ B 
I 

. . . . .  o . . . . .  . . . . . .  

Q 
t 

r -L -'1 
Fig. 5a. Uniform shaft simply supported at two points. 

EI(Oy)m~ = {a(b -k c) (b + c - -  a)} /3L,  

{a 2 - -  a(b -k c) + (b + c)2}/3L, 

j (9.2) 

E I ( y y ) R s  = {ac(L  ~ - -  a ~ - -  c2)}/6L, - 

E I (yO)Rs  = {a(a 2 + 3c ~ - -  L2)}/6L,  

EI(Oy)Rs  = {c(L 2 - -  c 2 - -  3a2){/6L, 

EI(OO)Rs = {33 ~ + 3c ~ -- L 2 ) / 6 L , _  

(9.3) 

from which other useful formulae such as 

E I ( O O ) ~ B  = L / 3  . . . . . . . . . . . . . . . .  (9.4) 

may be obtained as special cases. 

The elastic systems dealt with thus far have been ' just stiff ' ,  i .e., encastr~ at only one point, 
or simply supported at two points. It is however a relatively simple matter  to introduce 
additional constraints into the system illustrated in Fig. 5. Suppose for instance that  points 
2 and 3 are required to be simple supports in addition to the ones at A and E. Knowing the 
flexibilities at 2 and 3 when the system is only just Stiff, application of unit load at point r for 
instance would need loads Y~ and Y~ given simultaneously by 

v (yy)22 + Y3(yy)   + 

and Y2(yy)~3 + Y~(yY)3~ + 

in order to produce the conditions 
support, unit load at r will produce 

(yy)~, = O, 

(yy)++ = O, 

of simple support at 2 and 3. 
at.s the deflection 

Under (he new four-point 

and the rotation 

Y~(yO)~, + Y~(yO)~, + (yO)r,. 
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Consideration may now be given t o  just-stiff systems of two co-axial shafts,,of which, when 
only simple Supports are used, there are six types illustrated in Figs. 6 t o  11. After each type 
has been introduced, a sufficient outline of the corresponding elastic problem will be given. 

• T y p e  1. Two external bearings A and B on outer shaft. Inner shaft bearing on outer, at 
C and D. No external bearings on inner shaft. - , 

A 

O © 
O 

C O 
(3 C) 

O O "" ' '  ' 

FIG. 6. First type of co-axial shafts. ' ' 

For any load or couple applied to the outer shaft the deflections of that  shaft may be found 
as for a shaft with two supports. For Such loading the inner  shaft ~vill deflect as a rigid• body 
with known movements  a t  C and D. For loading applied to the inner shaft and with C and D 
temporarily held by known  loads, deflections of tile inner shaft may be determined. Knowing 
the flexibilities of the outer shaft at C and D, the loads holding the inner shaft at C and D may  
then be reversed giving an additional known rigid body movement  o,f the inner ishaft. 

Type 2. Two external bearings A and B on outer shaft. Inner shaft bearing on outer at 
one point C. One external  bearing F on inner shaft: : 

A B 

O O 

O O 

F 

O 
© 

()  

6 

FIG. 7. Second type0f:¢0-axialshafts._ 

Similar remarks to those relating to the first type apply, but this is slightly easier to deal 
with in so far as any rigid body movements given to  the inner shaft  are in fact rotations about F. 

Type 3. Two external bearings A and B on outer shaft, and two external bearings E and F 
on inner shaft. : . . . . . . .  

, ' .  , J 

A B 

O © 

Third type of co-axial shaftsl 

© 

£ 

_ 0  O . , '  

( . .) ,  

I 

FIG. 8. 
r ~ i r q i ~ ~ 

The inner and outer elastic systems are clearly independent,  each being an e x a m p l e  of a:shaft 
with two simple supports. 

Type 4. One external bearing A on outer shaft. Inner shaft beariiig~on outer at C and D. 
One external bearing F on outer shaft. , , ~ :  

A 

O 
© © 
c D 

C) L) 

• . , F ,  

' 0  ' 

0 

• : , , : - , ,  
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FIG. 9. Fourth type of co-axial shafts. 
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Since there are only two external bearings at A and F, the loads exerted on the shafts at these 
two points, when any load or couple is applied to the shafts at some point, may be determined 
statically. Thence, by considering statically the outer and inner shafts in turn, the equal 
and opposite loads on the two shafts at each point C and D may be determined. If now C be 
kept in a fixed position, the bearing D removed, but  the loads at D on each shaft retained, the 
deflections of the two shafts under these conditions may be found. To reproduce the original 
problem, all that  is then necessary is to rotate the inner shaft as a rigid body about F until 
contact between inner and outer shafts at D is restored. 

Type 5. One external bearing B on outer shaft. Inner shaft bearing on outer at one point C. 
Two external bearings E and F on inner shaft. 

8 

E O ~ F 

,,0 0 0 
C 

o ()  (_7- 
(J 

FIG. 10. Fifth type of co-axial shafts. 

This is comparable elastically with the second type. Under a load or couple applied to the 
inner shaft, the deflections of the inner shaft will be found as for a shaft with two supports. 
The corresponding deflections of the outer shaft will be due to a rigid body rotation about B. 
Loading on the outer shaft may be dealt with by  fixing and then releasing bearing C. 

Type 6. Two external bearings E and F on inner shaft. Outer shaft bearing on inner at 
C and D. No external bearings on outer shaft. 

F 

0 ()  0 0 
C D 

~0 0 " 0 0 

FIG. 11. Sixth type of co-axial shafts. 

This is comparable elastically with the first type. The deflections of the inner shaft due to 
a load or couple applied to tha t  shaft may be found as for a shaft simply supported at two points. 
The corresponding deflections of tile outer shaft are due to a rigid body movement defined by 
the known deflections at C and D. A load or couple on the outer shaft may be dealt with by  
first fixing and then releasing the bearings C and D. 

Additional fixing, such as extra bearings, may be introduced into all these types by  including 
the proposed points in the scheme of flexibilities for the just-stiff system. Then, for any applied 
loading, the reactions needed to satisfy the required conditions may be determined. 

Systems of more than two co-axial shafts may be dealt with in the same general manner. 

10. Numerical Examples. 
Example. An artificial example illustrative of the iterative technique and method of reduction. 

Suppose that  the flexibility matrix appropriate to four variables yl, y2, y3 and y~ was 

(22737) 

I 261, 255, - -30,  - -45  - 

255, '258, - -30,  - -45  

- -30,  - -30 ,  12, 10 

- -45,  - -45,  10, 19 _ 
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the units being micro-inches (or micro-radians) per lb (or per lb in.) and that  the 'we igh t s '  
associated with the variables were 1, 2, 3 and 4 lb (or lb in. s) respectively. The dynamic matrix 
is accordingly 

261, 510, - -90,  --180 - 

255, 516, - -90 ,  - -180  

- -30,  - -60,  36, 40 

- -45 ,  - -90 ,  30, 76 

compiled by multiplying the successive columns of (10.1) by 1, 2, 3 and 4. 

(10.2) 

Starting with the arbitrary mode (1, 1, -- 1, --  1) the iteration, using (10.2), would proceed:--  

1041 

1 

8 2 7 . 0 2 3 0 2  

1 

8 1 6 . 6 7 9 6 8 0  

1 

8 1 6 . 0 4 2 3 9 0  

1 

8 1 6 - 0 0 2 6 1 0  

1 

8 1 6 . 0 0 0 1 8 0  

1 

8 1 6 - 0 0 0 0 0 0  

1 

1041 

1 

8 2 7 . 0 2 3 0 2  

1 

8 1 6 . 6 7 9 6 8 0  

1 

8 1 6 - 0 4 2 3 9 0  

1 

8 1 6 " 0 0 2 6 1 0  

1 

8 1 6 " 0 0 0 1 8 0  

1 

8 1 6 - 0 0 0 0 0 0  

1 

- - 1  

- - 1 6 6  

- -  0 . 1 5 9 4 6 2  

- - 1 0 5 . 0 0 0 9 5 2  

- -  0 . 1 2 6 9 6 2  

- - 1 0 2 - 1 8 2 4 3 2  

- -  0 . 1 2 5 1 1 9  

- - 1 0 2 . 0 1 1 3 2 4  

- -  0 - 1 2 5 0 0 7  

- - 1 0 2 . 0 0 0 6 9 2  

- -  0 " 1 2 5 0 0 0  

- - 1 0 2 . 0 0 0 0 4 0  

- -  0 - 1 2 5 0 0 0  

- - 1 0 2 ' 0 0 0 0 0 0  

- -  0 . 1 2 5 0 0 0  

- - 1  

- - 2 4 1  

- -  0 . 2 3 1 5 0 8  

- - 1 5 7 . 7 3 8 4 6 8  

- -  0 . 1 9 0 2 9 5  

- - 1 5 3 . 2 7 1 2 8 0  

- -  0 . 1 8 7 6 7 6  

- - 1 5 3 . 0 1 6 9 4 6  

- -  0 - 1 8 7 5 1 1  

- - 1 5 3 . 0 0 1 0 4 6  

- -  0 " 1 8 7 5 0 1  

- - 1 5 3 - 0 0 0 0 7 6  

- -  0 " 1 8 7 5 0 0  

- - 1 5 3 . 0 0 0 0 0 0  

- -  0 ' 1 8 7 5 0 0  

ym 

1041 

8 2 7 . 0 2 3 0 2  

8 1 6 - 6 7 9 6 8 0  

8 1 6 ' 0 4 2 3 9 0  

8 1 6 . 0 0 2 6 1 0  

8 1 6 " 0 0 0 1 8 0  

8 1 6  

Thus tl = 816, and the mode corresponding to it is (1, 1, --  1/8, -- 3/16), or, more convenientlv, 
( 1 6 ,  - 2 ,  - 3 ) .  

Following the method given in Section 8, the calculations would be : - -  
(8.9) : - -  

(8.1o):-- 

(8.11):-- 

(16, 16, - -  2, - -  3). 

(16, 32, - - 6 ,  - -  12). 

/~1 = 816 / {256  + 512  + 12 -}- 36} = 8 1 6 / 8 1 6  = 1. 
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(8.12) : - -  

(8.13):-- 

(8.14) : - -  

(16, 16, - 2,- 3). 

256, 512, --96, 

256, 512, - - 96 ,  

- - 32 ,  - -64 ,  12, 

_ - - 4 8 ,  - - 9 6 ,  18, 

- 5 ,  - - 2 ,  6 ,  

-- 1, 4, 6, 

2, 4, 24, 

_ 3 ,  6 ,  12, 

- -  1 9 2  

- -  192 

24 

36 

12 - 

12 

16 

40 

(lO.3) 

To i l lustrate the correctness of the principles used in the method  of separat ion of modes, the 
modified i tera t ion using the mat r ix  (10.3) will be commenced with the mode (3, 0, 4, 2) which 
is void of the first normal  mode. The i terat ion will be found to p roceed : - -  

( 1 ) : - - (  3, 0, 4, 2) 

( 2 ) : - - (  63, 45, 134, 137) 

(3) : - -  ( 2673, 2565, 5714, 7547) 

(4) : - -  (133083, 132435, 273494, 393857). 

I t  may  be verified tha t  

(4) -- 73(3) q- 1218(2) -- 4896(I) = (0, O, O, 0), 

and thus 22, 23 and 2, are the roots of the cubic 

23 -- 7322 q- 12182 -- 4896 ---- O, 

giving 2~ = 51, G = 16, 24 = 6. 

The corresponding modes may  be found according to (8.7) which shows 

(3) 

(3) 

(3) 

or, more simply, 

(1, 

(0, 

and (2, 

--  22(2) -t- 96(1) = (1575, 1575, 3150, 4725), 

- -  57(2) q- 306(1) = ( 0, O, --  700, 350), 

--  67(2) q- 816(1) = ( 900, --  450, 0, 0), 

1, 2, 3) corresponding to 22, 

0 ,  - -  2 ,  1) . . . .  2 , ,  

- -  1, 0 ,  0 )  . . . .  2,t. 
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Example 2. Elastic problem of type 2. 

B 
P 

I ' ÷ ~' I I<-- ,s" 
' I + l ~ , 

0 {~- 
EI=3OO.IO 6 D 

I Q) I ( ~  I 
s I 

EI-=IOOO" IO6 Er=5oo. IO 6 

I 

I 
r 

E1 =400, I0 6 

Fro. 12. Example of second type  of co-axial shafts. 

The outer  shaft has two external  bearings A and B where AB = 9 in. At point  P where 
PB = 6 in. there  is a change of section of the outer  shaft, the two portions BP and PA having 
flexural rigidities 500.106 and 1000.106 lb in2 respectively. The remaining port ion of the  
outer  shaft has flexural r igidity 500. 106 lb in. ". The point  of interest  on the outer  shaft is 2 
where B2 = 12 in. The inner shaft has an external  bearing at E where EA = 3 in., and bears 
on the outer  shaft at  D where BD = 15 in. Between these two bearings the  flexural r igidi ty  
is 300.106 tb in. ~ The overhung port ion of this shaft has flexural r igidity 400.106 lb in." and the  
point  of interest  is 1 lying at  a distance 12 in. from D. 

Considering the outer  shaft first, a clockwise couple of 1 lb in. at B will involve loads of + 1/9 
lb and --  1/9 ib on the  shaft at  A and B respectively. Wi th  A and B free to move .but with the  
above loads acting, and wi th  P encastr6, 

yA = × 1000 = 0"001, C-in., 

yB = 1(2 63 63 × 5 0 0 ) - - ~ ( 3  >~ 500) = 0. 020, ~-in., 

()  (62) 
6 1 = 0. 008, ¢-radn, and 0 B =  1 5 ~  - - ~  2>~ 300 

where ¢ is used as an abbreviat ion for 10-E 

A rigid body  m o v e m e n t  represented by a displacement  of - - 0 . 0 0 1 ,  #-in. at  A, together  
wi th  a rotat ion about  A of --  (0.019)/9 = -- 0. 002i, #-radn, would bring A and B back to their  
correct positions, from which it follows tha t  (00)B~ = 0. 008 -- 0. 002i = 0. 0058, ~ radn/lb in. 

Hence 

(yy)~ = 1(3 1 2 5 0 0 ) +  {12(00)BB}12 = 2"0, ~-in./lb, 

(yO)2~ = 1(2 1 5 0 6 )  -}- 12(00-)BB = 0"214,666, #-radn/lb, 

+ 3(yO)   

(yO)~ = (yy)~D/27 

20 

= 2 . 6 4 4 ,  ¢ - i n . / l b ,  

= 0.097,925, ~-radn/lb, 



(yy)~ = 39(y0)~ 

(Oy)~= = (yO)~ 

= 1 ( £ )  + 

= (oyh  + 3(oo)   

(O0)a = (Oy)~D/27 

(0y)21 = 3 9 ( 0 0 ) ~  

( (yy)~z, = 1 3 × S0W + {15(00)~}15 

(yo)D = (yy)  /27 

(~]y)Ol---- 39(yO)D~ 

= 3"819,111, ~-in./lb, 

= O. 214,666,/,-in./lb in., 

= 0. 029,888, t* radn/lb in., 

= 0.304,333, ¢-in./lb in., 

= 0-011,271, #-radn/lb in., 

= 0. 439,592,/~-in./lb in., 

= 3.575, #-in./lb, 

= 0. 132,407, tt-radn/lb, 

= 5. 163,888, ~-radn/lb. 

A load of 1 lb at 1 causes a load of + 13/9 lb on the outer shaft at D; similarly a couple of 
1 lb in. at 1 gives at D on outer shaft a load of + 1/27 lb. Hence 

(Jy)xl = 1( 3 ×-1~400/~ + 12(3×27300)12 + ½a(yy)m = 13. 218,950, #-in./lb, 

27 
(yO)n = 1(2 12~00) -[- 12(3 × 300) + ~(y0)D1 = 0.731,255, #-radn/lb, 

1( 2\ ×1~400/~ + 27 ~12 (3 + }f(yy)m = 0.731,255, tt-in./lb in., 
x 300/ 

/ 1 ~ \  / 27 \ 
(00)11 = 1 ~ 4 ~ ) +  ~3 )7 300) + -#,(yO)D1 = 0.064,903, tt-radn/lb in. 

Other flexibilities such as (Oy),=, (yy)~=, (00)~, etc., may be be determined to serve as checks upon 
(yO)=~, (yy)~. (00)21, etc. 

Exam~)le 3. Whirling of contra-rotating propeller system. 

A hypothetical example will be considered by imagining a rigid propeller of weight 486 lb 
and of polar moment of inertia 364,500 lb/in2 at each of the stations 1 and 2 of the co-axial 
shaft system of Example 2. The inner shaft mill be imagined to be rotating clockwise looking 
along it from left to right, and the outer shaft is rotating anticlockwise with the same angular 
velocity at any instant. Each propeller, for the purpose of this example will be assumed to 
be so thin axially that its diametral inertia is half its polar moment of inertia. It  must also be 
postulated that  the number of blades in each propeller is three or more in order that  the condition 
of axial symmetry of mass shall apply. The distribution of weight along the shafts is ignored 
in this example. 

Taking the variables in the sequence y,,  y2, 0,, 02, the flexibility matrix is, from Example 2, 

I 
13.218,950, 

3.819,111, 

0.731,255, 

0-439,592, 

in micro:units of deflection per unit load. 

3.819,111, 0.731,255, 0.439,592, 7 

2.000,000, 0.097,925, 0"214,666, / 

0-097,925, 0.064,903, 0"011,271, / 

0,214,666, 0.011,271, 0-029,888_[ 
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The two sources of exci ta t ion which mus t  be considered are (i) unbalance  of the ' o u t e r '  
propeller,  and  (ii) unbalance  of the  ' inner  ' propeller. The ' inert ias ' to be taken  are therefore 

486, 486, 546750, --  182250 for exci ta t ion (i), 

and 486, 486, ' --  182250, 546750 . . . .  (ii), 

since the equiva lent  d iamet ra l  iner t ia  of each propeller is {182250 -- 364500/n}, where n is the 
order  n u m b e r  which  is + 1 for the  excit ing propeller and  --  1 for the other;  see relat ionship (7.8). 

Accordingly  the  two dynamic  matr ices  are 

6424.410 1856.088 399813.750 - - 8 0 1 1 5 . 7 5 0 ~  

1856-088 972.000 53541.000 39123.000 / 

355.390 47.592 35486.250 2054.250 / 

213.642 104.328 6162.750 5447"250d  

(lO,5) 

for exci ta t ion (i), and 

I 
6424.410 1856.088 --  133271-250 240347 .250~  

1856.088 972.000 -- 17847.000 117369 000 / 

355.390 47.592 --  11828.750 6162 750 / 

213.642 104.328 --  2054.250 16341 .750d  

(10.6) 

for exci ta t ion (ii). I t  should be no ted  tha t  in compil ing these matrices,  the  flexibilities were 
t aken  in ra t ional  ins tead of the decimal  form of (10.4), and tha t  the  matr ices  (10.5) and (10.6) 
are ' exact  ' 

Using the ma t r ix  (10.5), and  commencing  wi th  the mode  1, 0.09,  0.09,  0, the  i tera t ion 
p r o c e e d e d : - -  

yT/l 

1 0- 09 0" 09 0 42574.695 

1.000000 

1.000000 

1.000000 

1.000000 

1.000000 

0.158833 

0"149585 

0"149896 

0.149840 

0.149844 

0-081350 

0"085023 

0"085003 

0-085012 

0.085012 

0-018266 

0.016730 

0.016824 

0.016815 

0.016815 

37780.672 

39355.081 

39340.131 

39344.346 

39344.354 

in which the  in te rmedia te  y-rows have  been omi t ted  as indeed they  m a y  in the  ac tual  process 
if Ym is eva lua ted  first. The mode  appears  in the  last row together  wi th  & = 39344-354 giving 
N1 = 946 r .p.m. 

The  i te ra t ion  wi th  the  ma t r ix  (10.6) was commenced  upon the  mode  1, 0-36, 0.03,  0.06.  
After  five complete  rounds,  as shown b y  the  next  Table, it  was clear t ha t  at least another  mode  
was active,  and  the  separat ion me thod  was resorted to. 
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The iteration proceeded:-- 

1 0.36 0.03 0.06 17515.299 

1-000000 

1.000000 

1.000000 

1.000000 

1.000000 

0.497436 

0.478369 

0.486877 

0.483072 

0.484750 

0.022119 

0.025866 

0.024245 

0.024970 

0.024650 

0.066789 

0.064115 

0.065261 

0.064748 

0.064974 

20452.421 

19274.975 

19782.237 

19555.255 

Completing two further rounds of the modified iteration led to the following equations for 
/51 and/52:--  

385,458,594" 74905 -- 19,655" 33457/51 -]- /52 = O, • . . . . .  

186,691,010.43033-- 

9,532,126.92672-- 

25,023,320-14868-- 

(a) 

9 , 5 1 3 . 2 6 9 8 6 p ~  + o .  484750p2  = o, . . . . . .  (b) 

4 8 7 . 3 0 0 0 5 p i  + O. 024650/52 = 0 . . . . . . .  (c) 

1 , 2 7 5 .  11460/51 -}- O. 064974/52 = 0 . . . . . . .  (d) 

Solving for Pl and P2 from (a) and (b) gave 

151 -- 10921.80092 

and r2 = -- 170,786,943.55952 

with equation errors of only 0.00000, + 0.03069, -¢-34.63357 and + 61.46646 in (a), (b), 
(c) and (d) respectively. The test (8.2) was therefore satisfactory, and the deduced roots were 
41----19624 . 52914 and ~ 2 - = -  8702.72822. The deduced first mode was 

1-000000, 0.484233, 0.024749, 0.064904, 

and a further round of iteration reproduced this except for some errors of 1 in the last place. 
I t  followed tha t  the whirling speed (corresponding to ~i = 19624.5) was 1340 r.p.m. 

I t  may be noticed from either matr ix (10.5) or (10.6) that  if inertia effects are neglected, 
the two corresponding latent roots are given by 

( 6 4 2 4 - 4 1 0 -  4 ) ( 9 7 2 . 0 0 0 -  ~.) = (1856.088)2; 

~1 is 6996. 274 on this basis, corresponding to a 1st order whiffing speed 'of 2244 r.p.m. 

11. Concluding Remarks.--An interesting topic which has not been included in the paper is 
the coupling which exists between flexural, longitudinal and torsional vibration when the system 
of the type considered has appreciable unbalance. Such effects were not apparent in the theory 
because all dynamic loads due to vibratory displacements of the unbalance particles were ignored. 

An a t tempt  has been made to indicate the importance of gyroscopic effects in some cases, 
and a numerical technique for dealing with practical problems was developed. 
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Attention is drawn to the important  example of a pair of contra-rotating propellers arranged 
on co-axial shafts. The particular danger associated with this arrangement appears to be the 
whirling speed associated with unbalance of the propeller driven by the outer shaft. 

The examples were chosen in such a way as to illustrate various points of numerical technique, 
and it was decided on tha t  account to avoid anything spectacular in the way of large numbers 
of variables. To give some idea of the time involved in more complicated examples, reference 
may be made to an interesting problem recently worked out by the writer. I t  was of a similar 
kind to Example 3, but  one for which there had to be several point-masses to give a reasonable 
allowance for the inertia effects of the shafts, whose weight was not negligible compared with 
the three rotors affixed to them. Altogether there were 13 degrees of freedom, and the particular 
solution sought was complicated by the fact tha t  the first three latent roots of the 13 × 13 dynamic 
matr ix  were approximately -- 193, -- 182 and + 85. The third root was the one required, 
and its mode was successfully separated from the iteration in just under two days. 

12. Acknowledgements.--The author's belief in the value of the iterative method has been 
further strengthened by the experience of his colleagues in the Napier Calculations Office, 
particularly V. C. Allen and D. H. L. Inns, who have applied the technique to a variety of 
vibration problems. The author has been helped towards a full appreciation of the whirling 
problem by the many valuable talks he has had with Capt. J. Morris of the Royal Aircraft 
Establishment. To Mr. H. Sammons, the Managing Director of the Napier Company, thanks 
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