NATIONAL / ETC // ITICAL ET ACLIGHABIT 私力並次人族文

R. & M. No. 2685 (11,944, 12,650, 12,147) A.R.C. Technical Report

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL REPORTS AND MEMORANDA

A Comparison of Two Methods of Calculating Wing Loading with Allowance for Compressibility

> By V. M. FALKNER, B.Sc., A.M.I.Mech.E.

> > with Appendix :

Note on Falkner's Method for Calculating Compressibility Effects on Wing Loading

Bу

W. P. JONES, M.A., of the Aerodynamics Division, N.P L

Crown Copyright Reserved

LONDON: HER MAJESTY'S STATIONERY OFFICE

1953

FIFTEEN SHILLINGS NET

A Comparison of Two Methods of Calculating Wing Loading with Allowance for Compressibility

By

V. M. FALKNER, B.Sc., A.M.I.Mech.E.*

with Appendix:

Note on Falkner's Method for Calculating Compressibility Effects on Wing Loading

 $B\gamma$

W. P. Jones, M.A.,† of the Aerodynamics Division, N.P.L. Royal Avoran Estah

A

Reports and Memoranda No. 2685 October, 1949

Summary.-The report gives the results of a comparison by two different methods of the aerodynamic loading of a tapered \check{V} wing of aspect ratio 5.8 and 45 deg sweepback at M = 0.8, based on the Prandtl-Glauert factor or linear perturbation theory; the first method, associated particularly with vortex-lattice theory, deals with changes in Mach number by preserving the plan of the wing and using special Tables of downwash, while the second uses the solution for Mach number 0 on a wing with the lateral dimensions reduced by a specified factor.

The two methods are shown to be in good general agreement at M = 0.8 and, although it can be argued that the second method is more accurate on theoretical grounds, this is offset by the fact that the first has considerable advantages in ease of calculation, and in the possibility of extension to more accurate solutions when the Prandtl-Glauert factor fails at high subsonic speeds.

Examples of the application of the theory are also given for a delta wing, for a straight tapered wing without sweep, and for a tapered wing with $28 \cdot 4$ deg sweepback. It is possible to give a general and reasonable explanation of the nature of the variations of load grading and local aerodynamic centre which occur with increasing Mach number, and with the information given, there should be no difficulty in the prediction of Mach number effects on a wide range of plan forms.

Since the completion of the work, a mathematical examination of the limitations of the first method has been made by W. P. Jones who has calculated exact values of downwash due to a rectangular vortex over a range of Mach numbers for comparison with those obtained by the approximate formula. His work, which is included as an Appendix, confirms the accuracy of the approximate method at high Mach numbers.

1. Introduction.—The object of this work is to compare two methods of calculating wing loading with allowance for compressibility and to give examples of their use. The first method, based on the use of special tables of downwash, is described in Ref. 1, where the results of calculations carried out on a swept-back tapered wing by the use of standard solutions omitting the effect of the centre-line correction are also given. The second method depends on the direct use of the Prandtl-Glauert factor, which involves a reduction in the lateral dimensions of the wing.

(22975)

^{*∫}A.R.C. 11,944. 25th November, 1948.

A.R.C. 12,650. 15th October, 1949. † A.R.C. 12,147. 7th February, 1949.

2. Theory: First Method.—The first method is based on the following argument. The effect of the Prandtl-Glauert factor² is that each unit of bound vorticity which represents the lifting plane in two-dimensional flow is increased for a given incidence in the ratio $1/\sqrt{(1-M^2)}$. It follows that the potential theory on which the vortex-lattice method is based is no longer valid, because there is the equivalent of added vorticity without a corresponding addition to the downwash. The adaptation to vortex-lattice theory is made in the following way. As far as the bound vorticity along any chord at Mach number M is concerned, the calculated downwash at the wing surface will be correct if it is assumed that $\sqrt{(1-M^2)}$ of the total vorticity acts in accordance with potential theory, while the remainder $1 - \sqrt{(1-M^2)}$ is without potential field. The same considerations do not apply to the trailing vorticity as it has been shown by A. D. Young³ that, in lifting-line theory, the downwash field at the wing due to the trailing vorti-city is not affected by compressibility. Young's result is only strictly applicable to lifting-line theory, but if the approximation be made that this result can also be used in lifting-plane theory, a simple solution of the problem is possible. It is only necessary to work out two sets of equations for the wing, one set being the standard equations derived from the complete tables of downwash and corresponding to M = 0, and the other set being derived by the use of tables of induced downwash and corresponding to the hypothetical case M = 1. The equations corresponding to any Mach number M are then obtained by summing the proportions $\sqrt{(1-M^2)}$ of set (1) and $1 - \sqrt{(1 - M^2)}$ of set (2).

2.1. The factors of induced downwash are obtained in the same way as the factors of complete downwash, but with the omission of the downwash contribution due to the bound vortex. These factors have been calculated by a formula which is readily deduced from Fig. 3 of R. & M. 2591⁴ and are given in Tables 30 to 40.

2.2. Second Method.—The second method is based on the Prandtl-Glauert rule or linear perturbation theory by which, if the velocity variations are small, the effects of Mach number can be represented by an equivalent solution for M = 0 for a wing for which the lateral and vertical dimensions have been reduced by appropriate factors. The formulae for this method have been collected together and presented in a concise and clear form by R. Dickson in Ref. 5. For the work now under investigation, which includes incidence and wing twist solutions, the process reduces to a simple alteration of the lateral dimensions of the wing in the ratio $\sqrt{(1 - M^2)}$, the solution of this distorted wing for M = 0, and the application of the following transformation:—

- (a) The circulation K/4sV per radian or load coefficient $C_{\kappa} = C_{LL}c/C_L\overline{c}$ plotted against η is correct.
- (b) C_{LL}/C_L plotted against η is correct.
- (c) The position of the aerodynamic centre is correct.
- (d) The value of $dC_L/d\alpha$ is to be multiplied by $1/\sqrt{(1 M^2)}$.
- (e) The incidence for zero lift, α_0 , is correct.
- (f) The moment coefficient at zero lift, C_{m0} , is to be multiplied by $1/\sqrt{(1 M^2)}$.

3. Results—45 deg Tapered Wing.—The calculations, apart from the use of the special tables of downwash, have been carried out precisely in accordance with the standard method described in R. & M. 2591⁴ and 2596⁶, and consist of three, six, or nine-point solutions with or without auxiliary solutions to allow for the centre-line correction.

The main effort has been directed to solutions for a tapered wing, with taper ratio of 0.25 to 1, aspect ratio 5.8, and 45 deg sweepback, as shown in Fig. 2, the choice being influenced by the fact that the wing is the subject of an investigation including pressure plotting at the Royal Aircraft Establishment. After reduction of the lateral dimensions by a factor corresponding to M = 0.8, the wing becomes of aspect ratio 3.5 with 59 deg sweepback.

Some of the work on this wing was done by the 84-vortex lattice before the standardisation of the 126-lattice and, although the former work is now obsolete, it still has value in its relation to the general accuracy of the method, and so has been placed on record.

The following solutions, which are given in Tables 7 to 27, have been calculated for the pair of wings:—59 deg wing, M = 0, 84-vortex, 3, 6, 9 and 12-point standard solutions; 126-vortex, 3, 6 and 9-point standard solutions and 6-point solution with centre-line correction; 126-vortex, 6-point standard solution with and without centre-line correction for wing twist, θ linear: 45 deg wing, M = 0, 126-vortex 9-point standard solution, and 6-point standard solution with and without the centre-line correction; 126-vortex 6-point standard solution for wing twist, θ linear, with and without centre-line correction; 45 deg wing, M = 0.8, 126-vortex, 9-point standard solution and 6-point standard solution with and without centre-line correction; 126-vortex 6-point standard solution for wing twist, θ linear, with and without centre-line correction; 126-vortex 6-point standard solution for wing twist, θ linear, with and without centre-line correction; 126-vortex 6-point standard solution for wing twist, θ linear, with and without centre-line correction; 126-vortex 6-point standard solution for wing twist, θ linear, with and without centre-line correction; 126-vortex 6-point standard solution for wing twist, θ linear, with and without centre-line correction; 126-vortex 6-point standard solution for wing twist, θ linear for wing twist, θ linear. Generally, the least accurate are the simpler 3-point solutions, and the most accurate given here are the six-point solutions with centre-line correction.

3.1. Selections from these solutions have been plotted in Figs. 3 to 9 with the object of demonstrating features of particular interest. For example, the first one, Fig. 3, deals with the convergence of the load coefficient C_{κ} and local aerodynamic centre for the 59 deg wing. Considering first the load coefficient, it will be noted that all solutions, excepting the 84/9 and 84/12, are in good agreement, and the reason for the failure of the two latter is that they make use of control points over the front part of the wing at which the downwash values calculated for a given mesh of lattice are known to be less accurate than those over the rear part of the wing. This matter has been referred to in a previous report, and it is very satisfactory to note that, when this source of error is removed the remaining solutions, in spite of the differences in numbers of control points and the variations in the lattice, show remarkable agreement and leave no doubt that the standard solutions—although not the final solutions—have converged to a limit. As regards the local aerodynamic centre, the 3-point solutions are, of course, out of the question, and, if the 84/9 and 84/12 are omitted it is found that the 126/6 and 126/9 are in near agreement, but that the 84/6 does not quite reach the other curve. It is a fair deduction which does not at this stage require further proof that the 126 standard solutions for aerodynamic centre have converged to limits which are close enough for the present application.

As the centre-line correction will for reasons of economy be based on 6-point solutions, Figure 4 is devoted to evidence that there is little difference between 6 and 9-point solutions. The comparison is made for the 59 deg wing at M = 0, and for the 45 deg wing at M = 0 and 0.8, and, in each case, although there is a slight variation in the aerodynamic centre near the tips the solutions have converged for all practical purposes.

Figs. 5, 6 and 7 show the effect of the auxiliary solution or centre-line correction in the three cases, both incidence and wing twist solutions being included. The effects are similar in all cases, the local aerodynamic centre showing a movement aft in the central region and the load coefficient for the incidence solutions showing a drop at the centre with accompanying variation along the span, and for the wing twist solutions hardly any change. The effects of these changes on overall aerodynamic centre can be studied from the results given in R. & M. 2596⁶.

3.2. The final comparison of the two methods has been carried out by using the six solutions, three for incidence, and three for wing twist, numbers 27, 29, 32, 34, 37 and 39, which are based on the 126-vortex pattern with centre-line correction. The comparison between the two methods depends on the agreement between the curves for C_K and local aerodynamic centre as given by solutions 27 and 37 for incidence and 29 and 39 for wing twist at M = 0.8, but, to complete the work, and to show the variation which occurs between M = 0 and M = 0.8, solutions 32 and 34 have also been included. The solutions for incidence are plotted in Fig. 8, and for wing twist in Fig. 9 and excellent agreement is shown throughout excepting that there is a slight variation in the locus of the aerodynamic centre for the incidence solution near the tip. This

variation is a measure of the inaccuracy caused by the assumptions on which the first method is based. It would be quite easy to make allowance for this difference, but the effect should not be over-rated, because, occurring as it does in the region of rapidly decreasing circulation, the overall effects are small. This is shown in Table 28, where are collected together the main results for the six solutions, and from which it is concluded that the overall agreement between the two solutions is highly satisfactory.

4. Results-Straight Tapered Wing.-For the straight tapered wing, Fig. 1, the following solutions have been calculated: M = 0, 6 and 9-point standard solutions for incidence, and 9-point standard solution for wing twist, $c\theta$ linear; $\dot{M} = 0.8, 0.9, 1.0, 9$ -point standard solution for incidence; M = 0.9, 9-point standard solution for wing twist, $c\theta$ linear. The results are given in Tables 1 and 2, and plottings of load coefficients and local aerodynamic centre for incidence solutions have been made in Fig. 10. It will be noted that, as far as the load coefficient and local aerodynamic centre are concerned, there is no appreciable difference between the 6 and 9-point solutions, numbers 1 and 2. The main conclusions to be drawn from Fig. 10 are the small change in the load coefficient between M = 0 and 0.9 and the regular forward movement of the local aerodynamic centre. Between M = 0.9 and M = 1.0 there is a more rapid change which is not genuine, being due to a breakdown of the method. Supporting evidence of this breakdown is that compressibility effects are approximately equivalent in a straight wing to a reduction of aspect ratio only and the limiting form of the load grading has been shown from the results given in R. & M. 2596⁶ to be elliptic. Fig. 10 shows the movement towards the elliptic curve still occurring at M = 0.9, and the final breakdown, which occurs in a region where the use of the Prandtl-Glauert factor is becoming untenable.

5. Results—Tapered Wing, $28 \cdot 4 \ deg \ Sweepback$.—The results for this wing were calculated by the 84-vortex lattice, before it had been demonstrated that, at this angle of sweepback, the 126-lattice would give a superior result. A further disadvantage is that the centre-line correction has not been applied. However, enough information has now been published to make possible an estimate of the errors due to both causes, and it is considered that the results still have value and can in any case be used as they stand for comparative purposes.

The results consist of 9-point standard solutions for M = 0, 0.6, 0.8, 0.9 and 1.0; 9-point standard solutions for wing twist, with $c\theta$ linear, for M = 0 and M = 1; and an additional solution for M = 1 obtained by a 168-vortex lattice. The latter solution was included in order to verify that the solutions obtained with the revised tables have converged to the required accuracy. This step was necessary because the standard method is based on a convergence calculated from two-dimensional considerations using the bound vorticity only, and the use of the revised tables, in which the downwash is based on the trailing vorticity only, might retard the rate of convergence. As the effect is mainly chordwise, the chordwise spacing was halved to give 168 vortices, and the solutions for the 84 and 168-vortex patterns for M = 1 are given in Table 3, solutions 13 and 14. It will be seen that the difference in the two solutions is small at M = 1, and, when it is remembered that all we are concerned with is the effect on solutions for values of M below the breakdown, it is clear that effects of compressibility can be handled by the revised tables without necessity for any alteration of the lattice.

A selection of the results including load coefficient, local lift coefficient and local aerodynamic centre for M = 0, 0.6, 0.8, and 0.9 has been plotted in Fig. 11.

6. Results—Triangular Wing, Aspect Ratio 2.31.—For this wing, solutions have been calculated by the 126-vortex lattice, including the centre line correction, for M = 0, 0.8, 0.9, 1.0. The results are given in Tables 5 and 6 and the load coefficient and local aerodynamic centre have been plotted in Fig. 12. It will be seen that the local aerodynamic centre varies less than with the other wings, and that again the load-coefficient curve tends to the elliptic until the breakdown occurs.

7. General Discussion.—The following results have already been demonstrated or can reasonably be deduced from the preceding sections.

(a) That the results obtained by the two methods are in good agreement at M = 0.8, and should remain in agreement until beyond M = 0.9, or over the useful range of application of the Prandtl-Glauert factor.

(b) That, if necessary, the auxiliary solutions to allow for the centre-line correction can be omitted and their effect estimated from solutions already published.

(c) That the curves of load coefficient of the straight and triangular wings tend to approach an elliptic curve with increase of Mach number, and that, for these wings, for which the argument can be based on decreasing aspect ratio only, the elliptic curve is probably the limit as $M \rightarrow 1$, the curves obtained in this paper at M = 1 being false because of the breakdown of the method which occurs between M = 0.9 and 1.0.

(d) That, although it has been shown in R. & M. 2596⁶ that, for a wide range of swept-back wings, reduction of aspect ratio with constant sweepback tends to lead to load coefficient curves which approach the elliptic, the analogy with effect of compressibility is not complete for V wings, for in the latter case the equivalent reduction of aspect ratio is accompanied by increase of sweepback to a limit of 90 deg. The limiting curve for C_{κ} for V wings as $M \rightarrow 1$, therefore differs from the elliptic, but no prediction can now be made as to what it should be.

7.1. Some observations on conditions at M = 1 can now be added. Both methods break down at M = 1, the first because the assumption on which it is based becomes untenable, and the second because the wing area vanishes. It is interesting to note, however, that both methods still give a finite value for $dC_L/d\alpha$ at M = 1. For example, for the straight tapered wing, the first method gives $dC_L/d\alpha = 15 \cdot 344$. An approximate value for the second method can be deduced by lifting-line theory on the lines of work by Mr. G. H. Lee⁷. For an elliptic wing, with sectional $dC_L/d\alpha = 2\pi$, $dC_L/d\alpha$ is $2\pi A/(2 + A)$ where A is the aspect ratio. Applying the analogy that $dC_L/d\alpha$ at Mach number M is equivalent to $1/\sqrt{(1 - M^2)}$ times the value at M = 0, with A changed to $A\sqrt{(1 - M^2)}$, the revised value of $dC_L/d\alpha$ at M will be $2\pi A/[2 + A\sqrt{(1 - M^2)}]$. Proceeding to the limit, the ratio of $(dC_L/d\alpha)_{M=1}$ to $(dC_L/d\alpha)_{M=0}$ will be 1 + A/2 or $3 \cdot 93$, against the value $3 \cdot 50$ (see Table 1) of method 1, a result which supports the conclusion that methods 1 and 2 will remain in substantial agreement until the useful limit of the Prandtl-Glauert factor has been passed.

7.2. The variations in the aerodynamic centre for the four wings have been collected together in a single table, No. 29. It will be noted that the effect on the straight wing is to give a noseup moment with increase of M, while for the swept-back wings the effect is reversed to give a nose-down moment, which is more serious the greater the sweepback. It is possible to give a rough explanation of the observed effects which will enable the application to any given wing Two factors have to be taken into account (a) the alteration in spanwise to be predicted. load grading and (b) the change in local aerodynamic centre and for the wings treated here it seems that the latter effect is predominant. For the straight wing, the effect is almost entirely the same as a reduction in aspect ratio, which gives a general forward movement of the local aerodynamic centre leading to a nose-up moment. For the triangular wing, two effects are operative, the first being the general forward movement due to effective decrease of aspect ratio, and the second the general backward movement due to the centre-line correction, which also increases with the effective increase in sweepback which accompanies decrease of aspect ratio. For this wing the two effects practically cancel each other, leaving the aerodynamic centre almost invariable with Mach number.

For the tapered wings with sweepback, where the trailing edge has a discontinuity of slope at the centre, the backward movement due to effective increase of sweepback overcomes the forward movement due to decreasing aspect ratio, leading to curves with movement back in the centre region and forward movement in the tip region as in Fig. 11, for the moderate sweepback, and curves with a general backward movement as in Fig. 8 for the higher sweepbacks. 7.3. The influence of the change in load grading appears to be small for the wings dealt with in this report, but it should not be forgotten that there is an unexplored region of small aspect ratio and large sweepback in which load grading might assume greater importance.

Finally, it is thought that now attention has been drawn to the principles which govern the changes, it will be possible easily to predict the effects for a great variety of wing plans. It seems clear that for a conventional tapered wing, there will be a moderate angle of sweepback at which the Mach number effects on the aerodynamic centre will be negligible over a useful range of subsonic, as with the triangular wing.

8. Conclusion.—In conclusion, it should be added that the first method has considerable advantages in that, by preserving the plan of the wing, it is possible to compute a range of Mach numbers with very much less work than by the second method, which requires a completely independent calculation for each Mach number. In attempting to extend the work to high subsonic speeds beyond the application of the Prandtl-Glauert factor, and even to the sonic region, applications which will in the first instance depend on high speed tunnel results, it is predicted that the second method will be quite impractical.

The writer desires to acknowledge the valuable assistance rendered by Miss D. E. Lehrian in the organisation of the final stage of the work, by Miss S. D. Brown, who undertook the major part of the work of computation, and by Miss W. Tafe, who was also responsible for a small but important part of the calculations.

REFERENCES

No.	4	Author			Title, etc.
1	V. M. Falkner	••	•••	••	Calculations of Compressibility effects on the Loading of a Swept-back Wing. A.R.C. 9261.
2	H. Glauert	••	••	• •	The Effect of Compressibility on the Lift of an Aerofoil. R. & M. 1135. September, 1927.
3	A. D. Young		••	•••	Note on the Effect of Compressibility on the Lift Curve Slope of a Wing of Finite Span. A.R.C. 7046. (Unpublished.)
4	V. M. Falkner			•••	The Solution of Lifting Plane Problems by Vortex Lattice Theory. R. & M. 2591. September, 1947.
5	R. Dickson		•••	•••	The Relationship between the Compressible Flow round a Swept-back Aerofoil and the Incompressible Flow round Equivalent Aerofoils. A.R.C. 9986. (Unpublished.)
6	V. M. Falkner		••	•••	Calculated Loadings due to Incidence of a Number of Straight and Swept- back Wings. R. & M. 2596. June, 1948.
7	G. H. Lee	• •	•••	•••	Tailless Aircraft Design Problems. Journal of the Royal Aeronautical Society, February 1947.

Solutions for Straight Tapered Wing

- 1. M = 0: 84-vortex, 9-point standard solution: $\eta = 0.2, 0.5, 0.8$.
- 2. M = 0: 84-vortex, 6-point standard solution: $\eta = 0.2, 0.5, 0.8$.

3. M = 0: 84-vortex, 9-point standard solution for wing twist, $c\theta$ linear: $\eta = 0.2, 0.5, 0.8$.

- 4. M = 0.8: 84-vortex, 9-point standard solution.
- 5. M = 0.9: 84-vortex, 9-point standard solution.
- 6. M = 1.0: 84-vortex, 9-point standard solution.

7. M = 0.9: 84-vortex, 9-point standard solution for wing twist, $c\theta$ linear.

	Solution								
Quantity	1	2	3	. 4	5	6	7		
<i>a</i> ₀	+ 0.08172	+ 0.08137	-0.01121	+ 0.11364	+ 0.13617	+ 0.87269	-0.01777		
<i>a</i> 1	- 0.00623	- 0.00584	+ 0.00418	-0.01417	-0.02254	- 1.27173	0.01345		
a_2	- 0.00039		0.00058	- 0.00016	+ 0.00054	- 0.13190	0.00271		
Co	0.02679	- 0.02544	0.04277	- 0.02207	-0.01505	+ 1.04994	+ 0.05901		
<i>c</i> ₁	+ 0.00907	+ 0.00682	- 0.01167	+ 0.00613	-0.00224	- 1.87069	-0.03094		
C2	0.00204		- 0.00052	0.00391	+ 0.00452	- 1.85948	-0.00008		
e ₀	0.03340	0.02931	+ 0.00061	0.03943	0.04526	+ 0.78599	+ 0.01167		
e1	- 0.02379	- 0.01760	-0.00301	-0.04587	-0.06512	- 1.58397	-0.02081		
e_2	-0.00571		-0.00195	-0.01763 .	-0.03121	-1.28198	-0.01177		
$dC_L/d\alpha$	$4 \cdot 389$	4.376		6.020	7.097	15.344			
C_{Di}	1.003			1.001	1.001	1.032			
C_{m0}			-0.0460				-0.0754		
α			-0.2395				-0.2393		
a.c.	0.4788			0.4690	0.4600	- 0.0999			

Note:-Solutions are per radian incidence or per radian twist at tip.

Aerodynamic centres (a.c.) are in terms of mean chord behind apex A of Fig. 1. C_{Di} is in terms of $(1/\pi A) C_L^2$.

 $\mathbf{7}$

22	Solut	tion 1. Per rad	lian	Solution 2. Per radian		
•,	Load Coeff.	C_{LL}/C_L	Local a.c.	Load Coeff.	C_{LL}/C_L	Local a.c.
0	1.322	0.867	0.241	1.323	0.868	0.241
$0.03 \\ 0.10 \\ 0.15$	1.318 1.311	$0.895 \\ 0.923$	$\begin{array}{c} 0\cdot 241 \\ 0\cdot 241 \end{array}$	1.313	0.924	0.241
0.15 0.20	$1 \cdot 298 \\ 1 \cdot 281$	$0.948 \\ 0.972$	$\begin{array}{c c} 0 \cdot 241 \\ 0 \cdot 241 \end{array}$	1.282	0.972	0.241
$0 \cdot 25 \\ 0 \cdot 30$	$1 \cdot 258 \\ 1 \cdot 231$	$0.993 \\ 1.013$	$\begin{array}{c} 0\cdot 241 \\ 0\cdot 241 \end{array}$	1.233	1.014	0.241
$\begin{array}{c} 0\cdot 35 \\ 0\cdot 40 \end{array}$	$1 \cdot 201 \\ 1 \cdot 165$	$1 \cdot 032 \\ 1 \cdot 048$	$0.241 \\ 0.241$	1.166	1.049	0.241
$0.45 \\ 0.50$	1.127 1.083	1.063 1.074	0.241 0.241	1.084	1.075	0.941
0.55 0.60	1.037	1.085	0.241 0.241	0.007	1.001	0.241
0.65	0.933	1.091 1.094	0.240 0.240 0.240	0.987	1.091	0.240
$0.70 \\ 0.75 \\ 0.00$	0.874	1.091 1.081	$0.238 \\ 0.237$	0.8/4	1.090	0.238
0.80 0.85	$0.738 \\ 0.652$	$1 \cdot 057$ $1 \cdot 009$	$0.235 \\ 0.233$	0.736	$1 \cdot 054$	0.235
0.90 0.95	$0.548 \\ 0.398$	$\begin{array}{c} 0\cdot 921 \\ 0\cdot 784 \end{array}$	$0.229 \\ 0.227$	$0.544 \\ 0.396$	$0.915 \\ 0.780$	0.230 0.227
$1 \cdot 00$	0.000	0.706	0.223	0.000	0.699	0.223

Solutions for Straight Tapered Wing

4)	Solution	3. For $C_{m_0} =$	-0.05	Solution 4. Per radian		
<i>''</i>	K/4sV	C _{LL}	Local a.c.	Load Coeff.	C_{LL}/C_L	Local a.c.
$\begin{array}{c} 0\\ 0.05\\ 0.10\\ 0.15\\ 0.20\\ 0.25\\ 0.30\\ 0.35\\ 0.40\\ 0.45\\ 0.50\\ 0.55\\ 0.60\\ 0.65\\ 0.70\\ 0.75\\ 0.80\\ 0.85\\ 0.90\\ 0.85\\ 0.90\\ 0.55\\ 0.90\\ 0.85\\ 0.90\\ 0.55\\ 0.90\\ 0.85\\ 0.90\\ 0.95\\ 0.90\\ 0.95\\ 0.90\\ 0.95\\ 0.$	$\begin{array}{c} - & 0 \cdot 0312 \\ - & 0 \cdot 0307 \\ - & 0 \cdot 0298 \\ - & 0 \cdot 0280 \\ - & 0 \cdot 0255 \\ - & 0 \cdot 0225 \\ - & 0 \cdot 0189 \\ - & 0 \cdot 0147 \\ - & 0 \cdot 0101 \\ - & 0 \cdot 0051 \\ + & 0 \cdot 0002 \\ 0 \cdot 00056 \\ 0 \cdot 0111 \\ 0 \cdot 0164 \\ 0 \cdot 0214 \\ 0 \cdot 0257 \\ 0 \cdot 0290 \\ 0 \cdot 0307 \\ - & 0 \cdot 0301 \\ \end{array}$	$\begin{array}{c} - & 0 \cdot 480 \\ - & 0 \cdot 491 \\ - & 0 \cdot 491 \\ - & 0 \cdot 480 \\ - & 0 \cdot 456 \\ - & 0 \cdot 418 \\ - & 0 \cdot 365 \\ - & 0 \cdot 297 \\ - & 0 \cdot 213 \\ - & 0 \cdot 113 \\ + & 0 \cdot 004 \\ 0 \cdot 138 \\ 0 \cdot 288 \\ 0 \cdot 452 \\ 0 \cdot 626 \\ 0 \cdot 805 \\ 0 \cdot 975 \\ 1 \cdot 117 \\ 1 \cdot 187 \end{array}$	$\begin{array}{c} 0\cdot 201\\ 0\cdot 200\\ 0\cdot 200\\ 0\cdot 199\\ 0\cdot 199\\ 0\cdot 197\\ 0\cdot 194\\ 0\cdot 190\\ 0\cdot 181\\ 0\cdot 153\\ 1\cdot 850\\ 0\cdot 258\\ 0\cdot 233\\ 0\cdot 224\\ 0\cdot 220\\ 0\cdot 217\\ 0\cdot 215\\ 0\cdot 213\\ 0\cdot 212\\ \end{array}$	$\begin{array}{c} 1\cdot 306\\ 1\cdot 304\\ 1\cdot 297\\ 1\cdot 286\\ 1\cdot 271\\ 1\cdot 251\\ 1\cdot 288\\ 1\cdot 200\\ 1\cdot 168\\ 1\cdot 132\\ 1\cdot 092\\ 1\cdot 048\\ 0\cdot 999\\ 0\cdot 945\\ 0\cdot 886\\ 0\cdot 820\\ 0\cdot 744\\ 0\cdot 655\\ 0\cdot 545\\ \end{array}$	$\begin{array}{c} 0.857\\ 0.885\\ 0.913\\ 0.939\\ 0.964\\ 0.988\\ 1.010\\ 1.031\\ 1.050\\ 1.068\\ 1.083\\ 1.095\\ 1.104\\ 1.108\\ 1.105\\ 1.093\\ 1.066\\ 1.013\\ 0.916\\ \end{array}$	$\begin{array}{c} 0\cdot 234\\ 0\cdot 234\\ 0\cdot 234\\ 0\cdot 234\\ 0\cdot 234\\ 0\cdot 233\\ 0\cdot 233\\ 0\cdot 233\\ 0\cdot 233\\ 0\cdot 233\\ 0\cdot 232\\ 0\cdot 232\\ 0\cdot 232\\ 0\cdot 232\\ 0\cdot 230\\ 0\cdot 229\\ 0\cdot 228\\ 0\cdot 226\\ 0\cdot 223\\ 0\cdot 220\\ 0\cdot 217\\ 0\cdot 212\end{array}$
1.00	0.0250	1.157	$0.211 \\ 0.210$	0.394 0.000	0.775 0.688	$\begin{array}{c} 0.207 \\ 0.202 \end{array}$

· 8

TABLE 2-continued

	Solut	tion 5. Per rad	lian	Solution 6. Per radian		
η	Load Coeff.	C_{LL}/C_L	Local a.c.	Load Coeff.	C_{LL}/C_L	Local a.c.
$\begin{array}{c} 0\\ 0\cdot05\\ 0\cdot10\\ 0\cdot15\\ 0\cdot20\\ 0\cdot25\\ 0\cdot30\\ 0\cdot35\\ 0\cdot40\\ 0\cdot45\\ 0\cdot50\\ 0\cdot55\\ 0\cdot50\\ 0\cdot55\\ 0\cdot60\\ 0\cdot65\\ 0\cdot70\\ 0\cdot75\\ 0\cdot80\\ 0\cdot85\\ 0\cdot90\\ 0\cdot95\\ \end{array}$	$\begin{array}{c} 1\cdot 299\\ 1\cdot 297\\ 1\cdot 291\\ 1\cdot 280\\ 1\cdot 266\\ 1\cdot 248\\ 1\cdot 225\\ 1\cdot 199\\ 1\cdot 169\\ 1\cdot 134\\ 1\cdot 095\\ 1\cdot 052\\ 1\cdot 004\\ 0\cdot 951\\ 0\cdot 891\\ 0\cdot 891\\ 0\cdot 824\\ 0\cdot 747\\ 0\cdot 656\\ 0\cdot 545\\ 0\cdot 392\end{array}$	0.852 0.880 0.908 0.935 0.960 0.985 1.009 1.031 1.051 1.070 1.086 1.100 1.110 1.114 1.112 1.099 1.070 1.070 1.015 0.915 0.771	$\begin{array}{c} 0 \cdot 227 \\ 0 \cdot 227 \\ 0 \cdot 227 \\ 0 \cdot 227 \\ 0 \cdot 226 \\ 0 \cdot 226 \\ 0 \cdot 226 \\ 0 \cdot 226 \\ 0 \cdot 225 \\ 0 \cdot 224 \\ 0 \cdot 224 \\ 0 \cdot 224 \\ 0 \cdot 222 \\ 0 \cdot 221 \\ 0 \cdot 211 \\ 0 \cdot 211 \\ 0 \cdot 211 \\ 0 \cdot 211 \\ 0 \cdot 207 \\ 0 \cdot 202 \\ 0 \cdot 197 \\ 0 \cdot 191 \end{array}$	$\begin{array}{c} 1\cdot 139\\ 1\cdot 139\\ 1\cdot 139\\ 1\cdot 139\\ 1\cdot 138\\ 1\cdot 138\\ 1\cdot 138\\ 1\cdot 136\\ 1\cdot 134\\ 1\cdot 130\\ 1\cdot 124\\ 1\cdot 116\\ 1\cdot 104\\ 1\cdot 088\\ 1\cdot 067\\ 1\cdot 039\\ 1\cdot 001\\ 0\cdot 952\\ 0\cdot 888\\ 0\cdot 802\\ 0\cdot 683\\ 0\cdot 504\\ \end{array}$	$\begin{array}{c} 0.747\\ 0.773\\ 0.801\\ 0.831\\ 0.863\\ 0.897\\ 0.933\\ 0.971\\ 1.011\\ 1.053\\ 1.095\\ 1.138\\ 1.179\\ 1.217\\ 1.249\\ 1.270\\ 1.272\\ 1.240\\ 1.148\\ 0.991\\ \end{array}$	$\begin{array}{c} - 0.352 \\ - 0.351 \\ - 0.349 \\ - 0.349 \\ - 0.345 \\ - 0.345 \\ - 0.328 \\ - 0.328 \\ - 0.328 \\ - 0.321 \\ - 0.313 \\ - 0.306 \\ - 0.298 \\ - 0.298 \\ - 0.290 \\ - 0.283 \\ - 0.277 \\ - 0.272 \\ - 0.268 \\ - 0.266 \\ - 0.266 \\ - 0.266 \\ - 0.267 \\ - 0.270 \end{array}$
1.00	0.000	0.681	0.184	0.000	0.896	- 0.276

Solutions for Straight Tapered Wing

	Solution 7	Solution 7. For $C_{m0} = -$		
η	K/4sV	C_{LL}	Local a.c.	
$0 \\ 0.05 \\ 0.10 \\ 0.15 \\ 0.20 \\ 0.25 \\ 0.30$	$\begin{array}{r} - & 0 \cdot 0230 \\ - & 0 \cdot 0227 \\ - & 0 \cdot 0220 \\ - & 0 \cdot 0207 \\ - & 0 \cdot 0190 \\ - & 0 \cdot 0168 \\ - & 0 \cdot 0141 \end{array}$	$\begin{array}{r} - 0.354 \\ - 0.363 \\ - 0.363 \\ - 0.355 \\ - 0.338 \\ - 0.311 \\ - 0.273 \end{array}$	0.128 0.128 0.127 0.125 0.122 0.118 0.111	
$\begin{array}{c} 0.35\\ 0.40\\ 0.45\\ 0.50\\ 0.55\\ 0.60\\ 0.65\\ 0.70\\ 0.75\\ 0.80\\ 0.85\end{array}$	$\begin{array}{c} - & 0 \cdot 0111 \\ - & 0 \cdot 0077 \\ - & 0 \cdot 0001 \\ - & 0 \cdot 0001 \\ + & 0 \cdot 0039 \\ & 0 \cdot 0120 \\ & 0 \cdot 0120 \\ & 0 \cdot 0158 \\ & 0 \cdot 0191 \\ & 0 \cdot 0217 \\ & 0 \cdot 0231 \end{array}$	$\begin{array}{c} - & 0.224 \\ - & 0.163 \\ - & 0.090 \\ - & 0.003 \\ + & 0.096 \\ 0.208 \\ 0.330 \\ 0.462 \\ 0.597 \\ 0.728 \\ 0.840 \end{array}$	$\begin{array}{c} 0.100\\ 0.078\\ +\ 0.013\\ -\ 3.571\\ +\ 0.282\\ 0.210\\ 0.185\\ 0.173\\ 0.165\\ 0.158\\ 0.154\end{array}$	
$0.90 \\ 0.95 \\ 1.00$	0.0227 0.0190 0.0000	$0.898 \\ 0.880 \\ 0.890$	$0.149 \\ 0.146 \\ 0.142$	

Solutions for Tapered Wing, 28.4 deg Sweepback

- 8. M = 0: 84-vortex, 9-point standard solution: $\eta = 0.2, 0.5, 0.8$.
- 9. M = 0: 84-vortex, 9-point standard solution for wing twist, $c\theta$ linear.
- 10. M = 0.6: 84-vortex, 9-point standard solution.
- 11. M = 0.8: 84-vortex, 9-point standard solution.
- 12. M = 0.9: 84-vortex, 9-point standard solution.
- 13. M = 1.0: 84-vortex, 9-point standard solution.
- 14. M = 1.0: 168-vortex, 9-point standard solution.
- 15. M = 1.0: 84-vortex, 9-point standard solution for wing twist, $c\theta$ linear.

Quantity		Solution									
Quantity	8	9	10	11	12	13	14	15			
<i>a</i> ₀	+ 0.07013	- 0.01017	+ 0.07542	+0.08093	+0.08518	+ 0.08586	+ 0.08695	- 0.01300			
a_1	0.00423	+ 0.00291	0.01067	0.02196	0.03833	+ 0.20866	+ 0.22991	-0.00102			
<i>a</i> ₂	0.00005	0.00010	0.00177	0.00445	0.00717	-0.06884	-0.06218	-0.02327			
<i>c</i> ₀	+ 0.01766	0.02797	+0.03297	+0.05322	+0.07255	-0.15051	-0.02619	-0.05042			
c1	-0.03473	0.00766	-0.05426	-0.08061	-0.10548	+0.44780	+0.22654	+ 0.20275			
C2	-0.01756	0.00328	-0.01837	-0.01285	+0.00880	0.87064	+ 0.74555	+ 0.06846			
eo	+0.01313	+ 0.01973	+0.01740	+ 0.03150	+0.06319	+0.90370	+ 0.61315	+ 0.13403			
e_1	-0.00310	-0.02717	-0.01177	- 0.03883	-0.09955	-1.89273	-1.39251	-0.25571			
e_2	+ 0.00850	-0.00926	- 0.00476	-0.03724	-0.10113	- 1·23847	-0.89470	-0.02687			
$dC_L/d\alpha$	$4 \cdot 285$		+4.860	+5.615	+ 6.447	+ 11.805	+ 12.391				
C_{Di}	1.003		1.006	1.010	1.014	1.009	1.005				
C_{m0}		-0.2283						-0.5506			
α0		-0.2268						-0.2347			
a.c.	1.068		1.076	1.086	1.095	1 • 175	1 · 169				

	Solut	ion 8. Per rac	dian	Solution 9. For $C_{m_0} = -1$			
1]	Load Coeff.	C_{LL}/C_L	Local a.c.	K/4sV	C_{LL}	Local a.c.	
$\begin{array}{c} 0\\ 0\cdot 05\\ 0\cdot 10\\ 0\cdot 15\\ 0\cdot 20\\ 0\cdot 25\\ 0\cdot 30\\ 0\cdot 35\\ 0\cdot 40\\ 0\cdot 45\\ 0\cdot 50\\ 0\cdot 55\\ 0\cdot 50\\ 0\cdot 55\\ 0\cdot 60\\ 0\cdot 65\\ 0\cdot 70\\ 0\cdot 75\\ 0\cdot 80\\ 0\cdot 85\\ 0\cdot 90\\ \end{array}$	$\begin{array}{c} 1 \cdot 247 \\ 1 \cdot 245 \\ 1 \cdot 241 \\ 1 \cdot 233 \\ 1 \cdot 222 \\ 1 \cdot 208 \\ 1 \cdot 191 \\ 1 \cdot 171 \\ 1 \cdot 148 \\ 1 \cdot 122 \\ 1 \cdot 092 \\ 1 \cdot 058 \\ 1 \cdot 020 \\ 0 \cdot 976 \\ 0 \cdot 927 \\ 0 \cdot 869 \\ 0 \cdot 799 \\ 0 \cdot 714 \\ 0 \cdot 603 \end{array}$	$\begin{array}{c} 0.816\\ 0.844\\ 0.871\\ 0.898\\ 0.925\\ 0.952\\ 0.952\\ 0.978\\ 1.005\\ 1.031\\ 1.056\\ 1.080\\ 1.104\\ 1.124\\ 1.124\\ 1.142\\ 1.153\\ 1.156\\ 1.142\\ 1.156\\ 1.142\\ 1.02\\ 1.020\\ 1.020\\ \end{array}$	$\begin{array}{c} 0\cdot 257\\ 0\cdot 257\\ 0\cdot 257\\ 0\cdot 256\\ 0\cdot 256\\ 0\cdot 256\\ 0\cdot 255\\ 0\cdot 254\\ 0\cdot 253\\ 0\cdot 252\\ 0\cdot 250\\ 0\cdot 249\\ 0\cdot 246\\ 0\cdot 244\\ 0\cdot 241\\ 0\cdot 238\\ 0\cdot 235\\ 0\cdot 235\\ 0\cdot 231\\ 0\cdot 227\\ 0\cdot 223\end{array}$	$\begin{array}{c} - 0.120 \\ - 0.119 \\ - 0.119 \\ - 0.115 \\ - 0.109 \\ - 0.100 \\ - 0.089 \\ - 0.076 \\ - 0.061 \\ - 0.044 \\ - 0.025 \\ - 0.004 \\ + 0.017 \\ 0.039 \\ 0.061 \\ 0.082 \\ 0.101 \\ 0.117 \\ 0.127 \\ 0.126 \end{array}$	$\begin{array}{c} -1.85\\ -1.89\\ -1.90\\ -1.87\\ -1.78\\ -1.78\\ -1.66\\ -1.47\\ -1.23\\ -0.92\\ -0.55\\ -0.11\\ +0.41\\ 1.01\\ 1.67\\ 2.40\\ 3.17\\ 3.93\\ 4.60\\ 5.04 \end{array}$	$\begin{array}{c} 0.210\\ 0.209\\ 0.208\\ 0.204\\ 0.200\\ 0.194\\ 0.184\\ 0.168\\ 0.140\\ +\ 0.068\\ -\ 0.667\\ +\ 0.465\\ 0.324\\ 0.282\\ 0.260\\ 0.246\\ 0.235\\ 0.226\\ 0.218\\ \end{array}$	
$\begin{array}{c} 0 \cdot 95 \\ 1 \cdot 00 \end{array}$	$\begin{array}{c} 0\cdot 442 \\ 0\cdot 000 \end{array}$	$\begin{array}{c} 0.931 \\ 0.822 \end{array}$	$\begin{array}{c} 0\cdot 218\\ 0\cdot 213\end{array}$	$\begin{array}{c} 0 \cdot 107 \\ 0 \cdot 000 \end{array}$	$\begin{array}{c} 5\cdot 33\\ 5\cdot 36\end{array}$	$\begin{array}{c} 0\cdot 211\\ 0\cdot 204\end{array}$	

Solutions for Tapered Wing, $28 \cdot 4$ deg Sweepback

	Solut	ion 10. Per ra	dian	Solution 11. Per radian		
η	Load Coeff.	C_{LL}/C_L	Local a.c.	Load Coeff.	C_{LL}/C_L	Local a.c.
$\begin{array}{c} 0\\ 0\cdot 05\\ 0\cdot 10\\ 0\cdot 15\\ 0\cdot 20\\ 0\cdot 25\\ 0\cdot 30\\ 0\cdot 35\\ 0\cdot 40\\ 0\cdot 45\\ 0\cdot 50\\ 0\cdot 55\\ 0\cdot 60\\ 0\cdot 65\\ 0\cdot 70\\ 0\cdot 75\\ 0\cdot 80\\ 0\cdot 85\\ 0\cdot 90\\ 0\cdot 95\end{array}$	$\begin{array}{c} 1\cdot 229\\ 1\cdot 228\\ 1\cdot 224\\ 1\cdot 217\\ 1\cdot 208\\ 1\cdot 196\\ 1\cdot 182\\ 1\cdot 164\\ 1\cdot 144\\ 1\cdot 120\\ 1\cdot 093\\ 1\cdot 063\\ 1\cdot 027\\ 0\cdot 986\\ 0\cdot 939\\ 0\cdot 883\\ 0\cdot 815\\ 0\cdot 730\\ 0\cdot 617\\ 0\cdot 452\end{array}$	$\begin{array}{c} 0 \cdot 804 \\ 0 \cdot 832 \\ 0 \cdot 859 \\ 0 \cdot 887 \\ 0 \cdot 914 \\ 0 \cdot 942 \\ 0 \cdot 970 \\ 0 \cdot 998 \\ 1 \cdot 026 \\ 1 \cdot 054 \\ 1 \cdot 082 \\ 1 \cdot 108 \\ 1 \cdot 132 \\ 1 \cdot 133 \\ 1 \cdot 169 \\ 1 \cdot 174 \\ 1 \cdot 164 \\ 1 \cdot 126 \\ 1 \cdot 045 \\ 0 \cdot 956 \end{array}$	$\begin{array}{c} 0 \cdot 264 \\ 0 \cdot 264 \\ 0 \cdot 263 \\ 0 \cdot 262 \\ 0 \cdot 262 \\ 0 \cdot 262 \\ 0 \cdot 260 \\ 0 \cdot 259 \\ 0 \cdot 257 \\ 0 \cdot 254 \\ 0 \cdot 252 \\ 0 \cdot 249 \\ 0 \cdot 246 \\ 0 \cdot 243 \\ 0 \cdot 239 \\ 0 \cdot 235 \\ 0 \cdot 231 \\ 0 \cdot 226 \\ 0 \cdot 222 \\ 0 \cdot 217 \\ 0 \cdot 212 \end{array}$	$\begin{array}{c} 1\cdot 212\\ 1\cdot 210\\ 1\cdot 207\\ 1\cdot 202\\ 1\cdot 194\\ 1\cdot 184\\ 1\cdot 172\\ 1\cdot 157\\ 1\cdot 139\\ 1\cdot 118\\ 1\cdot 095\\ 1\cdot 067\\ 1\cdot 035\\ 0\cdot 997\\ 0\cdot 952\\ 0\cdot 898\\ 0\cdot 832\\ 0\cdot 747\\ 0\cdot 634\\ 0\cdot 467\end{array}$	$\begin{array}{c} 0.792\\ 0.819\\ 0.847\\ 0.875\\ 0.903\\ 0.932\\ 0.961\\ 0.991\\ 1.022\\ 1.052\\ 1.083\\ 1.112\\ 1.140\\ 1.165\\ 1.184\\ 1.194\\ 1.187\\ 1.187\\ 1.152\\ 1.072\\ 0.983\end{array}$	$\begin{array}{c} 0\cdot 274\\ 0\cdot 274\\ 0\cdot 273\\ 0\cdot 273\\ 0\cdot 272\\ 0\cdot 270\\ 0\cdot 268\\ 0\cdot 265\\ 0\cdot 265\\ 0\cdot 265\\ 0\cdot 259\\ 0\cdot 255\\ 0\cdot 251\\ 0\cdot 246\\ 0\cdot 241\\ 0\cdot 236\\ 0\cdot 230\\ 0\cdot 224\\ 0\cdot 218\\ 0\cdot 212\\ 0\cdot 206\\ 0\cdot 200\end{array}$
1.00	0	0.846	0.207	0	0.872	0.195

TABLE 4—continued

~	Soluti	on 12. Per ra	dian	Solution 13. Per radian		
η	Load Coeff.	C_{LL}/C_L	Local a.c.	Load Coeff.	C_{LL}/C_L	Local a.c.
$\begin{array}{c} 0\\ 0\cdot 05\\ 0\cdot 10\\ 0\cdot 15\\ 0\cdot 20\\ 0\cdot 25\\ 0\cdot 30\\ 0\cdot 35\\ 0\cdot 40\\ 0\cdot 45\\ 0\cdot 50\\ 0\cdot 55\\ 0\cdot 60\\ 0\cdot 65\\ 0\cdot 70\\ 0\cdot 75\\ 0\cdot 80\\ 0\cdot 85\\ 0\cdot 85\\$	$\begin{array}{c} 1 \cdot 198 \\ 1 \cdot 197 \\ 1 \cdot 194 \\ 1 \cdot 190 \\ 1 \cdot 183 \\ 1 \cdot 174 \\ 1 \cdot 163 \\ 1 \cdot 150 \\ 1 \cdot 135 \\ 1 \cdot 116 \\ 1 \cdot 095 \\ 1 \cdot 070 \\ 1 \cdot 040 \\ 1 \cdot 004 \\ 0 \cdot 961 \\ 0 \cdot 909 \\ 0 \cdot 844 \\ 0 \cdot 760 \\ 0 \cdot 246 \end{array}$	$\begin{array}{c} 0.783\\ 0.783\\ 0.810\\ 0.838\\ 0.866\\ 0.894\\ 0.924\\ 0.955\\ 0.986\\ 1.018\\ 1.050\\ 1.083\\ 1.115\\ 1.146\\ 1.173\\ 1.196\\ 1.209\\ 1.205\\ 1.172\\ 1.$	$\begin{array}{c} 0.287\\ 0.287\\ 0.286\\ 0.284\\ 0.282\\ 0.278\\ 0.275\\ 0.275\\ 0.270\\ 0.265\\ 0.259\\ 0.253\\ 0.246\\ 0.239\\ 0.232\\ 0.224\\ 0.216\\ 0.208\\ 0.200\\ 0.100\\ 0.100\\ 0.100\\ 0.000\\ 0.$	$\begin{array}{c} 1 \cdot 192 \\ 1 \cdot 191 \\ 1 \cdot 190 \\ 1 \cdot 188 \\ 1 \cdot 185 \\ 1 \cdot 185 \\ 1 \cdot 181 \\ 1 \cdot 174 \\ 1 \cdot 165 \\ 1 \cdot 153 \\ 1 \cdot 138 \\ 1 \cdot 117 \\ 1 \cdot 091 \\ 1 \cdot 058 \\ 1 \cdot 017 \\ 0 \cdot 966 \\ 0 \cdot 903 \\ 0 \cdot 826 \\ 0 \cdot 729 \\$	$\begin{array}{c} 0.780 \\ 0.807 \\ 0.807 \\ 0.836 \\ 0.866 \\ 0.897 \\ 0.930 \\ 0.964 \\ 0.999 \\ 1.035 \\ 1.071 \\ 1.105 \\ 1.138 \\ 1.166 \\ 1.189 \\ 1.202 \\ 1.202 \\ 1.202 \\ 1.180 \\ 1.125 \end{array}$	$\begin{array}{c} 0\cdot432\\ 0\cdot432\\ 0\cdot429\\ 0\cdot424\\ 0\cdot418\\ 0\cdot410\\ 0\cdot399\\ 0\cdot386\\ 0\cdot370\\ 0\cdot352\\ 0\cdot330\\ 0\cdot370\\ 0\cdot352\\ 0\cdot330\\ 0\cdot304\\ 0\cdot274\\ 0\cdot240\\ 0\cdot200\\ 0\cdot154\\ 0\cdot101\\ +\ 0\cdot041\\ +\ 0\cdot041\end{array}$
$0.90 \\ 0.95 \\ 1.00$	$0.646 \\ 0.477 \\ 0.000$	1.093 1.005 0.894	$ \begin{array}{c c} 0.192 \\ 0.184 \\ 0.176 \end{array} $	$0.605 \\ 0.434 \\ 0.000$	$1.024 \\ 0.913 \\ 0.784$	$ \begin{array}{r} - 0.029 \\ - 0.109 \\ - 0.202 \end{array} $

Solutions for Tapered Wing, 28.4 deg Sweepback

· D	Solut	ion 14. Per ra	dian	Solution 15. For $C_{m_0} = -1$		
"	Load Coeff.	C_{LL}/C_L	Local a.c.	K/4sV	C _{LL}	Local a.c.
$\begin{array}{c} 0\\ 0\cdot05\\ 0\cdot10\\ 0\cdot15\\ 0\cdot20\\ 0\cdot25\\ 0\cdot30\\ 0\cdot35\\ 0\cdot40\\ 0\cdot45\\ 0\cdot50\\ 0\cdot55\\ 0\cdot60\\ 0\cdot65\\ 0\cdot65\\ 0\cdot70\\ \end{array}$	$\begin{array}{c} 1 \cdot 205 \\ 1 \cdot 205 \\ 1 \cdot 204 \\ 1 \cdot 203 \\ 1 \cdot 201 \\ 1 \cdot 197 \\ 1 \cdot 197 \\ 1 \cdot 191 \\ 1 \cdot 182 \\ 1 \cdot 169 \\ 1 \cdot 152 \\ 1 \cdot 130 \\ 1 \cdot 100 \\ 1 \cdot 063 \\ 1 \cdot 015 \\ 0 \cdot 958 \end{array}$	$\begin{array}{c} 0.789\\ 0.816\\ 0.846\\ 0.876\\ 0.908\\ 0.942\\ 0.978\\ 1.013\\ 1.049\\ 1.084\\ 1.118\\ 1.147\\ 1.171\\ 1.187\\ 1.192\\ \end{array}$	$\begin{array}{c} 0 \cdot 431 \\ 0 \cdot 430 \\ 0 \cdot 427 \\ 0 \cdot 422 \\ 0 \cdot 415 \\ 0 \cdot 406 \\ 0 \cdot 394 \\ 0 \cdot 381 \\ 0 \cdot 365 \\ 0 \cdot 346 \\ 0 \cdot 325 \\ 0 \cdot 346 \\ 0 \cdot 325 \\ 0 \cdot 301 \\ 0 \cdot 273 \\ 0 \cdot 241 \\ 0 \cdot 204 \end{array}$	$\begin{array}{c} - \ 0 \cdot 077 \\ - \ 0 \cdot 076 \\ - \ 0 \cdot 074 \\ - \ 0 \cdot 070 \\ - \ 0 \cdot 064 \\ - \ 0 \cdot 057 \\ - \ 0 \cdot 049 \\ - \ 0 \cdot 038 \\ - \ 0 \cdot 027 \\ - \ 0 \cdot 015 \\ - \ 0 \cdot 002 \\ + \ 0 \cdot 012 \\ 0 \cdot 026 \\ 0 \cdot 040 \\ 0 \cdot 053 \end{array}$	$\begin{array}{c} - 1 \cdot 19 \\ - 1 \cdot 22 \\ - 1 \cdot 22 \\ - 1 \cdot 20 \\ - 1 \cdot 14 \\ - 1 \cdot 06 \\ - 0 \cdot 94 \\ - 0 \cdot 77 \\ - 0 \cdot 58 \\ - 0 \cdot 33 \\ - 0 \cdot 04 \\ + 0 \cdot 29 \\ 0 \cdot 67 \\ 1 \cdot 09 \\ 1 \cdot 54 \end{array}$	$\begin{array}{c} 0\cdot044\\ 0\cdot039\\ +\ 0\cdot023\\ -\ 0\cdot004\\ -\ 0\cdot047\\ -\ 0\cdot111\\ -\ 0\cdot206\\ -\ 0\cdot365\\ -\ 0\cdot660\\ -\ 1\cdot451\\ -\ 13\cdot371\\ +\ 2\cdot375\\ 1\cdot157\\ 0\cdot773\\ 0\cdot570\\ \end{array}$
0.75 0.80 0.85 0.90 0.95 1.00	$\begin{array}{c} 0.887\\ 0.801\\ 0.696\\ 0.567\\ 0.397\\ 0.000\\ \end{array}$	$1 \cdot 180$ $1 \cdot 144$ $1 \cdot 074$ $0 \cdot 960$ $0 \cdot 836$ $0 \cdot 696$	$\begin{array}{c} 0.162\\ 0.114\\ + 0.056\\ - 0.011\\ - 0.092\\ - 0.190\end{array}$	$\begin{array}{c} 0.065 \\ 0.074 \\ 0.080 \\ 0.079 \\ 0.067 \\ 0.000 \end{array}$	$ \begin{array}{r} 2 \cdot 02 \\ 2 \cdot 49 \\ 2 \cdot 90 \\ 3 \cdot 15 \\ 3 \cdot 32 \\ 3 \cdot 32 \\ \end{array} $	$\begin{array}{c} 0.435\\ 0.333\\ 0.249\\ 0.175\\ 0.107\\ 0.043\end{array}$

.

Solutions for Delta Wing

- 16. M = 0: 126-vortex, 8-point solution.
- 17. M = 0.8: 126-vortex, 8-point solution.
- 18. M = 0.9: 126-vortex, 8-point solution.
- 19. M = 1.0: 126-vortex, 8-point solution.

Ouentity		Solutio		
Quantity	16	17	18	19
a	+ 0.10493	+ 0.10959	+ 0.11087	-0.02407
a_1	0.02111	0.02358	0.03080	0.41249
Co	+ 0.04263	+ 0.03755	+ 0.04149	+ 0.37902
<i>c</i> ₁	-0.10884	- 0.07947	-0.07572	-0.67474
eo	-0.05158	-0.03310	-0.02856	-0.17785
e_1	+ 0.06931	+ 0.03861	+ 0.02726	+ 0.23605
Þ٥	-0.21402	-0.20065	-0.20509	-0.30418
₽ı	+ 0.42804	+ 0.40130	+ 0.41018	+ 0.60837
$dC_L/d\alpha$	$2 \cdot 517$	2.715	2.856	$4 \cdot 219$
C_{Di}	1.010	$1 \cdot 002$	1.001	1.002
'a.c.	1 · 185	1 · 193	1.204	1 • 441

ŝ,

TABLE 6

	Soluti	Solution 16. Per radian		Solu	dian	
η	Load Coeff.	C_{LL}/C_L	Local a.c.	Load Coeff.	C_{LL}/C_L	Local a.c.
$\begin{array}{c} 0\\ 0\cdot05\\ 0\cdot10\\ 0\cdot15\\ 0\cdot20\\ 0\cdot25\\ 0\cdot30\\ 0\cdot35\\ 0\cdot40\\ 0\cdot45\\ 0\cdot50\\ 0\cdot55\\ 0\cdot60\\ 0\cdot55\\ 0\cdot60\\ 0\cdot65\\ 0\cdot70\\ 0\cdot75\\ 0\cdot80\\ 0\cdot85\\ 0\cdot80\\ 0.85\\ 0.$	$\begin{array}{c} 1\cdot 332\\ 1\cdot 330\\ 1\cdot 324\\ 1\cdot 313\\ 1\cdot 299\\ 1\cdot 280\\ 1\cdot 257\\ 1\cdot 229\\ 1\cdot 916\\ 1\cdot 157\\ 1\cdot 113\\ 1\cdot 063\\ 1\cdot 006\\ 0\cdot 942\\ 0\cdot 870\\ 0\cdot 789\\ 0\cdot 699\\ 0\cdot 596\\ 2\cdot 56\end{array}$	$\begin{array}{c} 0.666\\ 0.700\\ 0.735\\ 0.773\\ 0.812\\ 0.854\\ 0.898\\ 0.945\\ 0.997\\ 1.052\\ 1.113\\ 1.181\\ 1.257\\ 1.345\\ 1.450\\ 1.579\\ 1.747\\ 1.987\\ 0.997\end{array}$	$\begin{array}{c} 0.355\\ 0.348\\ 0.336\\ 0.325\\ 0.316\\ 0.309\\ 0.303\\ 0.297\\ 0.291\\ 0.285\\ 0.280\\ 0.274\\ 0.269\\ 0.269\\ 0.264\\ 0.259\\ 0.255\\ 0.251\\ 0.249\\ 0.$	$\begin{array}{c} 1\cdot 298\\ 1\cdot 296\\ 1\cdot 291\\ 1\cdot 282\\ 1\cdot 270\\ 1\cdot 254\\ 1\cdot 235\\ 1\cdot 211\\ 1\cdot 182\\ 1\cdot 149\\ 1\cdot 111\\ 1\cdot 067\\ 1\cdot 016\\ 0\cdot 959\\ 0\cdot 893\\ 0\cdot 819\\ 0\cdot 733\\ 0\cdot 634\\ 0\cdot 634\\ 0\cdot 515\end{array}$	$\begin{array}{c} 0.649\\ 0.682\\ 0.717\\ 0.754\\ 0.794\\ 0.836\\ 0.882\\ 0.931\\ 0.985\\ 1.045\\ 1.111\\ 1.185\\ 1.270\\ 1.369\\ 1.489\\ 1.637\\ 1.833\\ 2.114\\ 0.570\end{array}$	$\begin{array}{c} 0.348\\ 0.341\\ 0.330\\ 0.322\\ 0.314\\ 0.308\\ 0.303\\ 0.298\\ 0.293\\ 0.293\\ 0.288\\ 0.284\\ 0.279\\ 0.275\\ 0.271\\ 0.267\\ 0.263\\ 0.259\\ 0.256\\ 0.259\\ 0.256\\ 0.256\\ 0.256\end{array}$
$0.90 \\ 0.95 \\ 1.00$	0.477 0.328 0		$ \begin{array}{c} 0.248 \\ 0.248 \\ 0.250 \end{array} $	$ \begin{array}{c} 0.313 \\ 0.361 \\ 0 \end{array} $	3.610	$ \begin{array}{c} 0.233 \\ 0.251 \\ 0.250 \end{array} $

Solutions for Delta Wing

	Soluti	on 18. Per rad	lian Solution 19. Per radian			
η	Load Coeff.	C_{LL}/C_L	Local a.c.	Load Coeff.	C_{LL}/C_L	Local a.c.
$\begin{array}{c} 0\\ 0\cdot05\\ 0\cdot10\\ 0\cdot15\\ 0\cdot20\\ 0\cdot25\\ 0\cdot30\\ 0\cdot35\\ 0\cdot40\\ 0\cdot45\\ 0\cdot50\\ 0\cdot55\\ 0\cdot60\\ 0\cdot55\\ 0\cdot60\\ 0\cdot65\\ 0\cdot70\\ 0\cdot75\\ 0\cdot80\\ 0\cdot85\\ \end{array}$	$\begin{array}{c} 1\cdot 283\\ 1\cdot 281\\ 1\cdot 277\\ 1\cdot 269\\ 1\cdot 258\\ 1\cdot 244\\ 1\cdot 226\\ 1\cdot 204\\ 1\cdot 178\\ 1\cdot 147\\ 1\cdot 111\\ 1\cdot 069\\ 1\cdot 021\\ 0\cdot 966\\ 0\cdot 903\\ 0\cdot 830\\ 0\cdot 747\\ 0\cdot 648\end{array}$	$\begin{array}{c} 0.642\\ 0.674\\ 0.709\\ 0.747\\ 0.786\\ 0.829\\ 0.876\\ 0.926\\ 0.981\\ 1.043\\ 1.111\\ 1.188\\ 1.277\\ 1.380\\ 1.505\\ 1.661\\ 1.866\\ 2.160\\ \end{array}$	$\begin{array}{c} 0.353\\ 0.346\\ 0.336\\ 0.327\\ 0.320\\ 0.314\\ 0.309\\ 0.304\\ 0.299\\ 0.299\\ 0.295\\ 0.290\\ 0.286\\ 0.281\\ 0.277\\ 0.272\\ 0.268\\ 0.264\\ 0.260\\ \end{array}$	$\begin{array}{c} 1\cdot 253\\ 1\cdot 252\\ 1\cdot 250\\ 1\cdot 245\\ 1\cdot 238\\ 1\cdot 229\\ 1\cdot 217\\ 1\cdot 201\\ 1\cdot 181\\ 1-156\\ 1\cdot 125\\ 1\cdot 088\\ 1\cdot 042\\ 0\cdot 988\\ 0\cdot 925\\ 0\cdot 849\\ 0\cdot 761\\ 0\cdot 656\end{array}$	$\begin{array}{c} 0.627\\ 0.659\\ 0.694\\ 0.732\\ 0.774\\ 0.819\\ 0.869\\ 0.924\\ 0.984\\ 1.051\\ 1.125\\ 1.208\\ 1.303\\ 1.412\\ 1.541\\ 1.699\\ 1.902\\ 2.187\end{array}$	$\begin{array}{c} 0.607\\ 0.600\\ 0.585\\ 0.571\\ 0.555\\ 0.540\\ 0.523\\ 0.506\\ 0.487\\ 0.468\\ 0.448\\ 0.427\\ 0.406\\ 0.385\\ 0.364\\ 0.343\\ 0.323\\ 0.303\\ \end{array}$
$0.90 \\ 0.95 \\ 1.00$	$ \begin{array}{c} 0.529 \\ 0.372 \\ 0 \end{array} $	2.644 3.723	$0.257 \\ 0.253 \\ 0.250$	$ \begin{array}{c} 0.530 \\ 0.367 \\ 0 \end{array} $	$ \begin{array}{r} 2 \cdot 649 \\ 3 \cdot 673 \\ \end{array} $	$0.285 \\ 0.267 \\ 0.250$

	Solution 20	: 59 deg	Tapered	Wing:	
M = 0:	84-Vortex, 3-1	Point Star	ndard Solu	tion for I	ncidence.
	η =	$= 0 \cdot 2, 0$	·5, 0·8		

α_0	0.07171	$dC_L/d\alpha = 2 \cdot 610$
C	$0 \cdot 01222$	Local a.c. 0.25 chord.
e_0	0.00625	

η	C_{LL}/C_L	$C_{LL}c/C_L\bar{c}$
0	0.755	1.208
0.1	0.814	1 · 204
$0 \cdot 2$	0.877	1.192
$0\cdot 3$	0.945	1.171
0.4	1.018	1.140
0.5	1.097	1.097
0.6	1 · 179	1.037
0.7	$1 \cdot 254$	0.953
0.8	$1 \cdot 297$	0.830
0.9	$1 \cdot 211$	0.630
0.95	$1 \cdot 005$	0.462
$1 \cdot 00$	0	0

To convert solution to M = 0.8 for 45 deg wing, multiply $dC_L/d\alpha$ by $1.\dot{6}$.

TABLE 8

Solution 21: 59 deg Tapered Wing: M = 0: 84-vortex, 6-Point Standard Solution for Incidence: $\eta = 0.2, 0.5, 0.8$

		1	· · · · · · · · · · · · · · · · · · ·
η	C_{LL}/C_L	$C_{LL}c/C_L\overline{c}$	Local a.c.
0	0.755	1 · 207	0.276
$0 \cdot 1$	0.813	1.204	0.276
$0\cdot 2$	0.877	1 · 193	0.274
0.3	0.946	1.173	0.271
$0 \cdot 4$	1.021	1.143	0.266
0.5	1.101	1.101	0.260
0.6	1.182	1.040	0.253
0.7	$1 \cdot 256$	0.954	$0 \cdot 244$
0.8	1 · 292	0.827	0.233
$0 \cdot 9$	1.198	0.623	$0 \cdot 220$
0.95	0.990	0.455	0.214
1.00	0.000	0.000	0.206

To convert solution to M = 0.8 for 45 deg wing, multiply $dC_L/d\alpha$ by $1.\dot{6}$

Solution 22: 59 deg Tapered Wing:

M = 0: 84-Vortex, 9-Point Standard Solution for Incidence:

 $\eta = 0.2, 0.5, 0.8$

a ₀	0.06414	Co	$0 \cdot 10277$	e_0	$0 \cdot 01668$
a_1	$0 \cdot 01754$	\mathcal{C}_1	-0.14162	e_1	-0.00284
<i>a</i> 2	$0 \cdot 00256$	C_2	-0.10079	e_2	-0.01720
dC_L/dc	$x = 2 \cdot 860$		a.c. $= 1.746$	iī beh	ind apex.

η	C_{LL}/C_L	$C_{LL}c/C_L\overline{c}$	Local a.c.
$ \begin{array}{c} 0 \\ 0.05 \\ 0.10 \\ 0.15 \\ 0.20 \\ 0.20 \\ 0.25 \\ 0.20$	0.701 0.728 0.757 0.788 0.822 0.858	$ \begin{array}{c} 1 \cdot 121 \\ 1 \cdot 121 \\ 1 \cdot 120 \\ 1 \cdot 119 \\ 1 \cdot 118 \\ 1 \cdot 116 \\ 1 \cdot 112 \end{array} $	0.2760.2750.2750.2740.2740.2720.2710.269
$\begin{array}{c} 0.30 \\ 0.35 \\ 0.40 \\ 0.45 \\ 0.50 \\ 0.55 \end{array}$	$ \begin{array}{c} 0.898\\ 0.941\\ 0.987\\ 1.036\\ 1.090\\ 1.147 \end{array} $	$1 \cdot 113$ $1 \cdot 110$ $1 \cdot 105$ $1 \cdot 099$ $1 \cdot 090$ $1 \cdot 078$	$\begin{array}{c} 0.269\\ 0.266\\ 0.264\\ 0.261\\ 0.259\\ 0.259\\ 0.256\end{array}$
$\begin{array}{c} 0.60 \\ 0.65 \\ 0.70 \\ 0.75 \\ 0.80 \\ 0.85 \end{array}$	$ \begin{array}{r} 1 \cdot 208 \\ 1 \cdot 270 \\ 1 \cdot 333 \\ 1 \cdot 391 \\ 1 \cdot 436 \\ 1 \cdot 452 \\ \end{array} $	$ \begin{array}{c} 1 \cdot 063 \\ 1 \cdot 042 \\ 1 \cdot 013 \\ 0 \cdot 974 \\ 0 \cdot 919 \\ 0 \cdot 842 \end{array} $	$\begin{array}{c} 0.253 \\ 0.250 \\ 0.248 \\ 0.246 \\ 0.243 \\ 0.242 \end{array}$
$0.90 \\ 0.95 \\ 1.00$	$ \begin{array}{c} 1 \cdot 402 \\ 1 \cdot 192 \\ 0 \end{array} $	$\begin{array}{c} 0.729\\ 0.548\\ 0\end{array}$	$0.240 \\ 0.239 \\ 0.238$

To convert solution to M=0.8 for 45 deg wing, multiply $dC_L/d\alpha$ by 1.6

TABLE 10

Solution 23: 59 deg Tapered Wing:

M = 0: 84-Vortex, 12-Point Standard Solution for Incidence: Reduced by Least Squares: $\eta = 0.2, 0.5, 0.7, 0.8$

a_0	0.06194	\mathcal{C}_{0}	$0 \cdot 11360$	e_0	-0.00127
a_1	0.01201	C_1	-0.11752	e_1	-0.01632
a_2	0.01210	C_2	-0.19905	\mathcal{e}_2	$0 \cdot 11477$
dC_L	$d\alpha = 2.780$				

η	C_{LL}/C_L	$C_{LL}c/C_L\overline{c}$	Local a.c.
0	0.672	1.075	0.250
$0 \cdot 1$	0.728	1.078	0.251
$0 \cdot 2$	0.799	1.087	0.255
0.3	0.886	$1 \cdot 099$	0.261
$0 \cdot 4$	0.990	1.109	0.266
0.5	1.111	1.111	0.269
0.6	$1 \cdot 244$	1.094	0.268
0.7	1.376	$1 \cdot 046$	0.261
0.8	1 • 471	0.941	0.248
0.9	1.408	0.732	0.226
0.95	1.179	0.542	0.212
1.00	0	0	0 · 195
		l	1

To convert solution to M = 0.8 for 45 deg. wing multiply $dC_L/d\alpha$ by $1.\dot{6}$

÷

.

Solution 24: 59 deg Tapered Wing: M = 0: 126-Vortex, 3-Point Standard Solution for Incidence: $\eta = 0.2, 0.6, 0.8$

 a_0 $0 \cdot 07177$ $dC_L/d\alpha = 2 \cdot 585$
 c_0 $0 \cdot 00276$ Local a.c. $0 \cdot 25$ chord.

 $e_0 = 0.01905$

.

η	C_{LL}/C_L	$C_{LL}c/C_L\bar{c}$
0	• 0.763	1 · 221
0.1	0.821	1.215
$0 \cdot 2$	0.881	1.199
0.3	0.944	· 1·171
$0 \cdot 4$	1.012	1.134
0.5	1 085	1.085
0.6	1 · 164	1.024
0.7	1.242	0.944
0.8	$1 \cdot 297$	0.830
0.9	1.234	0.642
0.95	1.037	0.477
$1 \cdot 0$	· 0	0

To convert solution to M = 0.8 for 45 deg wing, multiply $dC_L/d\alpha$ by 1.6

TABLE 12

Solution 25: 59 deg Tapered Wing: M = 0: 126-Vortex, 6-Point Standard Solution for Incidence: $\eta = 0.2, 0.6, 0.8$

$a_0 = 0.06536$	C_0	0·01317̈́,	\mathcal{C}_{0}	0.02986
$a_1 \qquad 0.01700$	\mathcal{C}_1	-0.02266	e_1 .	-0.02285
$dC_L/d\alpha = 2.647$	a.	c. 1·6927 behi	nd apex	•

η	C_{LL}/C_L	$C_{LL}c/C_L\bar{c}$	Local a.c.
	0.767	1.997	0.270
0 05	0.707	1.000	0.279
0.05	0.796	1.226	0.279
$0 \cdot 10$	0.825	$1 \cdot 222$	0.278
0.15	0.855	$1 \cdot 214$	0.278
$0 \cdot 20$	0.885	$1 \cdot 204$	0.277
0.25	0.916	1.191	0.276
0.30	0.948	1.176	0.275
0.35	0.981	1.157	0.273
0.40	1.015	1.136	0.271
0.45	1.050	1.113	0.269
0.50	1.086	1.086	0.266
0.55	1.124	1.056	0.263
0.60	$1 \cdot 162$	1.022	0.260
0.65	$1 \cdot 200$	0.984	0.255
0.70	$1 \cdot 236$	0.940	0.251
0.75	1.267	0.887	0.245
0.80	1.286	0.823	0.240
0.85	1.280	0.742	0.233
0.90	1.218	0.633	0.227
0.95	1.021	0.470	0.220
$1 \cdot 00$	0	0	0.212

To convert solution to M = 0.8 for 45 deg wing, multiply $dC_L/d\alpha$ by $1.\dot{6}$

щ

Solution 26: 59 deg Tapered Wing: M = 0: 126-Vortex, 9-Point Standard Solution for Incidence: $\eta = 0.2, 0.6, 0.8$

a_0	0.06578	<i>C</i> ₀	-0.01439	e_0	0.08223
a_1	0.01642	\mathcal{C}_1	$0 \cdot 02333$	e_1	-0.11095
a_2	-0.00128	C_2	0.04204	e_2	-0.07743
dCı	$d\alpha = 2 \cdot 648$	а	i.c. $1 \cdot 695 \ \overline{c}$ behin	d ape	ex.

η	C_{LL}/C_L	$C_{LL}c/C_L\bar{c}$	Local a.c.
0	0.768	1.229	0.280
0.05	0.797	1.227	0.280
0.10	0.826	$1 \cdot 222$	0.280
0.15	0.855	$1 \cdot 214$	0.279
$0 \cdot 20$	0.885	$1 \cdot 203$	0.279
0.25	0.914	$1 \cdot 189$	0.278
0.30	0.945	$1 \cdot 172$	0.277
0.35	0.977	$1 \cdot 152$	0.275
$0 \cdot 40$	1.009	$1 \cdot 130$	0.273
0.45	1.043	1.106	0.271
0.50	1.079	1.078	0.268
0.55	1.116	$1 \cdot 049$	0.265
0.60	$1 \cdot 155$	1.016	0.261
0.65	1 · 195	0.980	0.256
0.70	1.234	0.938	0.251
0.75	$1 \cdot 270$	0.889	0.245
0.80	$1 \cdot 295$	0.829	0.238
0.85	$1 \cdot 297$	0.752	0.231
0.90	$1 \cdot 244$	0.647	0.223
0.95	1.052	0.484	0.214
$1 \cdot 00$	0	0	0.206

To convert solution to M = 0.8 for 45 deg wing, multiply $dC_L/d\alpha$ by $1.\dot{6}$

TABLE 14

Solution 27: 59 deg Tapered Wing:

M = 0: 126-Vortex, 6-Point Standard Solution Corrected by Auxiliary Solution at $\eta = 0, 0.2$

a_0'	0.03004	p_{0}	-0.36434	
a_1'	-0.05207	p_1	0.59181	
P	$= 0.65P_a + 0.35P_b$		$dC_L/d\alpha = 2.5$	582
a.c.	$1.736\overline{c}$ behind apex.			

η	C_{LL}/C_L	$C_{LL}c/C_L\bar{c}$	Local a.c.
0	0.700	1.119	0.383
0.05	0.737	1.135	0.364
0.10	0.784	$1 \cdot 160$	0.334
0.15	0.828	1.176	.0.312
0.20	0.870	1.183	0.294
0.25	0.909	1.182	0.282
0.30	0.948	1 · 175	0.275
0.35	0.986	1.164	0.273
0.40	$1 \cdot 025$	1.148	0.271
0.45	1.065	1.129	0.269
0.50	$1 \cdot 106$	1.106	0.266
0.55	$1 \cdot 148$	1.079	0.263
0.60	$1 \cdot 190$	1.047	0.260
0.65	$1 \cdot 232$	1.010	0.255
0.70	$1 \cdot 272$	0.967	0.251
0.75	1.306	0.914	0.245
0.80	1.328	0.850	0.240
0.85	$1 \cdot 323$	0.768	0.233
0.90	$1 \cdot 260$	0.655	0.227
0.95	1.058	0.486	0.220
1.00	0.000	0.000	0.212

To convert solution to M = 0.8 for 45 deg wing, multiply $dC_L/d\alpha$ by $1.\dot{6}$

Solution 28: 59 deg Tapered Wing: M = 0: 126-Vortex, 6-Point Standard Solution for Wing Twist, θ Linear, $\eta = 0.2, 0.6, 0.8$

a_{0}	-0.01429	Co	0.04843	\mathcal{C}_{0}	$0 \cdot 00012$
a_1	$0 \cdot 00443$	C_1	$0 \cdot 01478$	e_1 –	- 0.03030
α0	-0.3745	C_{m0} .	-0.3132		

η .	C_{LL} for $C_{m0} = -1$	$K/4sV \text{ for } C_{m0} = -1$ at $M = 0.8$	Local a.c.
$ \begin{array}{c} 0 \\ 0 \cdot 05 \\ 0 \cdot 10 \\ 0 \cdot 15 \\ 0 \cdot 20 \\ 0 \cdot 25 \\ 0 \cdot 30 \\ \end{array} $	$\begin{array}{r} - 1.060 \\ - 1.087 \\ - 1.088 \\ - 1.059 \\ - 0.998 \\ - 0.905 \\ - 0.775 \end{array}$	$\begin{array}{r} - 0.0727 \\ - 0.0717 \\ - 0.0690 \\ - 0.0645 \\ - 0.0582 \\ - 0.0504 \\ - 0.0412 \end{array}$	$0.204 \\ 0.203 \\ 0.200 \\ 0.195 \\ 0.187 \\ 0.174 \\ 0.154$
$\begin{array}{c} 0.35\\ 0.40\\ 0.45\\ 0.50\\ 0.55\\ 0.60\\ 0.65\\ 0.70\\ 0.75\\ 0.80\\ 0.85\\ 0.90\end{array}$	$\begin{array}{c} - & 0 \cdot 609 \\ - & 0 \cdot 406 \\ - & 0 \cdot 166 \\ + & 0 \cdot 114 \\ & 0 \cdot 427 \\ & 0 \cdot 774 \\ 1 \cdot 147 \\ 1 \cdot 540 \\ 1 \cdot 934 \\ 2 \cdot 301 \\ 2 \cdot 603 \\ 9 \cdot 740 \end{array}$	$\begin{array}{c} 0 & 0.0312 \\ - & 0.0308 \\ - & 0.0195 \\ - & 0.0075 \\ + & 0.0049 \\ & 0.0172 \\ & 0.0292 \\ & 0.0403 \\ & 0.0292 \\ & 0.0403 \\ & 0.0501 \\ & 0.0580 \\ & 0.0631 \\ & 0.0647 \\ & 0.0611 \end{array}$	$\begin{array}{c} 0 & 134 \\ 0 \cdot 117 \\ + & 0 \cdot 037 \\ - & 0 \cdot 304 \\ + & 1 \cdot 083 \\ 0 \cdot 475 \\ 0 \cdot 371 \\ 0 \cdot 325 \\ 0 \cdot 297 \\ 0 \cdot 297 \\ 0 \cdot 261 \\ 0 \cdot 246 \\ 0 \cdot 2246 \\ 0 \cdot 231 \end{array}$
$\begin{array}{c} 0.95 \\ 1.00 \end{array}$	$2 \cdot 486$	0.0490 0	$0.217 \\ 0.202$

To convert solution to M = 0.8 for 45 deg wing, multiply C_{m0} by $1.\dot{6}$

TABLE 16

Solution 29: 59 deg Tapered Wing: M = 0: 126-Vortex, 6-Point Standard Solution for Wing Twist, θ Linear, Corrected by Auxiliary Solution: $\eta = 0, 0.1$

a_0'	-0.00166	p_{a0}	0.04379	<i>p</i> 60	-0.01080
a_1'	0.00710	p_{a1} -	-0.08871	p_{b_1}	-0.00766
α0	-0.3573	C_{m0} -	- 0.3261		

η	$\begin{array}{c} C_{LL} \text{ for} \\ C_{m0} = -1 \end{array}$	$K/4sV \text{ for} \\ C_{m0} = -1 \\ \text{at } M = 0.8$	Local a.c.
$\begin{array}{c} 0\\ 0\cdot05\\ 0\cdot10\\ 0\cdot15\\ 0\cdot20\\ 0\cdot25\\ 0\cdot30\\ 0\cdot35\\ 0\cdot40\\ 0\cdot45\\ 0\cdot50\\ 0\cdot55\\ 0\cdot60\\ 0\cdot65\\ 0.60\\ 0.65\\ 0.70\\ \end{array}$	$\begin{array}{c} - 1 \cdot 164 \\ - 1 \cdot 180 \\ - 1 \cdot 156 \\ - 1 \cdot 093 \\ - 1 \cdot 002 \\ - 0 \cdot 889 \\ - 0 \cdot 745 \\ - 0 \cdot 572 \\ - 0 \cdot 362 \\ - 0 \cdot 120 \\ + 0 \cdot 160 \\ 0 \cdot 472 \\ 0 \cdot 814 \\ 1 \cdot 183 \\ 1 \cdot 566 \end{array}$	$\begin{array}{c} - 0.0798 \\ - 0.0779 \\ - 0.0779 \\ - 0.0733 \\ - 0.0665 \\ - 0.0584 \\ - 0.0495 \\ - 0.0396 \\ - 0.0289 \\ - 0.0174 \\ - 0.0054 \\ + 0.0069 \\ 0.0190 \\ 0.0307 \\ 0.0416 \\ 0.0510 \end{array}$	$\begin{array}{c} 0.277\\ 0.263\\ 0.237\\ 0.218\\ 0.199\\ 0.176\\ 0.154\\ 0.117\\ +\ 0.037\\ -\ 0.304\\ +\ 1.083\\ 0.475\\ 0.371\\ 0.325\\ 0.207\end{array}$
$\begin{array}{c} 0.70 \\ 0.75 \\ 0.80 \\ 0.85 \\ 0.90 \\ 0.95 \\ 1.00 \end{array}$	$ \begin{array}{r} 1 \cdot 566 \\ 1 \cdot 952 \\ 2 \cdot 309 \\ 2 \cdot 602 \\ 2 \cdot 731 \\ 2 \cdot 469 \\ 0 \cdot 000 \\ \end{array} $	0.0510 0.0586 0.0634 0.0647 0.0609 0.0487 0.0000	$0.297 \\ 0.277 \\ 0.261 \\ 0.246 \\ 0.231 \\ 0.217 \\ 0.202$

To convert solution to M = 0.8, for 45 deg wing, multiply C_{m0} by 1.6

Solution 30: 45 deg Tapered Wing: M = 0: 126-Vortex, 6-Point Standard Solution for Incidence: $\eta = 0.2, 0.6, 0.8$

a_{0}	0.06004	\mathcal{C}_{0}	-0.00268	$e_{\mathfrak{c}}$	0.03132
a_1	0.00686	c_1	-0.00686	e_1	-0.02732
	$dC_L/d\alpha = 3.672$		a.c. 1.656 <i>ī</i>	behind	apex.

η	C_{LL}/C_L	$C_{LL}c/C_L\overline{c}$	Local a.c.
0	0.787	1.260	0.264
0.05	0.817	1.258	0.264
0.10	0.846	1.252	0.263
0.15	0.876	1.243	0.263
0.20	0.904	1.230	0.263
0.25	0.934	$1 \cdot 214$	0.262
0.30	0.963	1.194	0.262
0.35	0.993	1.171	0.261
0.40	1.022	1.145	0.260
0.45	1.052	1.116	0.259
0.50	1.084	1.084	0.257
0.55	1.115	1.048	0.254
0.60	1.147	1.009	0.252
0.65	1.178	0.966	0.248
0.70	$1 \cdot 207$	0.917	0.244
0.75	$1 \cdot 230$	0.861	0.239
0.80	$1 \cdot 244$	0.796	0.234
0.85	$1 \cdot 231$	0.714	0.227
0.90	1.167	0.607	0.220
0.95	0.974	0.448	0.213
$1 \cdot 00$	0	0	0.204
			×

TABLE 18

Solution 31: 45 deg Tapered Wing:

M = 0: 126-Vortex, 9-Point Standard Solution for Incidence:

 $\eta = 0.2, 0.6, 0.8$

a_0	0.06104	c ₀ —	0.01508	e_0		0.06017
a_1	0.00536	C_1	0.01403	\mathcal{e}_1	••	0.07508
$a_2 -$	- 0.00135	C_2	0.01724	e_2		0.03866
dC_L/d	$\alpha = 3 \cdot 694$	a.c.	$1 \cdot 659\overline{c}$ behind	l ap	ex.	

η	C_{LL}/C_L	$C_{LL}c/C_L\bar{c}$	Local a.c.
0	0.786	1.157	0.263
0.05	0.815	1.255	0.263
0.10	0.844	1-249	0.263
0.15	0.873	$1 \cdot 240$	0.263
0.20	0.902	$1 \cdot 226$	0.263
0.25	0.930	$1 \cdot 209$	0.263
0.30	0.959	1.189	0.262
0.35	0.988	$1 \cdot 166$	0.261
0.40	1.017	1.139	0.260
0.45	1.047	$1 \cdot 110$	0.259
0.50	1.078	1.078	0.257
0.55	1.110	$1 \cdot 044$	0.255
0.60	1.144	1.006	0.252
0.65	1.176	0.965	0.248
0.70	$1 \cdot 209$	0.919	0.243
0.75	$1 \cdot 237$	0.866	0.238
0.80	1.255	0.803	0.231
0.85	1.249	0.724	0.224
0.90	1.192	0.620	0.216
0.95	1.002	0.461	0.207
$1 \cdot 00$	0	0	0.197

.

Solution 32: 45 deg Tapered Wing: M = 0: 126-Vortex, 6-Point Standard Solution for Incidence: Modified by Auxiliary Solution: $\eta = 0, 0.2$

$a_0' \qquad 0.02303$	$p_0 - 0.26723$
$a_{1}' - 0.04040$	$p_1 = 0.43754$
$dC_L/d\alpha = 3.596$	a.c. = $1 \cdot 692\overline{c}$ behind apex.

η	C_{LL}/C_L	C _{LL} c/C _L c	Local a.c.
0	0.731	1.169	0.346
0.05	0.768	$1 \cdot 182$	0.330
0.10	0.812	$1 \cdot 202$	0.306
0.15	0.853	1.211	0.287
0.20	0.892	1.213	0.273
0.25	0.928	$1 \cdot 206$	0.262
0.30	0.963	1.194	0.262
0.35	0.997	1.177	0.261
0.40	1.031	$1 \cdot 155$	0.260
0.45	1.066	$1 \cdot 130$	0.259
0.50	$1 \cdot 100$	$1 \cdot 100$	0.257
0.55	1.135	1.067	0.254
0.60	1.171	1.030	0.252
0.65	$1 \cdot 205$	0.988	0.248
0.70	1.237	0.940	0.244
0.75	$1 \cdot 263$	0.884	0.239
0.80	1.278	0.818	0.234
0.85	1.266	0.735	0.227
0.90	$1 \cdot 202$	0.625	0.220
0.95	1.004	0.462	0.213
$1 \cdot 00$	0	0	0.204

TABLE 20

Solution 33: 45 deg Tapered Wing:

M = 0: 126-Vortex, 6-Point Standard Solution for Twist, θ Linear: $\eta = 0.2, 0.6, 0.8$

a_0	-0.01249	Co	0.04801	e_0	-0.00539
a_1	0.00311	C_1	0.00861	e_1	-0.02348
α0	-0.38201	C_{m0} -	-0.4500		

η	$\begin{array}{c} C_{LL} \text{ for} \\ C_{m0} = -1 \end{array}$	$\frac{K/4sV}{C_{m0}} = -1$	Local a.c.
$\begin{array}{c} 0\\ 0.05\\ 0.10\\ 0.15\\ 0.20\\ 0.25\\ 0.30\\ 0.35\\ 0.40\\ 0.45\\ 0.50\\ 0.55\\ \end{array}$	$C_{m0} = -1$ $-1 \cdot 107$ $-1 \cdot 135$ $-1 \cdot 135$ $-1 \cdot 102$ $-1 \cdot 036$ $-0 \cdot 933$ $-0 \cdot 793$ $-0 \cdot 615$ $-0 \cdot 399$ $-0 \cdot 144$ $+0 \cdot 151$ $0 \cdot 477$	$\begin{array}{c} 0.0764\\ -0.0753\\ -0.0753\\ -0.0724\\ -0.0607\\ -0.0523\\ -0.0424\\ -0.0313\\ -0.0193\\ -0.0066\\ +0.0065\\ 0.0193 \end{array}$	
$\begin{array}{c} 0.60 \\ 0.65 \\ 0.70 \\ 0.75 \\ 0.80 \\ 0.85 \\ 0.90 \\ 0.95 \\ 1.00 \end{array}$	$\begin{array}{c} 0.836\\ 1.216\\ 1.611\\ 2.001\\ 2.357\\ 2.636\\ 2.742\\ 2.454\\ 0\end{array}$	$\begin{array}{c} 0 \cdot 0317 \\ 0 \cdot 0430 \\ 0 \cdot 0528 \\ 0 \cdot 0604 \\ 0 \cdot 0650 \\ 0 \cdot 0659 \\ 0 \cdot 0614 \\ 0 \cdot 0487 \\ 0 \end{array}$	$\begin{array}{c} 0.320 \\ 0.289 \\ 0.270 \\ 0.255 \\ 0.242 \\ 0.230 \\ 0.217 \\ 0.204 \\ 0.189 \end{array}$

Solution 34: 45 deg Tapered Wing:

M = 0: 126-Vortex, 6-Point Standard Solution for Twist, θ Linear, Corrected by Auxiliary Solution, $\eta = 0, 0.1$, and 0.2

a_0'	-0.00034	$p_{a0} = 0.037$	725 p _{b0}	- 0.01774
a_1'	$0 \cdot 00448$	$p_{a1} - 0.077$	762 p _{b1}	0.00705
α0	-0.3680	$C_{m0} - 0.475$	51	

η	$C_{LL} \text{ for} \\ C_{m0} = -1$	$\frac{K/4sV}{C_{m0}} = -1$	Local a.c.
0	-1.218	-0.0840	0.268
0.05	-1.231	-0.0817	0.256
0.10	-1.200	-0.0766	0.235
0.15	-1.130	-0.0692	0.221
0.20	-1.030	-0.0604	0.207
0.25	-0.906	-0.0508	0.193
0.30	-0.752	-0.0402	0.178
0.35	-0.567	-0.0288	0.150
0.40	-0.347	-0.0167	+ 0.088
0.45	-0.091	-0.0042	-0.213
0.50	+ 0.201	+ 0.0087	+ 0.691
0.55	0.522	0.0212	0.384
0.60	0.872	0.0331	0.320
0.65	1 • 244	0.0440	0.289
0.70	1.627	0.0533	0.270
0.75	2.003	0.0604	0.255
0.80	2.348	0.0647	0.242
0.85	2.613	0.0653	0.230
0.90	2.710	0.0607	0.217
0.95	2.418	0.0479	0.024
$1 \cdot 00$	0	0	0.189

TABLE 22

Solution 35: 45 deg Tapered Wing: M = 0.8: 126-Vortex, 6-Point Standard Solution for Incidence: $\eta = 0.2, 0.6, 0.8$

a_0	0.06705	Co	0.00	805	e_0		0.04228
<i>a</i> 1	0.01593	<i>c</i> ₁	-0.002	795	e_1	<u> </u>	0.05046
$dC_L/d\alpha$	$= 4 \cdot 475$	a.c.	1.687 <i>c</i>	behind	apex.		

η	C_{LL}/C_L	$C_{LLC}/C_L\overline{c}$	Local a.c.
0	0.764	$1 \cdot 222$	0.277
0.05	0.793	1.220	0.276
0.10	0.822	1.217	0.276
0.15	0.852	1.210	0.276
0.20	0.882	$1 \cdot 200$	0.276
0.25	0.914	1.188	0.275
0.30	0.946	1.173	0.274
0.35	0.980	1.156	0.273
0.40	1.014	1.136	0.272
0.45	1.050	1.113	0.270
0.50	1.088	1.088	0.268
0.55	$1 \cdot 126$	1.059	0.264
0.60	1.166	1.026	0.260
0.65	1.204	0.988	0.256
0.70	$1 \cdot 242$	0.943	0.250
0.75	$1 \cdot 273$	0.891	0.243
0.80	$1 \cdot 293$	0.827	0.236
0.85	$1 \cdot 285$	0.745	0.227
0.90	$1 \cdot 223$	0.636	0.217
0.95	1.023	0.471	0.206
$1 \cdot 00$	0	0	0.195

Solution 36: 45 deg Tapered Wing: M = 0.8: 126-Vortex, 9-Point Standard Solution for Incidence: $\eta = 0.2, 0.6, 0.8$

a_0	0.06838	C_0	- 0.02865	e_0	0.11192
a_1	0.01398	c_1	0.05380	e_1	-0.16826
a_2	-0.00264	C_2	0.05608	\mathcal{C}_{2}	-0.10289
dC_1	$d_{\alpha} = 4 \cdot 489$	a.c	. $1 \cdot 691\overline{c}$ behind	apex	ζ.

η	C_{LL}/C_L	$C_{LL}c/C_L\bar{c}$	Local a.c.
0	0.765	1.224	0.278
0.05	0.794	$1 \cdot 222$	0.278
0.10	0.823	1.218	0.278
0.15	0.852	$1 \cdot 210$	0.277
0.20	0.881	$1 \cdot 199$	0.277
0.25	0.912	$1 \cdot 185$	0.277
0.30	0.942	1.169	0.276
0.35	0.974	$1 \cdot 150$	0.275
0.40	1.007	1.128	0.274
0.45	1.042	$1 \cdot 104$	0.272
0.50	1.078	1.078	0.270
0.55	1.116	1.050	0.266
0.60	1.157	1.018	0.262
0.65	1.198	0.982	0.256
0.70	1.239	0.941	0.250
0.75	1.276	0.893	0.242
0.80	1.304	0.834	0.233
0.85	1.307	0.758	0.223
0.90	1.256	0.653	0.212
0.95	1.063	0.489	0.200
$1 \cdot 00$	0	0	0.187

. •

TABLE 24

Solution 37: 45 deg Tapered Wing: M = 0.8: 126-Vortex, 6-Point Standard Solution for Incidence: Modified by Auxiliary Solution: $\eta = 0, 0.2$

a_0'	$0 \cdot 03142$	⊅o	-0.38	3003	
a_1'	-0.05517	p_1	$0 \cdot 62$	2850	
$dC_{L_{I}}$	$d\alpha = 4 \cdot 372$	a.c.	1 · 7 31 ī	behind	apex.

η	C_{LL}/C_L	$C_{LL}c/C_L\bar{c}$	Local a.c.
0	0.700	1.120	0.385
0.05	0.737	1.135	0.366
0.10	0.783	$1 \cdot 159$	0.334
0.15	0.826	$1 \cdot 173$	0.312
0.20	0.868	$1 \cdot 180$	0.294
0.25	0.907	1.179	0.282
0.30	0.946	$1 \cdot 173$	0.274
0.35	0.985	$1 \cdot 162$	0.273
0.40	1.024	$1 \cdot 147$	0.272
0.45	1.064	$1 \cdot 129$	0.270
0.50	1.106	$1 \cdot 106$	0.268
0.55	1.149	1.080	0.264
0.60	$1 \cdot 192$	1.049	0.260
0.65	$1 \cdot 234$	1.012	0.256
0.70	1.275	0.969	0.250
0.75	1.309	0.917	0.243
0.80	1.332	0.852	0.236
0.85	1.326	0.769	0.227
0.90	1.263	0.656	0.217
0.95	1.058	0.486	0.206
$1 \cdot 00$	0	0	0.195

Solution 38: 45 deg Tapered Wing: M = 0.8: 126-Vortex, 6-Point Standard Solution for Wing Twist, θ Linear: $\eta = 0.2, 0.6, 0.8$ -0.014510.04753 $\mathcal{C}_{\mathbf{0}}$ 0.00340 $e_{\rm e}$ 0.00452 c_1

-0.3754 $C_{m0} - 0.5232$

0.01841

 $e_1 - 0.03781$

TABLE 26

Solution 39: 45 deg Tapered Wing: M = 0.8: 126-Vortex, 6-Point Standard Solution for Wing Twist, 0 Linear, Modified by Auxiliary Solution: $\eta = 0, 0.1, 0.2$

a_{0}'	-0.00149	Þa0	$0 \cdot 04721$	p_{b0}	-0.01368
a_1'	0.00673	p_{a1}	- 0.09673	p_{b1}	-0.00095
α	-0.35857	C_{m0}	-0.5454		

η	$C_{LL} \text{ for} \\ C_{m0} = -1$	$\begin{array}{c} K/4sV \text{ for} \\ C_{m0} = -1 \end{array}$	Local a.c.
0	1.167	-0.0805	0.275
0.05	-1.183	-0.0785	0.260
0.10	-1.157	-0.0738	0.234
0.15	-1.096	-0.0671	0.215
0.20	-1.004	-0.0589	0.196
0.25	-0.891	-0.0499	0.173
0.30	-0.748	-0.0400	0.149
0.35	-0.573	-0.0291	0.110
$0 \cdot 40$	-0.363	-0.0175	+ 0.023
0.45	-0.118	-0.0054	-0.348
0.50	+ 0.160	+ 0.0069	+ 1.132
0.55	0.473	0.0192	0.488
0.60	0.819	0.0310	0.377
0.65	1.186	0.0419	0.328
. 0.70	1.570	0.0514	0.297
0.75	1.956	0.0590	0.275
0.80	2.316	0.0639	0.256
0.85	$2 \cdot 606$	0.0651	0.238
0.90	2.736	0.0613	0.222
0.95	$2 \cdot 470$	0.0490	0.204
1.00	0	0	0.186

Þ	٢	
Ļ	Š	

 a_0

 a_1

α

 C_{LL} for K/4sV for $C_{m0} = -1$ $C_{m0} = -1$ η . Local a.c. 0 -1.066-0.07360.2040.05-1.093-0.07260.2030.10-1.094-0.06980.2000.15 -1.065-0.06520.1940.20-1.004-0.05880.1850.25-0.910-0.05100.1710.30-0.778-0.04160.1490.35-0.612-0.03110.1100.40 -0.407-0.0196+ 0.0230.45-0.164-0.0075-0.3480.50 + 0.116+ 0.0050+ 1.1320.55 . 0.4310.01750.4880.600.7800.02960.3770.65 $1 \cdot 155$ 0.04080.3280.701.5470.05070.2970.750.2751.9420.05860.802.312 0.06380.2560.852.613 0.06530.238°°0•90 2.7500.06160.2220.95 $2 \cdot 490$ 0.04940.2041.000 0 0.186

Solution 40: 45 deg Tapered Wing:

·

M = 1: 126-Vortex, 6-Point Standard Solution for Wing Twist; θ Linear:

 $\eta = 0.2, 0.6, 0.8$

a_0	-0.02028	Co	0.03849	e_0	0.03103
a_1	0.00994	<i>C</i> ₁	0.05523	e_1	-0.08151
α ₀	-0.36074	C_{m0} -	- 0.7339		

۰.

η	$\begin{array}{c} C_{LL} \text{ for} \\ C_{m0} = -1 \end{array}$	$K/4sV$ for $C_{m0} = -1$	Local a.c.
0	-0.950	-0.0655	0.169
0.05	-0.975	-0.0647	0.167
0.10	-0.978	-0.0624	0.161
0.15	-0.956	-0.0585	0.149
0.20	-0.907	-0.0532	0.132
0.25	0.830	-0.0465	0.104
0.30	-0.721	- 0.0385	+ 0.061
0.35	-0.580	-0.0295	-0.013
0.40	-0.405	- 0.0196	-0.168
0.45	-0.195	-0.0089	- 0.706
0.50	+ 0.053	+ 0.0023 ·	+ 4.061
0.55	0.335	0.0136	0.882
0.60	0.652	0.0247	0.584
0.65	1.001	0.0354	0.465
0.70	1.376	0.0451	0.398
0.75	1.765	0.0532	0.351
0.80	$2 \cdot 144$	0.0591	0.315
0·85 🗇 🗤	, 2.469 ,	0.0617	0.283
0.90	2.654	0.0595	0.255
0.95	$2 \cdot 457$	0.0487	0.227
$1 \cdot 00$	0	O	0.200
·		5c.	

201

. الديادر

25

Ç i

Results for 45 deg Tapered Wing at M = 0.8by Two Methods Based on the Prandtl-Glauert Factor

	Incidence			Wing twist: θ linear			
Wing	Soln.	$dC_L/d\alpha$	$\frac{dC_L/d\alpha \text{ for }}{45^\circ \text{ wing }}$	a.c.	C _{m0}	$\begin{array}{c} C_{m0} \text{ for} \\ 45^{\circ} \text{ wing} \end{array}$	α
$45 \deg : M = 0$	32		3.596	1.692			
	34			**		-0.475	-0.368
$\overline{45 \deg : M = 0.8}$	37		4.372	1.731			
nist method	39					-0.545	-0.359
59 deg : $M = 0$ equivalent to 45 deg : $M = 0.8$ second method	27	2.582	4.303	1.736			· · · · · · · · · · · · · · · · · · ·
	29				- 0.326	-0.544	- 0.357

TABLE 29

Variation of Aerodynamic Centre with Mach Number for Four Wings The Aerodynamic Centre is given in Terms of \overline{c} behind the Apex at the Centre Section

М	Straight tapered wing	Tapered wing 28·4 deg sweepback	Triangular wing	45 deg tapered wing
0	0.479	1.068	1 · 185	1.692
0.6	_	1.076	······	_
0.8	0.469	1.086	1 · 193	1.736
0.9	0.460	1.095	1 • 204	

Induced Downwash Factors. y = 0

	F				i	1	
X	x + ve	x —ve	2		x + ve	x —ve	
0	2.0000	2.0000	999	1.8	0.2517	3.7483	215
0.05	1.9001	2.0999	991	1.9	0.2302	3.7698	191
0.10	1.8010	$2 \cdot 1990$	977	$2 \cdot 0$	0.2111	3.7889	318
0.15	1.7033	$2 \cdot 2967$	955	$2 \cdot 2$	0.1793	3.8207	255
0.20	1.6078	$2 \cdot 3922$	929	$2 \cdot 4$	0.1538	3.8462	205
0.25	1.5149	$2 \cdot 4851$	896	$2 \cdot 6$	0.1333	3.8667	168
0.30	1.4253	2.5747	860	$2 \cdot 8$	0.1165	3.8835	139
0.35	1.3393	2.6607	821	$3 \cdot 0$	0.1026	3.8974	116
0.40	1.2572	2.7428	779	$3 \cdot 2$	0.0910	3.9090	97
0.45	1.1793	2.8207	737	$3 \cdot 4$	0.0813	3.9187	83
0.50	1.1056	2.8944	694	$3 \cdot 6$	0.0730	3.9270	71
0.55	1.0362	2.9638	652	$3 \cdot 8$	0.0659	3.9341	62
0.60	0.9710	3.0290	610	$4 \cdot 0$	0.0597	3.9403	121
0.65	0.9100	3.0900	569	$4 \cdot 5$	0.0476	3.9524	88
0.70	0.8531	$3 \cdot 1469$	531	5.0	0.0388	3.9612	65
0.75	0.8000	3.2000	494	$5 \cdot 5$	0.0323	3.9677	51
0.80	0.7506	$3 \cdot 2494$	459	6	0.0272	3.9728	71
0.85	0.7047	$3 \cdot 2953$	426	7.	0.0201	3.9799	47
0.90	0.6621	3.3379	396	8	0.0154	3.9846	32
0.95	0.6225	3.3775	367	9	0.0122	3.9878	23
$1 \cdot 00$	0.5858	$3 \cdot 4142$	341	10	0.0099	3.9901	55
$1 \cdot 05$	0.5517	$3 \cdot 4483$	316	15	0.0044	3.9956	19
$1 \cdot 10$	0.5201	3.4799	293	20	0.0025	3.9975	9
$1 \cdot 15$	0.4908	3.5092	272	25	0.0016	3.9984	5
$1 \cdot 20$	0.4636	3.5364	253	30	0.0011	3.9989	3
$1 \cdot 25$	0.4383	3.5617	235	35	0.0008	3.9992	2
$1 \cdot 30$	0.4148	$3 \cdot 5852$	219	40	0.0006	3.9994	1
$1 \cdot 35$	0.3929	3.6071	204	45	0.0005	3.9995	1
$1 \cdot 40$	0.3725	3.6275	366	50	0.0004	3.9996	1
$1 \cdot 5$	0.3359	3.6641	319	60	0.0003	3.9997	1
1.6	0.3040	3.6960	279	80	0.0002	3.9998	2
1.7	0.2761	3.7239	244	100	0	4.0000	
	l						1

•

.

Induced Downwash Factors. y = 2

<i>N</i> *	F		1 *		1		
<i></i>	x + ve	x —ve	21	x	x + ve	<i>x</i> ve	· 21
0	-0.6666	-0.6667	884	$3 \cdot 4$	0.0428	- 1.3761	20
0.1 0.2	-0.4927	-0.8406	802	3.6 3.8	0.0408	-1.3741 -1.3721	20 20
0.3 0.4	-0.4125 -0.3393	-0.9208 -0.9940	732 651	$4 \cdot 0 \\ 4 \cdot 2$	$0.0368 \\ 0.0349$	-1.3701 - 1.3682	19 27
$0.5 \\ 0.6$	$ \begin{array}{c c} - 0.2742 \\ - 0.2175 \end{array} $	-1.0591 -1.1158	567 486	$4 \cdot 5 \\ 5 \cdot 0$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-1.3655 - 1.3614	41 35
0.7 0.8	-0.1689 - 0.1278	-1.1644 - 1.2055	411 343	$5 \cdot 5$ $6 \cdot 0$	$0.0246 \\ 0.0216$	-1.3579 -1.3549	30 25
0.9 1.0	-0.0935 -0.0649	-1.2398 -1.2684	286 235	6.5	0.0191	-1.3524 -1.3502	22.
$1 \cdot 1$ $1 \cdot 2$	-0.0414 -0.0222	-1.2919 -1.3111	192	8	0.0135	-1.3468	25
1.3 1.4	-0.0065	-1.3268	126	10	0.0091	$-1\cdot 3424$ $-1\cdot 3424$	19
1.5	0.0163	-1.3496 -1.3496	82	15	0.0043	-1.3410 -1.3376	18
1.0	0.0245 0.0310	-1.3578 -1.3643	50	20 25	0.0025	-1.3358 -1.3349	9 5
1.8 2.0	0.0360 0.0429	-1.3693 -1.3762	69 37	30 35	0.0011	$-1 \cdot 3344 \\ -1 \cdot 3341$	$\frac{3}{2}$
$2 \cdot 2$ $2 \cdot 4$	0.0466 0.0482	-1.3799 -1.3815	16	40 45	$0.0006 \\ 0.0005$	$-1 \cdot 3339 \\ -1 \cdot 3338$	
$2 \cdot 6$ $2 \cdot 8$	$0.0484 \\ 0.0477$	-1.3817 -1.3810	7 14	50 60	$ \begin{array}{c} 0.0004 \\ 0.0003 \end{array} $	$ \begin{array}{c} -1.3337 \\ -1.3336 \end{array} $	
$3 \cdot 0$ $3 \cdot 2$	$0.0463 \\ 0.0447$	$ \begin{array}{r} -1.3796 \\ -1.3780 \end{array} $	16 19	80 100	$0.0002 \\ 0.0001$	$ \begin{array}{c c} - & 1 \cdot 3335 \\ - & 1 \cdot 3334 \end{array} $	1

TABLE 32

				· · · · · · · · · · · · · · · · · · ·			
	F for y	v = 4	A	Y	F for g	y = 6	Δ
X	x + ve	x —ve		N	x + ve	x —ve	
$\begin{array}{c} 0.0\\ 0.2 \end{array}$	-0.1334 -0.1192	-0.1333 -0.1475	142 139	$0 \cdot 0$ $0 \cdot 5$	-0.0572 -0.0474	- 0.0571 - 0.0669	98 93
$0\cdot 4$	-0.1053	-0.1614	135	$1 \cdot 0$	-0.0381	-0.0762	85
0.6	-0.0918	-0.1749	127	1.5	-0.0296	-0.0847	75
0.8	- 0.0791	-0.1876	119	$2 \cdot 0$	-0.0221	-0.0922	63
$1 \cdot 0$	-0.0672	-0.1995	110	$2\cdot 5$	-0.0158	-0.0985	53
$1 \cdot 2$	-0.0562	-0.2105	99	$3 \cdot 0$	-0.0105	-0.1038	41
1.4	-0.0463	-0.2204	88	3.5	0.0064	-0.1079	33 25
1.6	-0.0375	-0.2292	79 60	4.0	-0.0001	-0.112	18
1.8	-0.0290	-0.2371	59	5 .0	-0.0012	-0.1155	14
$\frac{2.0}{2.2}$	-0.0227 -0.0168	-0.2499	51	5.5	0.0026	-0.1169	9
$\frac{2}{2}.4$	-0.0103 -0.0117	-0.2550	44	6.0	0.0035	- 0.1178	11
$\tilde{2}\cdot\hat{6}$	-0.0073	-0.2594	37	. 7.0	0.0046	-0.1189	3
$\overline{2}\cdot \overline{8}$	- 0.0036	-0.2631	30	8.0	0.0049	-0.1192	2
3.0	- 0.0006	-0.2661	26	$10 \cdot 0$	0.0047	-0.1190	16
$3 \cdot 2$	0.0020	-0.2687	21	$15 \cdot 0$	0.0031	-0.1174	11
$3 \cdot 4$	0.0041	-0.2708	17	20	0.0020	-0.1163	6
$3 \cdot 6$	0.0058	-0.2725	14	25	0.0014	-0.1157	4
$3 \cdot 8$	0.0072	-0.2739	12	30	0.0010.	-0.1153	3 1
$4 \cdot 0$	0.0084	-0.2751	18	35	0.0007	-0.1130	1
$4 \cdot 5$	0.0102	-0.2769	0 3	40	0.0005	-0.1143 -0.1148	1
5.5	0.0110	= 0.2777 = 0.2780	2	50	0.0004	-0.1147	1
6	0.0113	-0.2778	8	60	0.0003	-0.1146	1
7	0.0103	-0.2770	12	80	0.0002	-0.1145	1
8	0.0091	-0.2758	11	100	0.0001	-0.1144	
$\tilde{9}$	0.0080	-0.2747	10				
10	0.0070	-0.2737	32				
15	0.0038	-0.2705	15				
20	0.0023	-0.2690	8				
25	0.0015	-0.2682	4				
30	0.0011	-0.2678	3				
35	0.0008	-0.2675	2				
40	0.0006	-0.2673	1				
45 50	0.0005	-0.2672					
50 60	0.0004	-0.2071	1				
80 80	0.0002	-0.2009					
100	0.0001	-0.2668					
100	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	- 0 2000					

Induced Downwash Factors. y = 4 and 6

.

TABLE 3	33
---------	----

	·····						
X	F for	y = 8 $x - ve$	Δ	x	F for y	v = 12 x -ve	Δ
$\begin{array}{c} 0\\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 10\\ 15\\ 20\\ 25\\ 30\\ 35\\ 40\\ 45\\ 50\\ 60\\ 80\\ 100\\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$\begin{array}{c} 0\\ 2\\ 4\\ 6\\ 8\\ 10\\ 15\\ 20\\ 25\\ 30\\ 35\\ 40\\ 45\\ 50\\ 60\\ 80\\ 100\\ \end{array}$	$\begin{array}{c} - & 0 \cdot 0140 \\ - & 0 \cdot 0094 \\ - & 0 \cdot 0056 \\ - & 0 \cdot 0027 \\ - & 0 \cdot 0008 \\ 0 \cdot 0003 \\ 0 \cdot 0012 \\ 0 \cdot 0012 \\ 0 \cdot 0012 \\ 0 \cdot 0009 \\ 0 \cdot 0008 \\ 0 \cdot 0006 \\ 0 \cdot 0006 \\ 0 \cdot 0005 \\ 0 \cdot 0004 \\ 0 \cdot 0004 \\ 0 \cdot 0001 \\ 0 \cdot 0001 \end{array}$	$\begin{array}{c} - & 0 \cdot 0140 \\ - & 0 \cdot 0186 \\ - & 0 \cdot 0224 \\ - & 0 \cdot 0253 \\ - & 0 \cdot 0272 \\ - & 0 \cdot 0283 \\ - & 0 \cdot 0292 \\ - & 0 \cdot 0292 \\ - & 0 \cdot 0289 \\ - & 0 \cdot 0289 \\ - & 0 \cdot 0288 \\ - & 0 \cdot 0286 \\ - & 0 \cdot 0285 \\ - & 0 \cdot 0284 \\ - & 0 \cdot 0284 \\ - & 0 \cdot 0284 \\ - & 0 \cdot 0281 \\ - & 0 \cdot 0281 \end{array}$	$ \begin{array}{c} 46 \\ 38 \\ 29 \\ 19 \\ 11 \\ 9 \\ 0 \\ 3 \\ 1 \\ 2 \\ 1 \\ 1 \\ 0 \\ 2 \\ 1 \\ 0 \\ 2 \\ 1 \\ 0 \\ 0 \\ \end{array} $
	ر F for	v = 10			ر F for ر	y = 14	
$\begin{array}{c} 0\\ 2\\ 4\\ 6\\ 8\\ 10\\ 15\\ 20\\ 25\\ 30\\ 35\\ 40\\ 45\\ 50\\ 60\\ 80\\ 100\\ \end{array}$	$\begin{array}{c} - & 0 \cdot 0202 \\ - & 0 \cdot 0124 \\ - & 0 \cdot 0061 \\ - & 0 \cdot 0002 \\ 0 \cdot 0012 \\ 0 \cdot 0012 \\ 0 \cdot 0013 \\ 0 \cdot 0015 \\ 0 \cdot 0015 \\ 0 \cdot 0011 \\ 0 \cdot 0009 \\ 0 \cdot 0007 \\ 0 \cdot 0005 \\ 0 \cdot 0007 \\ 0 \cdot 0005 \\ 0 \cdot 0004 \\ 0 \cdot 0004 \\ 0 \cdot 0003 \\ 0 \cdot 0002 \\ 0 \cdot 0001 \end{array}$	$\begin{array}{c} - & 0 \cdot 0202 \\ - & 0 \cdot 0280 \\ - & 0 \cdot 0343 \\ - & 0 \cdot 0383 \\ - & 0 \cdot 0406 \\ - & 0 \cdot 0416 \\ - & 0 \cdot 0422 \\ - & 0 \cdot 0419 \\ - & 0 \cdot 0413 \\ - & 0 \cdot 0413 \\ - & 0 \cdot 0411 \\ - & 0 \cdot 0409 \\ - & 0 \cdot 0408 \\ - & 0 \cdot 0408 \\ - & 0 \cdot 0408 \\ - & 0 \cdot 0406 \\ - & 0 \cdot 0405 \end{array}$	$78\\63\\40\\23\\10\\6\\3\\4\\2\\2\\2\\1\\0\\1\\1\\1$	$\begin{array}{c} 0\\ 2\\ 4\\ 6\\ 8\\ 10\\ 15\\ 20\\ 25\\ 30\\ 35\\ 40\\ 45\\ 50\\ 60\\ 80\\ 100\\ \end{array}$	$\begin{array}{c} - & 0 \cdot 0103 \\ - & 0 \cdot 0074 \\ - & 0 \cdot 0048 \\ - & 0 \cdot 0028 \\ - & 0 \cdot 0013 \\ - & 0 \cdot 0004 \\ 0 \cdot 0007 \\ 0 \cdot 0007 \\ 0 \cdot 0008 \\ 0 \cdot 0007 \\ 0 \cdot 0008 \\ 0 \cdot 0007 \\ 0 \cdot 0006 \\ 0 \cdot 0005 \\ 0 \cdot 0006 \\ 0 \cdot 0005 \\ 0 \cdot 0004 \\ 0 \cdot 0003 \\ 0 \cdot 0003 \\ 0 \cdot 0002 \\ 0 \cdot 0001 \end{array}$	$\begin{array}{c} - & 0 \cdot 0102 \\ - & 0 \cdot 0131 \\ - & 0 \cdot 0157 \\ - & 0 \cdot 0177 \\ - & 0 \cdot 0192 \\ - & 0 \cdot 0201 \\ - & 0 \cdot 0212 \\ - & 0 \cdot 0213 \\ - & 0 \cdot 0210 \\ - & 0 \cdot 0210 \\ - & 0 \cdot 0209 \\ - & 0 \cdot 0208 \\ - & 0 \cdot 0208 \\ - & 0 \cdot 0207 \\ - & 0 \cdot 0206 \end{array}$	$\begin{array}{c} 29\\ 26\\ 20\\ 15\\ 9\\ 11\\ 3\\ 2\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$

Induced Downwash Factors. y = 8(2)14

INDLE OF	ΤA	BL	E	34
----------	----	----	---	----

X	ر F for	y = 16		x	F for y	2 = 20	Δ
X	x + ve	x —ve	, <i>Lan</i> X	~	x + ve	x - ve	
$\begin{array}{c} 0\\ 2\\ 4\\ 6\\ 8\\ 10\\ 15\\ 20\\ 25\\ 30\\ 35\\ 40\\ 45\\ 50\\ 60\\ 80\\ 100\\ \end{array}$	$\begin{array}{c} - & 0 \cdot 0078 \\ - & 0 \cdot 0058 \\ - & 0 \cdot 0041 \\ - & 0 \cdot 0027 \\ - & 0 \cdot 0015 \\ - & 0 \cdot 0007 \\ 0 \cdot 0003 \\ 0 \cdot 0007 \\ 0 \cdot 0007 \\ 0 \cdot 0007 \\ 0 \cdot 0006 \\ 0 \cdot 0007 \\ 0 \cdot 0006 \\ 0 \cdot 0004 \\ 0 \cdot 0004 \\ 0 \cdot 0003 \\ 0 \cdot 0002 \\ 0 \cdot 0001 \\ 0 \cdot 0001 \end{array}$	$\begin{array}{c} - & 0 \cdot 0079 \\ - & 0 \cdot 0099 \\ - & 0 \cdot 0116 \\ - & 0 \cdot 0130 \\ - & 0 \cdot 0142 \\ - & 0 \cdot 0150 \\ - & 0 \cdot 0160 \\ - & 0 \cdot 0164 \\ - & 0 \cdot 0164 \\ - & 0 \cdot 0163 \\ - & 0 \cdot 0161 \\ - & 0 \cdot 0161 \\ - & 0 \cdot 0161 \\ - & 0 \cdot 0160 \\ - & 0 \cdot 0159 \\ - & 0 \cdot 0158 \\ - & 0 \cdot 0158 \end{array}$	$ \begin{array}{c} 20\\ 17\\ 14\\ 12\\ 8\\ 10\\ 4\\ 0\\ 1\\ 1\\ 1\\ 0\\ 1\\ 1\\ 0\\ 0\\ 1\\ 1\\ 0\\ 0\\ 1\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$\begin{array}{c} 0\\ 2\\ 4\\ 6\\ 8\\ 10\\ 15\\ 20\\ 25\\ 30\\ 40\\ 50\\ 60\\ 80\\ 100\\ \end{array}$	$\begin{array}{c} - & 0 \cdot 0050 \\ - & 0 \cdot 0040 \\ - & 0 \cdot 0031 \\ - & 0 \cdot 0023 \\ - & 0 \cdot 0016 \\ - & 0 \cdot 0010 \\ - & 0 \cdot 0001 \\ 0 \cdot 0003 \\ 0 \cdot 0005 \\ 0 \cdot 0005 \\ 0 \cdot 0005 \\ 0 \cdot 0004 \\ 0 \cdot 0003 \\ 0 \cdot 0002 \\ 0 \cdot 0002 \\ 0 \cdot 0001 \\ \end{array}$	$\begin{array}{c} - & 0 \cdot 0050 \\ - & 0 \cdot 0060 \\ - & 0 \cdot 0069 \\ - & 0 \cdot 0077 \\ - & 0 \cdot 0084 \\ - & 0 \cdot 0090 \\ - & 0 \cdot 0099 \\ - & 0 \cdot 0103 \\ - & 0 \cdot 0105 \\ - & 0 \cdot 0105 \\ - & 0 \cdot 0104 \\ - & 0 \cdot 0103 \\ - & 0 \cdot 0102 \\ - & 0 \cdot 0101 \end{array}$	$ \begin{array}{r} 10 \\ 9 \\ 8 \\ 7 \\ 6 \\ 9 \\ 4 \\ 2 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \end{array} $
	F for y	v = 18			ر F for	v = 22	
$\begin{array}{c} 0\\ 2\\ 4\\ 6\\ 8\\ 10\\ 15\\ 20\\ 25\\ 30\\ 35\\ 40\\ 45\\ 50\\ 60\\ 80\\ 100\\ \end{array}$	$\begin{array}{c} - & 0 \cdot 0062 \\ - & 0 \cdot 0048 \\ - & 0 \cdot 0035 \\ - & 0 \cdot 0024 \\ - & 0 \cdot 0016 \\ - & 0 \cdot 0009 \\ & 0 \cdot 0001 \\ 0 \cdot 0005 \\ 0 \cdot 0004 \\ 0 \cdot 0004 \\ 0 \cdot 0003 \\ 0 \cdot 0003 \\ 0 \cdot 0003 \\ 0 \cdot 0001 \\ 0 \cdot 0001 \end{array}$	$\begin{array}{c} - & 0 \cdot 0062 \\ - & 0 \cdot 0076 \\ - & 0 \cdot 0089 \\ - & 0 \cdot 0100 \\ - & 0 \cdot 0108 \\ - & 0 \cdot 0115 \\ - & 0 \cdot 0125 \\ - & 0 \cdot 0129 \\ - & 0 \cdot 0129 \\ - & 0 \cdot 0129 \\ - & 0 \cdot 0128 \\ - & 0 \cdot 0128 \\ - & 0 \cdot 0127 \\ - & 0 \cdot 0127 \\ - & 0 \cdot 0126 \\ - & 0 \cdot 0125 \\ - & 0 \cdot 0125 \end{array}$	14 13 11 8 7 10 4 0 0 1 0 1 0 1 0 1 0	0 5 10 15 20 25 30 40 50 100	$\begin{array}{c} - & 0 \cdot 0041 \\ - & 0 \cdot 0024 \\ - & 0 \cdot 0010 \\ - & 0 \cdot 0002 \\ & 0 \cdot 0001 \\ & 0 \cdot 0003 \\ & 0 \cdot 0003 \\ & 0 \cdot 0003 \\ & 0 \cdot 0002 \\ & 0 \cdot 0001 \end{array}$	$\begin{array}{c} - & 0 \cdot 0042 \\ - & 0 \cdot 0059 \\ - & 0 \cdot 0073 \\ - & 0 \cdot 0081 \\ - & 0 \cdot 0086 \\ - & 0 \cdot 0085 \\ - & 0 \cdot 0084 \end{array}$	17 14 8 3 2 0 0 0 1 1

45	F for y	r = 24	4		F for y	v = 32	
	x + ve	x —ve		X	x + ve	x —ve	Δ
$\begin{array}{c} 0 \\ 5 \\ 10 \\ 15 \\ 20 \\ 25 \\ 30 \\ 40 \\ 50 \\ 100 \end{array}$	$\begin{array}{c} - & 0 \cdot 0035 \\ - & 0 \cdot 0021 \\ - & 0 \cdot 0011 \\ - & 0 \cdot 0003 \\ & 0 \cdot 0000 \\ & 0 \cdot 0002 \\ & 0 \cdot 0003 \\ & 0 \cdot 0003 \\ & 0 \cdot 0002 \\ & 0 \cdot 0001 \end{array}$	$\begin{array}{c} - & 0 \cdot 0035 \\ - & 0 \cdot 0049 \\ - & 0 \cdot 0059 \\ - & 0 \cdot 0067 \\ - & 0 \cdot 0070 \\ - & 0 \cdot 0072 \\ - & 0 \cdot 0073 \\ - & 0 \cdot 0073 \\ - & 0 \cdot 0072 \\ - & 0 \cdot 0071 \end{array}$	14 10 8 3 2 1 0 1 1	$\begin{array}{c} 0 \\ 5 \\ 10 \\ 15 \\ 20 \\ 25 \\ 30 \\ 40 \\ 50 \\ 100 \end{array}$	$\begin{array}{c} - & 0 \cdot 0020 \\ - & 0 \cdot 0013 \\ - & 0 \cdot 0009 \\ - & 0 \cdot 0005 \\ - & 0 \cdot 0002 \\ & 0 \cdot 0000 \\ & 0 \cdot 0001 \\ & 0 \cdot 0002 \\ & 0 \cdot 0002 \\ & 0 \cdot 0001 \end{array}$	$\begin{array}{c} - & 0 \cdot 0019 \\ - & 0 \cdot 0026 \\ - & 0 \cdot 0030 \\ - & 0 \cdot 0037 \\ - & 0 \cdot 0037 \\ - & 0 \cdot 0039 \\ - & 0 \cdot 0040 \\ - & 0 \cdot 0041 \\ - & 0 \cdot 0041 \\ - & 0 \cdot 0040 \end{array}$	7 4 3 2 1 1 0 1
	F for y = 26				F for y	v = 34	
$\begin{array}{c} 0 \\ 5 \\ 10 \\ 15 \\ 20 \\ 25 \\ 30 \\ 40 \\ 50 \\ 100 \end{array}$	$\begin{array}{c} - & 0 \cdot 0030 \\ - & 0 \cdot 0019 \\ - & 0 \cdot 0010 \\ - & 0 \cdot 0004 \\ & 0 \cdot 0000 \\ & 0 \cdot 0002 \\ & 0 \cdot 0003 \\ & 0 \cdot 0003 \\ & 0 \cdot 0002 \\ & 0 \cdot 0001 \end{array}$	$\begin{array}{c} - & 0 \cdot 0029 \\ - & 0 \cdot 0040 \\ - & 0 \cdot 0049 \\ - & 0 \cdot 0055 \\ - & 0 \cdot 0059 \\ - & 0 \cdot 0061 \\ - & 0 \cdot 0062 \\ - & 0 \cdot 0062 \\ - & 0 \cdot 0061 \\ - & 0 \cdot 0060 \end{array}$	$ \begin{array}{r} 11 \\ 9 \\ 6 \\ 4 \\ 2 \\ 1 \\ 0 \\ 1 \\ 1 \end{array} $	$ \begin{array}{c} 0 \\ 5 \\ 10 \\ 15 \\ 20 \\ 25 \\ 30 \\ 40 \\ 50 \\ 100 \\ \end{array} $	$\begin{array}{c} - & 0 \cdot 0017 \\ - & 0 \cdot 0013 \\ - & 0 \cdot 0009 \\ - & 0 \cdot 0005 \\ - & 0 \cdot 0002 \\ - & 0 \cdot 0001 \\ 0 \cdot 0000 \\ 0 \cdot 0001 \\ 0 \cdot 0001 \\ 0 \cdot 0001 \end{array}$	$\begin{array}{c} - & 0 \cdot 0018 \\ - & 0 \cdot 0022 \\ - & 0 \cdot 0026 \\ - & 0 \cdot 0030 \\ - & 0 \cdot 0033 \\ - & 0 \cdot 0034 \\ - & 0 \cdot 0035 \\ - & 0 \cdot 0036 \\ - & 0 \cdot 0036 \\ - & 0 \cdot 0036 \end{array}$	$ \begin{array}{c} 4 \\ 4 \\ 4 \\ 3 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{array} $
	$F ext{ for } y = 28$:	ر F for	v = 36	
$\begin{array}{c} 0\\ 5\\ 10\\ 15\\ 20\\ 25\\ 30\\ 40\\ 50\\ 100\\ \end{array}$	$\begin{array}{c} - & 0 \cdot 0026 \\ - & 0 \cdot 0017 \\ - & 0 \cdot 0009 \\ - & 0 \cdot 0004 \\ - & 0 \cdot 0001 \\ & 0 \cdot 0001 \\ & 0 \cdot 0002 \\ & 0 \cdot 0002 \\ & 0 \cdot 0002 \\ & 0 \cdot 0001 \end{array}$	$\begin{array}{c} - & 0 \cdot 0025 \\ - & 0 \cdot 0034 \\ - & 0 \cdot 0042 \\ - & 0 \cdot 0047 \\ - & 0 \cdot 0050 \\ - & 0 \cdot 0052 \\ - & 0 \cdot 0053 \\ - & 0 \cdot 0052 \end{array}$	9 8 5 3 2 1 0 0 1	$\begin{array}{c} 0 \\ 5 \\ 10 \\ 15 \\ 20 \\ 25 \\ 30 \\ 40 \\ 50 \\ 100 \end{array}$	$\begin{array}{c} - & 0 \cdot 0015 \\ - & 0 \cdot 0011 \\ - & 0 \cdot 0007 \\ - & 0 \cdot 0005 \\ - & 0 \cdot 0002 \\ - & 0 \cdot 0001 \\ & 0 \cdot 0000 \\ & 0 \cdot 0001 \\ & 0 \cdot 0001 \\ & 0 \cdot 0001 \end{array}$	$\begin{array}{c} - & 0 \cdot 0016 \\ - & 0 \cdot 0020 \\ - & 0 \cdot 0024 \\ - & 0 \cdot 0026 \\ - & 0 \cdot 0029 \\ - & 0 \cdot 0030 \\ - & 0 \cdot 0031 \\ - & 0 \cdot 0032 \end{array}$	4 4 2 3 1 1 1 0 0
	F for y	y = 30			F for y	v = 38	
$\begin{array}{c} 0 \\ 5 \\ 10 \\ 15 \\ 20 \\ 25 \\ 30 \\ 40 \\ 50 \\ 100 \end{array}$	$\begin{array}{c} - & 0 \cdot 0022 \\ - & 0 \cdot 0014 \\ - & 0 \cdot 0009 \\ - & 0 \cdot 0004 \\ - & 0 \cdot 0001 \\ 0 \cdot 0001 \\ 0 \cdot 0002 \\ 0 \cdot 0002 \\ 0 \cdot 0002 \\ 0 \cdot 0001 \end{array}$	$\begin{array}{c} - & 0 \cdot 0022 \\ - & 0 \cdot 0030 \\ - & 0 \cdot 0035 \\ - & 0 \cdot 0040 \\ - & 0 \cdot 0043 \\ - & 0 \cdot 0045 \\ - & 0 \cdot 0046 \\ - & 0 \cdot 0046 \\ - & 0 \cdot 0046 \\ - & 0 \cdot 0045 \end{array}$	8 5 3 2 1 0 0 1	$\begin{array}{c} 0 \\ 5 \\ 10 \\ 15 \\ 20 \\ 25 \\ 30 \\ 40 \\ 50 \\ 100 \end{array}$	$\begin{array}{c} - & 0:0014 \\ - & 0.0010 \\ - & 0.0007 \\ - & 0.0005 \\ - & 0.0003 \\ - & 0.0001 \\ 0.0000 \\ 0.0001 \\ 0.0001 \\ 0.0001 \end{array}$	$\begin{array}{c} - & 0 \cdot 0014 \\ - & 0 \cdot 0018 \\ - & 0 \cdot 0021 \\ - & 0 \cdot 0023 \\ - & 0 \cdot 0025 \\ - & 0 \cdot 0027 \\ - & 0 \cdot 0028 \\ - & 0 \cdot 0029 \end{array}$	$ \begin{array}{c} 4 \\ 3 \\ 2 \\ 2 \\ 1 \\ 1 \\ 0 \\ 0 \end{array} $

Induced Downwash Factors. y = 24(2)38

	F for y	= 40	,		F for j	y = 50	4
x	x + ve	x —ve	Δ	X	x + ve	x —ve	<u></u>
$ \begin{array}{c} 0 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 100 \end{array} $	$\begin{array}{c} - & 0 \cdot 0013 \\ - & 0 \cdot 0007 \\ - & 0 \cdot 0002 \\ & 0 \cdot 0000 \\ & 0 \cdot 0001 \\ & 0 \cdot 0001 \\ & 0 \cdot 0001 \end{array}$	$\begin{array}{c} - \ 0 \cdot 0012 \\ - \ 0 \cdot 0018 \\ - \ 0 \cdot 0023 \\ - \ 0 \cdot 0025 \\ - \ 0 \cdot 0026 \\ - \ 0 \cdot 0026 \\ - \ 0 \cdot 0026 \end{array}$	6 5 2 1 0 0	$ \begin{array}{c} 0 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 100 \end{array} $	$\begin{array}{c} \ 0 \cdot 0008 \\ \ 0 \cdot 0006 \\ \ 0 \cdot 0002 \\ \ 0 \cdot 0001 \\ 0 \cdot 0000 \\ 0 \cdot 0000 \\ 0 \cdot 0001 \end{array}$	$\begin{array}{c} - & 0 \cdot 0008 \\ - & 0 \cdot 0010 \\ - & 0 \cdot 0014 \\ - & 0 \cdot 0015 \\ - & 0 \cdot 0016 \\ - & 0 \cdot 0016 \\ - & 0 \cdot 0017 \end{array}$	$2 \\ 4 \\ 1 \\ 1 \\ 0 \\ 1$
	$F ext{ for } y = 42$				F for y	v = 52	
$ \begin{array}{c} 0 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 100 \end{array} $	$\begin{array}{c} - & 0 \cdot 0012 \\ - & 0 \cdot 0007 \\ - & 0 \cdot 0002 \\ - & 0 \cdot 0001 \\ & 0 \cdot 0000 \\ & 0 \cdot 0001 \\ & 0 \cdot 0001 \end{array}$	$\begin{array}{c} - & 0 \cdot 0011 \\ - & 0 \cdot 0016 \\ - & 0 \cdot 0021 \\ - & 0 \cdot 0022 \\ - & 0 \cdot 0023 \\ - & 0 \cdot 0024 \\ - & 0 \cdot 0024 \end{array}$	5 5 1 1 1 0	$ \begin{array}{c} 0 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 100 \end{array} $	$\begin{array}{c} - & 0 \cdot 0008 \\ - & 0 \cdot 0005 \\ - & 0 \cdot 0003 \\ - & 0 \cdot 0001 \\ & 0 \cdot 0000 \\ & 0 \cdot 0000 \\ & 0 \cdot 0001 \end{array}$	$\begin{array}{c} - & 0 \cdot 0007 \\ - & 0 \cdot 0010 \\ - & 0 \cdot 0012 \\ - & 0 \cdot 0014 \\ - & 0 \cdot 0015 \\ - & 0 \cdot 0015 \\ - & 0 \cdot 0016 \end{array}$	3 2 2 1 0 1
	$F ext{ for } y = 44 \cdot$				F for y	y = 54	
0 10 20 30 40 50 100	$\begin{array}{c} - & 0 \cdot 0011 \\ - & 0 \cdot 0006 \\ - & 0 \cdot 0002 \\ - & 0 \cdot 0001 \\ & 0 \cdot 0000 \\ & 0 \cdot 0001 \\ & 0 \cdot 0001 \end{array}$	$\begin{array}{c} - & 0 \cdot 0010 \\ - & 0 \cdot 0015 \\ - & 0 \cdot 0019 \\ - & 0 \cdot 0020 \\ - & 0 \cdot 0021 \\ - & 0 \cdot 0022 \\ - & 0 \cdot 0022 \end{array}$	5 4 1 1 1 0	$ \begin{array}{c} 0 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 100 \end{array} $	$\begin{array}{c} - & 0 \cdot 0007 \\ - & 0 \cdot 0004 \\ - & 0 \cdot 0002 \\ - & 0 \cdot 0001 \\ & 0 \cdot 0000 \\ & 0 \cdot 0000 \\ & 0 \cdot 0001 \end{array}$	$\begin{array}{c} - & 0 \cdot 0007 \\ - & 0 \cdot 0010 \\ - & 0 \cdot 0012 \\ - & 0 \cdot 0013 \\ - & 0 \cdot 0014 \\ - & 0 \cdot 0014 \\ - & 0 \cdot 0015 \end{array}$	3 2 1 1 0 1
	ر F for ر	y = 46			F for y	v = 56	
0 10 20 30 40 50 100	$\begin{array}{c} - & 0 \cdot 0010 \\ - & 0 \cdot 0005 \\ - & 0 \cdot 0003 \\ - & 0 \cdot 0001 \\ & 0 \cdot 0000 \\ & 0 \cdot 0001 \\ & 0 \cdot 0001 \end{array}$	$\begin{array}{c} - & 0 \cdot 0009 \\ - & 0 \cdot 0014 \\ - & 0 \cdot 0016 \\ - & 0 \cdot 0018 \\ - & 0 \cdot 0019 \\ - & 0 \cdot 0020 \\ - & 0 \cdot 0020 \end{array}$	5 2 2 1 1 0	$ \begin{array}{c} 0 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 100 \end{array} $	$\begin{array}{c} - & 0 \cdot 0007 \\ - & 0 \cdot 0004 \\ - & 0 \cdot 0002 \\ - & 0 \cdot 0001 \\ & 0 \cdot 0000 \\ & 0 \cdot 0000 \\ & 0 \cdot 0001 \end{array}$	$\begin{array}{c} - & 0 \cdot 0006 \\ - & 0 \cdot 0009 \\ - & 0 \cdot 0011 \\ - & 0 \cdot 0012 \\ - & 0 \cdot 0013 \\ - & 0 \cdot 0013 \\ - & 0 \cdot 0014 \end{array}$	3 2 1 1 0 1
	F for y	v = 48			F for y	v = 58	
$ \begin{array}{r} 0 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 100 \end{array} $	$\begin{array}{c} - & 0.0008 \\ - & 0.0005 \\ - & 0.0002 \\ 0.0000 \\ 0.0001 \\ 0.0001 \\ 0.0001 \end{array}$	$\begin{array}{c} - & 0 \cdot 0009 \\ - & 0 \cdot 0012 \\ - & 0 \cdot 0015 \\ - & 0 \cdot 0017 \\ - & 0 \cdot 0018 \\ - & 0 \cdot 0018 \\ - & 0 \cdot 0018 \end{array}$	3^{-} 3 2 1 0 0	$\begin{array}{c} 0 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 100 \end{array}$	$ \begin{array}{c} - & 0 \cdot 0006 \\ - & 0 \cdot 0004 \\ - & 0 \cdot 0002 \\ - & 0 \cdot 0001 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	$\begin{array}{c} - & 0 \cdot 0006 \\ - & 0 \cdot 0008 \\ - & 0 \cdot 0010 \\ - & 0 \cdot 0011 \\ - & 0 \cdot 0012 \\ - & 0 \cdot 0012 \\ - & 0 \cdot 0012 \end{array}$	$2 \\ 2 \\ 1 \\ 1 \\ 0 \\ 0$

Induced Downwash Factors. y = 40(2)58..

(22975)

С

.

	F for y	v = 60			F for y	v = 70	
Х	x + ve	x —ve	Д	x	x + ve	x —ve	Δ
$0 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 100$	$\begin{array}{c} - & 0 \cdot 0005 \\ - & 0 \cdot 0004 \\ - & 0 \cdot 0002 \\ - & 0 \cdot 0001 \\ & 0 \\ & 0 \\ & 0 \\ \end{array}$	$\begin{array}{c} - & 0 \cdot 0006 \\ - & 0 \cdot 0007 \\ - & 0 \cdot 0009 \\ - & 0 \cdot 0010 \\ - & 0 \cdot 0011 \\ - & 0 \cdot 0011 \\ - & 0 \cdot 0011 \end{array}$	1 2 1 1 0 0	0 10 20 30 40 50 100	$ \begin{array}{c} & 0 \cdot 0004 \\ & 0 \cdot 0003 \\ & 0 \cdot 0002 \\ & 0 \cdot 0001 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	$\begin{array}{c} - & 0 \cdot 0004 \\ - & 0 \cdot 0005 \\ - & 0 \cdot 0006 \\ - & 0 \cdot 0007 \\ - & 0 \cdot 0008 \\ - & 0 \cdot 0008 \\ - & 0 \cdot 0008 \end{array}$	1 1 1 1 0 0
	$F ext{ for } y = 62$				ر F for ر	v = 72	
$\begin{array}{c} 0 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 100 \end{array}$	$\begin{array}{c} & 0 \cdot 0005 \\ & 0 \cdot 0004 \\ & 0 \cdot 0003 \\ & 0 \cdot 0001 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} - & 0.0005 \\ - & 0.0006 \\ - & 0.0007 \\ - & 0.0009 \\ - & 0.0010 \\ - & 0.0010 \\ - & 0.0010 \end{array}$	$ \begin{array}{c} 1 \\ 1 \\ 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{array} $	$ \begin{array}{r} 0 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 100 \end{array} $	$\begin{array}{c} & 0 \cdot 0004 \\ & 0 \cdot 0003 \\ & 0 \cdot 0002 \\ & 0 \cdot 0001 \\ & 0 \cdot 0001 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} - & 0 \cdot 0004 \\ - & 0 \cdot 0005 \\ - & 0 \cdot 0006 \\ - & 0 \cdot 0007 \\ - & 0 \cdot 0007 \\ - & 0 \cdot 0008 \\ - & 0 \cdot 0008 \end{array}$	- 1 1 0 1 0
	F for y = 64				F for y	v = 74	
0 10 20 30 40 50 100	$ \begin{array}{c} - & 0 \cdot 0005 \\ - & 0 \cdot 0003 \\ - & 0 \cdot 0002 \\ - & 0 \cdot 0001 \\ - & 0 \cdot 0001 \\ 0 \\ 0 \end{array} $	$\begin{array}{c} - & 0 \cdot 0005 \\ - & 0 \cdot 0007 \\ - & 0 \cdot 0008 \\ - & 0 \cdot 0009 \\ - & 0 \cdot 0009 \\ - & 0 \cdot 0010 \\ - & 0 \cdot 0010 \end{array}$	$2 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0$	0 10 20 30 40 50 100	$ \begin{array}{c} - & 0 \cdot 0003 \\ - & 0 \cdot 0003 \\ - & 0 \cdot 0002 \\ - & 0 \cdot 0001 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	$\begin{array}{c} - & 0 \cdot 0004 \\ - & 0 \cdot 0004 \\ - & 0 \cdot 0005 \\ - & 0 \cdot 0006 \\ - & 0 \cdot 0007 \\ - & 0 \cdot 0007 \\ - & 0 \cdot 0007 \end{array}$	0 1 1 1 0 0
	ر F for	v = 66					
$\begin{array}{c} 0 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 100 \end{array}$	$ \begin{array}{c} - & 0 \cdot 0004 \\ - & 0 \cdot 0003 \\ - & 0 \cdot 0002 \\ - & 0 \cdot 0001 \\ & 0 \\ & 0 \\ & 0 \\ \end{array} $	$\begin{array}{c} - & 0 \cdot 0005 \\ - & 0 \cdot 0006 \\ - & 0 \cdot 0007 \\ - & 0 \cdot 0008 \\ - & 0 \cdot 0009 \\ - & 0 \cdot 0009 \\ - & 0 \cdot 0009 \end{array}$	1 1 1 1 0 0				
	F for y	v = 68					
$ \begin{array}{r} 0 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 100 \end{array} $	$\begin{array}{c} & 0 \cdot 0005 \\ & 0 \cdot 0003 \\ - & 0 \cdot 0002 \\ & 0 \cdot 0001 \\ - & 0 \cdot 0001 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} - & 0 \cdot 0004 \\ - & 0 \cdot 0006 \\ - & 0 \cdot 0007 \\ - & 0 \cdot 0008 \\ - & 0 \cdot 0008 \\ - & 0 \cdot 0009 \\ - & 0 \cdot 0009 \end{array}$	$2 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0$				

Induced Downwash Factors. y = 60(2)74

							·					
1	4F for y	= 13	4	1 ~	ر 4F for	/ = 29	Л					
± <i>x</i> −	x + ve	x —ve		4 [*]	x + ve	x - ve	-					
$\begin{array}{c} 0 \cdot 0 \\ 0 \cdot 2 \\ 0 \cdot 4 \\ 0 \cdot 6 \\ 0 \cdot 8 \\ 1 \cdot 0 \\ 1 \cdot 2 \\ 1 \cdot 4 \\ 1 \cdot 6 \\ 1 \cdot 8 \\ 2 \cdot 0 \\ 3 \cdot 0 \\ 4 \cdot 0 \\ 5 \cdot 0 \\ 6 \cdot 0 \\ 7 \cdot 0 \end{array}$	$\begin{array}{c} - & 0 \cdot 0476 \\ - & 0 \cdot 0417 \\ - & 0 \cdot 0360 \\ - & 0 \cdot 0305 \\ - & 0 \cdot 0254 \\ - & 0 \cdot 0207 \\ - & 0 \cdot 0127 \\ - & 0 \cdot 0127 \\ - & 0 \cdot 0095 \\ - & 0 \cdot 0008 \\ - & 0 \cdot 00044 \\ 0 \cdot 0022 \\ 0 \cdot 0041 \\ 0 \cdot 0042 \\ 0 \cdot 0038 \\ 0 \cdot 0033 \end{array}$	$\begin{array}{c} - 0.0476 \\ - 0.0535 \\ - 0.0592 \\ - 0.0647 \\ - 0.0698 \\ - 0.0745 \\ - 0.0745 \\ - 0.0788 \\ - 0.0825 \\ - 0.0825 \\ - 0.0857 \\ - 0.0884 \\ - 0.0908 \\ - 0.0993 \\ - 0.0993 \\ - 0.0994 \\ - 0.0990 \\ - 0.0985 \end{array}$	$59 \\ 57 \\ 55 \\ 51 \\ 47 \\ 43 \\ 37 \\ 32 \\ 27 \\ 24 \\ 66 \\ 19 \\ 1 \\ 4 \\ 5 \\ 5 \end{bmatrix}$	$\begin{array}{c} 0 \cdot 0 \\ 0 \cdot 5 \\ 1 \\ 2 \\ 4 \\ 6 \\ 8 \\ 10 \\ 15 \\ 20 \\ 25 \\ 30 \\ 40 \\ 60 \\ 100 \end{array}$	$\begin{array}{c} - 0.0095 \\ - 0.0082 \\ - 0.0069 \\ - 0.0046 \\ - 0.0013 \\ 0.0002 \\ 0.0008 \\ 0.0009 \\ 0.0007 \\ 0.0005 \\ 0.0005 \\ 0.0004 \\ 0.0002 \\ 0.0001 \\ 0.0001 \\ 0 \end{array}$	$\begin{array}{c} - & 0 \cdot 0095 \\ - & 0 \cdot 0108 \\ - & 0 \cdot 0121 \\ - & 0 \cdot 0144 \\ - & 0 \cdot 0177 \\ - & 0 \cdot 0192 \\ - & 0 \cdot 0198 \\ - & 0 \cdot 0199 \\ - & 0 \cdot 0197 \\ - & 0 \cdot 0197 \\ - & 0 \cdot 0197 \\ - & 0 \cdot 0194 \\ - & 0 \cdot 0194 \\ - & 0 \cdot 0191 \\ - & 0 \cdot 0191 \\ - & 0 \cdot 0190 \end{array}$	$ \begin{array}{r} 13 \\ 13 \\ 23 \\ 33 \\ 15 \\ 6 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 0 \\ 1 \end{array} $					
8·0 10·0	0.0028	-0.0980 -0.0972	-0.0980 -0.0972	-0.0980 -0.0972	-0.0980 -0.0972	-0.0980 -0.0972	-0.0980 -0.0972	8 6		4F for	y = 37	
$ \begin{array}{r} 12.5 \\ 15 \\ 20 \\ 25 \\ 30 \\ 40 \\ 60 \\ 100 \\ \end{array} $	$\begin{array}{c} 0.0014\\ 0.0010\\ 0.0006\\ 0.0004\\ 0.0003\\ 0.0002\\ 0.0001\\ 0\end{array}$	$\begin{array}{r} - & 0 \cdot 0966 \\ - & 0 \cdot 0962 \\ - & 0 \cdot 0958 \\ - & 0 \cdot 0956 \\ - & 0 \cdot 0955 \\ - & 0 \cdot 0954 \\ - & 0 \cdot 0953 \\ - & 0 \cdot 0952 \end{array}$	4 2 1 1 1 1	$\begin{array}{c} 0 \\ 1 \\ 2 \\ 4 \\ 6 \\ 8 \\ 10 \\ 15 \\ 20 \end{array}$	$\begin{array}{c} - & 0 \cdot 0059 \\ - & 0 \cdot 0046 \\ - & 0 \cdot 0034 \\ - & 0 \cdot 0016 \\ - & 0 \cdot 0004 \\ & 0 \cdot 0002 \\ & 0 \cdot 0004 \\ & 0 \cdot 0005 \\ 0 \cdot 0004 \end{array}$	$\begin{array}{c} - 0.0058 \\ - 0.0071 \\ - 0.0083 \\ - 0.0101 \\ - 0.0113 \\ - 0.0113 \\ - 0.0119 \\ - 0.0121 \\ - 0.0121 \\ - 0.0121 \end{array}$	$ \begin{array}{r} 13 \\ 12 \\ 18 \\ 12 \\ 6 \\ 2 \\ 1 \\ 1 \\ 1 \end{array} $					
	4F for f	y = 21		20 25 20	0.0003	-0.0120 -0.0120 -0.0119	1					
$\begin{array}{c} 0 \cdot 0 \\ 0 \cdot 5 \\ 1 \cdot 0 \end{array}$	$ \begin{array}{r} - 0.0182 \\ - 0.0148 \\ - 0.0115 \\ \end{array} $	$ \begin{array}{r} - 0.0182 \\ - 0.0216 \\ - 0.0249 \\ \end{array} $	34 33 29	50 50 100	$0.0001 \\ 0$	$ \begin{array}{c} - 0.0118 \\ - 0.0118 \\ - 0.0117 \end{array} $	Î					
$\frac{1\cdot 5}{2}$	-0.0086 -0.0061	-0.0278 - 0.0303	-0.0278 - 0.0303	-0.0278 - 0.0303	-0.0278 -0.0303	-0.0278 -0.0303	-0.0278 -0.0303	25 37		4F for	y = 45	
$3 \\ 4 \\ 5 \\ 6 \\ 8 \\ 10 \\ 15 \\ 20 \\ 25 \\ 30 \\ 40 \\ 60 \\ 100 $	$\begin{array}{c} - & 0 \cdot 0024 \\ - & 0 \cdot 0002 \\ & 0 \cdot 0009 \\ & 0 \cdot 0014 \\ & 0 \cdot 0016 \\ & 0 \cdot 0014 \\ & 0 \cdot 0008 \\ & 0 \cdot 0003 \\ & 0 \cdot 0003 \\ & 0 \cdot 0003 \\ & 0 \cdot 0002 \\ & 0 \cdot 0001 \\ & 0 \end{array}$	$\begin{array}{c} - 0.0340 \\ - 0.0362 \\ - 0.0373 \\ - 0.0373 \\ - 0.0378 \\ - 0.0380 \\ - 0.0378 \\ - 0.0378 \\ - 0.0369 \\ - 0.0367 \\ - 0.0366 \\ - 0.0366 \\ - 0.0365 \\ - 0.0364 \\ \end{array}$	11 5 2 6 3 2 0 1 1 1 1	$ \begin{array}{c} 0 \\ 5 \\ 10 \\ 15 \\ 20 \\ 25 \\ 30 \\ 50 \\ 100 \\ \end{array} $	$\begin{array}{c} & 0 \cdot 0039 \\ & 0 \cdot 0010 \\ 0 \cdot 0001 \\ 0 \cdot 0003 \\ 0 \cdot 0003 \\ 0 \cdot 0002 \\ 0 \cdot 0001 \\ 0 \end{array}$	$\begin{array}{c} - 0.0040 \\ - 0.0069 \\ - 0.0080 \\ - 0.0083 \\ - 0.0082 \\ - 0.0082 \\ - 0.0081 \\ - 0.0080 \\ - 0.0079 \end{array}$	29 11 3 1 0 1 1 1					

Induced Downwash Factors. y = 13(8)45

(22975)

,

C*

	1		1	D		· · · · · · · · · · · · · · · · · · ·	
4 χ	4F for	4F for $y = 53$		1	4F for	y = 93	
4×	x + ve	<i>x</i> —ve		<u>4</u> <i>x</i>	x + ve	x -ve	
$ \begin{array}{c} 0 \\ 10 \\ 20 \\ 30 \\ 50 \\ 100 \end{array} $	$ \begin{array}{c c} - & 0 \cdot 0028 \\ & 0 \cdot 0000 \\ & 0 \cdot 0003 \\ & 0 \cdot 0002 \\ & 0 \cdot 0001 \\ & 0 \\ \end{array} $	$\begin{array}{c} - & 0 \cdot 0029 \\ - & 0 \cdot 0057 \\ - & 0 \cdot 0060 \\ - & 0 \cdot 0059 \\ - & 0 \cdot 0058 \\ - & 0 \cdot 0057 \end{array}$	28 3 1 1 1	$\begin{array}{c} 0 \\ 10 \\ 20 \\ 25 \\ 30 \\ 50 \\ 100 \end{array}$	$\begin{array}{c} \ 0 \cdot 0010 \\ - \ 0 \cdot 0003 \\ 0 \cdot 0000 \\ 0 \cdot 0000 \\ 0 \cdot 0001 \\ 0 \cdot 0001 \\ 0 \end{array}$	$\begin{array}{c} - 0.0009 \\ - 0.0016 \\ - 0.0019 \\ - 0.0019 \\ - 0.0020 \\ - 0.0020 \\ - 0.0020 \\ - 0.0019 \end{array}$	7 3 0 1 0 1
	4F for y = 61				4F for j	v = 101	
0 10 20 25 30 50 100	$\begin{array}{c} - & 0 \cdot 0021 \\ - & 0 \cdot 0001 \\ & 0 \cdot 0002 \\ & 0 \cdot 0002 \\ & 0 \cdot 0002 \\ & 0 \cdot 0001 \\ & 0 \end{array}$	$\begin{array}{c} - & 0 \cdot 0022 \\ - & 0 \cdot 0042 \\ - & 0 \cdot 0045 \\ - & 0 \cdot 0045 \\ - & 0 \cdot 0045 \\ - & 0 \cdot 0044 \\ - & 0 \cdot 0043 \end{array}$	$20 \\ 3 \\ 0 \\ 1 \\ 1$	0 10 20 30 50 100	$ \begin{array}{c} - & 0.0008 \\ - & 0.0003 \\ & 0.0000 \\ & 0.0001 \\ & 0.0001 \\ & 0 \end{array} $	$\begin{array}{c} - & 0.0008 \\ - & 0.0013 \\ - & 0.0016 \\ - & 0.0017 \\ - & 0.0017 \\ - & 0.0016 \end{array}$	5 3 1 0 1
	4F for y = 69				4F for y	v = 109	
0 10 20 30 50 100	$\begin{array}{c} - & 0 \cdot 0017 \\ - & 0 \cdot 0002 \\ & 0 \cdot 0001 \\ & 0 \cdot 0001 \\ & 0 \cdot 0001 \\ & 0 \end{array}$	$\begin{array}{r} - & 0 \cdot 0017 \\ - & 0 \cdot 0032 \\ - & 0 \cdot 0035 \\ - & 0 \cdot 0035 \\ - & 0 \cdot 0035 \\ - & 0 \cdot 0034 \end{array}$	$ 15 \\ 3 \\ 0 \\ 0 \\ 1 1 $	$ \begin{array}{r} 0\\ 10\\ 20\\ 25\\ 30\\ 50\\ 100\\ \end{array} $	$\begin{array}{c} - & 0 \cdot 0006 \\ - & 0 \cdot 0002 \\ & 0 \cdot 0000 \\ & 0 \cdot 0001 \\ & 0 \cdot 0001 \\ & 0 \cdot 0001 \\ & 0 \end{array}$	$\begin{array}{c} - & 0 \cdot 0007 \\ - & 0 \cdot 0011 \\ - & 0 \cdot 0013 \\ - & 0 \cdot 0014 \\ - & 0 \cdot 0014 \\ - & 0 \cdot 0014 \\ - & 0 \cdot 0013 \end{array}$	4 2 1 0 . 0 1
	4F for f	y = 77			4F for y	v = 117	
0 10 20 25 30 50 100	$\begin{array}{c} - & 0 \cdot 0014 \\ - & 0 \cdot 0002 \\ & 0 \cdot 0001 \\ & 0 \end{array}$	$\begin{array}{c} - & 0 \cdot 0013 \\ - & 0 \cdot 0025 \\ - & 0 \cdot 0028 \\ - & 0 \cdot 0027 \end{array}$	$ \begin{array}{c} 12 \\ 3 \\ 0 \\ 0 \\ 0 \\ 1 \end{array} $	0 10 20 30 50 100	$\begin{array}{c} - & 0 \cdot 0006 \\ - & 0 \cdot 0002 \\ - & 0 \cdot 0000 \\ & 0 \cdot 0000 \\ & 0 \cdot 0001 \\ & 0 \end{array}$	$\begin{array}{c} - & 0 \cdot 0006 \\ - & 0 \cdot 0010 \\ - & 0 \cdot 0012 \\ - & 0 \cdot 0012 \\ - & 0 \cdot 0013 \\ - & 0 \cdot 0013 \end{array}$	4 2 0 1 1
	4F for y	v = 85			4F for y	y = 125	
0 10 20 30 50 100	$ \begin{array}{c} - & 0 \cdot 0011 \\ - & 0 \cdot 0002 \\ & 0 \cdot 0001 \\ & 0 \cdot 0001 \\ & 0 \cdot 0001 \\ & 0 \end{array} $	$\begin{array}{c} - & 0 \cdot 0011 \\ - & 0 \cdot 0020 \\ - & 0 \cdot 0023 \\ - & 0 \cdot 0023 \\ - & 0 \cdot 0023 \\ - & 0 \cdot 0022 \end{array}$	9 3 0 0 1	0 10 20 25 30 50 100	$\begin{array}{c} - & 0 \cdot 0005 \\ - & 0 \cdot 0002 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{array}$	$\begin{array}{c} - & 0 \cdot 0005 \\ - & 0 \cdot 0008 \\ - & 0 \cdot 0010 \end{array}$	3 2 0 0 0 0 0

Induced Downwash Factors. y = 53(8)125

36

.

$\frac{1}{4}x$	4F for y	$\frac{v = 133}{x - ve}$	Δ
0 10 20 30 50 100	$ \begin{array}{c} - & 0 \cdot 00005 \\ - & 0 \cdot 00002 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	3 2 0 0 0	
	4F for y = 141		· · ·
0 10 20 25 30 50 100	$\begin{array}{c} - & 0 \cdot 0004 \\ - & 0 \cdot 0002 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{array}$	$\begin{array}{r} - 0.0004 \\ - 0.0006 \\ - 0.0008 \\ - 0.0008 \\ - 0.0008 \\ - 0.0008 \\ - 0.0008 \\ - 0.0008 \end{array}$	2 2 0 0 0 0
	4F for f	y = 157	
0 10 20 30 50 100	$ \begin{array}{c} - & 0 \cdot 0003 \\ - & 0 \cdot 0002 \\ & 0 \cdot 0001 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ \end{array} $	$\begin{array}{c} - & 0 \cdot 0003 \\ - & 0 \cdot 0004 \\ - & 0 \cdot 0005 \\ - & 0 \cdot 0006 \\ - & 0 \cdot 0006 \\ - & 0 \cdot 0006 \end{array}$	1 1 1 0 0
	4F for	y = 173	
0 10 20 25 30 50 100	$ \begin{array}{c} - & 0 \cdot 0002 \\ - & 0 \cdot 0001 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	$\begin{array}{c} - 0.0003 \\ - 0.0004 \\ - 0.0005 \\ - 0.0005 \\ - 0.0005 \\ - 0.0005 \\ - 0.0005 \\ - 0.0005 \end{array}$	1 1 0 0 0 0

Induced Downwash Factors. y = 133(8)141(16)173

FIG. 1. Delta wing: equilateral triangle.

0.6 0.05 0.6 0.05 0.9 with ¢ correction 0.4 0 0.2 -0.05 0.4 -0.05 0.5 Effect of centre-line correction on 126-vortex

six-point solutions.

FIG. 9. Comparison of two methods of solution for compressible flow. Twisted wing at zero lift : θ linear.

FIG. 11. Compressibility effects on tapered wing, 28.4 deg sweepback, due to incidence.

FIG. 12. Compressibility effects on triangular wing due to incidence.

APPENDIX

Note on Falkner's Method for Calculating Compressibility Effects on Wing Loading

 $B\gamma$

W. P. JONES, M.A., of the Aerodynamics Division, N.P.L.

Summary.—The vortex-lattice method, as applied by Falkner¹ to estimate the effect of compressibility on wing loading, involves the use of an approximate formula for the downwash due to a 'rectangular vortex' in compressible flow. The exact expression for the downwash on the basis of linearised theory is given in this note, and a numerical comparison is made with the downwash values given by Falkner's formula. For Mach numbers up to M = 0.8, and possibly higher values, the approximate formula appears to be quite satisfactory.

1. Introduction.—In Ref. 1, the vortex-lattice method of dealing with problems in incompressible flow² is adapted to the calculation of compressibility effects. As in the incompressible case, the downwash due to a continuous distribution of vorticity is represented as being due to a discontinuous system of rectangular vortices. The downwash field due to a unit rectangular vortex is first determined, and, by the use of the lattice method, solutions are then readily derived without the need for changing the dimensions of the wing for each Mach number³. In order to calculate the downwash distribution for a unit rectangular vortex* in compressible flow, Falkner makes the following basic assumptions:—

(i) that the downwash due to the transverse element of the vortex is $\sqrt{(1 - M^2)}$ times that given by incompressible flow theory,

(ii) that the downwash induced by the trailing elements is unaffected by compressibility. On the basis of these assumptions he derives an approximate formula for the downwash which involves $\beta \ (\equiv \sqrt{(1 - M^2)})$ as a factor only. (See equation (10).)

It is well known that (i) is true for an infinitely long vortex, and that (ii) is true in the liftingline case when the downwash points are on the line, which is itself assumed to be at right-angles to the direction of flow. In general, however, the assumptions made are not strictly valid, and this note investigates the extent to which they are approximately true in practice. The *exact* formula for the downwash due to a rectangular vortex is derived and a numerical comparison is made in Table 1 with the results given by the approximate formula used by Falkner.

2. Theory.—Let Ox, Oy, Oz be the axes of co-ordinates as indicated in Fig. 13, and let the wing lie in the plane z = 0 as shown

* See section 3c.

Then, if ϕ is the velocity potential of the disturbed flow produced by a small change of incidence, it will satisfy the equation

The lift at any point is given simply by

where p represents the pressure and the suffices a and b refer to the upper and lower sides of the plane z = 0 respectively. In the wake, there is no discontinuity in pressure, and, by equation (2), the discontinuity in ϕ must be a function of y only. Over the surface of the wing the downwash w ($\equiv \partial \phi / \partial z$) is known.

Let K represent the discontinuity $\phi_a - \phi_b$ in the velocity potential at points on the surface of the wing and the wake. The solution of equation (1) is then given by

where $r^2 \equiv (x_0 - x)^2 + \beta^2 (y_0 - y)^2 + \beta^2 z_0^2$. Formula (3) gives ϕ as the velocity potential due to a distribution of compressibility doublets of strength K over the wing and the wake. When $M = 0, \beta = 1$, and formula (3) reduces to the usual form of the incompressible flow solution⁴. Since w is known over the wing, K can be determined from the integral equation

where $z_0 \rightarrow 0$.

In general, K is a function of x and y over the wing, and, by equation (2), it is a function of y only in the wake. This note, however, is concerned with the following particular cases only: (a) the two-dimensional problem where K is a function of x only; (b) the lifting-line problem where K is a function of y; and (c) K = constant over a rectangular strip. Case (c) corresponds to that of the rectangular vortex in incompressible flow.

3. Applications of Theory. (a) Two-dimensional Problem.—In this case, equation (4) yields

$$4\pi w = -\int_{0}^{\infty} K(x) \frac{\partial}{\partial z_{0}} \left(\frac{\beta^{2} z_{0}}{(x_{0} - x)^{2} + \beta^{2} z_{0}^{2}} \right) \int_{-\infty}^{\infty} \frac{\partial}{\partial y} \left(\frac{y}{r} \right) dy dx.$$

$$= -2 \int_{0}^{\infty} K(x) \frac{\partial}{\partial z_{0}} \left(\frac{\beta z_{0}}{(x_{0} - x)^{2} + \beta^{2} z_{0}^{2}} \right) dx$$

$$= -2 \int_{0}^{\infty} K(x) \frac{\partial}{\partial x} \left(\frac{\beta (x_{0} - x)}{(x_{0} - x)^{2} + \beta^{2} z_{0}^{2}} \right) dx. \qquad (5)$$

Since K(0) = 0 at the leading edge, integration by parts gives in the limit when $z_0 = 0$,

The integral extends over the aerofoil chord only, as $\partial K/\partial x=0$ in the wake. Equation (6) implies that the downwash at a point on the aerofoil due to an infinite vortex of strength $\partial K/\partial x$ in compressible flow is the same as that due to one of strength $\beta(\partial K/\partial x)$ in incompressible flow. It is shown in section 3(c) that this conclusion does not apply when the transverse vortex is of finite length.

(b) Lifting Line Problem.—The doublet distribution K is in this case a function of y only, and extends, as shown in Fig. 14, from the lifting line x = 0 to $x = \infty$ between the lines $y = \pm s$.

The downwash at a point x_0 , y_0 not on the lifting line is given by equation (4) and can be expressed in the following form after integration with respect ot x, namely,

$$4\pi w(x_0, y_0) = -\int_{-s}^{s} K(y) \frac{\partial}{\partial z_0} \left\{ \frac{z_0}{(y_0 - y)^2 + z_0^2} \left[1 + \frac{x_0}{(x_0^2 + \beta^2 (y_0 - y)^2 + \beta^2 z_0^2)^{1/2}} \right] \right\} dy.$$

Since K(s) = K(-s) = 0, this gives by integration by parts,

$$4\pi w = -\int_{-s}^{s} K(y) \left[1 + \frac{x_{0}}{[x_{0}^{2} + \beta^{2}(y_{0} - y)^{2}]^{1/2}} \right] \frac{\partial}{\partial y} \left(\frac{y_{0} - y}{(y_{0} - y)^{2} + z_{0}^{2}} \right) dy$$
$$= \int_{-s}^{s} \frac{1}{(y_{0} - y)} \frac{\partial}{\partial y} \left\{ K(y) \left[1 + \frac{x_{0}}{[x_{0}^{2} + \beta^{2}(y_{0} - y)^{2}]^{1/2}} \right] \right\} dy. \qquad (7)$$

For points on the lifting line, $x_0 = 0$, and equation (7) yields

$$4\pi w(y_0) = \int_{-s}^{s} \frac{\partial K}{\partial y} \left(\frac{1}{y_0 - y}\right) dy. \qquad \dots \qquad \dots \qquad \dots \qquad (8)$$

Hence, as far as the value of the downwash along the lifting line is concerned, there is no compressibility effect. When $x_0 \neq 0$, however, the downwash is given by equation (7) and is influenced by the value of β .

(c) Rectangular Doublet Strip.—In incompressible flow, the downwash induced by a rectangular strip covered with a layer of doublets of constant strength K is the same as that induced by a rectangular vortex of strength K round the boundary. Let us next consider the downwash due to a doublet layer of this type in compressible flow.

...

At any general point P the downwash induced by a doublet layer of unit strength* can, by the use of equation (7), be expressed in the form

$$4\pi w = \int_{-1}^{1} \int_{0}^{\infty} \frac{\partial}{\partial z_0} \left\{ \frac{z_0}{(y_0 - y)^2 + z_0^2} \frac{\partial}{\partial x} \left(\frac{x_0 - x}{r} \right) \right\} dx dy$$

^{*} By analogy with incompressible-flow theory, the effect of the layer is assumed to correspond to that of the so-called rectangular vortex in compressible flow.

$$= -\int_{-1}^{1} \left[1 + \frac{x_0}{[x_0^2 + \beta^2(y_0 - y)^2]^{1/2}}\right] \frac{\partial}{\partial y} \left(\frac{y_0 - y}{(y_0 - y)^2 + z_0^2}\right) dy.$$

Integration with respect to y then yields

$$4\pi w(x_{0}, y_{0}) = \frac{1}{(y_{0} + 1)} \left[1 + \frac{x_{0}}{[x_{0}^{2} + \beta^{2}(y_{0} + 1)^{2}]^{1/2}} \right] - \frac{1}{(y_{0} - 1)} \left[1 + \frac{x_{0}}{[x_{0}^{2} + \beta^{2}(y_{0} - 1)^{2}]^{1/2}} \right] + \frac{\beta^{2}}{x_{0}} \left[\frac{y_{0} + 1}{[x_{0}^{2} + \beta^{2}(y_{0} + 1)^{2}]^{1/2}} - \frac{y_{0} - 1}{[x_{0}^{2} + \beta^{2}(y_{0} - 1)^{2}]^{1/2}} \right]. \qquad (9)$$

When $\beta = 1$, equation (9) reduces to the well-known formula for the downwash due to a rectangular vortex in incompressible flow. The first two terms give the downwash contribution of the trailing vortices, and the third term corresponds to the transverse vortex. It should be noted that the downwash at $P(x_0, y_0)$ in compressible flow due to a unit doublet strip is the same as that at $P'(x_0|\beta, y)$ in incompressible flow³. (See Fig. 15.)

4. Falkner's Formula.—To obtain a solution of equation (4) for a particular wing, Falkner employs the vortex-lattice method. The doublet or circulation distribution K is first represented by a finite number of superimposed rectangular doublet layers (equivalent to rectangular vortices in the incompressible case). The downwash at a pivotal point is then given in terms of the contributions due to each rectangular layer. Instead of using equation (9), however, Falkner makes use of the results of section 3(a) and (b) and assumes that the downwash in compressible flow is given to sufficient accuracy by the formula

This corresponds to the incompressible-flow formula except that the effect of the transverse vortex is multiplied by β .

When x_0 is small compared to $\beta |(y_0 - 1)|$

$$4\pi w_{F} \rightarrow \frac{\beta}{x_{0}} \left(1 - \frac{y_{0} - 1}{|y_{0} - 1|}\right) + \frac{1}{(y_{0} + 1)} - \frac{1}{(y_{0} - 1)} + x_{0} \left(1 - \frac{\beta}{2}\right) \left[\frac{1}{(y_{0} + 1)^{2}} - \frac{1}{(y_{0} - 1)|(y_{0} - 1)|}\right] \qquad \dots \qquad \dots \qquad (11)$$

and

Hence the difference

$$4\pi (W_F - W_E) \to x_0 \left(\frac{2\beta - 1 - \beta^2}{2\beta}\right) \left[\frac{1}{(y_0 + 1)^2} - \frac{1}{(y_0 - 1)|(y_0 - 1)|}\right]. \quad .. \quad (13)$$

In applications of the lattice theory, $y_0 \neq 1$ and usually has the values 0, 2, 4, 6 . . . etc.

A comparison between values of W_F and the exact downwash W_E given by equation (9) is made in Table 1 for different values of M at a number of points in the field of flow.

Concluding Remarks.—The formula for W_E and W_F show good agreement up to M = 0.8, but for M = 0.9 the differences are appreciable and they get larger as M tends to unity. The effect of these errors on the final solution for K and $p_b - p_a$ may tend to cancel, but until a check on the accuracy is made, results obtained by the use of equation (10) for values of M > 0.8should not be accepted without some element of doubt, particularly as the linearised thin-wing theory may then also be inadequate. For lower values of M, the use of equation (10) instead of (9) appears to be justified, and any results obtained would be subject mainly to possible errors inherent in the lattice method. Since the terms independent of β in formula (10) can be tabulated once and for all, it has great advantages from the computational point of view.

6. Acknowledgement.—The tabulated values given in this note were calculated by Miss Sylvia W. Skan.

REFERENCES

No.		Author			Title, etc.
1	V. M. Falkner		••	•••	Calculations of Compressibility Effects on the Loading of a Swept-back Wing. December, 1945. A.R.C. 9261.
2	V. M. Falkner		•••	. 	The Calculation of Aerodynamic Loading on Surfaces of any Shape. R. & M. 1910. August, 1943.
3	R. Dickson			••	The Relationship between the Compressible Flow round a Swept-back Aerofoil and the Incompressible Flow round Equivalent Aerofoils. R.A.E. Report Aero. 2146. August, 1946. A.R.C. 9986. (Unpublished.)
4	W. P. Jones	• ••	•••	••	Theoretical Determination of the Pressure Distribution on a Finite Wing in Steady Motion. R. & M. 2145. May, 1943.

Values of $4\pi w_E$ and $4\pi w_F$

M = 0.6

<u> </u>				· · · · · · · · · · · · · · · · · · ·			······	
<u>y</u> 0 <u>x</u> 0	0	2.	4	6	10	20	40	Down- wash
10	4.0064	-1.3271	-0.2607	-0.1087	-0.0360	- 0.0076	-0.0016	$4\pi w_E$
	4 · 0059	-1.3274	-0.2609	-0.1088	-0.0360	-0.0076	-0.0015	$4\pi w_F$
5	4.0254	- 1.3097	-0.2469	- 0.0987	-0.0310	-0.0065	-0.0014	$4\pi w_E$
	4.0238	-1.3105	-0.2469	-0.0985	-0.0307	-0.0065	-0.0014	$4\pi w_F$
2	4 · 1541	-1.2231	-0.2067	-0.0796	-0.0251	- 0.0056	-0.0014	$4\pi w_E$
	4 · 1466	-1.2223	-0.2053	-0.0789	-0.0250	-0.0056	-0.0013	$4\pi w_F$
1	4.5614	1.0807	-0.1754	- 0.0691	-0.0227	-0.0053	-0.0012	$4\pi w_E$
·	4 • 5456	-1.0751	-0.1739	-0.0687	-0.0226	-0.0053	-0.0012	$4\pi w_F$
0.5	5.7736	- 0.9192	-0.1552	-0.0632	-0.0216	-0.0051	- 0.0016	$4\pi w_E$
	5.7566	-0.9119	-0.1544	-0.0630	-0.0216	-0.0049	-0.0012	$4\pi w_F$
. 0	2	- 0.6667	-0.1333	- 0.0571	- 0.0202	-0.0050	-0.0012	$4\pi w_E$
	- 2	-0.6667	-0.1333	-0.0571	-0.0202	- 0.0050	-0.0012	$4\pi w_F$
-0.5	-1.7736	0.4142	- 0.1114	- 0.0510	- 0.0188	-0.0049	-0.0008	$4\pi w_E$
	-1.7566	-0.4215	- 0.1122	-0.0512	-0.0188	- 0.0051	-0.0012	$4\pi w_F$
— 1	-0.5614	-0.2527	-0.0912	-0.0451	— 0·0177	-0.0047	- 0.0012	$4\pi w_E$
	-0.5456	-0.2583	-0.0927	- 0.0455	-0.0178	-0.0047	- 0.0012	$4\pi w_F$
-2	- 0.1541	-0.1103	- 0.0599	- 0.0346	-0.0153	- 0.0044	- 0.0010	$4\pi w_E$
	- 0.1466	- 0.1111	-0.0613	- 0.0353	-0.0154	- 0.0044	-0.0011	$4\pi w_F$
— 5	-0.0254	-0.0237	- 0.0197	- 0.0155	-0.0094	- 0.0035	-0.0010	$4\pi w_E$
	-0.0238	-0.0229	-0.0197	- 0.0157	-0.0097	- 0.0035	- 0.0010	$4\pi w_F$
— 10	- 0.0064	- 0.0063	-00.059	-0.0055	- 0.0044	- 0.0024	- 0.0008	$4\pi w_E$
	-0.0059	-0.0060	-0.0057	0.0054	-0.0044	-0.0024	-0.0009	$4\pi w_F$

TABLE 1-continued

Values of $4\pi w_E$ and $4\pi w_F$

<u>yo</u> <u>xo</u>	0	2	4	6	10	20	40	Down- wash
10	4 ∙0036	-1.3298	-0.2632	- 0.1109	— 0·0375	- 0.0082	- 0.0017	$4\pi w_E$
	4.0019	-1.3312	-0.2641	- 0.1113	-0.0374	-0.0080	- 0.0016	$4\pi w_F$
5	$4 \cdot 0146$	-1.3197	-0.2543	- 0.1039	-0.0332	-0.0069	- 0.0014	$4\pi w_E$
	4.0081	-1.3232	-0.2546	- 0.1028	-0.0322	-0.0067	-0.0014	$4\pi w_F$
2	$4 \cdot 0880$	-1.2623	-0.2212	- 0.0854	-0.0266	- 0.0058	- 0.0013	$4\pi w_E$
	4 0571	-1.2608	-0.2150	-0.0822	0.0258	- 0.0057	— 0·1003	$4\pi w_F$
1	$4 \cdot 3324$	- 1 · 1465	-0.1872	-0.0728	- 0.0235	-0.0054	- 0.0013	$4\pi w_E$
	$4 \cdot 2627$	- 1.1235	-0.1803	-0.0705	-0.0230	- 0.0053	-0.0013	$4\pi w_F$
0.5	$5 \cdot 1242$	- 0.9834	-0.1621	- 0.0652	-0.0219	-0.0052	- 0.0014	$4\pi w_E$
	5.0411	0.9487	— 0·1579	- 0.0639	-0.0218	-0.0050	-0.0012	$4\pi w_F$
0	2	-0.6667	-0.1333	- 0.0571	-0.0202	0.0050	-0.0012	$4\pi w_E$
	2	0.6667	- 0.1333	-0.0571	-0.0202	-0.0050	-0.0012	$4\pi w_F$
-0.5	-1.1242	-0.3500	-0.1045	- 0.0490	-0.0185	-0.0048	-0.0010	$4\pi w_E$
	- 1.0411	- 0.3847	-0.1087	- 0.0503	-0.0186	-0.0050	-0.0012	$4\pi w_F$
1	-0.3324	- 0.1869	- 0.0794	-0.0414	-0.0169	-0.0046	-0.0011	$4\pi w_E$
	-0.2627	-0.2099	- 0.0863	-0.0437	-0.0174	-0.0047	-0.0011	$4\pi w_F$
-2	-0.0880	-0.0711	-0.0454	-0.0288	-0.0138	-0.0042	- 0.0011	$4\pi w_E$
	-0.0571	-0.0726	-0.0516	-0.0320	-0.0146	-0.0043	-0.0011	$4\pi w_F$
- 5	-0.0146	-0.0137	-0.0123	-0.0103	-0.0072	-0.0031	-0.0010	$4\pi w_E$
	- 0.0081	-0.0102	-0.0120	-0.0114	-0.0082	- 0.0033	- 0.0010	$4\pi w_F$
— 10	-0.0036	-0.0036	-0.0034	-0.0033	-0.0029	-0.0018	- 0.0007	$4\pi w_E$
	-0.0019	-0.0022	-0.0025	-0.0029	-0.0030	-0.0020	-0.0008	$4\pi w_F$

M = 0.8

50

.

TABLE 1—continued

Values of $4\pi w_E$ and $4\pi w_F$

M = 0.9

.

<u>у</u> 0 <u>х</u> 0	0	2	4	6	10	20	40	Down- wash
10	4.0018	- 1.3314	- 0.2647	- 0.1124	- 0.0387	- 0.0088	$\div 0.0018$	$4\pi w_E$
	3.9987	- 1.3343	- 0.2667	-0.1134	- 0.0385	-0.0082	— 0 ₀ 0016	$4\pi w_F$
5	$4 \cdot 0075$	- 1.3260	-0.2596	- 0·1079	- 0.0355	- 0.0075	- 0.0015	$4\pi w_E$
	3.9952	- 1.3336	-0.2609	-0.1062	- 0.0334	- 0.0069	- <u>0</u> .0014	$4\pi w_F$
2	4.0470	- 1.2920	- 0.2357	- 0.0923	- 0:0287	- 0.0061	- 0:0013	$4\pi w_E$
	3.9837	-1.2924	— 0·2229	-0.0849	-0.0264	-0.0058	- 0.0013	$4\pi w_F$
1	4 · 1817	-1.2088	-0.2024	- 0.0780	- 0.0247	- 0.0055	-0.0012	$4\pi w_E$
	4.0306	- 1.1631	-0.1856	- 0.0721	- 0;0233	-0.0054	- 0·0013	$4\pi w_F$
0.5	$4 \cdot 6534$	- 1.0600	-0.1723	- 0.0681	-0.0225	- 0.0053	- 0.0013	$4\pi w_E$
	$4 \cdot 4539$	- 0.9789	- 0.1607	-0.0647	- 0.0219	- 0.0051	-0.0012	$4\pi w_F$
0	2	- 0.6667	- 0.1333	-0.0571	- 0.0202	- 0:0050	- 0.0012	$4\pi w_E$
	2	-0.6667	-0.1333	-0.0571	-0.0202	-0.0050	- 0.0012	$4\pi w_F$
-0.5	- 0.6534	-0.2734	- 0.0943	- 0.0461	— 0·0179	- 0.0047	- 0.0011	$4\pi w_E$
	-0.4539	-0.3545	-0.1059	- 0.0495	— 0·0185	- 0.0049	-0.0012	$4\pi w_F$
-1	- 0.1817	- 0.1246	-0.0642	<i>—</i> 0.0362	— 0:0157	0.0045	- 0.0012	$4\pi w_E$
	-0.0306	-0.1703	-0.0810	- 0.0421	— 0·0171	- 0.0046	-0.0011	$4\pi w_F$
-2	-0.0470	- 0.0414	- 0.0309	-0.0219	- 0.0117	- 0.0039	- 0.0011	$4\pi w_E$
	+ 0.0163	- 0.0410	-0.0437	-0.0293	-0.0140	- 0.0042	-0.0011	$4\pi w_F$
5	- 0.0075	- 0.0074	-0.0070	-0.0063	- 0.0049	- 0.0025	- 0.0009	$4\pi w_E$
	+ 0.0048	+ 0.0002	- 0.0057	- 0.0080	- 0.0070	-0.0031	- 0.0010	$4\pi w_F$
- 10	- 0.0018	- 0.0020	-0.0019	-0.0018	- 0.0017	- 0.0012	-0.0006	$4\pi w_E$
	+0.0013	+ 0.0009	+ 0.0001	-0.0008	<u> </u>	- 0.0018	- 0.0008	$4\pi w_F$

TABLE 1-continued

Values of $4\pi w_E$ and $4\pi w_F$

M	 0	95
- · -	<u> </u>	~~

<u> </u>	0	2	4	6	10	20	40	Down- wash
10	4.0009	— 1·3324	-0.2656	— 0·1133	— 0·0395	- 0.0092	— 0·0019	$4\pi w_E$
	3.9962	-1.3366	-0.2687	-0.1150	0.0394	-0.0085	-0.0017	$4\pi w_F$
5	4.0038	-1.3295	-0.2629	-0.1107	-0.0374	-0.0081	-0.0016	$4\pi w_E$
	3.9855	-1.3415	-0.2657	-0.1088	-0.0343	-0.0070	-0.0015	$4\pi w_F$
2	4.0242	-1.3107	-0.2476	- 0.0992	-0.0312	-0.0063	-0.0014	$4\pi w_E$
	3.9284	- 1.3161	-0.2289	-0.0870	- 0.0268	-0.0059	-0.0013	$4\pi w_F$
1	4.0953	-1.2577	-0.2192	- 0.0845	-0.0264		- 0.0013	$4\pi w_E$
	3.8558	- 1.1930	-0.1895	-0.0732	-0.0236	-0.0054	- 0.0013	$4\pi w_F$
0.5	[≿] 4∙3580	- 1.1378	-0.1855	-0.0722	- 0.0235	- 0.0054	- 0.0013	$4\pi w_E$
	. 4.0116	-1.0017	-0.1628	- 0.0653	-0.0220	-0.0051	-0.0012	$4\pi w_F$
0	2	- 0.6667	- 0.1333	-0.0571	-0.0202	- 0.0050	-0.0012	$4\pi w_E$
	2	-0.6667	-0.1333	- 0.0571	-0.0202	-0.0050	-0.0012	$4\pi w_F$
-0.5	0 • 35 80	-0.1956	- 0.0811	-0.0420	- 0.0169	- 0.0046	- 0.0011	$4\pi w_E$
	-0.0116	-0.3317	-0.1038	-0.0489	- 0.0184	-0.0049	-0.0012	$4\pi w_F$
- 1	_`0·0953	-0.0757	- 0.0474	-0.0297	-0.0140	- 0.0042	- 0.0011	$4\pi w_E$
	$\div 0.1442$	-0.1404	-0.0771	- 0.0410	-0.0168	- 0.0046	- 0.0011	$4\pi w_F$
-2	-0.0242	-0.0227	-0.0190	-0.0150	-0.0092	-0.0037	- 0.0010	$4\pi w_E$
	+ 0.0716	-0.0173	— 0·0377	-0.0272	- 0.0136	-0.0041	- 0.0011	$4\pi w_F$
— 5	0-0038	-0.0039	-0.0037	-0.0035	-0.0030	-0.0019	-0.0008	$4\pi w_E$
	+ 0.0145	+ 0.0081	-0.0009	-0.0054	-0.0061	- 0.0030	-0.0009	$4\pi w_F$
- 10	-0.0009	-0.0010	-0.0010	-0.0009	-0.0009	-0.0008	0.0005	$4\pi w_F$
	+ 0.0038	+ 0.0032	+ 0.0021	+ 0.0008	- 0.0010	- 0.0015	- 0.0007	$4\pi \omega_F$

TABLE 1-continued

Values of $4\pi w_E$ and $4\pi w_F$

M = 1

 $4\pi w_E$

<u>У</u> 0 <u>х</u> 0	0	2	4	6	10	20	40
> 0 = 0 < 0	4 . 2 0	- 1.3334 - 0.6667 0	- 0.2666 $- 0.1333$ 0	$- 0.1142 \\ - 0.0571 \\ 0$	$ \begin{array}{r} - 0.0404 \\ - 0.0202 \\ 0 \\ \end{array} $	$ \begin{array}{r} - 0.0100 \\ - 0.0050 \\ 0 \\ \end{array} $	$ \begin{array}{r} - 0.0024 \\ - 0.0012 \\ 0 \\ \end{array} $

 $4\pi w_F$

<u>yo</u> <u>xo</u>	0	2	4	6	10	20	40
10	3.9900	-1.3425	- 0.2737	- 0.1189	- 0.0416	- 0.0090	- 0.0018
5	3.9610	-1.3614	- 0.2777	-0.1155	-0.0365	-0.0074	-0.0015
2	3.7888	-1.3762	-0.2439	-0.0921	-0.0280	-0.0060	-0.0013
1	$3 \cdot 4142$	-1.2684	- 0.1995	-0.0761	-0.0242	-0.0055	-0.0013
0.5	$2 \cdot 8944$	- 1.0591	-0.1682	- 0.0668	-0.0222	-0.0053	-0.0012
0	2	-0.6667	-0.1333	- 0.0571	-0.0202	-0.0050	-0.0012
- 0.5	1 · 1056	- 0.2743	- 0.0984	- 0.0474	-0.0182	-0.0047	-0.0012
-1	0.5858	-0.0650	-0.0671	- 0.0381	- 0.0162	-0.0045	-0.0011
- 2	0.2112	+ 0.0428	-0.0227	-0.0221	-0.0124	-0.0040	-0.0011
— 5	0.0390	0.0280	+ 0.0111	+ 0.0013	-0.0039	-0.0026	-0.0009
— 10	0.0100	0.0091	0.0071	0.0047	+ 0.0012	- 0.0010	- 0.0006

PRINTED IN GREAT BRITAIN

D

(22975) Wt. 15-680 K9 7/53 F. M. & S.

R. & M. No. 2685 (11,944, 12,650, 12,147) A.R.C. Technical Report

Publications of the Aeronautical Research Council

ANNUAL TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL (BOUND VOLUMES)

1936 Vol. I. Aerodynamics General, Performance, Airscrews, Flutter and Spinning. 40s. (40s. 9d.) Vol. II. Stability and Control, Structures, Seaplanes, Engines, etc. 50s. (50s. 10d.)

1937 Vol. I. Aerodynamics General, Performance, Airscrews, Flutter and Spinning. 40s. (40s. 10d.) Vol. II. Stability and Control, Structures, Seaplanes, Engines, etc. 60s. (61s.)

1938 Vol. I. Aerodynamics General, Performance, Airscrews. 50s. (51s.) Vol. II. Stability and Control, Flutter, Structures, Seaplanes, Wind Tunnels, Materials. 30s. (30s. 9d.)

1939 Vol. I. Aerodynamics General, Performance, Airscrews, Engines. 505. (505: 11d.) Vol. II. Stability and Control, Flutter and Vibration, Instruments, Structures, Seaplanes, ctc. 63s. (64s. 2d.)

1940 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Icing, Stability and Control, Structures, and a miscellaneous section. 50s. (51s.)

1941 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Stability and Control, Structures. 63s. (64s. 2d.)

1942 Vol. I. Aero and Hydrodynamics, Aerofoils, Airscrews, Engines. 75s. (76s. 3d.) Vol. II. Noise, Parachutes, Stability and Control, Structures, Vibration, Wind Tunnels.

47s. 6d. (48s. 5d.)

1943 Vol. I. (In the press.) Vol. II. (In the press.)

ANNUAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL-

1933-34 Is. 6d. (1s. 8d.)	1937	2s. (2s. 2d.)
1934-35 Is. 6d. (1s. 8d.)	1938	1s. 6d. (1s. 8d.)
April 1, 1935 to Dec. 31, 1936. 4s. (4s. 4d.)	1939-48	3s. (3s. 2d.)

INDEX TO ALL REPORTS AND MEMORANDA PUBLISHED IN THE ANNUAL TECHNICAL REPORTS AND SEPARATELY-

April, 1950 .-- R. & M. No. 2600. 2s. 6d. (2s. 71d.) ~ ~ -

AUTHOR INDEX TO ALL REPORTS AND MEMORANDA OF THE AERONAUTICAL **RESEARCH COUNCIL**-

- R. & M. No. 2570. 155. (155. 3d.) 1909-1949 -

INDEXES TO THE TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL-

December 1, 1936 — June 30, 1939.	R. & M. No. 1850.	1s. 3d. (1s. 4 ¹ / ₂ d.)
July 1, 1939 — June 30, 1945.	R. & M. No. 1950.	IS. (IS. 1 ¹ / ₂ d.)
July 1, 1945 — June 30, 1946.	R. & M. No. 2050.	15. (15. $1\frac{1}{2}d$.)
July 1, 1946 — December 31, 1946.	R. & M. No. 2150.	1s. 3d. (1s. 4 ¹ / ₂ d.)
January 1, 1947 — June 30, 1947.	R. & M. No. 2250.	1s. 3d. (1s. 4 ¹ / ₂ d.)
July, 1951	R. & M. No. 2350.	1s. 9d. (1s. 101d.)

Prices in brackets include postage.

Obtainable from

HER MAJESTY'S STATIONERY OFFICE

York House, Kingsway, London, W.C.2; 423 Oxford Street, London, W.I (Post Orders: P.O. Box 569, London, S.E.I); 13a Castle Street, Edinburgh 2; 39 King Street, Manchester 2; 2 Edmund Street, Birmingham 3; I St. Andrew's Crescent, Cardiff; Tower Lane, Bristol 1; 80 Chichester Street, Belfast or through any bookseller.

S.O. Code No. 23-2685