e ASHAEEER ‘LA,‘W ‘{aﬂ&u{ R
’ L i\ R. & M. No. 2241

(9656)
A.R.C. Technical Report

RMATIONAL AERQ: o
O BIBRARY |
T T m

Rt P
et o

0
jin e
YAl ag

H
H
T
£
e idd
e SN

T2
3

G

i
.
SGECL

Hediyslyy

f,
]

MINISTRY. OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL
REPORTS AND MEMORANDA

An Exact Solution of the Boundary-layer
Equations Under Particular Conditions
of Porous Surface Suction

By

B. Tuwarres, B.A.,
of the Aerodynamics Division, N.P.L.

o

Crown Copyright Reserved

LONDON: HIS MAJESTY’S STATIONERY OFFICE

Price 1s5. 3d. net




NATIONAL AEROMAUTICAL ESTABLISHMENT

LiB .
An Exact Solution of the %ﬁﬁdary-layer Equations
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Summary.—No hitherto successful attempts except one (by Griffith and Meredith?!) have been made to provide an
exact solution of the boundary-layer equations of motion when there is a continuous normal velocity at the boundary.
At the suggestion of Preston? a solution is given in this report when this suction velocity is proportional to =12, x being
the distance along the plate, and there is a constant velocity outside the boundary layer. The solution is merely an
extension of the well-known Blasius’ solution, and does not contain any new mathematical technique. Being exact,
however, it can command a certain interest, since the treatment of the boundary-layer equations with suction through
the boundary is very difficult (Thwaites®). '

The solutions of the differential equation below were obtained on the differential analyser, at Manchester University,

at present on loan to the Mathematics Division, N.P.L. Acknowledgements are made to the Analyser Group of this
Division for providing these solutions, and in particular to E. C. Lloyd, who was concerned in this particular problem.

Theory.—The equation of flow in the boundary layer is

o ou 0%

%5;"““7)@'——"5}2 .. .. .. ° . .9 .o . .. (1)
in the usual notation, when the velocity outside the boundary is constant and equal to U. The
equation of continuity g% + g—; = 0 allows the use of the stream function y for which

" = ?E y _ a_'(P .
oy 0%

Using Blasius’ well-known transformation,

D)%, v =ouamy,

rX.

I

7

in which f is a function of 4 only, (1) becomes

FrAF =0, e e e L@

and #, v ate given by

u=107,0 = (2" @ — 1.

At the boundary, n = 0 and # = 0, whence f’ (0) = 0.
‘The condition at infinity is # = U, whence f' () = 2.
Also at the boundary v = — HU»/x)" f(0).
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The ordinary Blasius profile is obtained by solving (2) with the conditions

FO)=0,f(0) =0, ) (») =2
If however we give f (0) a finite value, we obtain the solution when the velocity of suction is
1 UV 1z O
—-3(%) 1o,

u.e. proportional to x7%2.  The possibility of this and other exact solutions of a similar type was
pointed out by Preston?.

’

Clearly there is a singularity at the origin and the exact solution will not have much physical
significance near that point, but in any case the boundary-layer equations are not good approxi-
mations to the full equations of motion near x = 0. We can expect, however, that the solution
will give a good representation of the physical flow at some distance from the origin.

The solutions of (2) were found on the differential analyser for the boundary conditions
f(0) =0, f(0) =2 and f(0) = 7, » taking the values 1, 2, 5, 10, 20 in turn. The suction
velocity is vy = — 4 (Uv/x)"* 7, or is given by — v,/U = R;*® o,, R, being the Reymnolds
number, and ¢, being a number signifying the strength of suction.

The velocity distributions inside the boundary layer for the values ¢, = 0-5, 1, 2-5, 5 and 10
are drawn out in Fig. 1 and are tabulated in Table 1. o, = 0 corresponds to the ordinary Blasius
profile. It will be noticed that as theé suction strength increases the velocity profiles become
more convex and the width of the boundary layer decreases.

6%, the displacement thickness, can be evaluated as follows :—

#=[a-p

Therefore, 3 (v% Cor — f:o (1 =3/ (n)]dn.

To obtain the value of this integral from Table 1, we proceed as follows :—

(O e = 0~ e,

vX

where 4 is the value of # at which f* () becomes greater than (say) 1-99. Hence
(DY e = — 17 0) — 7 0]
VX z ’

which is immediately evaluated from Table 1 for different values of ¢,. 6, the momentum
thickness may be evaluated similarly. Figure 4 shows how é* and 6 vary with the amount of
suction, and it shows that only a small amount of suction is required .to produce a large decrease
of displacement thickness. On this figure H = 6*/6 is also shown.

It would be interesting to see the configuration of flow and we therefore wish to find ordinates
of streamlines. The streamline y = % is given by ‘

(» Un)2 f () = k R )

Given % and o, for a certain #, (3) determines f (4) and hence #, and hence y. Values of f are
given in Table I, and therefore the ordinates of streamlines are readily evaluable. Figure 2
shows some streamlines near x = 0 for ¢; = 1, the mass-flow into the surface being equal between
each pair of consecutive streamlines. This figure is not without interest, although it probably
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bears little resemblance to the physical flow, as has been pointed out already. Also on Figure 2
is drawn the displacement thickness é*. Figure 3 demonstrates the streamlines over a far greater
length of the boundary and this configuration of streamlines is probably close to that in the

real flow. The dotted curve in Figure 3 represents the boundary-layer thickness é, which is
defined by if’ (6) = »/U = 0-995.

It is suggested that this theory would form the basis of an experiment suitable for a university
laboratory. For a porous sheet of material, on each side of which is maintained a constant
pressure, the velocity of fluid through it is proportional to 1/, £ being the thickness of the sheet.
Therefore the velocity through a sheet of parabolic form ¢ = a4/x is proportional to x~*2, which
is the suction velocity distribution considered in this report. The following sketch shows the
arrangement which might be employed. ’

DIRECTION OF AIR STREAM
—>
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L0 00

SUCTION CHAMBER

The main feature of this arrangement is the maintenance of a flaf boundary, thereby avoiding
the departure from uniformity of flow if the parabolic sheet were placed in the stream. The
growth of a boundary layer along the surface upstream of the porous sheet might be avoided by
moving this surface, made of pliable material, round rollers. This arrangement could also be
used to test the Tollmien-Schlichting stability theory for different velocity profiles, obtainable
by different amounts of suction. '
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TABLE 1
Solutions of f” + ff* =0

FO)=0 f—>2aq—>o f(0) =2,

o =05 g =1 o =25 oy =25 g =10
1 fy | f) | )| f() n | f) | f) 7 fam) | f) f) | f)
0 0 1-000 | O 2:000 [0 0 \ 5-000 | 0 0 10-000 | O 20-000
0-05) 0-141 7 1-004 {0-221 | 2-015 ( 0-025 | 0-243 | 5-003 | 0-00625 0-234 | 20-001
0-1 0-286 | 1-014 10-423 | 2-022 | 0-05 | 0-469 | 5-018 | 0-0125 | 0-246 | 10-001 | 0-443 | 20-003
0-2 0-537 | 1-055]0-779 | 2-082]0-075 ) 0-650 | 5-026 ] 0-01875 0-637 | 20-006
0-3 0-751 | 1-119 | 1-05 2-174 1 0-1 0-813 | 5-044 | 0-025 0-457 | 10-006 | 0-799 | 20-011
0-4 0-953 | 1-204 | 1-28 2-290 1 0-15 | 1-09 5-092 | 0-0875 | 0-631 | 10-013 | 1-06 20-022
0-5 1-132 } 1-309 [ 1-46 2:428 | 0-2 1-31 5-152 | 0-05 0-795 | 10-022 | 1-27 *| 20-037
0-6 1-29 1-430 | 1-60 2-581 | 0-25 | 1-47 5-222 | 0-0625 1-43 20-054
0-7 1-43 1-566 | 1-71 2-747 1 0-3 1-60 5:209 10-075. | 1:07 10-045 | 1-56 20-072
0-8 1-54 1-715 | 1-79 2:922 | 0-4 1-77 5-468 | 0-0875 1-65 20-093
0-9 1-64 1-874 1 1-85 3-105 | 0-5 1-87 5-561 [ 0-1 1-28 10-074 | 1-73 20-114
i'O 1-72 2-043 | 1-90 3-293 | 0-6 1-93 5-842 |1 0-125 _ 1-84 20-158
11 1-79 2-219 | 1-93 3-484 | 0-7 1-96 6-037 | 0-15 1-57 10-146 | 1-90 20-405
1-2 1-84 2-400 | 1-95 3:679 1 0-8 1-98 6-234 | 0-2 1-74 10-220 { 1-96 20-302
1-3 1-88 2:-584 1-97 3-875 109 1-99 6-433 | 0-25 1-85 10-320 | 1-98 20-401
1-4 1-91 2-777 | 1-98 4-073 | 1-0 1-99 6-632 1 0-3 1-91 10-414 | 1-99 20-501
1-5 1-94 2:970 | 1-99 4-272 1 1-1 1-99 6-832 | 0-4 1-97 10-608 | 2-00 20-701
1-6 1-96 3-165 | 1-99 4-471 | 1-2 2-00 7-032 | 0-5 1-99 10-807
1-7 1-97 3-362 | 200 4-671 0-6 2-00 11-007
1-8 1-98 3-559
1-9 1-99 3-758
2-0 1-99 3-957
2-1 1-99 4-157
2-2 2-00 4-357
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Summary.—It is shown in this report that by the principle of porous suction high lift coefficients can be obtained
on thin aerofoils by the use of surprisingly small amounts of suction. It is more economical to use porous suction than
to suck through a slot at or near the leading edge : and it is necessary to realise that in general the principles involved
in the two types of suction are rather different. The discussion is restricted to aerofoils with rounded leading edges,
since it is difficult to predict theoretically the effect of any type of suction on flow near a sharp edge.

There are given graphs showing estimates of the quantities of air to be sucked on three different typical thin sections
to produce any reasonable desired lift coefficient. It seems that to obtain a lift coefficient of 2-0 on a 7 per cent.
thick section on a fighter aircraft when landing, a quantity of air of 0-5 cu. ft./sec. per foot span is sufficient, to be
sucked over the first 2 per cent. of the chord. Half this quantity of air sucked would suffice for a lift coefficient of 1-5.
The design of the leading-edge shape is important but suitable aerofoils have already been designed in Ref. 1.

Introduction and Discussion.—As the speeds at which aeroplanes fly increase, the thickness of
their aerofoil sections decrease, and the problem of obtaining a sufficiently high maximum C,
also becomes more acute. Many methods, most of them well known, have been used to produce
fairly good max. C,’s on sections of moderate thickness, say 15 per cent., and these have naturally
been applied to thinner sections. However, it has now become desirable, if not necessary, to
devise rather new methods of obtaining high lift coefficients on thin wings, and furthermore to
avoid any large changes of trim that might occur at the same tlme In this last respect, too
great a use of flaps is undesirable.

The problem therefore reduces to that of extending the lift curve of an aerofoil past the usual
stalling point, which implies a prevention of the separation of flow from the nose of an aerofoil
at large incidences. There are three principal methods of achieving this : (i) by sucking sufficient
quantities of air through the leading edge so that the whole velocity distribution over the aerofoil
and especially over its nose is altered in such a way as to delay separation, (ii) by designing the
nose of the aerofoil so that at high incidences the usual large adverse velocity gradient is replaced
by a discontinuity of velocity at a point where suction is applied to prevent separation, (iii) by
using porous suction over the nose, so that the boundary layer is kept thin and in good shape to
overcome the adverse velocity gradlents Of these three methods, the second has been considered
by Lighthill®, who also uses a sort of combination of methods (i) and (ii). He derives aerofoils
with sharp leading edges. In this report, we shall only consider aerofoils with rounded leading
edges, and it will be shown that method (iii) requires far smaller amounts of suction than (ii) to
produce high lift coefficients.

1. Potential Flow Considerations.—We shall examine the effect of a single suction slot, supposed
concentrated at a point on the leading edge, upon the potential flow past an aerofoil. The
aerofoil theory notation of Reference 3 will be used, with which the reader is assumed to be
familiar.

(82249) A



Suppose that the symmetrical aerofoil has been conformally transformed into the circle
Z = Re*, so that the point Z = R corresponds to the leading edge. It is easy to verify that the
velocity potential due to a sink, of mass-flow m per unit time, at Z = Riis

m
w=—2;210g(2—~R)+logZ.

From this we get
O O
UW—W=gZ~ " m\Z—R Z

and after a little calculation, the velocity at the point Z = Re” is obtained as

" ¢
U= — 9P cot g -
Thus the Velocity distribution over a symmetrical aerofoil in a stream of velocity U is given by
Co
~ = F(0 |:\/1 — (w) sin (6 4 & “* cos (0 4 ) + 9or e
_mAL 0t |
T 9O cot 2 1’ (1)

in which m is the strength of the suction slot at the leading edge. R is approximately equal
to lc.

To find the suction quantity which is necessary to delay the stall up to a certain lift coefficient,
we may proceed as follows. Assume that separation of flow does not occur for m = 0 at the
nose for C, = 1. For any other greater C; we then find the value of m/Uc, so that the velocity
at this C, has gradients no more severe than those for C, = 1. In this way, we may hope that
separation will not occur at this greater C; and with the amount of suction so determined.

Fig. 1 shows the operation of the method. It can be seen that with a suction velocity given
by m/Uc = 0-0175 the velocity distribution at C, = 1-5 is very similar to that at C, = 1-0
with no suction, at which C, we assume there is no separation.

After this very brief indication of how to estimate the amount of suction required through a
single slot, we now proceed to show how much more economical it is to use porous suction.

2. A Solution of the Boundary-layer Momentum Equation.—The momentum equation of the
boundary layer when there is a velocity v,(x) normal to the surface is found in Ref. 4 to be

, . a6 ou
UU’ (H + 2)6 + U5, = (@)U + » ay)y“ N
The equation of motion, taken at ¥ = 0 is
ou , GRS
so() @) — UU 4 » (é'y'Z>y=o' B

Let us assume v,(%x) is constant, equal to v,.

Suppose we attempt to maintain a velocity distribution through the boundary layer similar
to Blasius’ profile. For this,

2 o0-22083 5,

NG ’ @)
0%

a_.y2>;v=0 =0.



Equation (3) gives

Ly _uU
ay y=0—_<7)0 ’
and hence O-Z2053§~°=U’ .. . e .. .. . (5)

‘The momentum equation (2) becomes

/) d A ou’
0-22053 0—0 UH + 2)6 + U? T <0-22003 U’> = p,U + v
UII . Uf
Therefore —_ 0-22(?53 Uy, (O = Vo [1 — 0-22053(H + 2) | + » P .. .. (6)

This is an equation in U which must be solved. We have yet to give a value to H. If we
take H = 25345, the term v, [1 — 0-22053(H + 2)] in (6) disappears, thus enabling (6) to be
integrated. This is a very reasonable value for H since for Blaisus’ profile H = 2-5911.

(6) then becomes, after slight re-arrangement,
U’ v U’
m+4'534537)—02—(7=0. . .. .. .. .. .. .. (7)
- This can be integrated to give
U
g, =9
in which the constant has been adjusted so that U = U, when U’ = w (¢.e. where 6 = 0, from (5)).

1
— o7 + 453453 5:— log

The equation can be rewritten as

v U
——1—]—4-534535;2U10gm: .. .. .. . . .. . (8
and can then be integrated a second time to give
%t U u U
(7;;—4~53453(ﬁologﬁo- m-{— 1>, .. .. (9)

in which the constant has been adjusted so that U = U, when x = 0.

The following Table can then be compiled, for U’ is found in terms of U from (8) and 6 from U’
by (5).
U ‘
T, 1 09 08 0-7 0-6 0-5 0-4 0-35 0-3 0-25 0-2

2
% 0 -0236 0-0974 -2285 -4239 -6957 1-0587 1-2813 1-5364 1-8294 2-1680

oo
T 0 1053 -2231 -3568 -5109 -6931 -9162 1-0499 1-2041 1-3863 1-6094

P
Fig. 2 demonstrates these results.

The above analysis has appeared before as part of Reference 5.
3



3. Application of this Solution to Aerofoils at Large C,’s.—It will be noticed that the velocity
distribution U(x)/U, of § 2 approximates to that over the nose of an aerofoil at high incidences,
and we know how much air must be sucked through the surface to ensure that the boundary-
layer profile remains constant (according to the momentum equation, at least).

Suppose now that we know the velocity distribution over the nose of an aerofoil at a high C;.
Fig. 3 shows such distributions for a few C;’s on a typical aerofoil, where x denotes distance
along the surface. We must first calculate these distributions in terms of U/U,, where U, is
the maximum velocity. The full lines in Fig. 4 show the velocity distributions of Fig. 3 plotted
in terms of U/U, The point x/c = 0 in Fig. 4 now represents, by a slight change of notation,
the point of maximum velocity in Fig. 3 for each value of C;,. We must now try to identify these
curves with the velocity distribution outside the boundary layer calculated in § 2 and shown in
Fig. 2. Tor this distribution, we notice that the scale of distance along the surface is xv,*/U,» and
is therefore dependent on the velocity of suction (and the maximum velocity). The curve U/U,
of Fig. 2 is therefore placed on Fig. 4 with a scale of xv,%/U,» adjusted so that the curve fits fairly
closely to one of the full-line curves corresponding to a certain C;. For example, for C; = 1-0
if the scale of xv,2/U,» is taken as shown, the corresponding dotted curve of U/U, approximates
to the full-line curve for C; = 1-0. It is now possible to find the velocity of suction by comparing
the two scales of x/c and xv,?/U,» ; for instance, in this case of C, = 1-0, xv,*/Us» = 1-0 when
x/c = 0-1, whence v)%c/Uy» = 10,

or ﬁ:%J@
0 UNR’

in which R is the Reynolds number of flight, and U is the flight speed. The velocity of suction
has now been determined.

Next, the distance over which suction should be applied must be found. This can be estimated
as follows. We assume that the stall does not occur for a certain C;, say C, = 1-0, and that,
if the velocity distribution through the boundary layer approximates to Blasius’ profile ,velocity
gradients such as those for C, = 1-0 can thereafter be overcome without separation occurring.
From Fig. 3, we see that if, for C, = 2-0, suction can maintain Blasius’ profile up to x/c = 0-03,
then the flow is unlikely to separate after this point, since the gradients are no more severe than
for C, = 1-0. Thus for C, = 2-0 it is sufficient to use suction for 0 < x/c < 0-03. In this
way, the extent of suction for any C, can be estimated.

In Fig. 5, curves of (v,/U)y/R and x,/c against C, are drawn, for the particular aerofoil we
have been considering. The total quantity @ of air to be sucked per unit time per unit span is
easily found as follows :—

Xg Vo =7 cU

VR
9 r— (%) (%
ACGICE)
and a curve of (Q/Uc)4/R against C, can be drawn as in Fig. 5 from the two previous curves.

4. The Three Aerofoils and Remarks Thereon.—(i) H.S.A.VI.—This aerofoil was designed for
a very high-speed fighter for which a high max. C, is desirable. Leading-edge porous suction
is likely to be fitted to an experimental aircraft, and calculations were made to determine the
amount of air required to be sucked.

The aerofoil is 7 per cent. thick and has a leading-edge radius curvature equal to 0-0lc.

Figures 3, 4, 5 pertain to this aerofoil. We assume that, without suction, a C;, of 1-0 can be
attained.

4



(ii) H.S/A. V.—This aerofoil was designed as a possible high-speed aerofoil, in which the
velocity distribution at C, = 0-1 was such that the magnitude of the maximum velocity is
small except for a sharp velocity peak near the nose. Figs. 8 and 6 show the shape of the aerofoil
and the velocity distribution over the upper surface at C, = 0-1, and also for some high lift
coefficients. The considerations which led to its design are that as the Mach number increases,
a weak shock wave will appear first near the leading edge, but this will not unduly affect the drag.
Eventually, of course, a much stronger shock wave will occur further back when the flow is super-
sonic over a large part of the surface, but it is conjectured that, in this way, a high critical Mach
number is achieved for the thickness of 10 per cent. The behaviour above the critical Mach
number, of course, may well be more adverse than usual. However, apart from high-speed
characteristics, this aerofoil has an extremely large leading-edge radius of curvature, equal to
that of a normal 20 per cent. thick wing. The effect of this small curvature at the nose is strikingly
shown in Fig. 6 where it is clear that the velocity gradients at large C,’s are far less severe than
on more ordinary aerofoils (cf. Fig. 3).

Calculations were made of the amount of suction required on this aerofoil to produce high
lift coefficients, and the results are shown in Fig. 7.

(iii) EQH 1260.—Calculations were performed on this aerofoil, since it was intended to fit a
porous nose on to an aeroplane which flies with this aerofoil. Fig. 9 shows the results.

(iv) Remarks.—Comparing the graphs of (Q/Uc)+/R for each of these three aerofoils, it is clear
‘that the effect of a large leading-edge radius of curvature is considerable. The amount of suction
- required on EQH 1260 is about five times that for H.S.A. V, and this is a very strong argument
for proper leading-edge design.

The advantage of porous suction over a leading-edge slot of the type considered in this report
is overwhelmingly plain. For a leading-edge slot, a C, of 1-5 required m/Uc = 0-0175 on an
ordinary 10 per cent. thick aerofoil, whereas porous suction will enable this C; to be attained
for a quantity given by m/Uc = 0-0001 at a Reynolds number of 9 x 10°. Porous suction
therefore requires in this case, one two-hundredth of the quantity required for the slot.

Conclusion.—It has been demonstrated that porous suction over the leading edge of an aerofoil
is a means of obtaining high lift far more economical than sucking air through a slot with the
intention of altering the pressure distribution to delay the stall. Estimates have been made
of the amounts of air to be porously sucked through the leading edge to obtain high lift coefficients
on three rather different aerofoils : the design of the leading edge is seen to be important.
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